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Abstract

Training Large Language Models (LLMs) to acquire various skills remains a
challenging endeavor. Conventional training approaches often struggle with data
distribution imbalances and inadequacies in objective functions that do not align
well with task-specific performance. To address these challenges, we introduce
CycleQD, a novel approach that leverages the Quality Diversity (QD) framework
through a cyclic adaptation of the MAP-Elites algorithm. In this framework, each
task’s performance metric is alternated as the quality measure while the others serve
as the behavioral characteristics. This cyclic focus on individual tasks allows for
concentrated effort on one task at a time, eliminating the need for data ratio tuning
and simplifying the design of the objective function. Empirical results indicate that
applying CycleQD to 8-billion parameter models not only enables them to surpass
traditional fine-tuning methods in coding, operating systems, and database tasks,
but also achieves performance on par with GPT-3.5-TURBO across these domains.
Our code is available at https://github.com/SakanaAI/CycleQD.

1 Introduction
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Figure 1: Method Overview. CycleQD uses QD
in a cyclic manner to merge LLM agents. We
initiate the archives with expert LLMs, each of
which has been fine-tuned to excel in a specific
task. Model merging is then conducted using QD,
treating task performance as both quality (Q) and
behavior characteristics (BC), which are cyclically
swapped in each generation during the QD process.

Large Language Models (LLMs) have estab-
lished themselves as powerful tools in the ma-
chine learning and artificial intelligence land-
scape, initially gaining prominence through their
effectiveness in conversational tasks [Achiam
et al., 2023]. As these models continue to evolve,
there is an increasing interest in enhancing their
abilities to integrate linguistic understanding
with actionable outputs, leading to the produc-
tion of intelligent LLM-based agents. Conse-
quently, the training of LLMs to acquire various
agent skills is attracting growing research atten-
tion [Gur et al., 2023, Liu et al., 2023b, Xi et al.,
2023, 2024, Wang et al., 2024b].

Despite the potential, training LLMs to acquire
various agent skills presents complex challenges.
Beyond the basic hurdle of data collection, a sig-
nificant difficulty arises from the need to balance
data ratios during training—ensuring the model
learns effectively from datasets representing dif-
ferent skills without favoring any particular one
and without neglecting others. In addition, conventional objective functions, such as next token
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prediction, often fail to capture the nuances required for performance across diverse tasks, typically
leading to sub-optimal training outcomes. This function, although effective for general language
understanding, does not foster the development of specific agent skills. An alternative, such as rein-
forcement learning (RL), has been shown to align LLMs with user intents more effectively. Ouyang
et al. [2022] demonstrated aligning LLMs with user intents by RL from human feedback, where a
reward model is trained from a dataset of human-labelled model output rankings. Unlike general
language tasks, the “rewards” are clearly defined in most agent tasks. On the other hand, managing the
balance of rewards in learning tasks and the associated costs of fine-tuning pose additional challenges.

In response to these challenges, we propose a novel framework that leverages the Quality Diversity
(QD) method [Pugh et al., 2016], specifically through a cyclic adaptation of the MAP-Elites algo-
rithm [Mouret and Clune, 2015]. Our approach features a dynamic cycle where each agent skill’s
performance metric is optimized in isolation, with other skills represented as behavioral characteris-
tics (BCs). This strategy not only simplifies the complex data ratio management by focusing on one
task at a time but also addresses the inadequacy of traditional loss functions by directly optimizing
task-specific performance metrics. Moreover, we utilize evolutionary model merging [Akiba et al.,
2024] and a singular value decomposition (SVD)-based mutation method, which are essential for
transferring skills from specialized experts to a new, cohesive model. The QD framework proves
ideal for model merging, particularly in LLMs where the computational pipelines are long. By
allowing locally sub-optimal solutions to persist, such as a temporarily under-performing layer, QD
saves these configuration in its archive and provides them a chance to improve in the future. This
method has shown that once these layers are effectively merged, the overall model performance can
significantly increase, a phenomenon observed during our experiments. This technique serves as an
alternative method to conventional fine-tuning, allowing for the preservation and enhancement of
multiple agent skills without the common pitfalls of catastrophic forgetting typically seen in standard
training processes. See Figure 1 for an overview of CycleQD. See Appendix A.1 for related works.

2 Methods

CycleQD builds on MAP-Elites, a recognized implementation of QD. It distinguishes itself from
traditional MAP-Elites systems in three key ways (see Algorithm 1 for the pseudo-code):

1. Alternating Quality and BCs: Pugh et al. [2016] emphasizes the importance of well-aligned
BCs with the quality (i.e., task metric that needs to be optimized). Traditional systems typically
set the design at the onset and do not alter them throughout the QD process. In contrast, CycleQD
uses task metrics as both quality and BCs, ensuring alignment and dynamically alternating them
during the QD process (lines 6-7 in Algorithm 1 and detailed in Appendix A.2.1).

