Hypothetical-Deductive Reasoning for Event Causality Identification

Anonymous ACL submission

Abstract

Event Causality Identification (ECI) is the task
of identifying causal relations between two
events. Most works mainly enhance event
encoding with pre-trained language models
(PLMs), often neglecting the implicit and long-
text reasoning capabilities needed for ECI
tasks. Large language models (LLMs) have
recently revealed substantial reasoning poten-
tial through chain-of-thought (CoT). Inspired
by Pearl’s Causal Hierarchy, we first introduce
CoT into the ECI task and propose Causal Pro-
gressive Reasoning CoT (CPR). CPR uses a
progressive reasoning approach, guiding the
model step by step to explore the causal rela-
tion between two events. More importantly, we
find that CoT may generate incorrect interme-
diate steps that propagate to the next ones, lead-
ing to error results. To deal with this problem,
we propose a Hypothetical-Deductive Reason-
ing framework (HYDRO). HYDRO is based
on hypothetical-deductive reasoning, where
each step is independently reasoned. Exten-
sive experiments have demonstrated that our
methods achieve state-of-the-art performance
(17.8% and 6.8% F1 score gains on EventStory-
Line and Causal-TimeBank) on two benchmark
datasets. Additionally, it exhibits significant ad-
vantages only using Flan-T5-Base (250M) in
zero-shot settings.

1 Introduction

Event Causality Identification (ECI) aims to deter-
mine whether a causal relation exists between two
events. For example, in Figure 1, event tornadoes
cause event declaration. The ECI model needs
to identify such causal relations, which is benefi-
cial for various NLP applications such as question
answering (Sui et al., 2022; Shi et al., 2021) and
future event prediction (Mathur et al., 2024).
Existing ECI research can be categorized into
two types: sentence-level ECI (SECI) (Liu et al.,
2021) aims to identify causal relations between two

[1]On May 7, 2024, a series of tornadoes struck
southern Michigan, pﬁompﬁn/g/a rare tornado
emergency declar;;{ion.

[2]Many homes and businesses were damaged,
and the local community is now in the cover;)\'
phase, assessing the full extent of the

and beginning cleanup efforts.
<+— Document-level causality ~<«— — —» Sentence-level causality

' #) How can Al learns to reason like humans do?

Figure 1: An example of ECI. Each double arrow indi-
cates a causal relation between two events.

events within a single sentence, and Document-
level ECI (DECI) (Phu and Nguyen, 2021) aims
to identify causal relations between events across
the entire document. Existing works have focused
on enhancing encoder performance. For example,
(Shen et al., 2022) employed joint learning to super-
vise the quality of event representations, but this
requires additional annotated information. (Wu
et al., 2023) utilized ConceptNet for event analogy
to enhance ECI performance, achieving the current
state-of-the-art (SOTA) results.

However, these works are based on encode-style
models, which primarily rely on external knowl-
edge to enhance event encoding quality, and their
performance remains at a similar level. This in-
dicates that encode-style models have reached a
performance bottleneck in ECI tasks. The main rea-
sons limiting the improvement of ECI performance
are as follows: Firstly, in the ECI task, events of-
ten lack explicit causal clue words (e.g., "causes",
"results in"). For example, in Figure 1, event tor-
nadoes cause event damaged, but there are no di-
rect clue words between these two events. This
challenges the model’s implicit reasoning ability.
Secondly, in DECI, documents are much longer,



requiring the model to have robust long-text rea-
soning capabilities. While improving the quality
of event representations through prompts can ben-
efit ECI performance, ECI requires more implicit
and long-text reasoning capabilities. Fortunately,
large language models (LLMs) with rich embedded
knowledge for chain reasoning have revealed the
significant reasoning potential (Wang et al., 2022;
Zhang et al., 2023), providing a new paradigm for
solving reasoning problems.

In this paper, we innovatively introduce the
CoT into the ECI task. Based on the first level
of Pearl Causal Hierarchy (PCH) theory (Pearl,
2001), we propose the Causal Progressive Reason-
ing CoT framework (CPR). Technically, we design
a four-hop reasoning framework where each sub-
sequent step of reasoning is based on the answer
from the previous step. This progressive reasoning
breaks down complex causal inference into multi-
ple smaller questions, guiding the model to explore
implicit causality. Meanwhile, it can identify the
causality only relying on the answer of reasoning,
which can effectively reduce the length of the text.

