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Abstract

Recent advances in hand-object interaction modeling have employed implicit rep-
resentations, such as Signed Distance Functions (SDF) and Neural Radiance Fields
(NeRF) to reconstruct hands and objects with arbitrary topology and photo-realistic
detail. However, these methods often rely on dense 3D surface annotations, or
are tailored to short clips constrained in motion trajectories and scene contexts,
limiting their generalization to diverse environments and movement patterns. In
this work, we present HOGS, an adaptively perceptive 3D Gaussian Splatting
(3DGS) framework for generalizable hand-object modeling from unconstrained
monocular RGB images. By integrating photometric cues from the visual modality
with the physically grounded structure of 3D Gaussians, HOGS disentangles inher-
ent geometry from transient lighting and motion-induced appearance changes. This
endows hand-object assets with the ability to generalize to unseen environments
and dynamic motion patterns. Experiments on two challenging datasets demon-
strate that HOGS outperforms state-of-the-art methods in monocular hand-object
reconstruction and photo-realistic rendering.

1 Introduction

Fine-grained hand-object modeling is crucial for immersive AR/VR applications. Existing methods
largely rely on dense 3D annotations or pre-scanned object models [16, 35, 47, 48, 15, 14], which
incur high labeling costs and limit scalability. Leveraging the ubiquity and accessibility of monocular
RGB images to reconstruct interactions, by contrast, offers a more practical avenue for seamless
integration into consumer-grade AR/VR ecosystems. Recent works [50, 7] achieve hand-object
reconstruction from short RGB clips but remain restricted to fixed environments and limited motion
trajectories, requiring scene-specific optimization and retraining for new conditions. We present a
cross-scene and cross-motion generalizable paradigm for photo-realistic hand-object modeling from
monocular RGB images, reducing novel-scene setup from hours to seconds without post-training
adaptation.

Recent studies have extensively explored implicit representations, such as signed distance functions
(SDF) and Neural Radiance Fields (NeRF) [29], to advance fine-grained hand-object modeling.
SDF-based methods [20, 3, 2, 27] densely optimize the zero-level set of a spatially continuous
signed-distance field, to capture high-density hand-object surface with arbitrary topology. Neural
implicit approaches [12, 31, 7] continuously encode scenes as volume density and view-dependent
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Figure 1: HOGS overcomes the transient appearance
changes of hand-objects through the perceptual capa-
bilities of neural networks, to achieve photo-realistic
hand-object modeling with motion and scene adaptation.
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6DoF-based [14, 15] ✗ ✗ ✓
SDF-based [2, 3, 35] ✓ ✗ ✓
Clip-based [7, 50, 37] ✓ ✓ ✗
HOGS ✓ ✓ ✓

Table 1: Comparison of representative
hand-object modeling methods across key
desiderata. Our method is both category-
agnostic and 3D surface annotation-free,
while achieving strong generalization
across environments and motions.

radiance, showing the feasibility of recovering photo-realistic hand-objects under temporally and
spatially constrained conditions (e.g., from short video clips).

Despite these advances, existing SDF-based methods heavily rely on dense 3D surface supervision,
while acquiring such precise annotations is typically impractical and cost-prohibitive in the wild.
Additionally, previous neural implicit approaches suffer from two fundamental limitations. First,
models trained on single short video sequences capture appearance and motion biases, as the visual
conditions and motion patterns within such limited data are highly constrained; second, they neglect
explicit perception of physical effects like hand-object contact and transient illumination phenomena.
Persistent occlusions, dynamic shadows, and specular reflections inherent to real-world interactions
violate the simplified assumptions of these methods, resulting in degraded geometry estimates and
rendering artifacts, as illustrated in Fig. 1. As a result, they struggle to generalize beyond their
constrained training clips when exposed to unseen environments or complex motion patterns.

To address these challenges, we explore how generalizable priors on appearance variation and
motion dynamics can be learned from large-scale monocular RGB images, promoting hand-object
representations that generalize across diverse environments and motion patterns. While implicit
radiance fields achieve high photometric fidelity, they model scenes as undifferentiated volumes,
lacking physically grounded structure for contact-level reasoning. Motivated by the need for both
learnability and physical awareness, we adopt 3D Gaussian Splatting (3DGS) [21], where each
Gaussian primitive encodes physically meaningful attributes. We integrate neural perception with this
geometric representation to capture the underlying patterns of lighting and surface appearance, and to
explicitly reason about hand-object contact and motion. This adaptively perceptive representation
learning design endows hand-object assets with robust cross-scenario generalization capabilities.

To this end, we propose Hand-Object Gaussian Splatting (HOGS) for interacting hand-object
reconstruction from monocular RGB images, with a central focus on generalization across diverse
environments and motion sequences. Built upon an adaptively perceptive 3DGS-based representation,
HOGS models articulated interactions via deformable Gaussian primitives driven by hand poses
and object 6-DoF transformations. For generalizable hand-object modeling, we introduce two
modules: a Vision-driven generalizable Perception Module (V-PM), which disentangles 3D Gaussians
into geometry-invariant canonical templates and vision-dependent learnable components, explicitly
decoupling appearance-invariant persistent geometry from transient photometric variations; and a
Geometry-driven Pose refinement Module (G-PM), which employs a lightweight 3D neural network
to extract geometric priors from 3D Gaussian primitives, utilizing the physical awareness to accurately
refine hand-object pose and contact. HOGS jointly optimizes hand-object Gaussians and the proposed
submodules from monocular images through a unified differentiable rendering pipeline, leveraging
2D photometric supervision without relying on dense 3D surface annotations.

Experimental results on two challenging datasets show that our method outperforms the state-of-
the-art (SOTA) methods in monocular hand-object reconstruction and photo-realistic rendering.
Furthermore, qualitative results and multimedia supplementary materials highlight its generalization
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across diverse visual conditions and motion patterns. Code is available at https://github.com/
ru1ven/HOGS. Our contributions could be summarized as:

• We propose a hand-object Gaussian splatting framework for interacting hand-object photo-realistic
reconstruction from monocular RGB images, without relying on dense 3D surface annotations.