2. Model Merging as Crossover: Unlike existing systems that optimize model parameters directly,
CycleQD leverages a model merging algorithm as a crossover operation, replacing the heuristic,
hand-designed rules often seen in practice (line 12 in Algorithm 1 and detailed in Appendix A.2.2).
In CycleQD, we fine-tune expert agents, each of which only needs to specialize in one task, and
use them as the seed models to initialize the model archives (lines 2-4 in Algorithm 1).

3. SVD-based Mutation: Traditional mutation operations in genetic algorithms like MAP-Elites
typically introduce random perturbations from a pre-defined distribution to explore new regions.
In contrast, CycleQD utilizes perturbations aligned with the principal components of the models’
parameters matrices, facilitating exploration outside the convex regions formed by the parent
models while avoiding overfitting (line 13 in Algorithm 1 and detailed in Appendix A.2.3).

After CycleQD, we aggregated elite models from the archives of K target tasks into a model using
softmax-weighted task vectors (detailed in Appendix A.2.4).

3 Experiments

3.1 Evaluation on Computer Science Tasks

3.1.1 Task Description

In this experiment, our goal is to train LLMs to master three agent skills in computer science: coding,
Operation System (OS) manipulation and Database (DB) query generation. We adopt the MBPP+

2



(Mostly Basic Python Programming) dataset from EvalPlus [Liu et al., 2023a] for coding skill
development, and utilize the OS and DB datasets from AgentBench [Liu et al., 2024] for training.
The MBPP+ dataset, based on the original MBPP, uses a subset of 399 hand-verified problems from
MBPP-sanitized to ensure well-formed programming tasks. The OS dataset evaluates LLMs in
genuine interactive bash environments (Ubuntu Docker). The DB dataset assesses LLMs’ abilities to
operate on real databases via SQL with authentic SQL interfaces and multiple tables.

3.1.2 CycleQD Setups

Experts: We employ LLAMA-3-8B-INSTRUCT MODEL [Dubey et al., 2024] as our base model,
and use supervised fine-tuning to create LLM experts in coding, OS and DB. For the OS and DB
experts, we use their training datasets from the Agent-FLAN Chen et al. [2024]. The coding expert is
fine-tuned on a combination of the MAGICODER-EVOL-INSTRUCT-110K and MAGICODER-OSS-
INSTRUCT-75K datasets [Wei et al., 2024]. See Appendix A.3.1 for training parameters.

Datasets: We use the MBPP+ dataset, as well as the test and development datasets from OS and DB.
To ensure that the experts have the same task metrics across tasks, each dataset is split evenly into
training and test splits. For OS, problems that could not be solved by either the expert model, GPT-4,
or GPT-3.5 are excluded beforehand to reduce computation cost.

See Appendix A.3.1 for CycleQD hyper-parameters and Appendix A.3.2 for baselines.

3.1.3 Results

Overall: We summarize our results from this experiment in Table 1. In addition to the baselines,
we also include GPT-3.5-TURBO and the base model for references (highlighted with a lightgray
background). The first thing to notice is that each expert model (models 2-4), fine-tuned specifically
for its assigned task, performs better than the LLAMA3-8B-INSTRUCT base model (model 1), laying
the stepping stones for CycleQD and other model merging based methods. After evolutionary
computing, our method, averaged across the three tasks, outperforms all baselines, and is approaching
the performance of GPT-3.5-TURBO. Specifically, CycleQD achieves the highest scores on the
coding and the OS tasks among the baselines, and has only a mild performance drop on the DB tasks
compared with the expert. Figure 2 gives the archives in CycleQD at the end of the experiment.

Comparison with Fine-tune Based Methods: A notable result from the table is that, the model
fine-tuned on all the datasets (model 5) is only partially and marginally better than the three experts,
despite being trained on a larger dataset. On the other hand, the expert models can be easily trained
because they do not require the data ratio or object function adjustment. The drawback of these

Algorithm 1 CycleQD
1: function TRAIN(A, EXPERTS) ▷ A are the archives, EXPERTS are the expert LLM agents
2: for i← 1 to K do ▷ K is the number of tasks
3: A[i]← UPDATEARCHIVE(A[i], EXPERTS) ▷ Place experts properly in i-th archive
4: end for
5: for t← 1 to N do ▷ N is the total number of generations
6: i← t mod K ▷ Cyclically swaps the task (archive) for the next QD step
7: A← QDSTEP(A, i) ▷ Conduct one step of the QD algorithm
8: end for
9: end function

10: function QDSTEP(A, k) ▷ Ak is the archive corresponding to the k-th task
11: p1, p2 ← SAMPLE(A[k]) ▷ p1 and p2 are the parents, SAMPLE() is detailed in Sec A.2.1
12: c← CROSSOVER(p1, p2) ▷ c is the child, CROSSOVER() is detailed in Sec A.2.2
13: c← MUTATE(c) ▷ MUTATE() is detailed in Sec A.2.3
14: for i← 1 to K do
15: A[i]← UPDATEARCHIVE(A[i], c) ▷ Place c properly in i-th archive
16: end for
17: end function
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Figure 2: CycleQD Archives from Computer Science Tasks. In each archive, the two axes show
the BCs, and the color intensities indicate the quality of the LLM agent in that grid. These archives
are obtained after 1200 generations of CycleQD. The red bounding boxes indicate the grids where
expert policies were present. See Appendix A.3.3 for archive development across generations.