More importantly, we find incorrect intermedi-
ate reasoning steps may occur during the CoT’s
reasoning process and propagate to the next step,
leading to erroneous results. To address this issue,
we propose a Hypothetical-Deductive Reasoning
(HYDRO) framework for ECI. Unlike CoT, HY-
DRO performs each step independently without
relying on the previous step’s answer. Technically,
HYDRO employs a two-stage reasoning framework
and incorporates hypothetical-deductive reasoning.
In the first stage, we propose three hypotheses
about causal relations between events, and HYDRO
judges whether these causal hypotheses hold. The
second stage considers these answers in the first
stage to make a final judgment based on the prin-
ciples of hypothetical-deductive reasoning: if any
hypothesis fails, there is no causal relation between
events A and B. This approach significantly reduces
dependency on the previous step’s answers.

To supervise the correctness of the model’s hy-
pothetical reasoning, we introduce supervised rea-
soning correction to more rigorously supervise the
answers of the first stage in hypothetical-deductive
reasoning. During training, these training gold la-
bels continuously adjust the model, correcting each
hop’s hypothesis to produce more accurate reason-
ing.

In summary, our contributions can be summa-
rized as follows:

* We introduce the Chain-of-Thought(CoT) into
the ECI task and propose a Causal Progres-
sive Reasoning CoT (CPR) for the ECI task,
enabling progressive reasoning to uncover
causal relations between events. To the best
of our knowledge, we are the first to intro-
duce the causal Chain-of-Thought into the
ECI task.

* More importantly, to address error propaga-
tion in CoT, we further propose a new Hy-
pothetical Deductive Reasoning (HYDRO)
framework, which is different from CoT and
prevents error propagation. The HYDRO is a
completely new reasoning framework differ-
ent from CoT in that each step of reasoning is
independent.

* Experimental results show that the HYDRO
achieves an F1 score improvement of 20.5%
on EventStoryLine and 6.8% on Causal-
TimeBank. In zero-shot settings, compared to
ChatGPT, our approach outperforms by 16.1%
on EventStoryLine and 4.6% on Causal-
TimeBank in F1 scores only using the Flan-
T5-Base with 250 million parameters.

2 Methodology

Given a document D and a set of events F, SECI
aims to identify causal relations between two events
within a single sentence. DECI aims to predict
whether there is a causal relation between events e;
and e; mentioned in different sentences within the
document. As shown in Figure 2 and Figure 3, we
respectively illustrate the Causal Progressive Rea-
soning CoT (CPR) and the Hypothetical-Deductive
Reasoning CoT (HYDRO). CPR adopts a four-step
reasoning framework, using a progressive thinking
approach where each reasoning step builds upon
the previous step. In contrast, HYDRO employs
a two-stage reasoning framework, incorporating
hypothetical-deductive reasoning to derive the final
answer.

2.1 Causal Progressive Reasoning CoT (CPR)

We construct CPR based on the first level of Pearl
Causal Hierarchy (PCH) (Pearl, 2001), focusing
on event correlations. At this level, the subject
passively observes the world to identify patterns
without intervening. A typical question at this level
is: "With many dark clouds in the sky, what is the
probability of rain?" CPR requires the model to



Input

X: A severe storm hit Oregon, causing extensive damage and power outages.

Causal Progressive Reasoning CoT

Output

Storm cause damage

]_St-hop Given the sentence X, what do storm and damage respectively mean in the sentence?
2

ﬁ Storm refers to a severe weather. Damage refer to the harm or destruction

2nd_h0p Given the sentence X, Storm refers to a severe weather, Damage refer to the harm or destruction
resulting from the storm. What kind of correlation exists between storm and damage ? Why?

ﬁ The correlation between storms and damage is typically positive, Because Storms increases, the

damage also tends to increase.
rd Given the sentence X, Storm reAfersmevere weather, Damage refer to the harm or destruction
3 -hOp resulting from the storm. The correlation between storm and damage is typically positive, Because
Storm increases, the damage also tends to increase. Based on common sense, does the correlation is

a type of causal relation?
The correlation between storm and damage is a causal relationship. Because storm causes damage.

th Given the sentence X, Storm refers to a severe weather, Damage refer to the harm or destruction
4 -hOp resulting from the storm. The correlation between storm and damage is typically positive, Because
Storm increases, the damage also tends to increase. The correlation between storm and damage is a

causal relationship. Because storm causes damage.

other? Answer yes or no.
Yes.

Model Answer

Event Prompt

— Connection

Based on the context, can storm and damage each

o
ﬁ Flan-T5+CPR

Figure 2: An illustration of Causal Progressive Reasoning CoT for ECI task. Dashed rectangular boxes represent

the graphic symbols.

reason about the correlation between events, mak-
ing judgments about the causal relationships of
events based on the model’s understanding of the
events themselves. Based on the first level of event
correlations, we propose the Causal Progressive
Reasoning CoT (CPR) for ECI (Figure 2). Given
the context prompt 7': Given the sentence.
15!-Hop: our first-hop is to prompt the LLM M
to consider what the two events are, we ask the M
using the Prompt 77:

T1: T. What do ¢; and ¢; respectively mean in
the sentence?