• We integrate visual and geometric priors from neural networks into the modeling of hand-object
Gaussians, yielding hand-object assets with perceptual generalization across various environments
and motions.

• Experiments demonstrate that our method significantly improves both reconstruction and rendering
performance, showcasing strong generalization capabilities.

2 Related Work

2.1 Interacting Hand-object Reconstruction

Many works have been proposed to understand hand-object interactions [20, 2, 3, 50, 40, 48, 26,
32, 7, 16, 4, 9], with many focus on joint hand-object or hand-held object reconstruction. Early
mainstream efforts [14, 15, 47, 40, 48] assume known object templates and use parametric models
(e.g., MANO) with a fixed resolution, reducing mesh reconstruction to pose estimation. To achieve
category-agnostic reconstruction, Hasson et al. [16] use AtlasNet [10] to deform object vertices
from a sphere. Karunratanakul et al. [20] introduced SDF-based implicit fields for fine-grained
hand-object reconstruction. AlignSDF [3] further integrates the strengths of parametric models and
SDF by encoding pose priors into the implicit field. Chen et al. [2] use kinematic and temporal
features to guide SDF-based 3D reconstruction. However, these methods rely on accurate and
dense 3D annotations. With the development of geometric volume rendering techniques, several
2D photometric-supervised hand-object reconstruction methods have been proposed. MOHO [52]
leverages occlusion-aware synthetic pre-training to pursue hand-held object reconstruction from a
single-view image. Some recent methods [7, 37] attempt to exploit temporal coherence in monocular
videos as a proxy for multi-view supervision. However, natural interaction sequences often exhibit
persistent occlusions and invariant lighting patterns between the hand and object. These intrinsic
limitations lead to a domain gap between observed motion patterns and unconstrained monocular
scenarios. In consequence, prior methods struggle to bridge such a gap across scenarios with
significant appearance-motion discrepancies, failing to robustly model interactions under varying
motion and unseen scenarios.

2.2 Human-centric Photo-realistic Modeling

With the advancements in neural implicit and geometric representations, such as Neural Radiance
Fields (NeRF) and 3D Gaussian Splatting (3DGS), significant achievements have been made in 3D
scene reconstruction and novel view synthesis. Recently, some studies have explored adapting these
representations to the photo-realistic rendering of dynamic human bodies and hands. Several works
[45, 34, 5, 12, 31, 19, 36] leverage pose information derived from parametric models like SMPL [28]
and MANO [38] to drive textured representations or neural fields for modeling dynamic humans or
hands from multi-view inputs. HumanNeRF [44] further relaxes the requirements for multi-view
inputs by adopting a simpler monocular setting, and proposes decoupling the motion field into skeletal
rigid and non-rigid components. Subsequent studies [8, 18] focus on achieving significantly faster
training speeds. More recently, some works have introduced 3DGS for animatable human modeling
from monocular inputs. To capture fine details such as clothing and hair, HUGS [22] allows 3D
Gaussians to deviate from the human body model. 3DGS-Avatar [37] proposes pose-dependent rigid
and non-rigid deformations to handle highly articulated and out-of-distribution poses of clothed
humans. GauHuman [17] refines human pose and Linear Blend Skinning (LBS) weights and employs
human priors with a KL divergence measure for adaptive density control of 3D Gaussians. iHuman
[33] binds 3D Gaussians to the human body surface for explicit normal rasterization, and optimization
with normal supervision, to achieve 3D reconstruction and photo-realistic rendering. However,
photo-realistic reconstruction of closely interacting and mutually occluding hands and objects from
unconstrained monocular images remains challenging and underexplored.
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Figure 2: Our framework. We initialize deformable 3D Gaussians using hand articulations and object
6-DoF poses. The Vision-driven generalizable Perception Module (V-PM) disentangles Gaussians
into geometry-invariant templates and vision-dependent components via extracted visual features,
while the Geometry-driven Pose refinement Module (G-PM) extracts primitive-level 3D geometric
features to refine hand-object poses and contacts. These modules are co-optimized in a differentiable
rendering pipeline, jointly reconstructing photo-realistic geometry and appearance under cross-scene
motion and illumination variations without per-sequence fine-tuning.

3 Method

Given a diverse collection of monocular RGB hand-object images across varied motions and scene
context, HOGS jointly optimizes deformable 3D Gaussian primitives for each hand and each object,
while learning generalizable interaction priors to refine hand-object modeling. During inference on
unseen sequences involving novel interactions and appearances, HOGS can adaptively modulate the
trained hand-object assets in a purely feed-forward manner, without extra fine-tuning.

Fig. 2 illustrates the overview of our framework. We use pose-deformable 3D Gaussians to model
hand-object interaction from monocular images across multiple sequences (Sec. 3.1). To enable
generalizable hand-object Gaussian modeling, we introduce a Vision-driven generalizable Perception
Module (V-PM), to dynamically adapt 3D Gaussians to visual scene variations (Sec. 3.2), as well as
a Geometry-driven Pose refinement Module (G-PM), extracting Gaussian primitive-level geometric
features to enhance robustness against inaccurate hand-object motion estimation (Sec. 3.3). Details
of optimization and mesh extraction are provided in the Appendix.