Table 1: Performance on computer science tasks. We report pass@1 for MBPP and success rates
for the DB and OS tasks. Performance of the base model and GPT-3.5 are highlighted for reference.

# Methods MBPP DB OS Avg

0 GPT-3.5-TURBO 82.5 41.6 38.5 53.9
1 Llama3-8B-Instruct (base model) 67.3 5.3 25.2 32.6

Fine-tuning Based Methods
2 Fine-tuning (Coding expert) 70.4 21.2 20.7 37.4
3 Fine-tuning (DB expert) 65.8 42.4 28.5 45.6
4 Fine-tuning (OS expert) 66.3 0.0 30.4 32.2
5 Fine-tuning (All) 67.3 37.1 36.7 47.0

Merging Based Methods
6 Merging (w/o learning) 72.9 24.7 42.6 46.7
7 Merging (learning w/ GD) 69.3 41.2 29.6 46.7
8 Merging (learning w/ CMA-ES) 69.3 41.2 30.2 46.9

9 CycleQD (Ours) 76.4 38.2 42.6 52.4

experts is that they specialize in only one task, prohibiting their usage in wider scenarios. This result
proves the difficulty with conventional methods, underscoring the contributions of CycleQD.

Comparison with Merging Based Methods: Conventional model merging based methods, learning-
based or not, do not give results better than ours either. This is likely due to two reasons. The first is
the lack of a mutation operation that helps the merged model break out the “convex region” formed
by the seed models. For instance, model 8 shows the best average performance within the same
category. However, all the three task scores are slightly lower than the experts. In contrast, CycleQD
performs significantly better on the MBPP and the OS tasks than the experts. The second is the lack
of a mechanism that revives temporarily under-performing models. Since LLMs contain very long
computation pipelines (i.e., a large number of layers), it is highly likely that a merged model having
only partial error (e.g., a malfunctioning layer) compromises an LLM’s performance even though a
majority of the other components are perfect. Such a model, though more promising in the future, is
eliminated immediately. CycleQD compensates for both insufficiency, making it the top performer.

4 Conclusions

We introduced CycleQD, a compelling modification of the conventional LLM fine-tuning pipeline,
integrating evolutionary algorithms for agent skill acquisition. Through a process that cyclically
swaps quality and BCs, coupled with a model merging crossover operation and an SVD-based
mutation operator, CycleQD has successfully enabled LLMs to master computer science skills.

As additional studies, we test CycleQD’s key components (see Appendix A.3.4), generalizability (see
Appendix A.3.5), and applicability to other foundation models and domains (see Appendix A.4)
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A Appendix

A.1 Related Works

LLM Skill Acquisition: Beyond conversational tasks, increasing attention has been given to enabling
LLMs to acquire skills to take action. This allows LLMs to function as agents capable of solving
problems autonomously, and this approach is known as LLM-as-Agent [Xi et al., 2023, Wang et al.,
2024b]. Benchmarks for LLM-as-Agent have been developed, and research has demonstrated that
LLMs can successfully perform tasks such as computer operations and web browsing to a certain
extent [Gur et al., 2023, Liu et al., 2023b, Xi et al., 2024, Xu et al., 2024, Tan et al., 2024, Ye et al.,
2024]. ReAct [Yao et al., 2023] is the most frequently used approach for constructing LLM-as-
Agent systems, which integrates CoT reasoning with action. ReAct is typically employed through
prompting and few-shot in-context learning, where models learn skills from a small number of
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examples. However, attempts to equip LLMs with such skills through actual training with more
examples are still quite limited, with a few studies focusing only on standard fine-tuning [Zeng et al.,
2024, Qin et al., 2024]. This fine-tuning approach often struggles with balancing multiple agent
skills and suffers from the gap between next token prediction loss and actual task performance. Our
proposed method uses QD techniques to optimize each skill independently and directly.

