Generalizable Hand-Object Modeling from Monocular RGB Images via 3D Gaussians

Xingyu Liu*, Pengfei Ren*, Qi Qi, Haifeng Sun, Zirui Zhuang, Jing Wang, Jianxin Liao, Jingyu Wang†

State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications {liuxingyu, rpf, qiqi8266, hfsun, zhuangzirui, wangjing, liaojx, wangjingyu}@bupt.edu.cn

Abstract

Recent advances in hand-object interaction modeling have employed implicit representations, such as Signed Distance Functions (SDF) and Neural Radiance Fields (NeRF) to reconstruct hands and objects with arbitrary topology and photo-realistic detail. However, these methods often rely on dense 3D surface annotations, or are tailored to short clips constrained in motion trajectories and scene contexts, limiting their generalization to diverse environments and movement patterns. In this work, we present **HOGS**, an adaptively perceptive 3D Gaussian Splatting (3DGS) framework for generalizable hand-object modeling from unconstrained monocular RGB images. By integrating photometric cues from the visual modality with the physically grounded structure of 3D Gaussians, HOGS disentangles inherent geometry from transient lighting and motion-induced appearance changes. This endows hand-object assets with the ability to generalize to unseen environments and dynamic motion patterns. Experiments on two challenging datasets demonstrate that HOGS outperforms state-of-the-art methods in monocular hand-object reconstruction and photo-realistic rendering.

1 Introduction

Fine-grained hand-object modeling is crucial for immersive AR/VR applications. Existing methods largely rely on dense 3D annotations or pre-scanned object models [16, 35, 47, 48, 15, 14], which incur high labeling costs and limit scalability. Leveraging the ubiquity and accessibility of monocular RGB images to reconstruct interactions, by contrast, offers a more practical avenue for seamless integration into consumer-grade AR/VR ecosystems. Recent works [50, 7] achieve hand-object reconstruction from short RGB clips but remain restricted to fixed environments and limited motion trajectories, requiring scene-specific optimization and retraining for new conditions. We present a cross-scene and cross-motion generalizable paradigm for photo-realistic hand-object modeling from monocular RGB images, reducing novel-scene setup from hours to seconds without post-training adaptation.

Recent studies have extensively explored implicit representations, such as signed distance functions (SDF) and Neural Radiance Fields (NeRF) [29], to advance fine-grained hand-object modeling. SDF-based methods [20, 3, 2, 27] densely optimize the zero-level set of a spatially continuous signed-distance field, to capture high-density hand-object surface with arbitrary topology. Neural implicit approaches [12, 31, 7] continuously encode scenes as volume density and view-dependent

^{*} Equal contribution.

[†] Corresponding author.

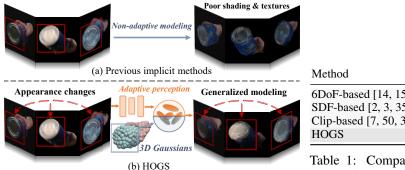


Figure 1: HOGS overcomes the transient appearance changes of hand-objects through the perceptual capabilities of neural networks, to achieve photo-realistic hand-object modeling with motion and scene adaptation.

Method	C_{ateg_c}	3D an	C_{OSS}
6DoF-based [14, 15]	X	Х	1
SDF-based [2, 3, 35]	✓	X	✓
Clip-based [7, 50, 37]	✓	✓	X
HOGS	/	/	/

Table 1: Comparison of representative hand-object modeling methods across key desiderata. Our method is both category-agnostic and 3D surface annotation-free, while achieving strong generalization across environments and motions.

radiance, showing the feasibility of recovering photo-realistic hand-objects under temporally and spatially constrained conditions (e.g., from short video clips).

Despite these advances, existing SDF-based methods heavily rely on dense 3D surface supervision, while acquiring such precise annotations is typically impractical and cost-prohibitive in the wild. Additionally, previous neural implicit approaches suffer from two fundamental limitations. First, models trained on single short video sequences capture appearance and motion biases, as the visual conditions and motion patterns within such limited data are highly constrained; second, they neglect explicit perception of physical effects like hand-object contact and transient illumination phenomena. Persistent occlusions, dynamic shadows, and specular reflections inherent to real-world interactions violate the simplified assumptions of these methods, resulting in degraded geometry estimates and rendering artifacts, as illustrated in Fig. 1. As a result, they struggle to generalize beyond their constrained training clips when exposed to unseen environments or complex motion patterns.

To address these challenges, we explore how generalizable priors on appearance variation and motion dynamics can be learned from large-scale monocular RGB images, promoting hand-object representations that generalize across diverse environments and motion patterns. While implicit radiance fields achieve high photometric fidelity, they model scenes as undifferentiated volumes, lacking physically grounded structure for contact-level reasoning. Motivated by the need for both learnability and physical awareness, we adopt 3D Gaussian Splatting (3DGS) [21], where each Gaussian primitive encodes physically meaningful attributes. We integrate neural perception with this geometric representation to capture the underlying patterns of lighting and surface appearance, and to explicitly reason about hand-object contact and motion. This adaptively perceptive representation learning design endows hand-object assets with robust cross-scenario generalization capabilities.

To this end, we propose Hand-Object Gaussian Splatting (HOGS) for interacting hand-object reconstruction from monocular RGB images, with a central focus on generalization across diverse environments and motion sequences. Built upon an adaptively perceptive 3DGS-based representation, HOGS models articulated interactions via deformable Gaussian primitives driven by hand poses and object 6-DoF transformations. For generalizable hand-object modeling, we introduce two modules: a Vision-driven generalizable Perception Module (V-PM), which disentangles 3D Gaussians into geometry-invariant canonical templates and vision-dependent learnable components, explicitly decoupling appearance-invariant persistent geometry from transient photometric variations; and a Geometry-driven Pose refinement Module (G-PM), which employs a lightweight 3D neural network to extract geometric priors from 3D Gaussian primitives, utilizing the physical awareness to accurately refine hand-object pose and contact. HOGS jointly optimizes hand-object Gaussians and the proposed submodules from monocular images through a unified differentiable rendering pipeline, leveraging 2D photometric supervision without relying on dense 3D surface annotations.

Experimental results on two challenging datasets show that our method outperforms the state-of-the-art (SOTA) methods in monocular hand-object reconstruction and photo-realistic rendering. Furthermore, qualitative results and multimedia supplementary materials highlight its generalization

across diverse visual conditions and motion patterns. Code is available at https://github.com/ru1ven/HOGS. Our contributions could be summarized as:

- We propose a hand-object Gaussian splatting framework for interacting hand-object photo-realistic reconstruction from monocular RGB images, without relying on dense 3D surface annotations.
- We integrate visual and geometric priors from neural networks into the modeling of hand-object Gaussians, yielding hand-object assets with perceptual generalization across various environments and motions.
- Experiments demonstrate that our method significantly improves both reconstruction and rendering performance, showcasing strong generalization capabilities.