3.1 Hand-Object Interaction Modeling

We represent a hand and object in the canonical coordinate space through a set of 3D Gaussian
primitives {Gh} and {Go}, and their positions are initialized by random sampling on the canonical
MANO surface and within the 3D bounding box, respectively. Each 3D Gaussian G is defined by its
center p ∈ R3, covariance matrix Σ ∈ R3×3, opacity α and view-dependent color c. Its geometry is
parameterized as

G(x) = exp

(
−1

2
(x− p)TΣ−1(x− p)

)
, (1)

where the covariance matrix Σ = RSSTRT is represented by a scaling matrix S ∈ R3×3 and a
rotation matrix R ∈ R3×3, which are represented by the diagonal vector s ∈ R3 and a quaternion
vector q ∈ R4 in practice. During the rendering process, 3D Gaussians are projected onto the camera
view. Given a viewing transformation W and the Jacobian matrix of the projective transformation
J , the covariance matrix Σ′ in camera coordinates is computed as: Σ′ = JWΣWTJT . To account
for the mutual occlusion relationships between the hand and the object during rasterization, their
Gaussians are jointly accumulated via alpha blending to compute the pixel color C:

C =
∑
i∈Nho

ciαi

i−1∏
j=1

(1− αj), (2)
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where Nho is the depth-ordered set of hand and object Gaussians overlapping the pixel.

To adapt to the motion of the hand and object, we use a pose-driven approach to transform the
canonical Gaussian G to the pose-transformed Gaussian Gt in the observation space. For the hand
branch, similar to prior methods [37], we apply the forward Linear Blend Skinning (LBS) to transform
the center position p and rotation matrix R of each 3D Gaussian:

pt =

(
nb∑
i=1

wi(p) ·Bi

)
· p, (3)

Rt =

(
nb∑
i=1

wi(p) ·Bi

)
1:3,1:3

·R, (4)

where pt and Rt are the center and rotation matrix of the transformed 3D Gaussian, {Bi}i=1,...,nb

are the bone transformations derived from the hand poses θ, and {wi(p)}i=1,...,nb
are the learnable

skinning weights at position p. Similarly, for the object branch, we apply a 6D rigid transformation
based on the object rotation and translation to transform the canonical Gaussian to the posed Gaussian.
In practice, we use an off-the-shelf regressor [35] to initialize the hand pose and object 6-DoF pose.

3.2 Vision-driven Generalizable Perception

Across multiple motion sequences, variations in the visual environment result in changes in the
appearance of the hand and object, such as alterations in lighting intensity and direction, transient
lighting patterns induced by surface materials and occlusions, as well as motion-induced blur and tex-
ture deformation. To enable the 3D Gaussian model to generalize across various visual environments
in unconstrained monocular scenarios, we decouple the parameters of the vanilla Gaussian primitives
into geometry-invariant templates and vision-dependent components.

Take color c as an example, the vanilla 3DGS uses Spherical Harmonics (SH) coefficients for
view-relevant appearance modeling, which is insufficient for capturing the aforementioned visual
variations across scenes. To address this, we first employ a Vision Transformer [6] as the image
backbone to extract visual features F from the hand-object region, and obtain pixel-aligned visual
features F (π(pt)) using bilinear sampling based on the 2D projection location π(pt) of each pose-
transformed 3D Gaussian position pt. We use an MLP to encode the visual features and Gaussian
parameters into a vision-dependent appearance component Zv:

Zv = ψ(F, F (π(pt)),G), (5)

where the 3D coordinates of each Gaussian within G are represented using a multi-resolution hash
grid encoding [30]. Then, we compute the vision-dependent color component in an adaptive manner.
Specifically, we use an MLP network ψ1 to obtain a color weight vector α from the vision-dependent
appearance component Zv and the precomputed color csh derived from the SH coefficients. The
weight α quantifies the importance of different visual features in determining the final appearance,
which can be formulated as:

α = Sigmoid((ψ1 (Zv, csh)) , (6)

The final color c of each 3D Gaussian is obtained by weighting the SH color and the visual component:

c = (1− α) · csh + α · Sigmoid(Zv). (7)

For the remaining 3D Gaussian parameters, we follow a similar process, but in a simpler manner:

(δp, δs, δq) = ψ2(F, F (π(pt)),G), (8)

p′ = p+ δp, (9)

s′ = s · exp(δs), (10)

q′ = q · [1, δq1, δq2, δq3], (11)

where δp, δs, and δq are the vision-dependent components of Gaussian center, scale, and rotation,
respectively, and p′, s′, and q′ are the corresponding updated Gaussian parameters.
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3.3 Geometry-driven Pose Refinement

Sequence-specific reconstruction methods independently apply structure-from-motion (SfM) to each
video for initial motion estimation, while per-frame cues are used to refine poses. This per-sequence
design tightly couples the pipeline to the specific trajectories and scene layouts of each sequence. As
a result, the learned motion and contact patterns are sequence-specific and do not generalize well to
unseen interactions or motions beyond the observed trajectories.

To address monocular images with previously unseen motion patterns, we leverage the rich geometric
and physical properties of 3D Gaussians, which encode physically meaningful spatial and volumetric
information and provide explicit geometric cues for guiding motion and interaction reasoning.
Consequently, we employ a lightweight 3D neural network to integrate this information, achieving
precise hand-object pose refinement and contact reasoning.

Firstly, to capture the geometric structure information of 3D Gaussians, a straightforward approach is
to treat the Gaussian primitives as a 3D point cloud and extract geometric features using point cloud
networks. However, it may exhibit lower efficiency when handling non-geometric attributes like color.
To address this limitation, we adopt ULIP [46], a multi-modal pre-trained model, to improve the
comprehensive understanding of 3D Gaussians by effectively integrating both geometric and visual
information. Specifically, we employ PointNet++ [14], pre-trained by ULIP, as the 3D backbone to
encode the pose-transformed Gaussian centers pt and Gaussian parameters G into the subsampled
Gaussian centers p′

t ∈ RN ′×3 and a 3D Gaussian feature matrix FG ∈ RN ′×C . This process
enables efficient feature extraction and downsampling while maintaining the structural and physical
properties of the 3D Gaussian representation. Then, following [14], we employ a Transformer
encoder containing self-attention modules [41] and a 3-layer MLP to obtain the hand-relative object
translation offset ∆To ∈ R3 and object rotation offset ∆Ro ∈ R3×3.