Quality Diversity: QD is an emerging paradigm in evolutionary computation that aims to discover a
diverse collection of high-performing solutions rather than a single optimal result [Pugh et al., 2016].
QD algorithms balance two key aspects: quality, which represents a solution’s performance, and
behavior characterization (BC), which describes its observable properties. These algorithms maintain
an archive of diverse, high-quality solutions, continuously updated through an evolutionary process.
MAP-Elites [Mouret and Clune, 2015] is a prominent QD algorithm that maintains an archive defined
by the BCs, discretizes it into tessellation, and stores the best-performing solutions in each cell to
preserve diversity. In each generation, it samples parents from the archive, creates offspring through
crossover and mutation, and evaluates their quality and BCs. Offspring replace existing elites if
they perform better in their respective cells. This process simultaneously explores diverse behaviors
and optimizes performance within each niche, resulting in a map of high-quality, diverse solutions.
Recent improvements to MAP-Elites include a new selection method for better diversity [Wang
et al., 2023] and an approach that removes the need for predefined niches [Wickman et al., 2023].
Additionally, MOQD [Pierrot et al., 2022] has been proposed to address problems with multiple,
potentially conflicting objectives while maintaining diversity. Instead of the fitness, it maximizes
a Pareto front hyper-volume in each niche of the descriptor space. CycleQD is a simplified form
of MOQD in the sense that it uses task metrics as both BCs and the quality, the product of which
approximates the hyper-volume, and the coordinate-ascent style of optimization allows it to avoid
complex hyper-volume calculations for higher-dimensional archives.

Quality Diversity for LLMs: Evolutionary computation, particularly QD, has occasionally been
applied to neural networks and LLMs [Guo et al., 2024, Xue et al., 2024, Akiba et al., 2024]. However,
there has been no prior research that evolves the main weights of LLMs using QD. Samvelyan et al.
[2024] proposed Rainbow Teaming, which applies QD to evolve diverse adversarial prompts for
evaluating LLM safety. Bradley et al. [2024] introduced QDAIF, which applies QD with LLM
feedback to evolve populations of generated creative texts. Our work represents the first attempt
to merge LLMs through QD. We believe this approach holds great promise, as it allows individual
components of the model to be preserved even when they are temporarily sub-optimal, with the
potential to contribute to future performance improvements. Given the cost and complexity of
optimizing the many layers of LLMs, QD offers a unique advantage by retaining useful configurations
in archives that may later enhance overall model performance.

Model Merging: Model merging refers to combining multiple pre-trained models into a single
model. This technique is gaining attention because it can enhance model performance and integrate
multiple capabilities at a much lower training cost. Additionally, unlike ensemble methods, model
merging does not increase inference costs either. This technique is particularly effective when applied
to different fine-tuned versions of the same base model. The most basic method involves a linear
combination of weights [Wortsman et al., 2022, Ilharco et al., 2023]. More advanced merging
techniques have been proposed, incorporating methods such as election and sparsification [Yadav
et al., 2023, Yu et al., 2024, Wang et al., 2024a, Stoica et al., 2024]. Furthermore, the applicability
and performance of these methods have been significantly improved through optimization [Akiba
et al., 2024, Yang et al., 2024]. Inspired by these merging strategies, CycleQD combines QD with
model merging, allowing for more effective synthesis of multiple capabilities in LLMs.

A.2 Methods

A.2.1 Alternating Quality and Behavior Characteristics

CycleQD manages K archives, each dedicated to tracking the LLMs that specialize in one of the
K agent skills. Each archive evaluates LLM performance using K tasks, which serve dual roles
as both the quality and BCs. An archive is structured as a lattice, the size of which is defined by∏

k ̸=i dk, where dk is the number of bins defined by the k-th BC, and the i-th BC is excluded from
this particular archive as it is treated as the quality metric. In generation t, the i-th archive is selected
for QD computation where i = t mod K (see Figure 1 for an illustration with K = 3). This process
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Figure 3: SVD-based mutations. Left: A task vector τ contains multiple parameter matrices τl. E.g.,
the query projection matrix from attention in layer 1, the key projection matrix from attention in
layer 2, etc. Those that have a rank r > 1 can be decomposed using SVD into r components. Right:
SVD-based mutation samples a vector w ∈ Rr and scales each component by wi, essentially adding
perturbations that are aligned with the “directions” of the components.

utilizes all available data from the K tasks to evaluate and update the archives without the need for
adjusting data ratios or objective functions.

CycleQD shares knowledge across K archives for efficient optimization. Specifically, in generation t,
a new model is created from the i-th archive by sampling, crossover, and mutation. This model is
used to update not only the i-th archive but all K archives (lines 14-15 in Algorithm 1). This allows
for more effective utilization of the new model and helps facilitate optimization across K tasks.

We employ task performance metrics as our BCs, imbuing them with concrete performance implica-
tions. This allows for the design of an Elite sampling algorithm aimed to expand the Pareto frontier.
This Elite sampling algorithm is specifically designed for the CycleQD setup, where both quality and
BCs reflect task performance. In this context, it is more effective to prioritize models that push the
frontier of higher performance. This frontier is defined by the models achieving high performance
across these BCs. Concretely, when the i-th archive is active, a model j inside it is sampled with
probability Pj =

γj∑N
n=1 γn

where N is the number of models in this archive and γj is calculated as
follows:

γj =

K∏
i=1

(
αlow +

fj,i −min(f1:N,i)

max(f1:N,i)−min(f1:N,i)
(αhigh − αlow)

)
Here, fj,i indicates the j-th model’s performance on the i-th task. (αlow, αhigh) are hyper-parameters
for the purpose of normalization. Elite sampling strategically favors models that excel across the
quality and various BCs, enhancing the efficiency and evolutionary potential of CycleQD.