This step can be formally expressed as: A = M (11),
where A denotes the model’s explanations of e; and
€;j.

2"4.Hop: The second-hop, based on the answer
A generated by the LLM’s understanding of e;
and e;, we ask the LLM to continue answering
the correlation between e; and e; and provide the
corresponding explanation. The Prompt 75 is as
follows:

Ty: [T, A]. What kind of correlation exists
between ¢; and ¢;? Why?

Here, [ ] represents the concatenation of context.
Similarly, after feeding 715 to the LLM, we obtain

response B which represents the LLM’s answer and
explanation regarding the correlation between e;
and e;.

37<-Hop: The third-hop involves asking the LLM
to determine whether the correlation between ¢;
and e; constitutes a causal relation. The Prompt 73
is as follows:

T3: [T, A, B]. Based on common sense, does the
correlation is a type of causal relation?

We feed T3 to the LLM, obtaining answer C. C
represents the LLM’s answer regarding whether
the correlation is a causal relation.

4""-Hop: Based on the previous three steps of pro-
gressive reasoning, the fourth-hop is about asking
the LLM to make a final judgment on whether e;
and e; have a causal relation, based on the previous
three steps of progressive reasoning. The Prompt
Ty is as follows:

Ty: [T, A, B, C]. Based on the context, can ¢;
and ¢; cause each other? Answer yes or no.

This can be expressed with the formula:
§=M(@y|T, A, B,C), e))

where y represents golden labels, y represents the
model’s predicted answer.



Input

X: A severe storm hit Oregon, causing extensive damage and power outages.

Hypothetical-Deductive Reasoning Framework

Output

Storm cause damage

Stage 1: Hypothetical Reasoning
Hypothesis 1: Given the sentence X, Does storm precede damage? Answer yes or no.
Hypothesis 2: Given the sentence X, Is there a correlation between storm and damage? Answer yes or no.

Hypothesis 3: Given the sentence X, Have other potential causes or confounding factors been adequately considered
and eliminated? Answer yes or no.

Generate a response on whether the hypothesis is valid.

Stage 2: Deductive Reasoning P

) Connection

T: Given the sentence X

[T.H1.Hz.Hs]. Based on the above If all three hypotheses are valid,

Hi: Storm is Yes precede
damage.

H2: There is Yes a
correlation between storm
and damage.

H3: There is Yes other
potential causes.

Connection

Event Prompt Model Answer

reasoning and the theory o

______ » hypothetical-deductive reasonin
Will storm causes damage?
Answer Yes or no.

" we can conclude that storm
Reasoning

criteria - causes damage. If any of the

_____ hypotheses do not hold, we
conclude that there is no causal
relationship between storm and

damage.

Reasoning Criteria Flan-T5+HYDRO
S5

Figure 3: An illustration of Hypothetical-Deductive Reasoning framework for ECI task. Hydro means "water" in
the Greek language. Dashed rectangular boxes represent the graphic symbols.

2.2 Hypothetical-Deductive Reasoning
framework

While CPR can enhance performance, the errors
in intermediate reasoning steps can propagate to
subsequent steps, leading to cumulative mistakes
and ultimately incorrect predictions. To address
this issue, we propose HYDRO. The hypothesis
construction for HYDRO is based on the third level
of Judea Pearl’s Causal Hierarchy(Pearl, 2001),
which deals with counterfactuals. A typical ques-
tion at this level is: "What would have happened
if I had...?" This involves comparing the observed
world with a counterfactual world and assessing the
feasibility of proposed hypotheses. Based on this,
we propose three hypotheses to verify causal rela-
tionships between events. These hypotheses may
be further refined, but adding more would require
more computational resources and time. As illus-
trated in Figure 3, HYDRO combines hypothetical-
deductive reasoning with a two-stage reasoning
framework. Specifically, the two-stage reasoning
framework operates as follows:

2.2.1 Stage 1: Hypothetical Reasoning

We establish three causal hypotheses to determine
whether there is a causal relation between events.

First, we provide the reasoning context prompt 7°:
Given the sentence X.

Hypothesis 1: We hypothesize that e; occurs
before e;. If there is a causal relation between the
two events, there will necessarily be a temporal
order.

Hypothesis 2: We hypothesize that there is a
correlation between e; and e;. If the events are
causally related, they must be correlated.

Hypothesis 3: We hypothesize that when deter-
mining the causal relation between e; and e;, the
model has eliminated other potential factors.