Additionally, we employ a contact and penetration loss [16] to optimize interactions between the
hand and object. We treat the centers of hand and object Gaussians as hand-object point clouds,
and following [16], apply distance-based penetration and collision losses between them to enforce
physically plausible contact and prevent interpenetration. Leveraging these geometric attributes
of hand-object 3D Gaussians, our approach relaxes the need for ground-truth object templates or
detailed 3D vertex annotations required by existing contact optimization methods [16, 49, 20], while
optionally utilizing 6D pose annotations. Details of training losses are provided in the Appendix.

4 Experiment

4.1 Datasets

DexYCB [1] is a hand-object dataset containing 582K RGB-D frames over 1,000 sequences of 10
subjects grasping 20 different objects. We follow the dataset split in [35], filtering samples without
interactions, obtaining 147,526 training samples. For reconstruction evaluation, we follow [2, 52, 27]
to downsample the video data to 6 frames per second, resulting in 5,928 testing samples.

HO3D_v3 [13] is an RGB-D hand-object interaction dataset with 10 subjects manipulating 10 objects
from the YCB dataset. Following the evaluation protocol of [7], we select 18 sequences for training
and evaluate the quality of reconstructed hand-held object meshes.

4.2 Baselines

We conduct comparisons with existing hand-object and hand-held object reconstruction methods,
including 3D dense supervised baselines (typically SDF-based) and 2D photometric supervised
baselines (e.g., MOHO [52] and HOLD [7]). Additionally, we re-implement 3DGS-Avatar [37] and
GOF [51], which originally utilize 3DGS to model animable human bodies and reconstruct static
unbounded scenes, respectively, extending them to a hand-object baseline and a rigid object baseline
(marked by †). In particular, we adapt 3DGS-Avatar by replacing SMPL with MANO for the hand
branch and substituting pose-dependent deformations (e.g., LBS) with rigid transformations for the
object branch.
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Method CDh↓ Fh@1↑ Fh@5↑ CDo↓ Fo@5↑ Fo@10↑
3D Supervised Methods:

Hasson et al. [16] 0.537 0.115 0.647 1.94 0.383 0.642
Grasping Field [20] 0.364 0.154 0.764 2.06 0.392 0.660

AlignSDF [3] 0.358 0.162 0.767 1.83 0.410 0.679
gSDF [2] 0.302 0.177 0.801 1.55 0.437 0.709
HORT [4] - - - - 0.630 0.850

2D Supervised Methods:
MOHO [52] - - - - 0.600 0.810
GOF† [51] - - - 0.68 0.610 0.834

Ours 0.481 0.133 0.732 0.24 0.785 0.918

Table 2: Quantitative results of hand-object reconstruction on DexYCB. Video data is downsampled
to 6 frames per second.

Method CDo↓ Fo@10↑ CDpose↓

iHOI [49] 3.8 75.8 41.7
DiffHOI [50] 4.3 68.8 43.8

HOLD [7] 0.4 96.5 11.3
Ours 0.7 96.2 2.7

Table 3: Quantitative results of hand-held
object reconstruction on HO3D.

Method PSNR↑ SSIM↑ LPIPS↓

GOF† [51] 29.58 0.9686 31.69
3DGS-Avatar† [37] 29.71 0.9690 30.52

Ours 31.12 0.9728 26.83

Table 4: Quantitative results of hand-object photo-
realistic rendering on DexYCB.

4.3 Implementation Details

We initialize the hand Gaussians and object Gaussians by randomly sampling K = 5,000 points
within the canonical MANO surface and the 3D bounding box, respectively. For optimization, we
follow [21] to employ cloning or splitting and pruning to adaptively control the density of the 3D
Gaussians during optimization. We employ an individual set of Gaussians for each subject or object.
For the input of the visual encoder, we crop the hand-object region of the RGB image and resize it to
224×224. We use an AdamW optimizer [24] for training. On DexYCB, we train the model for a
total of 360k iterations, which takes approximately 10 hours on an NVIDIA RTX 4090 GPU. On
HO3D, we train for 200k iterations. After 360k iterations on DexYCB, we fix the parameters of the
3D Gaussians and continue training for an additional 10 epochs, focusing solely on optimizing the
pose parameters to prevent underfitting.

4.4 Metrics

Geometric Metrics. For geometric evaluation of the object, we follow [7] to report the Chamfer
distance (CDo) in cm2 after ICP alignment with rotation, translation, and scaling, Chamfer distance
incorporating 6-DoF pose (CDpose), as well as the F-score evaluated at thresholds of 5mm and 10mm
(Fo@5 and Fo@10). For hand reconstruction, we report the Chamfer distance (CDh) and F-score
at 1mm and 5mm thresholds (Fh@1 and Fh@5). In addition, to evaluate hand-held object pose
performance, we report Object Center Error (OCE), Mean Corner Error (MCE), and the standard
pose estimation metric average closest point distance (ADD-S) following [35].

Rendering Metrics. For evaluation of hand-object photo-realistic rendering, we report the peak
signal-to-noise ratio (PSNR), structural similarity index (SSIM) [43], and learned perceptual image
patch similarity (LPIPS) [53]. Only the region within the hand-object mask is considered. Note that
LPIPS values in all tables are scaled up by 1000.

4.5 Comparisons with State-of-the-arts

Surface Reconstruction. To validate the quality of hand-object modeling, we compare with hand-
object and hand-held object reconstruction SOTAs on the DexYCB dataset. As shown in Table 2, our
method significantly improves object reconstruction quality over SOTA methods while achieving
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Method OCE↓ MCE↓ ADD-S↓

AlignSDF [3] 27.0 - -
Wang et al. [42] 27.3 32.6 15.9
Lin et al. [25] 39.8 45.7 31.9

gSDF [2] 19.1 - -
HOISDF [35] 18.4 27.4 13.3

Ours 18.1 26.1 12.0

Table 5: Hand-held object pose esti-
mation results on DexYCB.