2 Related Work

2.1 Interacting Hand-object Reconstruction

Many works have been proposed to understand hand-object interactions [20, 2, 3, 50, 40, 48, 26, 32, 7, 16, 4, 9], with many focus on joint hand-object or hand-held object reconstruction. Early mainstream efforts [14, 15, 47, 40, 48] assume known object templates and use parametric models (e.g., MANO) with a fixed resolution, reducing mesh reconstruction to pose estimation. To achieve category-agnostic reconstruction, Hasson et al. [16] use AtlasNet [10] to deform object vertices from a sphere. Karunratanakul et al. [20] introduced SDF-based implicit fields for fine-grained hand-object reconstruction. AlignSDF [3] further integrates the strengths of parametric models and SDF by encoding pose priors into the implicit field. Chen et al. [2] use kinematic and temporal features to guide SDF-based 3D reconstruction. However, these methods rely on accurate and dense 3D annotations. With the development of geometric volume rendering techniques, several 2D photometric-supervised hand-object reconstruction methods have been proposed. MOHO [52] leverages occlusion-aware synthetic pre-training to pursue hand-held object reconstruction from a single-view image. Some recent methods [7, 37] attempt to exploit temporal coherence in monocular videos as a proxy for multi-view supervision. However, natural interaction sequences often exhibit persistent occlusions and invariant lighting patterns between the hand and object. These intrinsic limitations lead to a domain gap between observed motion patterns and unconstrained monocular scenarios. In consequence, prior methods struggle to bridge such a gap across scenarios with significant appearance-motion discrepancies, failing to robustly model interactions under varying motion and unseen scenarios.

2.2 Human-centric Photo-realistic Modeling

With the advancements in neural implicit and geometric representations, such as Neural Radiance Fields (NeRF) and 3D Gaussian Splatting (3DGS), significant achievements have been made in 3D scene reconstruction and novel view synthesis. Recently, some studies have explored adapting these representations to the photo-realistic rendering of dynamic human bodies and hands. Several works [45, 34, 5, 12, 31, 19, 36] leverage pose information derived from parametric models like SMPL [28] and MANO [38] to drive textured representations or neural fields for modeling dynamic humans or hands from multi-view inputs. HumanNeRF [44] further relaxes the requirements for multi-view inputs by adopting a simpler monocular setting, and proposes decoupling the motion field into skeletal rigid and non-rigid components. Subsequent studies [8, 18] focus on achieving significantly faster training speeds. More recently, some works have introduced 3DGS for animatable human modeling from monocular inputs. To capture fine details such as clothing and hair, HUGS [22] allows 3D Gaussians to deviate from the human body model. 3DGS-Avatar [37] proposes pose-dependent rigid and non-rigid deformations to handle highly articulated and out-of-distribution poses of clothed humans. GauHuman [17] refines human pose and Linear Blend Skinning (LBS) weights and employs human priors with a KL divergence measure for adaptive density control of 3D Gaussians, iHuman [33] binds 3D Gaussians to the human body surface for explicit normal rasterization, and optimization with normal supervision, to achieve 3D reconstruction and photo-realistic rendering. However, photo-realistic reconstruction of closely interacting and mutually occluding hands and objects from unconstrained monocular images remains challenging and underexplored.

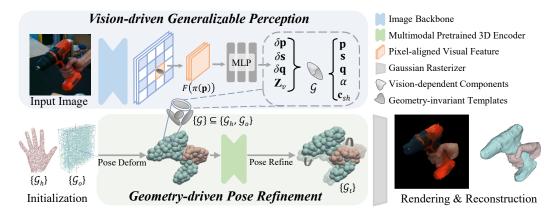


Figure 2: Our framework. We initialize deformable 3D Gaussians using hand articulations and object 6-DoF poses. The Vision-driven generalizable Perception Module (V-PM) disentangles Gaussians into geometry-invariant templates and vision-dependent components via extracted visual features, while the Geometry-driven Pose refinement Module (G-PM) extracts primitive-level 3D geometric features to refine hand-object poses and contacts. These modules are co-optimized in a differentiable rendering pipeline, jointly reconstructing photo-realistic geometry and appearance under cross-scene motion and illumination variations without per-sequence fine-tuning.

3 Method

Given a diverse collection of monocular RGB hand-object images across varied motions and scene context, HOGS jointly optimizes deformable 3D Gaussian primitives for each hand and each object, while learning generalizable interaction priors to refine hand-object modeling. During inference on unseen sequences involving novel interactions and appearances, HOGS can adaptively modulate the trained hand-object assets in a purely feed-forward manner, without extra fine-tuning.

Fig. 2 illustrates the overview of our framework. We use pose-deformable 3D Gaussians to model hand-object interaction from monocular images across multiple sequences (Sec. 3.1). To enable generalizable hand-object Gaussian modeling, we introduce a Vision-driven generalizable Perception Module (V-PM), to dynamically adapt 3D Gaussians to visual scene variations (Sec. 3.2), as well as a Geometry-driven Pose refinement Module (G-PM), extracting Gaussian primitive-level geometric features to enhance robustness against inaccurate hand-object motion estimation (Sec. 3.3). Details of optimization and mesh extraction are provided in the Appendix.

3.1 Hand-Object Interaction Modeling

We represent a hand and object in the canonical coordinate space through a set of 3D Gaussian primitives $\{\mathcal{G}_h\}$ and $\{\mathcal{G}_o\}$, and their positions are initialized by random sampling on the canonical MANO surface and within the 3D bounding box, respectively. Each 3D Gaussian \mathcal{G} is defined by its center $\mathbf{p} \in \mathbb{R}^3$, covariance matrix $\mathbf{\Sigma} \in \mathbb{R}^{3\times 3}$, opacity α and view-dependent color \mathbf{c} . Its geometry is parameterized as

$$G(\mathbf{x}) = \exp\left(-\frac{1}{2}(\mathbf{x} - \mathbf{p})^T \mathbf{\Sigma}^{-1}(\mathbf{x} - \mathbf{p})\right),\tag{1}$$

where the covariance matrix $\Sigma = \mathbf{RSS}^T\mathbf{R}^T$ is represented by a scaling matrix $\mathbf{S} \in \mathbb{R}^{3 \times 3}$ and a rotation matrix $\mathbf{R} \in \mathbb{R}^{3 \times 3}$, which are represented by the diagonal vector $\mathbf{s} \in \mathbb{R}^3$ and a quaternion vector $\mathbf{q} \in \mathbb{R}^4$ in practice. During the rendering process, 3D Gaussians are projected onto the camera view. Given a viewing transformation W and the Jacobian matrix of the projective transformation J, the covariance matrix Σ' in camera coordinates is computed as: $\Sigma' = JW\Sigma W^TJ^T$. To account for the mutual occlusion relationships between the hand and the object during rasterization, their Gaussians are jointly accumulated via alpha blending to compute the pixel color C:

$$C = \sum_{i \in \mathcal{N}_{bo}} \mathbf{c}_i \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j), \tag{2}$$

where \mathcal{N}_{ho} is the depth-ordered set of hand and object Gaussians overlapping the pixel.