A.2.2 Model Merging-based Crossover

Training an LLM to specialize in a single task does not suffer from the data ratio tuning and
the inadequate objective function problems mentioned earlier. It is therefore straightforward to
initially train a set of single-task experts using conventional fine-tuning methods, and then use model
merging algorithms to develop more capable agents. In CycleQD, our model merging crossover
operator employs the parameter space merging scheme described in Akiba et al. [2024], which
creates a new model by merging task vectors at the model level [Ilharco et al., 2022]. Specifically,
for a pre-trained base LLM with parameters θbase ∈ Rd, we define a task vector for task k as
τk = θk − θbase, where θk ∈ Rd are the parameters of the LLM fine-tuned for that task. The
crossover operator then generates a model’s parameters by combining these task vectors: θchild =
θbase +

(
ω1/(ω1 + ω2)

)
τp1

+
(
ω2/(ω1 + ω2)

)
τp2

, where τp1
and τp2

are the parents’ task vectors.
Here, ω1 and ω2 are i.i.d samples from N (µ, σ2), and (µ, σ) are predetermined hyper-parameters
that remain fixed during the experiments. We normalize (τp1 , τp2)’s mixing coefficients to ensure the
merged weights do not become outliers and cause problems for the downstream layers.

A.2.3 SVD-based Mutation

The formulation of our model merging-based crossover bears two obvious limitations: (1) the
construction of θchild is a linear combination of (τp1

, τp2
), which are themselves linear combination

of their parents. The entire process then reduces to finding the optimal linear combination of the
expert models’ parameters, the combination coefficients of which can be effectively searched with
gradient descent, eliminating the need for QD; (2) Due to its nature of construction, θchild will
likely be trapped in the “convex region” in the performance space formed by its parents, whereas
extrapolation that leads to improved performance is desired. We introduce a mutation function
θchild = h(θchild) after the crossover to get rid of these limitations.
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In conventional methods, the mutation function h(θchild) is often an operator that samples perturba-
tions from a pre-defined distribution (e.g., Gaussian with pre-determined mean and covariance matrix)
and add them to the gene being mutated. We find this setting introduce excess freedom and lead to
overfitting in the final model. Instead, we propose to sample perturbations along the “directions” of
the components from the model’s parameter matrices. This mutation operation is mathematically
defined as: h(θchild) = θbase + concat

(
[Ul(Σlw)V

⊺
l ]Ll=1

)
, where Ul ∈ Rm×r, Σl ∈ Rr×r and

Vl ∈ Rn×r are the SVD components of τl = UlΣlV
⊺
l , the l-th parameter matrix in the task vector

τchild = θchild − θbase (i.e., τl is a reshaped subarray of τchild). The perturbation vector w ∈ Rr is
sampled from a uniform distribution of boundaries [0, wmax], where wmax ∈ R+ is a hyper-parameter.
Our SVD-based mutation becomes a pass-through operation for parameter matrices whose rank is
one (e.g., those belonging to layer-normalization layers).

Intuitively, if task vectors are representative of the agent skills each fine-tuned LLM has mastered,
their components are the building blocks and are therefore proxies in a finer granularity. As a result,
our SVD-based mutation allows finer control of θchild in the fundamental skill building blocks and
reduces the risk of overfitting. See Figure 3 for an illustration.

A.2.4 Model Aggregation

CycleQD maintains K archives during the optimization process, LLMs in each of these archives are
trained to acquire one of the K agent skills. In the end, CycleQD returns hundreds or even thousands
of LLM agents with various specialties and characteristics. These LLM-based agents are versatile and
can facilitate multi-agent researches in a diverse set of directions. On the other hand, an aggregated
LLM agent that possesses the top skills acquired by the best models in each archive is useful on its
own and is important for the evaluation of CycleQD.

Our model aggregation algorithm is straightforward, and can be summarized as: θagg = θbase +∑K
k=1 βkτk, where τk is the task vector from the elite model in the k-th archive, with ties broken

by model age, and the most recently generated model is selected. βk = exp(Qk)/
∑K

i=1 exp(Qi)
(i.e., softmax function) is the mixing coefficient calculated from the elite model’s task performance
Qk in the k-th archive. In this paper, all experimental results from CycleQD are produced with this
aggregated model θagg.

A.3 Evaluation on Computer Science Tasks

A.3.1 CycleQD Setups

Experts training details We adopt the AdamW optimizer [Loshchilov and Hutter, 2019] with
β1 = 0.9 and β2 = 0.95. A global batch size of 64 is used across all fine-tuning processes. We
employ cosine learning rate scheduling with a range of [4× 10−6, 2× 10−5], starting with a linear
warmup for the first 10% of the total training steps. The OS and DB experts are trained for 1 epoch,
while the code model is trained for 3 epochs due to larger training data size.