Method CJ PSNR↑ SSIM↑ LPIPS↓

3DGS-Avatar [37] ✗ 29.71 0.9690 30.52
✓ 29.48↓0.23 0.9689↓0.0001 32.02↑1.50

Ours (w/o V-PM) ✗ 29.57 0.9687 31.75
✓ 29.32↓0.25 0.9685↓0.0002 33.44↑1.69

Ours ✗ 31.12 0.9728 26.83
✓ 31.00↓0.120.9727↓0.000127.57↑0.74

Table 6: Ablation study for the impact of color jittering on
DexYCB. CJ represents Color jitter.

ID Method PSNR↑ SSIM↑ LPIPS↓ OCE↓ MCE↓ ADD-S↓

0 Full model 31.12 0.9728 26.83 17.83 25.95 11.87
1 w/o contact optimization 31.09 0.9727 26.93 18.10 26.13 11.97
2 w/o pre-trained 3D backbone 31.09 0.9726 26.96 18.11 26.40 11.88
3 w/o G-PM 31.17 0.9721 27.39 18.45 27.37 13.31

4 w/o adaptive appearance 29.92 0.9700 29.95 - - -
5 w/o V-PM 29.57 0.9687 31.75 - - -

Table 7: Ablation study on DexYCB. Both rendering quality and pose results are shown.

comparable hand reconstruction performance to previous 3D dense supervised methods. The hand-
held reconstruction performance comparison with SOTA methods on HO3D is shown in Table 3. Our
method achieves pose-independent reconstruction quality (CDo and Fo@10) comparable to SOTA
methods without requiring per-sequence optimization, while significantly improving pose-dependent
reconstruction accuracy (CDpose), showcasing our enhanced generalization capability across diverse
hand-object motion. Furthermore, we conduct hand-held object pose estimation comparisons in Table
5, and our method achieves superior object pose accuracy, validating the effectiveness of the proposed
geometry-driven pose refinement strategy. Fig. 4 is the qualitative results. Our method produces
more plausible object shapes compared to gSDF [2], avoiding collapses and deformations. In contrast
to GOF [51], our method can better recover local geometric structures and mitigate mesh holes and
incompleteness, demonstrating superior Gaussian modeling quality.

Photo-realistic Rendering. We perform a comparative analysis of photo-realistic rendering of hand
objects on DexYCB. As shown in Table 4, our method outperforms baselines on all the metrics
by a large margin. Qualitative comparisons are shown in Fig. 3. Compared to 3DGS-Avatar [37],
our method achieves superior color and texture fidelity and enhanced hand-object pose accuracy.
Notably, ours demonstrates robust capabilities in both modeling hand-object shadow patterns (column
2) and adapting to chromatic variations caused by material reflectance under dynamic illumination
conditions (columns 3-4).

4.6 Ablation Study

Impact of visual environment changes. To further validate the generalization capability of HOGS
against visual environment variations, we simulate appearance alterations induced by diverse illumi-
nation patterns on the DexYCB dataset and compare the rendering quality impacts between HOGS
and baseline methods. Specifically, we apply a random color jittering within the range of [-0.3, 0.3]
to each RGB image, which is used for photometric supervision and rendering evaluation. We conduct
comparative analyses on rendering quality under color jittering conditions across three configurations:
our full model, our model without V-PM, and 3DGS-Avatar. As demonstrated in Table 6, while
color jittering minimally affects structural distortion in both 3DGS-Avatar and ours without V-PM,
it significantly degrades PSNR and LPIPS metrics due to pixel color errors and image perceptual
discrepancies. In contrast, our approach incorporates visual generalization awareness to substantially
mitigate rendering quality degradation, demonstrating effective adaptation to visual environment
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Figure 3: Qualitative results of hand-object photo-realistic rendering on DexYCB.

ID F F (π(pt) G PSNR↑ SSIM↑ LPIPS↓
0 29.57 0.9687 31.75
1 ✓ ✓ 30.49 0.9703 29.66
2 ✓ ✓ 30.52 0.9704 29.50
3 ✓ ✓ 31.08 0.9725 27.31
4 ✓ ✓ ✓ 31.12 0.9728 26.83

Table 8: Ablation of the vision-driven components on DexYCB. F represents global visual features,
F (π(pt) represents pixel-aligned visual features, and G represents 3DGS parameters.

changes. Furthermore, Fig. 5 intuitively shows that our method can adaptively capture diverse global
color tones for rendering, exhibiting remarkable robustness to visual appearance variations.

Ablation on generalizable modules. We perform ablation studies to verify the effectiveness of two
proposed critical components, V-PM and G-PM. As shown in Table 7, our full model demonstrates
superior performance compared to configurations excluding hand-object contact optimization (ID 1)
or multi-modal pre-trained 3D backbone integration (ID 2). The proposed G-PM yields significant
enhancements in pose results (ID 0 vs. ID 3). Notably, although G-PM does not directly optimize 3D
Gaussians, the hand-object pose refinement improves rendering quality, particularly SSIM-measured
structural fidelity and LPIPS-based perceptual quality. Additionally, the removal of either the adaptive
appearance modeling component (ID 4) or the V-PM (ID 5) results in significant degradation of
rendering quality. The qualitative ablation is shown in Fig. 3. The V-PM can capture hand-object
lighting and shadow patterns (columns 2-5), while the G-PM effectively alleviates hand-object
penetration artifacts (column 1) and refines imprecise object pose (columns 6-7).