To adapt to the motion of the hand and object, we use a pose-driven approach to transform the canonical Gaussian \mathcal{G} to the pose-transformed Gaussian \mathcal{G}_t in the observation space. For the hand branch, similar to prior methods [37], we apply the forward Linear Blend Skinning (LBS) to transform the center position \mathbf{p} and rotation matrix \mathbf{R} of each 3D Gaussian:

$$\mathbf{p}_t = \left(\sum_{i=1}^{n_b} w_i(\mathbf{p}) \cdot B_i\right) \cdot \mathbf{p},\tag{3}$$

$$\mathbf{R}_t = \left(\sum_{i=1}^{n_b} w_i(\mathbf{p}) \cdot B_i\right)_{1:3,1:3} \cdot \mathbf{R},\tag{4}$$

where \mathbf{p}_t and \mathbf{R}_t are the center and rotation matrix of the transformed 3D Gaussian, $\{B_i\}_{i=1,\dots,n_b}$ are the bone transformations derived from the hand poses θ , and $\{w_i(\mathbf{p})\}_{i=1,\dots,n_b}$ are the learnable skinning weights at position \mathbf{p} . Similarly, for the object branch, we apply a 6D rigid transformation based on the object rotation and translation to transform the canonical Gaussian to the posed Gaussian. In practice, we use an off-the-shelf regressor [35] to initialize the hand pose and object 6-DoF pose.

3.2 Vision-driven Generalizable Perception

Across multiple motion sequences, variations in the visual environment result in changes in the appearance of the hand and object, such as alterations in lighting intensity and direction, transient lighting patterns induced by surface materials and occlusions, as well as motion-induced blur and texture deformation. To enable the 3D Gaussian model to generalize across various visual environments in unconstrained monocular scenarios, we decouple the parameters of the vanilla Gaussian primitives into geometry-invariant templates and vision-dependent components.

Take color c as an example, the vanilla 3DGS uses Spherical Harmonics (SH) coefficients for view-relevant appearance modeling, which is insufficient for capturing the aforementioned visual variations across scenes. To address this, we first employ a Vision Transformer [6] as the image backbone to extract visual features F from the hand-object region, and obtain pixel-aligned visual features $F(\pi(\mathbf{p}_t))$ using bilinear sampling based on the 2D projection location $\pi(\mathbf{p}_t)$ of each pose-transformed 3D Gaussian position \mathbf{p}_t . We use an MLP to encode the visual features and Gaussian parameters into a vision-dependent appearance component \mathbf{Z}_v :

$$\mathbf{Z}_v = \psi(F, F(\pi(\mathbf{p}_t)), \mathcal{G}), \tag{5}$$

where the 3D coordinates of each Gaussian within $\mathcal G$ are represented using a multi-resolution hash grid encoding [30]. Then, we compute the vision-dependent color component in an adaptive manner. Specifically, we use an MLP network ψ_1 to obtain a color weight vector α from the vision-dependent appearance component \mathbf{Z}_v and the precomputed color \mathbf{c}_{sh} derived from the SH coefficients. The weight α quantifies the importance of different visual features in determining the final appearance, which can be formulated as:

$$\alpha = Sigmoid((\psi_1(\mathbf{Z}_v, \mathbf{c}_{sh})), \tag{6}$$

The final color c of each 3D Gaussian is obtained by weighting the SH color and the visual component:

$$\mathbf{c} = (1 - \alpha) \cdot \mathbf{c}_{sh} + \alpha \cdot Sigmoid(\mathbf{Z}_v). \tag{7}$$

For the remaining 3D Gaussian parameters, we follow a similar process, but in a simpler manner:

$$(\delta \mathbf{p}, \delta \mathbf{s}, \delta \mathbf{q}) = \psi_2(F, F(\pi(\mathbf{p}_t)), \mathcal{G}), \tag{8}$$

$$\mathbf{p}' = \mathbf{p} + \delta \mathbf{p},\tag{9}$$

$$\mathbf{s}' = \mathbf{s} \cdot \exp(\delta \mathbf{s}),\tag{10}$$

$$\mathbf{q}' = \mathbf{q} \cdot [1, \delta q_1, \delta q_2, \delta q_3],\tag{11}$$

where $\delta \mathbf{p}$, $\delta \mathbf{s}$, and $\delta \mathbf{q}$ are the vision-dependent components of Gaussian center, scale, and rotation, respectively, and \mathbf{p}' , \mathbf{s}' , and \mathbf{q}' are the corresponding updated Gaussian parameters.

3.3 Geometry-driven Pose Refinement

Sequence-specific reconstruction methods independently apply structure-from-motion (SfM) to each video for initial motion estimation, while per-frame cues are used to refine poses. This per-sequence design tightly couples the pipeline to the specific trajectories and scene layouts of each sequence. As a result, the learned motion and contact patterns are sequence-specific and do not generalize well to unseen interactions or motions beyond the observed trajectories.

To address monocular images with previously unseen motion patterns, we leverage the rich geometric and physical properties of 3D Gaussians, which encode physically meaningful spatial and volumetric information and provide explicit geometric cues for guiding motion and interaction reasoning. Consequently, we employ a lightweight 3D neural network to integrate this information, achieving precise hand-object pose refinement and contact reasoning.

Firstly, to capture the geometric structure information of 3D Gaussians, a straightforward approach is to treat the Gaussian primitives as a 3D point cloud and extract geometric features using point cloud networks. However, it may exhibit lower efficiency when handling non-geometric attributes like color. To address this limitation, we adopt ULIP [46], a multi-modal pre-trained model, to improve the comprehensive understanding of 3D Gaussians by effectively integrating both geometric and visual information. Specifically, we employ PointNet++ [14], pre-trained by ULIP, as the 3D backbone to encode the pose-transformed Gaussian centers \mathbf{p}_t and Gaussian parameters \mathcal{G} into the subsampled Gaussian centers $\mathbf{p}_t' \in \mathbb{R}^{N' \times 3}$ and a 3D Gaussian feature matrix $\mathbf{F}_{\mathcal{G}} \in \mathbb{R}^{N' \times C}$. This process enables efficient feature extraction and downsampling while maintaining the structural and physical properties of the 3D Gaussian representation. Then, following [14], we employ a Transformer encoder containing self-attention modules [41] and a 3-layer MLP to obtain the hand-relative object translation offset $\Delta T_o \in \mathbb{R}^3$ and object rotation offset $\Delta R_o \in \mathbb{R}^{3\times3}$.

Additionally, we employ a contact and penetration loss [16] to optimize interactions between the hand and object. We treat the centers of hand and object Gaussians as hand-object point clouds, and following [16], apply distance-based penetration and collision losses between them to enforce physically plausible contact and prevent interpenetration. Leveraging these geometric attributes of hand-object 3D Gaussians, our approach relaxes the need for ground-truth object templates or detailed 3D vertex annotations required by existing contact optimization methods [16, 49, 20], while optionally utilizing 6D pose annotations. Details of training losses are provided in the Appendix.

4 Experiment

4.1 Datasets

DexYCB [1] is a hand-object dataset containing 582K RGB-D frames over 1,000 sequences of 10 subjects grasping 20 different objects. We follow the dataset split in [35], filtering samples without interactions, obtaining 147,526 training samples. For reconstruction evaluation, we follow [2, 52, 27] to downsample the video data to 6 frames per second, resulting in 5,928 testing samples.

HO3D_v3 [13] is an RGB-D hand-object interaction dataset with 10 subjects manipulating 10 objects from the YCB dataset. Following the evaluation protocol of [7], we select 18 sequences for training and evaluate the quality of reconstructed hand-held object meshes.