Hyper-parameters: We use the three experts’ performance to determine the lower and upper bounds
of the corresponding BC dimension. Specifically, the lower bound is set at 85% of the performance
achieved by the least proficient expert, while the upper bound is set at 115% of the performance
achieved by the most proficient expert. All BCs are then evenly divided into 15 bins between the
lower and upper bounds. We limit the number of models in each bin to one, and run CycleQD for
1200 generations. Since the quality and BCs are alternated in each generation, this is equivalent
to optimize for the three skills for 400 generations each. We set αlow = 0.5 and αhigh = 0.8 in
Elite sampling, µ = 1.0 and σ = 0.03 in model merging-based crossover, and wmax = 0.3 in our
SVD-based mutations.

A.3.2 Baselines

Our baselines can be categorized into fine-tuning based and merging based models.

Fine-tuning Based Models: These are models 2-5 in Table 1. In addition to the expert LLMs
mentioned earlier, we also combine all the data from the three tasks (including the extra MAGICODER-
EVOL-INSTRUCT-110K and MAGICODER-OSS-INSTRUCT-75K datasets) and continue training the
LLAMA3-8B-INSTRUCT base model with supervised fine-tuning to develop an extra baseline. In
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Table 2: Ablation studies. We add and highlight a different treatment from the previous trials.

# Trials MBPP DB OS Avg
0 QD + No mutation + Random sampling 70.4 28.8 43.7 47.6
1 CycleQD + No mutation + Random sampling 72.9 33.5 41.9 49.4

2 CycleQD + Gaussian mutation + Random sampling 73.4 30.0 42.2 48.5
3 CycleQD + SVD mutation + Random sampling 75.9 38.2 41.1 51.7
4 CycleQD + SVD mutation + Elite sampling 76.4 38.2 42.6 52.4

this baseline, we don’t tune the data ratio and use cross-entropy (i.e., next token prediction) as our
objective function.

Merging Based Models: These are models 6-8 in Table 1. We first introduce a naive merging method
where the merged model is produced by taking an average of the three experts’ task vectors (model 6).
Similar to this baseline, we introduce two additional learning based model merging methods where,
instead of taking an average, the coefficients of a linear combination of these task vectors is learned
through gradient descent on policy gradients (model 7), and CMA-ES, an evolutionary algorithm on
the raw rewards (model 8) separately.

A.3.3 CycleQD development of archives across generations.

Figure 4 shows the development of archives across generations. The archives are shown in increments
of 300 generations from top to bottom. The corresponding generation for each archive is displayed
on the left side of the figure. The red bounding boxes indicate the grids where expert policies were
present in each archive. It can be observed that the frontier of the archives expands with each passing
generation.

A.3.4 Ablation Studies

To get insights to the design choices in CycleQD and show how they contribute its effectiveness, we
conduct a series of ablation studies and summarize the results in Table 2.

CycleQD vs QD: We compare conventional QD with CycleQD in trials 0 and 1. Specifically, we
run QD for three runs. Within each run, one of the task’s metric is treated as the quality while the
others are regarded as the BCs. Each run lasts for 400 generations, an identical computing budget
as CycleQD, and all other hyper-parameters are identical to CycleQD. We use the same model
aggregation method to merge the best models from these three runs (see Appendix A.2.4). The better
performance from CycleQD suggests the importance of alternating the quality and BCs.

Mutation Methods: We focus on the impact of different mutation operations with trials 1-3. Although
we mentioned earlier that mutation helps the merged model extrapolate in the performance space,
naively designed mutations give excess freedom and can lead to overfitting. This is what happens to
trial 2, the performance of which is even worse than trial 1 that does not have any mutation operations.
On the other hand, our SVD-based mutation (trial 3) successfully avoids the problem and delivers a
much better performance.

Sampling Methods: Finally, we demonstrate the importance of Elite sampling in CycleQD in trial 4,
which has the identical settings as model 9 in Table 1, and gives the best score in the ablation studies.
Elite sampling is effective because it prioritizes merging high-performing models, the result of which
helps expand the Pareto frontier in each archive more effectively.

A.3.5 Generalization and Language Capabilities

We evaluate our model across diverse categories of tasks to assess its performance in various aspects
of language understanding, reasoning, and code generation. Our evaluation framework encompasses
six main categories: In the Coding category, we employ two key benchmarks: HumanEvalLiu et al.
[2023a], evaluated in a zero-shot setting, and BigCodeBench. BigCodeBench, introduced by Zhuo
et al. [2024], is designed to assess code generation with diverse function calls and complex instructions.
We report the average Pass@1 scores for both BigCodeBench-Complete and BigCodeBench-Instruct
variants in the full setting, using zero-shot evaluation with temperature set to 0. For the General
Knowledge and Reasoning (GK & Reasoning) category, we utilize two comprehensive benchmarks:
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Table 3: Generalization performance. The scores are normalized against the base model. CycleQD
generalizes well to other coding tasks unseen in the training while retaining its language capabilities.