Ablation on the vision-driven components. To assess the impact of different features in the vision-
driven component of 3DGS, we conduct an ablation study on DexYCB using global visual features
F , pixel-aligned visual features F (π(pt)), and 3DGS parameters G. As shown in Table 8, discarding
the vision-driven component altogether (ID 0) results in the lowest rendering quality. Incorporating
any single feature improves performance, and the improvement is particularly notable when the
fine-grained pixel-aligned visual features are included. The best results are achieved when all three
features are used (ID 4), indicating that global context, pixel-level alignment, and 3DGS parameters
provide complementary information that jointly enhances reconstruction fidelity.

9



Input GOFgSDF Ours

Figure 4: Qualitative results of hand-held object
reconstruction on DexYCB.

3DGS-Avatar Oursw/o V-PM GT

Figure 5: Qualitative ablation for the impact of
color jittering on hand-object rendering quality.

5 Conclusion

In this paper, we propose a 3DGS-based interacting hand-object modeling framework from uncon-
strained monocular RGB images. The key insight lies in leveraging neural networks to endow 3D
Gaussians with appearance and motion adaptability, guided by generalizable visual and geometric per-
ceptual cues. Extensive experiments demonstrate the effectiveness of HOGS in achieving fine-grained
interacting hand-object modeling, significantly advancing monocular hand-object reconstruction and
photo-realistic rendering performance.

Limitation. While HOGS exhibits strong cross-scene and cross-motion generalization, its perfor-
mance is constrained by the diversity of object categories encountered during training. Consequently,
it focuses on hand-object assets that generalize to unseen visual contexts and motion patterns, rather
than synthesizing entirely new object categories. A promising direction for future work is large-
scale training on extensive hand-object datasets, enabling zero-shot generalization to novel object
categories.
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Appendix

In Appendix contents, we provide:

• Details of mesh extraction (Section A).
• Optimization of hand-object Gaussians (Section B).
• Discussion of mesh alignment (Section C).
• More qualitative results (Section D).

Video supplementary materials are provided as separate files.

A Mesh Extraction

Inspired by the impressive novel view synthesis capabilities of 3D Gaussian Splatting , recent studies
[11, 51] have focused on exploring the use of 3D Gaussian representations for surface reconstruction.
To extract explicit meshes from hand-object Gaussians, we extend Gaussian Opacity Fields (GOF),
a 3DGS-based surface reconstruction method tailored for unbounded scenes, into an interacting
hand-object mesh reconstruction framework.

A.1 Preliminary: Gaussian Opacity Fields

GOF uses an explicit ray-Gaussian intersection instead of projection, which allows evaluating the
opacity value or transmittance of any 3D point x along the ray. At the most basic level, given a single
3D Gaussian Gk, the opacity at any point along a ray can be defined as:

Ok(Gk,o, r, t) =

{
G1D
k (t) if t ≤ t∗

G1D
k (t∗) if t > t∗

(12)

where x = o+ tr. Intuitively, the opacity increases until it reaches its maximal value, and remains
constant thereafter. Next, considering a set of 3D Gaussians G, the opacity of point x is given by:

O(o, r, t) =

K∑
k=1

αkOk(Gk,o, r, t)

k−1∏
j=1

(1− αjOj(Gj ,o, r, t)) (13)

As a 3D point might be visible by any training view, the vanilla GOF defines the opacity field O(x)
of a 3D point x as the minimal opacity value among all training views or viewing directions:

O(x) = min
(o,r)

O(o, r, t) (14)

A.2 Dynamic Hand-Object Reconstruction

However, for dynamic hand-object reconstruction, directly employing GOF faces two problems: (1)
We observe the interacting hand-object from a single viewing direction, rather than scanning various
views in an unbounded scene, making it impossible to rely on multiple input view directions to model
the opacity field; (2) Unlike static unbounded scenes, the hand-object motions cause instability in
the position and rotation of the 3D Gaussians, resulting in drastic changes in the local geometry. To
address these issues, we first generate inward-oriented rays that converge toward the geometric core
of the hand-object, enabling systematic surface interrogation. Specifically, we uniformly sample
K = 16 points {ok}Kk=1 from the surface of a bounding sphere closely encapsulating the hand-object.
For each sampled point ok, a directed ray rk is parametrized as:

rk(t) = ok + t · c− ok

∥c− ok∥
, t ≥ 0 (15)

Next, we adopt a smoother manner to integrate the opacity of each 3D point from different views.
Specifically, we enforce hard opacity constraints while maintaining smoothness in visible regions.
The conditional branch serves two critical purposes: (1) Physical Constraint. Zero opacity is strictly
enforced when any viewing ray confirms full transparency, preventing phantom geometry artifacts;
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(2) View Consensus. The mean operation in non-transparent regions smooths out inconsistencies
from sparse view sampling. The final opacity field can be defined as:

O(x) =


0 if ∃ (ok, rk) ∈ Ω,

O(ok, rk, t) = 0
1
|Ω|

∑
(ok,rk)∈Ω

O(ok, rk, t) otherwise
(16)

Finally, following [51], we use the center and corners of 3D bounding boxes around the 3D Gaussian
primitives as vertex sets for the tetrahedral mesh, and utilize the Marching Tetrahedra algorithm [39]
for triangle mesh extraction upon assessing the opacity at tetrahedral points.