4.2 Baselines

We conduct comparisons with existing hand-object and hand-held object reconstruction methods, including 3D dense supervised baselines (typically SDF-based) and 2D photometric supervised baselines (e.g., MOHO [52] and HOLD [7]). Additionally, we re-implement 3DGS-Avatar [37] and GOF [51], which originally utilize 3DGS to model animable human bodies and reconstruct static unbounded scenes, respectively, extending them to a hand-object baseline and a rigid object baseline (marked by \dagger). In particular, we adapt 3DGS-Avatar by replacing SMPL with MANO for the hand branch and substituting pose-dependent deformations (e.g., LBS) with rigid transformations for the object branch.

Method	$\mathrm{CD}_h \!\!\downarrow$	$F_h@1\uparrow$	F _h @5↑	$\mathrm{CD}_o \downarrow$	F _o @5↑	F _o @10↑		
3D Supervised Methods:								
Hasson et al. [16]	0.537	0.115	0.647	1.94	0.383	0.642		
Grasping Field [20]	0.364	0.154	0.764	2.06	0.392	0.660		
AlignSDF [3]	0.358	0.162	0.767	1.83	0.410	0.679		
gSDF [2]	0.302	0.177	0.801	1.55	0.437	0.709		
HORT [4]	-	-	-	-	0.630	0.850		
2D Supervised Method.	2D Supervised Methods:							
MOHO [52]	-	-	-	-	0.600	0.810		
GOF [†] [51]	-	-	-	0.68	0.610	0.834		
Ours	0.481	0.133	0.732	0.24	0.785	0.918		

Table 2: Quantitative results of hand-object reconstruction on DexYCB. Video data is downsampled to 6 frames per second.

Method	$\mathrm{CD}_o \downarrow$	F _o @10↑	$ ext{CD}_{pose} \downarrow$
iHOI [49]	3.8	75.8	41.7
DiffHOI [50]	4.3	68.8	43.8
HOLD [7]	0.4	96.5	11.3
Ours	0.7	96.2	2.7

Method	PSNR↑	SSIM↑	LPIPS↓
GOF [†] [51]	29.58	0.9686	31.69
3DGS-Avatar [†] [37]	29.71	0.9690	30.52
Ours	31.12	0.9728	26.83

Table 3: Quantitative results of hand-held object reconstruction on HO3D.

Table 4: Quantitative results of hand-object photorealistic rendering on DexYCB.

4.3 Implementation Details

We initialize the hand Gaussians and object Gaussians by randomly sampling K=5,000 points within the canonical MANO surface and the 3D bounding box, respectively. For optimization, we follow [21] to employ cloning or splitting and pruning to adaptively control the density of the 3D Gaussians during optimization. We employ an individual set of Gaussians for each subject or object. For the input of the visual encoder, we crop the hand-object region of the RGB image and resize it to 224×224 . We use an AdamW optimizer [24] for training. On DexYCB, we train the model for a total of 360k iterations, which takes approximately 10 hours on an NVIDIA RTX 4090 GPU. On HO3D, we train for 200k iterations. After 360k iterations on DexYCB, we fix the parameters of the 3D Gaussians and continue training for an additional 10 epochs, focusing solely on optimizing the pose parameters to prevent underfitting.

4.4 Metrics

Geometric Metrics. For geometric evaluation of the object, we follow [7] to report the Chamfer distance (\mathbf{CD}_o) in cm^2 after ICP alignment with rotation, translation, and scaling, Chamfer distance incorporating 6-DoF pose (\mathbf{CD}_{pose}) , as well as the F-score evaluated at thresholds of 5mm and 10mm $(\mathbf{F}_o \otimes \mathbf{5} \text{ and } \mathbf{F}_o \otimes \mathbf{10})$. For hand reconstruction, we report the Chamfer distance (\mathbf{CD}_h) and F-score at 1mm and 5mm thresholds $(\mathbf{F}_h \otimes \mathbf{1} \text{ and } \mathbf{F}_h \otimes \mathbf{5})$. In addition, to evaluate hand-held object pose performance, we report Object Center Error (\mathbf{OCE}) , Mean Corner Error (\mathbf{MCE}) , and the standard pose estimation metric average closest point distance $(\mathbf{ADD-S})$ following [35].

Rendering Metrics. For evaluation of hand-object photo-realistic rendering, we report the peak signal-to-noise ratio (**PSNR**), structural similarity index (**SSIM**) [43], and learned perceptual image patch similarity (**LPIPS**) [53]. Only the region within the hand-object mask is considered. Note that LPIPS values in all tables are scaled up by 1000.

4.5 Comparisons with State-of-the-arts

Surface Reconstruction. To validate the quality of hand-object modeling, we compare with hand-object and hand-held object reconstruction SOTAs on the DexYCB dataset. As shown in Table 2, our method significantly improves object reconstruction quality over SOTA methods while achieving

Method	OCE↓	MCE↓.	ADD-S↓
AlignSDF [3]	27.0	-	-
Wang et al. [42]	27.3	32.6	15.9
Lin et al. [25]	39.8	45.7	31.9
gSDF [2]	19.1	-	-
HOISDF [35]	18.4	27.4	13.3
Ours	18.1	26.1	12.0

Table 5: Hand-held object pose esti-
mation results on DexYCB.

Method	CJ	PSNR↑	SSIM↑	LPIPS↓
3DGS-Avatar [37]	X ✓	29.71 29.48 _{\psi_0.23}	0.9690 0.9689 _{\$\text{0.0001}\$}	30.52 32.02 _{\(\frac{1}{1}.50\)}
Ours (w/o V-PM)	X ✓	29.57 $29.32_{\downarrow 0.25}$	$0.9687 \\ 0.9685_{\downarrow 0.0002}$	31.75 33.44 _{\pm 1.69}
Ours	X ✓	31.12 31.00 _{↓0.12}	0.9728 0.9727 _{\$\text{0.0001}\$}	26.83 27.57 _{\tag{0.74}}

Table 6: Ablation study for the impact of color jittering on DexYCB. *CJ* represents Color jitter.

ID	Method	PSNR↑	SSIM↑	LPIPS↓	OCE↓	MCE↓	ADD-S↓
0 1 2 3	Full model w/o contact optimization w/o pre-trained 3D backbone w/o G-PM	31.12 31.09 31.09 31.17	0.9728 0.9727 0.9726 0.9721	26.83 26.93 26.96 27.39	17.83 18.10 18.11 18.45	25.95 26.13 26.40 27.37	11.87 11.97 11.88 13.31
4 5	w/o adaptive appearance w/o V-PM	29.92 29.57	0.9700 0.9687	29.95 31.75		-	-

Table 7: Ablation study on DexYCB. Both rendering quality and pose results are shown.

comparable hand reconstruction performance to previous 3D dense supervised methods. The hand-held reconstruction performance comparison with SOTA methods on HO3D is shown in Table 3. Our method achieves pose-independent reconstruction quality (\mathbf{CD}_o and $\mathbf{F}_o @ \mathbf{10}$) comparable to SOTA methods without requiring per-sequence optimization, while significantly improving pose-dependent reconstruction accuracy (\mathbf{CD}_{pose}), showcasing our enhanced generalization capability across diverse hand-object motion. Furthermore, we conduct hand-held object pose estimation comparisons in Table 5, and our method achieves superior object pose accuracy, validating the effectiveness of the proposed geometry-driven pose refinement strategy. Fig. 4 is the qualitative results. Our method produces more plausible object shapes compared to gSDF [2], avoiding collapses and deformations. In contrast to GOF [51], our method can better recover local geometric structures and mitigate mesh holes and incompleteness, demonstrating superior Gaussian modeling quality.