Model Coding Tasks Language Tasks Avg
HUMANEVAL+ BigCodeBench Reasoning GSM8K RC CommonSense

MBPP expert 1.18 0.97 0.57 0.82 0.94 1.03 0.92
DB expert 0.80 0.84 0.84 0.87 0.98 0.98 0.89
OS expert 0.94 0.90 0.98 0.93 0.99 0.99 0.95
CycleQD 1.10 1.03 0.95 0.88 0.98 1.02 0.99

MMLU [Hendrycks et al., 2021] with a 5-shot evaluation, and BBH (Big Bench Hard) [Suzgun et al.,
2023] using a 3-shot chain-of-thought [Wei et al., 2022] prompting approach. These benchmarks
provide a holistic assessment of our model’s ability to handle a wide range of knowledge-based
and reasoning tasks. To evaluate Mathematical Reasoning, we employ the GSM8K benchmark
[Cobbe et al., 2021] with a 4-shot evaluation, challenging our model’s ability to solve complex
mathematical problems. For Reading Comprehension (RC), we use two established benchmarks:
SQuAD2 [Rajpurkar et al., 2018] and TriviaQA [Joshi et al., 2017], both evaluated using a 4-
shot approach. These datasets assess the model’s capacity to understand and reason over complex
textual information. In the Commonsense Reasoning category, we employ three diverse benchmarks:
HellaSwag [Zellers et al., 2019] for commonsense inference, OpenBookQA [Mihaylov et al., 2018]
for open-domain question answering, and XWinograd (English version) [Tikhonov and Ryabinin,
2021] for cross-lingual commonsense reasoning. All these evaluations are conducted with 4-shot
prompts. The results of these evaluations are presented in Table 3, offering a detailed view of our
model’s capabilities in each category, including an overall average across all benchmarks.

Table 3 shows the generalization results across various tasks. On average, our method achieves
the highest score of 0.6077, outperforming the OS expert (0.6021), DB expert (0.5643), and MBPP
expert (0.5528).This demonstrates that our method provides better overall generalization across tasks.

The expert models, such as the MBPP expert, show significantly lower performance on specific tasks
like BBH-CoT (0.1054). This sharp decline in performance suggests the occurrence of catastrophic
forgetting during fine-tuning, where the model loses its ability to generalize across tasks outside
its specialization. In contrast, CycleQD maintains strong overall performance across tasks while
effectively balancing optimization for the target tasks (MBPP, OS, DB).

A.4 Evaluation on Image Segmentation Tasks

A.4.1 Task Description

In addition to its applications in LLMs, CycleQD serves as a versatile method for integrating expert
models across various data modalities beyond text. In this experiment, we extend CycleQD to the
fusion of multiple Segment Anything Models (SAM) [Kirillov et al., 2023], which are state-of-the-art
computer vision models designed for image segmentation tasks. Specifically, our objective is to
merge pairs of SAM models, A and B, to create models whose capabilities encompass the skill sets
of both A and B.

A.4.2 CycleQD Setups

Experts: We select four tasks within the image segmentation domain, each supported by extensive
datasets, for training specialized models: Camouflaged Object Segmentation (CAM), Polyp Seg-
mentation (POL), Skin Lesion Segmentation (SKL), and Leaf Segmentation (LEA). Camouflaged
Object Segmentation focuses on detecting objects hidden within complex or cluttered backgrounds,
presenting a greater challenge than traditional object segmentation. Polyp Segmentation identifies
abnormal growths (polyps) in gastrointestinal endoscopic images, which is crucial for early colorectal
cancer diagnosis. Skin Lesion Segmentation targets the identification of various types of skin lesions
in medical images. Lastly, Leaf Segmentation involves detecting individual plant leaves in agricultural
images, aiding plant disease control and improving food production quality. We employ the SAM-ViT
Huge as our base model, which we fine-tune with the datasets from Zhong et al. [2024] to develop
these experts.
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Datasets: For Camouflaged Object Segmentation, we use three datasets: COD10K [Fan et al., 2020a],
CHAMELEON [Skurowski et al., 2018], and CAMO [Le et al., 2019]. Following Fan et al. [2020a]
we train on a combined dataset consisting of the 4040 training images from COD10K and CAMO for
20 epochs, randomly splitting 10% of the images from the training set for validation. The model is
then tested on the 250 COMO test images. For Polyp Segmentation, we use two datasets: Kvasir [Jha
et al., 2019] and CVC-ClinicDB/CVC-612 [Bernal et al., 2015]. Following Fan et al. [2020b], we
divide the images into a 9:1 ratio for training and testing, resulting in 1450 training images. We then
randomly split 20 % of the training set for validation. The model is trained for 30 epochs and tested
on the 101 Kvasir test images. For Skin Lesion Segmentation, we use the ISIC 2017 dataset [Codella
et al., 2018]. We train the model on the 2000 training and 150 validation images for 30 epochs and
evaluate it on the 600 test images. For Leaf Segmentation, we use the Leaf Disease Segmentation
Dataset [Rath, 2023]. We train the model on the 498 training image, using 80% for training and 20%
for validation for 30 epochs, and evaluate it on 90 test images.