The prompts P = {P;, Py, P3} for the three
hypotheses are as follows:

Py Given the sentence X. Does e; precede ¢;?
Answer yes or no.
P>: Given the sentence X. Is there a correlation
between ¢; and ¢;? Answer yes or no.
P;: Given the sentence X. Have other potential
causes or confounding factors been adequately
considered and eliminated? Answer yes or no.

We input these three hypothesis reasoning
prompts into the LLM to obtain the answers for
each hypothesis. This process can be described
using the following formula: U = M (y|P), where



U represents the LLM’s answer. Integrate U into
our designed Prompt H. H = {Hy, Hy, H3}, and
H,, Hy, Hj represent the model’s reasoning an-
swers regarding temporal order, correlation, and
consideration of other factors, respectively. Refer
to Figure 3 for the H Prompt.

Stage 2: Deductive Reasoning

According to the theory of hypothetical-deductive
reasoning: if all three hypotheses hold, we can
conclude that e; causes e;; if any of the hypotheses
do not hold, we conclude that there is no causal
relation between e; and e;. Based on this criterion,
we then ask the LLM whether there is a causal
relation between e; and e;. Our prompt F' is as
follows:

[T, Hi, H2, H3]. Based on the above reasoning
and the theory of hypothetical-deductive
reasoning, does ¢; cause ¢;? Answer yes or no.

This prompt guides the LLM to evaluate the causal
relation based on the outcomes of the three hy-
potheses.

2.3 Hypothetical Reasoning Supervision

To enhance the correctness of the model’s reason-
ing for the three hypotheses in Stage 1, we use the
ground truth causal relation labels from the origi-
nal dataset. Each hypothesis answer is input into
the LLM, prompting it to predict the final relation
label. Since the reasoning criteria is that if there is
a causal relationship between two events, all three
hypotheses are valid. Therefore, they are consis-
tent with the ground truth causal relation labels.
This reasoning structure allows us to supervise the
model’s hypothesis answers without additional an-
notation. By continuously refining its hypothetical
reasoning content, the model aligns its deductive
reasoning results with the ground truth labels in
Stage 2. This process improves the model’s hypo-
thetical reasoning ability. It is a straightforward and
efficient method that does not require additional an-
notations.

3 Experiments

3.1 Datasets and Evaluation Metrics

We evaluate CPR and HYDRO on two widely used
datasets.

EventStoryLine (Caselli and Vossen, 2017) con-
tains 22 topics, 258 documents, and 5,334 events.
Among these, 1,770 pairs of intra-sentence event
pairs and 3,885 pairs of inter-sentence event pairs

are annotated with causal relations. Following the
previous work (Gao et al., 2019), we use the docu-
ments from the last two topics as development data,
while the documents from the remaining 20 topics
are used for 5-fold cross-validation.
Causal-TimeBank (Mirza, 2014) contains 183
documents, 6,811 event mentions, and 7,608 intra-
sentence event pairs (308 of which have causal re-
lations). Following the previous works (Chen et al.,
2022; Liu et al., 2023), we evaluate intra-sentence
event pairs using 10-fold cross-validation.
Evaluation Metrics We use precision (P), recall
(R), and F1 score (F1) as evaluation metrics to
ensure comparability with previous works (Chen
et al., 2022; Phu and Nguyen, 2021).

3.2 Implementation Details

Because encoder-style models cannot generate text
that supports chains of thought, we use the encoder-
decoder architecture of Flan-T5 as our main LLM.
The model is optimized using AdamW (Loshchilov
and Hutter, 2017) with a learning rate of 1e-4 and
a weight decay of 0.01. We clip the gradients of
model parameters to a max norm of 1.0. We adopt
a negative sampling rate of 0.6 for training our
model. The model is trained for 10 epochs, and we
select the best checkpoint on the development set
for testing. Our experiments are conducted with 4
NVIDIA RTX A100 GPUs.

3.3 Compared Baselines

SECI: We compare the following methods with
HYDRO and CPR on SECI: 1) KMMG (Liu et al.,
2021), which utilized external knowledge and pro-
poses a mention masking generalization method
for accurate inference. 2) LSIN (Cao et al., 2021),
which used a descriptive graph induction module to
leverage external structural knowledge. 3) DPJL
(Shen et al., 2022), which utilized joint prompt
learning and incorporates two derivative recogni-
tion tasks.