Photo-realistic Rendering. We perform a comparative analysis of photo-realistic rendering of hand objects on DexYCB. As shown in Table 4, our method outperforms baselines on all the metrics by a large margin. Qualitative comparisons are shown in Fig. 3. Compared to 3DGS-Avatar [37], our method achieves superior color and texture fidelity and enhanced hand-object pose accuracy. Notably, ours demonstrates robust capabilities in both modeling hand-object shadow patterns (column 2) and adapting to chromatic variations caused by material reflectance under dynamic illumination conditions (columns 3-4).

4.6 Ablation Study

Impact of visual environment changes. To further validate the generalization capability of HOGS against visual environment variations, we simulate appearance alterations induced by diverse illumination patterns on the Dex YCB dataset and compare the rendering quality impacts between HOGS and baseline methods. Specifically, we apply a random color jittering within the range of [-0.3, 0.3] to each RGB image, which is used for photometric supervision and rendering evaluation. We conduct comparative analyses on rendering quality under color jittering conditions across three configurations: our full model, our model without V-PM, and 3DGS-Avatar. As demonstrated in Table 6, while color jittering minimally affects structural distortion in both 3DGS-Avatar and ours without V-PM, it significantly degrades PSNR and LPIPS metrics due to pixel color errors and image perceptual discrepancies. In contrast, our approach incorporates visual generalization awareness to substantially mitigate rendering quality degradation, demonstrating effective adaptation to visual environment

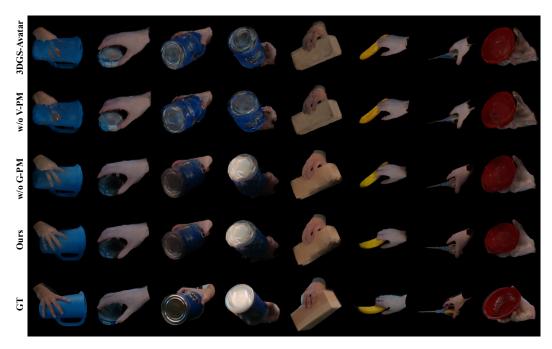


Figure 3: Qualitative results of hand-object photo-realistic rendering on DexYCB.

ID	F	$F(\pi(\mathbf{p}_t)$	\mathcal{G}	PSNR↑	SSIM↑	LPIPS↓
0				29.57	0.9687	31.75
1	✓		\checkmark	30.49	0.9703	29.66
2	✓	\checkmark		30.52	0.9704	29.50
3		\checkmark	\checkmark	31.08	0.9725	27.31
4	✓	\checkmark	\checkmark	31.12	0.9728	26.83

Table 8: Ablation of the vision-driven components on DexYCB. F represents global visual features, $F(\pi(\mathbf{p}_t))$ represents pixel-aligned visual features, and \mathcal{G} represents 3DGS parameters.

changes. Furthermore, Fig. 5 intuitively shows that our method can adaptively capture diverse global color tones for rendering, exhibiting remarkable robustness to visual appearance variations.

Ablation on generalizable modules. We perform ablation studies to verify the effectiveness of two proposed critical components, V-PM and G-PM. As shown in Table 7, our full model demonstrates superior performance compared to configurations excluding hand-object contact optimization (ID 1) or multi-modal pre-trained 3D backbone integration (ID 2). The proposed G-PM yields significant enhancements in pose results (ID 0 vs. ID 3). Notably, although G-PM does not directly optimize 3D Gaussians, the hand-object pose refinement improves rendering quality, particularly SSIM-measured structural fidelity and LPIPS-based perceptual quality. Additionally, the removal of either the adaptive appearance modeling component (ID 4) or the V-PM (ID 5) results in significant degradation of rendering quality. The qualitative ablation is shown in Fig. 3. The V-PM can capture hand-object lighting and shadow patterns (columns 2-5), while the G-PM effectively alleviates hand-object penetration artifacts (column 1) and refines imprecise object pose (columns 6-7).

Ablation on the vision-driven components. To assess the impact of different features in the vision-driven component of 3DGS, we conduct an ablation study on DexYCB using global visual features F, pixel-aligned visual features $F(\pi(\mathbf{p}_t))$, and 3DGS parameters \mathcal{G} . As shown in Table 8, discarding the vision-driven component altogether (ID 0) results in the lowest rendering quality. Incorporating any single feature improves performance, and the improvement is particularly notable when the fine-grained pixel-aligned visual features are included. The best results are achieved when all three features are used (ID 4), indicating that global context, pixel-level alignment, and 3DGS parameters provide complementary information that jointly enhances reconstruction fidelity.

Figure 4: Qualitative results of hand-held object reconstruction on DexYCB.

Figure 5: Qualitative ablation for the impact of color jittering on hand-object rendering quality.

5 Conclusion

In this paper, we propose a 3DGS-based interacting hand-object modeling framework from unconstrained monocular RGB images. The key insight lies in leveraging neural networks to endow 3D Gaussians with appearance and motion adaptability, guided by generalizable visual and geometric perceptual cues. Extensive experiments demonstrate the effectiveness of HOGS in achieving fine-grained interacting hand-object modeling, significantly advancing monocular hand-object reconstruction and photo-realistic rendering performance.

Limitation. While HOGS exhibits strong cross-scene and cross-motion generalization, its performance is constrained by the diversity of object categories encountered during training. Consequently, it focuses on hand-object assets that generalize to unseen visual contexts and motion patterns, rather than synthesizing entirely new object categories. A promising direction for future work is large-scale training on extensive hand-object datasets, enabling zero-shot generalization to novel object categories.

Acknowledgments

This work was supported in part by the National Natural Science Foundation of China under Grants (62406039, 62471055, U23B2001, 62321001, 62101064, 62171057, 62071067), the High-Quality Development Project of the MIIT(2440STCZB2584), the Ministry of Education and China Mobile Joint Fund (MCM20200202, MCM20180101), BUPT Excellent Ph.D. Students Foundation (CX20241014), the Project funded by China Postdoctoral Science Foundation (2023TQ0039, 2024M750257, GZC20230320), the Fundamental Research Funds for the Central Universities (2024PTB-004), the 2025 Education and Teaching Reform Project Funding at Beijing University of Posts and Telecommunications (2025YZ005).