Hyper-parameters: CycleQD’s hyper-parameters remain the same as in Appendix A.3.1.

A.4.3 Results

Overall: Table 4 shows the performance of the models merged by CycleQD, where scores are
normalized against the expert models. In general, CycleQD is able to merge the experts successfully,
with top models retaining more than 90% of the experts’ performance (e.g., models 0, 1, and 3). On
the other hand, models 2, 4 and 5 are less successful. This leads us to conduct further analysis and
we report the findings next.

Analysis: We report the similarities between experts A and B in the last column in Table 4. A strong
correlation of 0.83 between the averaged scores and these similarities indicate both the limitations
and potential areas for enhancement in CycleQD. We define the similarity between models A and B
as the average cosine similarity of the singular value vectors (derived from the task vectors) across
all layers in both models: s = (1/L)

∑L
i=1 cos

(
diag(Σi,A), diag(Σi,B)

)
. Here, L is the number of

weight matrices with a rank greater than 1, and Σi,∗ denotes a diagonal matrix of singular values
from the i-th weight matrix in the task vector. Although this summarizing metric does not fully
encapsulate the models’ characteristics, CycleQD generally performs well when the models exhibit
high similarity. This observation underpins our approach of incorporating this similarity metric as
a regularization technique during model fine-tuning, which we anticipate will encourage a cyclical
process of continuous learning and model integration. Notably, a similar metric has been employed as
the “proximal term” in optimizing heterogeneous networks within the realm of federated learning, as
evidenced by research documented in [Li et al., 2020]. This precedent lends credence to our strategy,
suggesting it is grounded in established methodologies.

Table 4: Performance on image segmentation tasks. The scores are normalized against the
performance of the corresponding expert models. Model similarity shows how close the pair of expert
models are (the larger the similarity, the closer the models).

# Expert A Expert B Score A Score B Avg Score Model Similarity
0 CAM POL 0.95 0.99 0.97 0.98
1 CAM SKL 0.85 0.99 0.92 0.97
2 CAM LEA 0.51 0.89 0.70 0.88
3 POL SKL 0.98 0.95 0.96 0.99
4 POL LEA 0.40 0.84 0.62 0.93
5 SKL LEA 0.83 0.84 0.83 0.95

A.4.4 Visualization result

The visualization results are shown in Figure 5 for SKL and POL, and Figure 6 for SKL and LEA. In
both figures, "Ours" refers to a single merged model via CycleQD, identical to model #3 (for SKL and
POL) and model #5 (for SKL and LEA) in Table 4. In Figure 5, our model retains near expert-level
performance for both tasks after merging. However, in Figure 6, while our model generally performs
at an expert level for both tasks, a slight drop is observed. Notably, in the bottom images of SKL, the
model seems to detect the edges of the skin lesions instead of the lesions themselves, as if confusing
the task with leaf disease detection. The expert model similarities are high—0.99 for SKL and POL,
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and 0.95 for SKL and LEA. This corresponds with the observation that the merged model from the
highly similar SKL and POL performs better than the one from SKL and LEA.
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Figure 4: CycleQD Development of Archives Across Generations. In each archive, the two axes
represent the BCs, and the color intensities in each grid indicate the quality of the LLM agent in that
grid. The archives are shown in increments of 300 generations from top to bottom. The corresponding
generation for each archive is displayed on the left side of the figure. The red bounding boxes indicate
the grids where expert policies were present in each archive. The experiment shown in this figure is
the same as in Figure 2, and the archive for 1200 generations is identical to that in Figure 2.
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Skin Lesion Segmentation (SKL)

Image Ground truth Expert

Polyp Segmentation (POL)

Image Ground truth ExpertOurs Ours

Figure 5: CycleQD of SAM for SKL and POL. Ours is a single merged model via CycleQD, and it
is the same model as the one in Table 4 (# 3). The similarity between the two expert models is high
(0.99), and the model maintains expert-level performance across both tasks.

Skin Lesion Segmentation (SKL)

Image Ground truth Expert

Leaf Segmentation (LEA)

Image Ground truth ExpertOurs Ours

Figure 6: CycleQD of SAM for SKL and LEA. Ours is a single merged model via CycleQD, and it
is the same model as the one in Table 4 (# 5). The similarity between the two expert models is 0.95,
which is lower than #3 (0.99) from Table 4, resulting in a slight decrease in performance, as observed
when comparing the bottom images in SKL.
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