ECI (Includes SECI and DECI): We compare the
following methods with HYDRO and CPR on ECI:
1) ERGO (Chen et al., 2022) designed an event re-
lation graph and transformed event causality iden-
tification into a node classification framework. 2)
CHEER (Chen et al., 2023), which proposed a
reasoning network centered around perceiving key
events for global reasoning. 3) PPAT (Liu et al.,
2023) utilized pairwise attention to capture infer-
ence chains on the event relation graph at sentence
boundaries. 4) SENDIR (Yuan et al., 2023) em-



Model EventStoryLine (SECI) EventStoryLine (DECI) EventStoryLine (Overall)
P(%) R(%) Fl(%) P%) R%) Fl(%) P%) R%) F1(%)
KMMG (Liu et al., 2021) 419 625 50.1 - - - - - -
LearnDA (Zuo et al., 2021b) 422 69.8 52.6 - - - - - -
LSIN (Cao et al., 2021) 479 58.1 52.5 - - - - - -
DPJL (Shen et al., 2022) 65.3 70.8 67.9 - - - - - -
SemSIm (Hu et al., 2023) 642  65.7 64.9 - - - - - -
RichGCN (Phu and Nguyen, 2021) 49.7  63.0 55.2 392 457 422 426 513 46.6
ERGO (Chen et al., 2022) 57.5 720 63.9 51.6 433 47.1 48.6 534 50.9
CHEER (Chen et al., 2023) 569 69.6 62.6 452 521 48.4 49.7 533 514
PPAT (Liu et al., 2023) 60.7 70.5 65.2 489 498 49.3 529 56.3 54.5
SENDIR (Yuan et al., 2023) 65.8 66.7 66.2 33.0 90.0 48.3 37.8 82.8 51.9
KADE (Wu et al., 2023) 61.5 732 66.8 512 742 60.5 51.9 70.6 59.8
iLIF (Liu et al., 2024) 76.8  66.3 71.2 53,5 659 59.1 59.2  66.1 62.5
DiffusECI (Man et al., 2024) 65.8 783 71.4 61.9 599 60.9 63.0 64.1 63.5
BART-Large (400M) 453 76.5 56.9 51.2 803 62.5 49.1 793 60.6
BART-Large+CPR (400M) (ours) 58.3  86.0 69.5 67.0 86.3 754 63.9 86.2 73.4
BART-Large+HYDRO (400M) (ours) 64.8 86.7 74.1 69.8 84.6 76.5 68.0 85.3 75.7
Flan-T5-Base (250M) 55.0 788 64.8 679 772 72.2 63.6 777 69.9
Flan-T5-Base (3B) 61.0 819 69.3 64.3 847 73.1 67.8 755 71.4
Flan-T5-Base+CPR (250M) (ours) 62.6 85.5 72.2 69.2 84.7 76.2 67.0 85.0 74.9
Flan-T5-Base+CPR (3B) (ours) 68.1 847 75.5 69.4 88.0 71.7 69.0 87.0 77.0
Flan-T5-Base+HYDRO (250M) (ours) 66.1 853 73.9 72.8 84.8 71.5 69.7 849 76.5
Flan-T5-XL+HYDRO (3B) (ours) 721 852 78.0 778 85.6 81.5 759 854 80.3
w/o Hypothetical Reasoning Supervision 66.4  85.3 74.7 75.1 883 81.2 722 874 79.1

Table 1: Compare different methods on EventStoryLine.
in underlined.

ployed a novel discriminative reasoning method
with sparse event representations. 5) KADE (Wu
et al., 2023) used external knowledge and event
analogy. 6) iLIF (Liu et al., 2024) used an iterative
learning and identifying framework. 7)DiffusECI
(Man et al., 2024)refined event context represen-
tations into causal label representations. 8) In
our zero-shot settings, we compare our method
with four progressive SOTA versions of ChatGPT
(GPT-3.5-turbo, GPT-4, text-DaVinci-002, text-
DaVinci-003) and another popular large model:
LLaMA-2.

3.4 Overall Performance

Due to the limited number of inter-sentence causal
event pairs in Causal-TimeBank (only 20 of
252,084 inter-sentence event pairs), we only evalu-
ate SECI performance on Causal-TimeBank (Wu
et al., 2023). Table 1 and Table 2 present the ex-
perimental results for EventStorline and Causal-
TimeBank, respectively. From these results, we
have the following observations:

(1) Both proposed reasoning chains significantly
outperform all baselines on both benchmarks,
achieving SOTA in SECI and DECI. Compared to
DiffusECI (previous work’s SOTA), our CPR CoT
improves the F1 score on EventStoryLine’s SECI
and DECI by 4.1% and 16.8%, respectively. On
Causal-TimeBank’s SECI improves by 6.8%. HY-

The best results are in bold and the second-best results are

Causal-TimeBank (SECI)

Model
P(%) R(%) F1(%)