B Optimization

B.1 Pixel Color Loss

Beyond joint rendering for interaction modeling, we adopt independent color supervision for hands
and objects, to address the color bleeding issue in close interaction regions where traditional unified
rendering fails to disentangle component-specific appearances:

C =
∑
i∈Nho

ciαi

i−1∏
j=1

(1− αj)

Chand =
∑
i∈Nho

chi αi

i−1∏
j=1

(1− αj), chi =

{
ci i ∈ Nhand

0 otherwise

Cobj =
∑
i∈Nho

coiαi

i−1∏
j=1

(1− αj), coi =

{
ci i ∈ Nobj

0 otherwise

(17)

where Nho = DepthSort(Nhand ∪Nobj) ensures correct occlusion handling across components. The
pixel-level RGB loss can be formulated as:

Lrgb = ∥C − Cgt∥1 + ∥Chand − Cgt
hand∥1 + ∥Cobj − Cgt

obj∥1 (18)

B.2 Mask Loss

To facilitate geometry supervision, we compute the opacity value by accumulating the alpha values,
performed separately for hand, object, and jointly hand-object:

O =
∑
i∈Nho

αi

i−1∏
j=1

(1− αj)

Ohand =
∑
i∈Nho

αh
i

i−1∏
j=1

(1− αj), αh
i =

{
αi i ∈ Nhand

0 otherwise

Oobj =
∑
i∈Nho

αo
i

i−1∏
j=1

(1− αj), αo
i =

{
αi i ∈ Nobj

0 otherwise

(19)

The mask loss measures the L1 distance between the rendered opacity and the corresponding ground
truth mask values:

Lmask = ∥O −M∥1 + ∥Ohand −Mhand∥1 + ∥Oobj −Mobj∥1 (20)

B.3 Perceptual Loss

To enhance high-frequency detail preservation and mitigate blurring artifacts in synthesized inter-
actions, we extend the independent supervision paradigm to perceptual feature space, optimizing
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Method CDo↓ Fo@5↑ Fo@10↑
Hasson et al. [16] 1.94 0.383 0.642

Grasping Field [20] 2.06 0.392 0.660
AlignSDF [3] 1.83 0.410 0.679

gSDF [2] 1.55 0.437 0.709

Ours (not rotation-aligned) 1.51 0.497 0.730
Ours 0.24 0.785 0.918

Table 9: Comparison of object reconstruction on DexYCB.

LPIPS as the perceptual loss with AlexNet [23] as the backbone. Following the RGB loss struc-
ture, we employ LPIPS metric for decomposed components. The final perceptual loss aggregates
multi-component measurements:

Lperc = LPIPS
(
R(C),R(Cgt)

)
+ LPIPS

(
R(Chand),R(Cgt

hand)
)

+ LPIPS
(
R(Cobj),R(Cgt

obj)
) (21)

where R(·) denotes the rendering function from alpha-composited colors to RGB images.

B.4 Pose Loss

To ensure physically plausible hand-object interactions, we supervise the 6D pose parameters (rotation
R ∈ SO(3), translation t ∈ R3) and the corner positions PC of manipulated objects through the
SmoothL1 loss:

Lrot = SmoothL1
(
R̂,Rgt

)
Ltrans = SmoothL1

(
t̂, tgt)

Lcorner = SmoothL1
(
P̂C ,P

gt
C

) (22)

The overall pose loss Lpose is then computed as the weighted sum of these components:

Lpose = λrotLrot + λtransLtrans + λcornerLcorner (23)

where the weight factors λrot, λtrans, and λcorner are set as 10, 1e4, and 1e3, respectively. In our
framework, the ground truth object poses are optional. For example, in comparison on the HO3D
dataset, since HOLD [7] does not use any pose annotations, our method does not access the ground
truth poses in this experiment either.

B.5 Overall Loss

In addition to the aforementioned loss functions, we further introduce several regularization terms to
enhance the robustness and physical plausibility of our framework. Specifically, we follow [37] to
incorporate a Skinning Loss Lskin for regularizing the forward skinning network. To preserve local
geometric consistency during deformation, we employ an as-isometric-as-possible constraint, which
consists of Liso-pos and Liso-cov to restrict neighboring 3D Gaussian centers and covariance matrices,
ensuring they maintain similar distances after deformation. Furthermore, we treat the centers of
hand and object Gaussians as hand-object point clouds, and following [16], apply distance-based
penetration loss Lpen and contact loss Lcont between them to enforce physically plausible contact and
prevent interpenetration. The overall loss can be formulated as:

Ltotal = λrgbLrgb + λmaskLmask + λpercLperc + λposeLpose

+ λcontLcont + λpenLpen + λskinLskin

+ λiso-posLiso-pos + λiso-covLiso-cov,

(24)

where λrgb, λmask, λperc, λpose, λcont, λpen, λskin, λiso-pos, and λiso-cov are set to 1, 0.1, 0.01, 1, 20, 10,
0.1, 1, and 100, respectively.
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3DGS-Avatar Ours GT 3DGS-Avatar Ours GT

Figure 6: Qualitative results on DexYCB dataset.

C Discussion of Mesh Alignment

Existing SDF-based methods [3, 20, 2] reconstruct object meshes within a unit bounding box using
non-uniform scaling and evaluate pose-independent reconstruction via ICP with translation and
scaling. In contrast, 6-DoF pose-driven methods [7] use ICP with translation, scaling, and rotation for
alignment. Table 9 shows that our method outperforms SDF-based approaches under both alignment
strategies.

D Qualitative Results

We present more qualitative comparisons of hand-object rendering on DexYCB in Fig. 6. The
rendering results of our method show more delicate colors and more robust hand-object poses, and
can adapt to the light and shadow patterns between hand and object.

E Societal Impacts

This paper proposes a fine-grained hand–object interaction modeling framework from monocular
RGB images, with the positive impact of broadening access to immersive technologies in AR/VR,
HCI, and robotics applications. A possible negative impact may arise from privacy and fairness
concerns due to implicit data collection and dataset bias, necessitating cautious and transparent
deployment in real-world applications.

17



NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state three contributions: (1) a hand-object
Gaussian splatting framework for interacting hand-object photo-realistic reconstruction from
unconstrained RGB images, without relying on dense 3D surface annotations, (2) visual and
geometric perceptual generalization mechanisms yielding implicit representations generalizable
across various scenes and motions, and (3) SOTA reconstruction and rendering performance on
two datasets.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims made in
the paper.