References

- [1] Yu-Wei Chao, Wei Yang, Yu Xiang, Pavlo Molchanov, Ankur Handa, Jonathan Tremblay, Yashraj S Narang, Karl Van Wyk, Umar Iqbal, Stan Birchfield, et al. Dexycb: A benchmark for capturing hand grasping of objects. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 9044–9053, 2021.
- [2] Zerui Chen, Shizhe Chen, Cordelia Schmid, and Ivan Laptev. gsdf: Geometry-driven signed distance functions for 3d hand-object reconstruction. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 12890–12900, 2023.
- [3] Zerui Chen, Yana Hasson, Cordelia Schmid, and Ivan Laptev. Alignsdf: Pose-aligned signed distance fields for hand-object reconstruction. In European Conference on Computer Vision (ECCV), pages 231–248. Springer, 2022.
- [4] Zerui Chen, Rolandos Alexandros Potamias, Shizhe Chen, and Cordelia Schmid. Hort: Monocular hand-held objects reconstruction with transformers. *arXiv preprint arXiv:2503.21313*, 2025.
- [5] Enric Corona, Tomas Hodan, Minh Vo, Francesc Moreno-Noguer, Chris Sweeney, Richard Newcombe, and Lingni Ma. Lisa: Learning implicit shape and appearance of hands. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20533–20543, 2022.
- [6] Alexey Dosovitskiy. An image is worth 16x16 words: Transformers for image recognition at scale. *arXiv* preprint arXiv:2010.11929, 2020.
- [7] Zicong Fan, Maria Parelli, Maria Eleni Kadoglou, Xu Chen, Muhammed Kocabas, Michael J Black, and Otmar Hilliges. Hold: Category-agnostic 3d reconstruction of interacting hands and objects from video. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 494–504, 2024.
- [8] Chen Geng, Sida Peng, Zhen Xu, Hujun Bao, and Xiaowei Zhou. Learning neural volumetric representations of dynamic humans in minutes. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 8759–8770, 2023.
- [9] Patrick Grady, Chengcheng Tang, Christopher D Twigg, Minh Vo, Samarth Brahmbhatt, and Charles C Kemp. Contactopt: Optimizing contact to improve grasps. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1471–1481, 2021.
- [10] Thibault Groueix, Matthew Fisher, Vladimir G Kim, Bryan C Russell, and Mathieu Aubry. A papier-mâché approach to learning 3d surface generation. In *Proceedings of the IEEE conference on Computer Vision and Pattern Recognition (CVPR)*, pages 216–224, 2018.
- [11] Antoine Guédon and Vincent Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruction and high-quality mesh rendering. CVPR, 2024.
- [12] Zhiyang Guo, Wengang Zhou, Min Wang, Li Li, and Houqiang Li. Handnerf: Neural radiance fields for animatable interacting hands. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 21078–21087, 2023.
- [13] Shreyas Hampali, Mahdi Rad, Markus Oberweger, and Vincent Lepetit. Honnotate: A method for 3d annotation of hand and object poses. In *CVPR*, 2020.
- [14] Shreyas Hampali, Sayan Deb Sarkar, Mahdi Rad, and Vincent Lepetit. Keypoint transformer: Solving joint identification in challenging hands and object interactions for accurate 3d pose estimation. In *Proceedings* of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), pages 11090–11100, 2022.
- [15] Yana Hasson, Bugra Tekin, Federica Bogo, Ivan Laptev, Marc Pollefeys, and Cordelia Schmid. Leveraging photometric consistency over time for sparsely supervised hand-object reconstruction. In *Proceedings of the IEEE/CVF conference on Computer Vision and Pattern Recognition (CVPR)*, pages 571–580, 2020.
- [16] Yana Hasson, Gul Varol, Dimitrios Tzionas, Igor Kalevatykh, Michael J Black, Ivan Laptev, and Cordelia Schmid. Learning joint reconstruction of hands and manipulated objects. In *Proceedings of the IEEE/CVF* conference on Computer Vision and Pattern Recognition (CVPR), pages 11807–11816, 2019.
- [17] Shoukang Hu, Tao Hu, and Ziwei Liu. Gauhuman: Articulated gaussian splatting from monocular human videos. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 20418–20431, 2024.

- [18] Tianjian Jiang, Xu Chen, Jie Song, and Otmar Hilliges. Instantavatar: Learning avatars from monocular video in 60 seconds. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 16922–16932, 2023.
- [19] Korrawe Karunratanakul, Sergey Prokudin, Otmar Hilliges, and Siyu Tang. Harp: Personalized hand reconstruction from a monocular rgb video. In *Proceedings of the IEEE/CVF conference on computer* vision and pattern recognition, pages 12802–12813, 2023.
- [20] Korrawe Karunratanakul, Jinlong Yang, Yan Zhang, Michael J Black, Krikamol Muandet, and Siyu Tang. Grasping field: Learning implicit representations for human grasps. In 2020 International Conference on 3D Vision (3DV), pages 333–344. IEEE, 2020.
- [21] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and George Drettakis. 3d gaussian splatting for real-time radiance field rendering. ACM Transactions on Graphics, 42(4), July 2023.
- [22] Muhammed Kocabas, Jen-Hao Rick Chang, James Gabriel, Oncel Tuzel, and Anurag Ranjan. Hugs: Human gaussian splats. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 505–515, 2024.
- [23] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convolutional neural networks. *Advances in neural information processing systems*, 25, 2012.
- [24] Dominik Kulon, Haoyang Wang, Riza Alp Güler, Michael Bronstein, and Stefanos Zafeiriou. Single image 3d hand reconstruction with mesh convolutions. *arXiv* preprint arXiv:1905.01326, 2019.
- [25] Zhifeng Lin, Changxing Ding, Huan Yao, Zengsheng Kuang, and Shaoli Huang. Harmonious feature learning for interactive hand-object pose estimation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 12989–12998, 2023.
- [26] Xingyu Liu, Pengfei Ren, Yuanyuan Gao, Jingyu Wang, Haifeng Sun, Qi Qi, Zirui Zhuang, and Jianxin Liao. Keypoint fusion for rgb-d based 3d hand pose estimation. In *Proceedings of the AAAI Conference on Artificial Intelligence*, volume 38, pages 3756–3764, 2024.
- [27] Xingyu Liu, Pengfei Ren, Jingyu Wang, Qi Qi, Haifeng Sun, Zirui Zhuang, and Jianxin Liao. Coarse-to-fine implicit representation learning for 3d hand-object reconstruction from a single rgb-d image. In *European Conference on Computer Vision*, pages 74–92. Springer, 2025.
- [28] Matthew Loper, Naureen Mahmood, Javier Romero, Gerard Pons-Moll, and Michael J. Black. SMPL: A Skinned Multi-Person Linear Model. Association for Computing Machinery, New York, NY, USA, 1 edition, 2023.
- [29] Ben Mildenhall, Pratul P Srinivasan, Matthew Tancik, Jonathan T Barron, Ravi Ramamoorthi, and Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis. *Communications of the ACM*, 65(1):99–106, 2021.
- [30] Thomas Müller, Alex Evans, Christoph Schied, and Alexander Keller. Instant neural graphics primitives with a multiresolution hash encoding. *ACM transactions on graphics (TOG)*, 41(4):1–15, 2022.
- [31] Akshay Mundra, Jiayi Wang, Marc Habermann, Christian Theobalt, Mohamed Elgharib, et al. Livehand: Real-time and photorealistic neural hand rendering. In *Proceedings of the IEEE/CVF International Conference on Computer Vision*, pages 18035–18045, 2023.
- [32] JoonKyu Park, Yeonguk Oh, Gyeongsik Moon, Hongsuk Choi, and Kyoung Mu Lee. Handoccnet: Occlusion-robust 3d hand mesh estimation network. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 1496–1505, 2022.
- [33] Pramish Paudel, Anubhav Khanal, Danda Pani Paudel, Jyoti Tandukar, and Ajad Chhatkuli. ihuman: Instant animatable digital humans from monocular videos. In *European Conference on Computer Vision*, pages 304–323. Springer, 2025.
- [34] Sida Peng, Yuanqing Zhang, Yinghao Xu, Qianqian Wang, Qing Shuai, Hujun Bao, and Xiaowei Zhou. Neural body: Implicit neural representations with structured latent codes for novel view synthesis of dynamic humans. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9054–9063, 2021.
- [35] Haozhe Qi, Chen Zhao, Mathieu Salzmann, and Alexander Mathis. Hoisdf: Constraining 3d hand-object pose estimation with global signed distance fields. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 10392–10402, 2024.