KMMG (Liu et al., 2021) 36.6  55.6 44.1
LSIN (Cao et al., 2021) 51.5 562 52.9
DPJL (Shen et al., 2022) 63.6  66.7 64.6
ERGO (Chen et al., 2022) 62.1 613 61.7
CHEER (Chen et al., 2023) 56.4  69.5 62.3
PPAT (Liu et al., 2023) 79  64.6 66.2
SENDIR (Yuan et al., 2023) 652 577 61.2
KADE (Wu et al., 2023) 56.8  70.6 66.7
GenSORL (Chen et al., 2024) 66.2 570 60.9
KIGP (Hu et al., 2025) 61.3 634 62.3
BART-Large (400M) 62.5 455 52.6
BART-Large+CPR (400M) (ours) 56.5 619 59.9
BART-Large-HYDRO (400M) (ours) 57.1  66.7 61.5
Flan-T5-Base (250M) 733 4738 57.9
Flan-T5-Base (3B) 56.5 619 59.9
Flan-T5-Base+CPR (250M) (ours) 71.8 649 67.5
Flan-T5-Base+CPR (3B) (ours) 69.6  66.7 68.0
Flan-T5-Base+HYDRO (250M) (ours) 69.6 74.2 71.2
Flan-T5-XL+HYDRO (3B) (ours) 782 703 73.5

w/o Hypothetical Reasoning Supervision 78.0  68.0 71.5

Table 2: Compare different methods on Causal-
TimeBank. The best results are in bold and the previous
work’s best results are in underlined.

DRO improves the F1 score on EventStoryLine’s
SECI and DECI by 6.6% and 17.0%, respectively,
and on Causal-TimeBank’s SECI by 6.8%. After
applying CPR and HYDRO, the causal reasoning
performance of both BART and Flan-T5 has sig-
nificantly improved. This demonstrates that when
prompted with our CPR and HYDRO reasoning
frameworks, LLM exhibits strong causal reasoning
abilities. Although SENDIR has a high Recall, its



precision is lower. This indicates that SENDIR
tends to predict all answers as positive samples,
which does not demonstrate good model perfor-
mance.

(2) At the same parameter level, HYDRO out-
performs CPR on both EventStoryLine and Causal-
TimeBank. This demonstrates the effectiveness of
hypothetical-deductive reasoning. The advantage
of HYDRO lies in its independent evaluation of
the three hypotheses, each unaffected by the others.
We also observe that both CPR and HYDRO per-
form better in DECI than in SECI. We attribute this
to the multi-step reasoning process in the chains,
which guides the model in inferring implicit rela-
tions between events and reasoning information
from long texts.

(3) Despite achieving excellent results with the
Flan-T5-Base+HYDRO (250M) model, we ob-
serve even more significant performance gains
when using a larger model. Compared to Flan-T5-
Base+HYDRO, Flan-T5-XL+HYDRO improved
by 4.1% and 4.0% in SECI and DECI tasks on
EventStoryLine respectively on F1. In Causal-
TimeBank’s SECI task, there is a 2.3% improve-
ment. This indicates that the model’s reasoning
ability strengthens with an increase in parameters.
Furthermore, removing hypothesis reasoning super-
vision leads to a decline in performance, demon-
strating its effectiveness.

3.5 Influence of Different Model Sizes of
LLMs

82.0
80.0
78.0
76.0
74.0
72.0

70.0 N 7 |

66.0
SECI(CTB) SECI(ESL)

F1

DECI(ESL)

B Flan-T5+HYDRO(250M) =/ Flan-TS+HYDRO(780M) E Flan-T5+HYDRO(3B)

Figure 4: Performance of different parameter sizes
of FLAN-T5+HYDRO on two benchmark datasets.
ESL and CTB represent EventStoryLine and Causal-
TimeBank respectively.

To investigate the impact of different LLM
scales. In Figure 4, It can be seen that as the model
scale increases, the effectiveness of our hypothe-
sis deduction method is gradually amplified. This
aligns well with existing research on CoT, indi-
cating that as the number of parameters increases,

LLMs’ multi-hop reasoning abilities experience
significant improvements.

3.6 Error Analysis

To understand the performance of LLMs in causal
multi-hop reasoning, we randomly select 100 in-
correct reasoning samples and analyze the reasons
behind these errors. We use the Flan-T5+CPR and
Flan-T5+HYDRO models, which have been trained
under supervision. Based on where the errors oc-
cur in the different reasoning stages (or hops), we
categorize the errors into three types: logic (logic
inconsistency), commonsense (incorrect responses
when it needs to combine commonsense), and sum-
marization (summary errors based on the context).
Figure 5 shows the distribution of these error types.
Additionally, in the appendix A, we provide exam-
ples corresponding to each of the three categories.