• The abstract and/or introduction should clearly state the claims made, including the contribu-
tions made in the paper and important assumptions and limitations. A No or NA answer to
this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how much
the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals are
not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in Sec. 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that the
paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to vi-

olations of these assumptions (e.g., independence assumptions, noiseless settings, model
well-specification, asymptotic approximations only holding locally). The authors should
reflect on how these assumptions might be violated in practice and what the implications
would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was only
tested on a few datasets or with a few runs. In general, empirical results often depend on
implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach. For
example, a facial recognition algorithm may perform poorly when image resolution is low or
images are taken in low lighting. Or a speech-to-text system might not be used reliably to
provide closed captions for online lectures because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms and how
they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to address
problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by review-
ers as grounds for rejection, a worse outcome might be that reviewers discover limitations that
aren’t acknowledged in the paper. The authors should use their best judgment and recognize
that individual actions in favor of transparency play an important role in developing norms
that preserve the integrity of the community. Reviewers will be specifically instructed to not
penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and a
complete (and correct) proof?
Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if they

appear in the supplemental material, the authors are encouraged to provide a short proof
sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented by
formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experi-
mental results of the paper to the extent that it affects the main claims and/or conclusions of the
paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The network architectures, dataset splits, and implement details are detailed in the
main paper. The loss functions are provided in the supplemental material.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived well by

the reviewers: Making the paper reproducible is important, regardless of whether the code
and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken to
make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways. For
example, if the contribution is a novel architecture, describing the architecture fully might
suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary
to either make it possible for others to replicate the model with the same dataset, or provide
access to the model. In general. releasing code and data is often one good way to accomplish
this, but reproducibility can also be provided via detailed instructions for how to replicate the
results, access to a hosted model (e.g., in the case of a large language model), releasing of a
model checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submissions
to provide some reasonable avenue for reproducibility, which may depend on the nature of
the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how to

reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe the

architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should either

be a way to access this model for reproducing the results or a way to reproduce the model
(e.g., with an open-source dataset or instructions for how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case authors are
welcome to describe the particular way they provide for reproducibility. In the case of
closed-source models, it may be that access to the model is limited in some way (e.g.,
to registered users), but it should be possible for other researchers to have some path to
reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instructions to
faithfully reproduce the main experimental results, as described in supplemental material?
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Answer: [Yes]

Justification: The paper uses publicly available datasets, and the code is released.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/
guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not including
code, unless this is central to the contribution (e.g., for a new open-source benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.
cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how to
access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new proposed
method and baselines. If only a subset of experiments are reproducible, they should state
which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized versions
(if applicable).

• Providing as much information as possible in supplemental material (appended to the paper)
is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters,
how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specify data splits in Sec. 4.1, along with hyperparameters, type of
optimizer, and training protocols in Sec. 4.3, ensuring clear understanding of the results.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail that

is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow common practice in the prior related works and do not report error bars
due to the high computational cost of repeated training and evaluation.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confidence

intervals, or statistical significance tests, at least for the experiments that support the main
claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for example,
train/test split, initialization, random drawing of some parameter, or overall run with given
experimental conditions).

• The method for calculating the error bars should be explained (closed form formula, call to a
library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error of the

mean.
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• It is OK to report 1-sigma error bars, but one should state it. The authors should preferably
report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality
of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or figures
symmetric error bars that would yield results that are out of range (e.g. negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how they
were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the computer
resources (type of compute workers, memory, time of execution) needed to reproduce the experi-
ments?
Answer: [Yes]
Justification: The paper provide the type of compute workers and time consuming for training.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster, or

cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual experi-

mental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute than the

experiments reported in the paper (e.g., preliminary or failed experiments that didn’t make it
into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS
Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research fully conforms with NeurIPS ethical guidelines.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consideration

due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal
impacts of the work performed?
Answer: [Yes]
Justification: The paper discuss societal impacts in the supplemental material.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal impact

or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses (e.g.,

disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deploy-
ment of technologies that could make decisions that unfairly impact specific groups), privacy
considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied to
particular applications, let alone deployments. However, if there is a direct path to any
negative applications, the authors should point it out. For example, it is legitimate to point out
that an improvement in the quality of generative models could be used to generate deepfakes
for disinformation. On the other hand, it is not needed to point out that a generic algorithm
for optimizing neural networks could enable people to train models that generate Deepfakes
faster.
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• The authors should consider possible harms that could arise when the technology is being
used as intended and functioning correctly, harms that could arise when the technology is
being used as intended but gives incorrect results, and harms following from (intentional or
unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms
for monitoring misuse, mechanisms to monitor how a system learns from feedback over time,
improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible release of
data or models that have a high risk for misuse (e.g., pretrained language models, image generators,
or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with necessary

safeguards to allow for controlled use of the model, for example by requiring that users
adhere to usage guidelines or restrictions to access the model or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors should
describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do not
require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in the
paper, properly credited and are the license and terms of use explicitly mentioned and properly
respected?

Answer: [Yes]

Justification: All datasets and models used in the work are properly licensed and cited.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of service

of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has curated
licenses for some datasets. Their licensing guide can help determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of the
derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to the
asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
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• Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license, limitations,
etc.

• The paper should discuss whether and how consent was obtained from people whose asset is
used.

• At submission time, remember to anonymize your assets (if applicable). You can either create
an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as well as
details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribution of
the paper involves human subjects, then as much detail as possible should be included in the
main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or
other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Sub-
jects
Question: Does the paper describe potential risks incurred by study participants, whether such
risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals
(or an equivalent approval/review based on the requirements of your country or institution) were
obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent) may
be required for any human subjects research. If you obtained IRB approval, you should
clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions and
locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines
for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard
component of the core methods in this research? Note that if the LLM is used only for writing,
editing, or formatting purposes and does not impact the core methodology, scientific rigorousness,
or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development does not involve LLMs as any important, original, or
non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not involve
LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for
what should or should not be described.
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