- [36] Neng Qian, Jiayi Wang, Franziska Mueller, Florian Bernard, Vladislav Golyanik, and Christian Theobalt. Html: A parametric hand texture model for 3d hand reconstruction and personalization. In Computer Vision–ECCV 2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XI 16, pages 54–71. Springer, 2020.
- [37] Zhiyin Qian, Shaofei Wang, Marko Mihajlovic, Andreas Geiger, and Siyu Tang. 3dgs-avatar: Animatable avatars via deformable 3d gaussian splatting. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 5020–5030, 2024.
- [38] Javier Romero, Dimitrios Tzionas, and Michael J. Black. Embodied hands: Modeling and capturing hands and bodies together. ACM Transactions on Graphics, (Proc. SIGGRAPH Asia), 36(6), November 2017.
- [39] Tianchang Shen, Jun Gao, Kangxue Yin, Ming-Yu Liu, and Sanja Fidler. Deep marching tetrahedra: a hybrid representation for high-resolution 3d shape synthesis. *Advances in Neural Information Processing Systems*, 34:6087–6101, 2021.
- [40] Tze Ho Elden Tse, Kwang In Kim, Ales Leonardis, and Hyung Jin Chang. Collaborative learning for hand and object reconstruction with attention-guided graph convolution. In *Proceedings of the IEEE/CVF* Conference on Computer Vision and Pattern Recognition, pages 1664–1674, 2022.
- [41] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing systems, 30, 2017.
- [42] Rong Wang, Wei Mao, and Hongdong Li. Interacting hand-object pose estimation via dense mutual attention. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV), pages 5735–5745, January 2023.
- [43] Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment: from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–612, 2004.
- [44] Chung-Yi Weng, Brian Curless, Pratul P Srinivasan, Jonathan T Barron, and Ira Kemelmacher-Shlizerman. Humannerf: Free-viewpoint rendering of moving people from monocular video. In *Proceedings of the IEEE/CVF conference on computer vision and pattern Recognition*, pages 16210–16220, 2022.
- [45] Minye Wu, Yuehao Wang, Qiang Hu, and Jingyi Yu. Multi-view neural human rendering. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1682–1691, 2020.
- [46] Le Xue, Mingfei Gao, Chen Xing, Roberto Martín-Martín, Jiajun Wu, Caiming Xiong, Ran Xu, Juan Carlos Niebles, and Silvio Savarese. Ulip: Learning a unified representation of language, images, and point clouds for 3d understanding. In *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pages 1179–1189, 2023.
- [47] Lixin Yang, Kailin Li, Xinyu Zhan, Jun Lv, Wenqiang Xu, Jiefeng Li, and Cewu Lu. Artiboost: Boosting articulated 3d hand-object pose estimation via online exploration and synthesis. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pages 2750–2760, 2022.
- [48] Lixin Yang, Xinyu Zhan, Kailin Li, Wenqiang Xu, Jiefeng Li, and Cewu Lu. Cpf: Learning a contact potential field to model the hand-object interaction. In *Proceedings of the IEEE/CVF International conference on computer vision (ICCV)*, pages 11097–11106, 2021.
- [49] Yufei Ye, Abhinav Gupta, and Shubham Tulsiani. What's in your hands? 3d reconstruction of generic objects in hands. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition* (CVPR), pages 3895–3905, 2022.
- [50] Yufei Ye, Poorvi Hebbar, Abhinav Gupta, and Shubham Tulsiani. Diffusion-guided reconstruction of everyday hand-object interaction clips. In ICCV, 2023.
- [51] Zehao Yu, Torsten Sattler, and Andreas Geiger. Gaussian opacity fields: Efficient adaptive surface reconstruction in unbounded scenes. *ACM Transactions on Graphics*, 2024.
- [52] Chenyangguang Zhang, Guanlong Jiao, Yan Di, Gu Wang, Ziqin Huang, Ruida Zhang, Fabian Manhardt, Bowen Fu, Federico Tombari, and Xiangyang Ji. Moho: Learning single-view hand-held object reconstruction with multi-view occlusion-aware supervision. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 9992–10002, 2024.
- [53] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman, and Oliver Wang. The unreasonable effectiveness of deep features as a perceptual metric. In *Proceedings of the IEEE conference on computer* vision and pattern recognition, pages 586–595, 2018.

Appendix

In Appendix contents, we provide:

- Details of mesh extraction (Section A).
- Optimization of hand-object Gaussians (Section B).
- Discussion of mesh alignment (Section C).
- More qualitative results (Section D).

Video supplementary materials are provided as separate files.

A Mesh Extraction

Inspired by the impressive novel view synthesis capabilities of 3D Gaussian Splatting, recent studies [11, 51] have focused on exploring the use of 3D Gaussian representations for surface reconstruction. To extract explicit meshes from hand-object Gaussians, we extend Gaussian Opacity Fields (GOF), a 3DGS-based surface reconstruction method tailored for unbounded scenes, into an interacting hand-object mesh reconstruction framework.

A.1 Preliminary: Gaussian Opacity Fields

GOF uses an explicit ray-Gaussian intersection instead of projection, which allows evaluating the opacity value or transmittance of any 3D point x along the ray. At the most basic level, given a single 3D Gaussian \mathcal{G}_k , the opacity at any point along a ray can be defined as:

$$O_k(\mathcal{G}_k, \mathbf{o}, \mathbf{r}, t) = \begin{cases} \mathcal{G}_k^{1D}(t) & \text{if } t \le t^* \\ \mathcal{G}_k^{1D}(t^*) & \text{if } t > t^* \end{cases}$$
(12)

where $\mathbf{x} = \mathbf{o} + t\mathbf{r}$. Intuitively, the opacity increases until it reaches its maximal value, and remains constant thereafter. Next, considering a set of 3D Gaussians \mathcal{G} , the opacity of point \mathbf{x} is given by:

$$O(\mathbf{o}, \mathbf{r}, t) = \sum_{k=1}^{K} \alpha_k O_k(\mathcal{G}_k, \mathbf{o}, \mathbf{r}, t) \prod_{j=1}^{K-1} (1 - \alpha_j O_j(\mathcal{G}_j, \mathbf{o}, \mathbf{r}, t))$$
(13)

As a 3D point might be visible by any training view, the vanilla GOF defines the opacity field O(x) of a 3D point x as the minimal opacity value among all training views or viewing directions:

$$O(x) = \min_{(\mathbf{o}, \mathbf{r})} O(\mathbf{o}, \mathbf{r}, t) \tag{14}$$

A.2 Dynamic Hand-Object Reconstruction

However, for dynamic hand-object reconstruction, directly employing GOF faces two problems: (1) We observe the interacting hand-object from a single viewing direction, rather than scanning various views in an unbounded scene, making it impossible to rely on multiple input view directions to model the opacity field; (2) Unlike static unbounded scenes, the hand-object motions cause instability in the position and rotation of the 3D Gaussians, resulting in drastic changes in the local geometry. To address these issues, we first generate inward-oriented rays that converge toward the geometric core of the hand-object, enabling systematic surface interrogation. Specifically, we uniformly sample K=16 points $\{\mathbf{o}_k\}_{k=1}^K$ from the surface of a bounding sphere closely encapsulating the hand-object. For each sampled point \mathbf{o}_k , a directed ray \mathbf{r}_k is parametrized as:

$$\mathbf{r}_k(t) = \mathbf{o}_k + t \cdot \frac{\mathbf{c} - \mathbf{o}_k}{\|\mathbf{c} - \mathbf{o}_k\|}, \quad t \ge 0$$
(15)