100%

16%

%
" l

0%
Flan-T5+CPR (250M) Flan-T5+CPR (3B) Flan-TS+HYDRO (250M)  Flan-TS+HYDRO (3B)

u Logic Error ™ Comm

Figure 5: The percentage of three reasoning error types
in the two reasoning frameworks.

We find that under the CPR, logic errors and
commonsense errors are the most common; under
the HYDRO, commonsense errors are the most
prevalent. Summarization errors are relatively rare
in both models. We can observe that as the number
of model parameters increases, the commonsense
errors in both methods significantly decrease. logic
error occurs more frequently in forward reasoning
like CPR. This indicates that increasing the num-
ber of model parameters can improve the model’s
commonsense understanding, thereby enhancing
its performance.

3.7 Zero-shot Setting

To further validate the effectiveness of our two
reasoning frameworks in a zero-shot setting, we
conduct experiments on the EventStoryline and
Causal-TimeBank benchmark datasets. Table 3
and Table 4 show that our method significantly out-



Model EventStoryLine (SECI) EventStoryLine (DECI) EventStoryLine (Overall)
P(%) R(%) Fl1(%) P(%) R(%) Fl(%) P%) R(%) F1(%)

LLaMa-2 (7B) (Liu et al., 2024) 269 293 28.0 10.8 319 16.1 13.2  31.1 18.5

text-DaVinci-002 (Liu et al., 2024) 232  80.0 36.0 - - - - - -

text-DaVinci-003 (Liu et al., 2024) 332 744 45.9 - - - - -

GPT-3.5-Turbo (Liu et al., 2024) 27.6 80.2 41.0 - - - - -

GPT-4 (Liu et al., 2024) 272 94.7 422 - - - - -

Flan-T5-Base (250M) 19.1 85.0 31.2 74 837 13.6 9.2 84.1 16.6

Flan-T5-Base+CPR (250M) (ours) 300 873 447 13.1 85.6 22.7 16.0 86.1 269

Flan-T5-Base+HYDRO (250M) (ours) 44.3 46.2

45.2 22.7 525 31.6 264 502 34.6

Table 3: In the zero-shot setting, Compare different methods on EventStoryLine. The best results are in bold and

the second-best results are in underlined.

Causal-TimeBank (SECI)

Model
P(%) R(%) F1(%)

text-DaVinci-002 (Liu et al., 2024) 50 752 9.3
text-DaVinci-003 (Liu et al., 2024) 85 644 15.0
GPT-3.5-Turbo (Liu et al., 2024) 69  82.6 12.8
GPT-4 (Liu et al., 2024) 6.1 974 11.5
Flan-T5-Base (250M) 65 578 11.7
Flan-T5-Base+CPR (250M) (ours) 55 84.0 9.5
Flan-T5-Base+HYDRO (250M) (ours) 12.8 42.2 19.6

Table 4: 1In the zero-shot setting, Compare different
methods on Causal-TimeBank. The best results are in
bold and the second-best results are in underlined.

performs multiple versions of ChatGPT in ECI. De-
spite text-DaVinci-003’s (175B) parameter volume
being 700 times that of Flan-T5+HYDRO (250M),
we still demonstrate superior performance in zero-
shot scenarios, achieving nearly comparable levels
on EventStoryline and surpassing it by 4.6% in F1
score on CTB. This demonstrates that the HYDRO
two-stage reasoning framework can effectively en-
hance the model’s reasoning capabilities even with
low-resource and low-size models. CPR’s perfor-
mance in zero-shot settings is not as impressive
because the low-size LLM produces more errors in
the initial hops of reasoning, which propagates to
subsequent hops.

4 Related work

Early ECI mainly focused on the SECI task, lever-
aging sentence features to enhance performance,
such as lexical patterns (Hidey and McKeown,
2016), and causal patterns (Riaz and Girju, 2014;
Hu et al., 2017), syntactic structures (Mirza, 2014).
Later, due to the success of deep learning, some
work shifted towards using pre-trained language
models (PLMs) to obtain high-quality event con-
texts, achieving good performance (Kadowaki
et al., 2019; Liu et al., 2021; Zuo et al., 2021a).
For instance, Shen et al. (2022) used prompt-based

joint learning, incorporating causal keyword in-
formation and event information, demonstrating
excellent performance on the SECI task.

As SECI performance has improved, DECI has
posed new challenges for the model’s reasoning ca-
pabilities. Gao et al. (2019) used integer linear pro-
gramming to model global causal relations. Graph
neural networks have also played a positive role in
DECI. ERGO (Chen et al., 2022) achieved perfor-
mance improvement through graph transformers
on event relation graphs. Liu et al. (2023) proposed
PPAT for incremental reasoning on event relation
graphs at the sentence boundary. Recent Work
integrating external knowledge has also shown ex-
cellent performance in causality reasoning. Chen
et al. (2023) manually annotated the central events
of documents, considering the centrality of events.
Wau et al. (2023) introduced ConceptNet to retrieve
relevant knowledge and then compared the given
events with other events in memory.

5 Conclusion

In this paper, we emphasize the importance of
multi-hop reasoning in ECI tasks. We first in-
troduce the Causal Progressive Reasoning (CPR)
chain, which guides LL.Ms through a step-by-step
reasoning process to derive predictions. The key
to CPR is breaking down complex causal reason-
ing into manageable steps. However, considering
the error propagation in CoT, we propose HYDRO,
which is based on hypothetical-deductive reason-
ing. The HYDRO is a completely new reason-
ing framework different from CoT that each step
of reasoning is independent. Our extensive ex-
periments demonstrate that both reasoning chains
achieve SOTA performance on two ECI benchmark
datasets. Additionally, in zero-shot settings, Flan-
T5-Base (250M) with HYDRO surpasses Chat-
GPT’s performance.



Limitations

Due to limited computational resources, HYDRO
could only be fine-tuned on Flan-T5-xI (3B) and
not on larger LLMs, which somewhat restricts its
performance. This also indicates that HYDRO’s
effectiveness is also constrained by the scale of
the LLMs. Additionally, in Zero-shot settings, HY-
DRO is applied only to Flan-T5-Base (250M) and
not to the ChatGPT series of models.
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A Error Type

In CPR, the errors occurring in the 1°¢ and 3"¢ hops
are categorized as commonsense errors, as they re-
quire commonsense knowledge to make inferences.
The Errors in the 2" hop are categorized as logical
errors because this step involves reasoning about
the relation between two entities, which necessi-
tates a certain level of logical capability. The Errors
in the 4*" hop are categorized as summarization er-
rors, as they involve summarizing the context to
provide an answer.

In HYDRO, errors in Hypothesis 1 and Hypoth-
esis 2 during the hypothesis reasoning stage are
categorized as logical errors, while errors in Hy-

Input

X: To Check Into Different Rehab Centre The actress has left the Betty Ford

Centre and gone to Malibu's Cliffside resort .

pothesis 3 are categorized as commonsense errors.
Errors occurring in the deductive phase are catego-
rized as summarization errors.

Output

Check cause left

Causal Progressive Reasoning CoT (CPR)

]_St-hop Given the sentence X, what do Check into and left respectively mean in the sentence?

-
ﬁ Check into means arrive. Left means placed.

>
Commonsense Error

d . ) ) ) - h
2n -hop @ Given the sentence X, Check into means arrive. Left means placed. What kind of correlation exists

between Check into and left ? Why?

The correlation between Check into and left

ically represents a positive correlation.

Event Prompt

Model Answer

\
~~~-—5Logic Error

ﬁ Flan-T5+CPR

—> Connection

Figure 6: The case of Commonsense Error and Logic Error

Input

X: Mark Jay Heller told a judge that Lohan was settling in at Morningside

Recovery , a treatment facility in Newport Beach .

Output

Told dose not cause Settling in

Hypothetical-Deductive Reasoning Framework

Stage 1: Hypothetical Reasoning

Hypothesis 1: Given the sentence X, Does told precede settling in? Answer yes or no.

Hypothesis 2: Given the sentence X, Is there a correlation between told and settling in? Answer or no.

Hypothesis 3: Given the sentence X, Have other potential causes or confounding factors been adequately considered

( and eliminated? Answer yes or no.

Stage 2: Deductive Reasoning

[T.H1.H2.Hs]. Based on the above

Generate a response on whether the hypothesis is valid.

- T Given the sentence X
1’4 Connection

If all three hypotheses are valid,

Hi: told is Yes precede
settling in.

reasoning and the theory of
Connection

we can conclude that told causes

Reasoning

criteria - Settling in. If any of the

,,,,,, » hypothetical-deductive reasoning, «'--<-

Ha: ThereisNo a
correlation between told
and settling in.

Hs: There is Yes other
potential causes.

Event Prompt

Will told causes settling in?
Answer Yes or no.

Model Answer

hypotheses do not hold, we
conclude that there is no causal
relationship between told and
settling in.

Yes.——— o
Summarization Error

Reasoning Criteria ﬁ Flan-T5+HYDRO

Figure 7: The case of Summarization Error
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