Next, we adopt a smoother manner to integrate the opacity of each 3D point from different views. Specifically, we enforce hard opacity constraints while maintaining smoothness in visible regions. The conditional branch serves two critical purposes: (1) **Physical Constraint.** Zero opacity is strictly enforced when any viewing ray confirms full transparency, preventing phantom geometry artifacts;

(2) **View Consensus.** The mean operation in non-transparent regions smooths out inconsistencies from sparse view sampling. The final opacity field can be defined as:

$$O(\mathbf{x}) = \begin{cases} 0 & \text{if } \exists (\mathbf{o_k}, \mathbf{r_k}) \in \Omega, \\ O(\mathbf{o_k}, \mathbf{r_k}, t) = 0 \\ \frac{1}{|\Omega|} \sum_{(\mathbf{o_k}, \mathbf{r_k}) \in \Omega} O(\mathbf{o_k}, \mathbf{r_k}, t) & \text{otherwise} \end{cases}$$
(16)

Finally, following [51], we use the center and corners of 3D bounding boxes around the 3D Gaussian primitives as vertex sets for the tetrahedral mesh, and utilize the Marching Tetrahedra algorithm [39] for triangle mesh extraction upon assessing the opacity at tetrahedral points.

B Optimization

B.1 Pixel Color Loss

Beyond joint rendering for interaction modeling, we adopt independent color supervision for hands and objects, to address the color bleeding issue in close interaction regions where traditional unified rendering fails to disentangle component-specific appearances:

$$C = \sum_{i \in \mathcal{N}_{ho}} \mathbf{c}_{i} \alpha_{i} \prod_{j=1}^{i-1} (1 - \alpha_{j})$$

$$C_{hand} = \sum_{i \in \mathcal{N}_{ho}} \mathbf{c}_{i}^{h} \alpha_{i} \prod_{j=1}^{i-1} (1 - \alpha_{j}), \quad \mathbf{c}_{i}^{h} = \begin{cases} \mathbf{c}_{i} & i \in \mathcal{N}_{hand} \\ 0 & \text{otherwise} \end{cases}$$

$$C_{obj} = \sum_{i \in \mathcal{N}_{ho}} \mathbf{c}_{i}^{o} \alpha_{i} \prod_{j=1}^{i-1} (1 - \alpha_{j}), \quad \mathbf{c}_{i}^{o} = \begin{cases} \mathbf{c}_{i} & i \in \mathcal{N}_{obj} \\ 0 & \text{otherwise} \end{cases}$$

$$(17)$$

where $\mathcal{N}_{ho} = DepthSort(\mathcal{N}_{hand} \cup \mathcal{N}_{obj})$ ensures correct occlusion handling across components. The pixel-level RGB loss can be formulated as:

$$\mathcal{L}_{rgb} = \|C - C^{gt}\|_{1} + \|C_{hand} - C^{gt}_{hand}\|_{1} + \|C_{obj} - C^{gt}_{obj}\|_{1}$$
(18)

B.2 Mask Loss

To facilitate geometry supervision, we compute the opacity value by accumulating the alpha values, performed separately for hand, object, and jointly hand-object:

$$O = \sum_{i \in \mathcal{N}_{ho}} \alpha_i \prod_{j=1}^{i-1} (1 - \alpha_j)$$

$$O_{hand} = \sum_{i \in \mathcal{N}_{ho}} \alpha_i^h \prod_{j=1}^{i-1} (1 - \alpha_j), \quad \alpha_i^h = \begin{cases} \alpha_i & i \in \mathcal{N}_{hand} \\ 0 & \text{otherwise} \end{cases}$$

$$O_{obj} = \sum_{i \in \mathcal{N}_{ho}} \alpha_i^o \prod_{j=1}^{i-1} (1 - \alpha_j), \quad \alpha_i^o = \begin{cases} \alpha_i & i \in \mathcal{N}_{obj} \\ 0 & \text{otherwise} \end{cases}$$

$$(19)$$

The mask loss measures the L1 distance between the rendered opacity and the corresponding ground truth mask values:

$$\mathcal{L}_{\text{mask}} = \|O - M\|_1 + \|O_{\text{hand}} - M_{\text{hand}}\|_1 + \|O_{\text{obj}} - M_{\text{obj}}\|_1$$
 (20)

B.3 Perceptual Loss

To enhance high-frequency detail preservation and mitigate blurring artifacts in synthesized interactions, we extend the independent supervision paradigm to perceptual feature space, optimizing

Method	$\mathrm{CD}_o \downarrow$	F _o @5↑	F _o @10↑
Hasson et al. [16]	1.94	0.383	0.642
Grasping Field [20]	2.06	0.392	0.660
AlignSDF [3]	1.83	0.410	0.679
gSDF [2]	1.55	0.437	0.709
Ours (not rotation-aligned)	1.51	0.497	0.730
Ours	0.24	0.785	0.918

Table 9: Comparison of object reconstruction on DexYCB.

LPIPS as the perceptual loss with AlexNet [23] as the backbone. Following the RGB loss structure, we employ LPIPS metric for decomposed components. The final perceptual loss aggregates multi-component measurements:

$$\mathcal{L}_{perc} = \text{LPIPS}\left(\mathcal{R}(C), \mathcal{R}(C^{\text{gt}})\right) \\ + \text{LPIPS}\left(\mathcal{R}(C_{\text{hand}}), \mathcal{R}(C^{\text{gt}}_{\text{hand}})\right) \\ + \text{LPIPS}\left(\mathcal{R}(C_{\text{obj}}), \mathcal{R}(C^{\text{gt}}_{\text{obj}})\right)$$
(21)

where $\mathcal{R}(\cdot)$ denotes the rendering function from alpha-composited colors to RGB images.

B.4 Pose Loss

To ensure physically plausible hand-object interactions, we supervise the 6D pose parameters (rotation $\mathbf{R} \in SO(3)$, translation $\mathbf{t} \in \mathbb{R}^3$) and the corner positions \mathbf{P}_C of manipulated objects through the SmoothL1 loss:

$$\mathcal{L}_{\text{rot}} = \text{SmoothL1}\left(\hat{\mathbf{R}}, \mathbf{R}^{\text{gt}}\right)$$

$$\mathcal{L}_{\text{trans}} = \text{SmoothL1}\left(\hat{\mathbf{t}}, \mathbf{t}^{\text{gt}}\right)$$

$$\mathcal{L}_{\text{corner}} = \text{SmoothL1}\left(\hat{\mathbf{P}}_{C}, \mathbf{P}_{C}^{\text{gt}}\right)$$
(22)

The overall pose loss \mathcal{L}_{pose} is then computed as the weighted sum of these components:

$$\mathcal{L}_{pose} = \lambda_{rot} \mathcal{L}_{rot} + \lambda_{trans} \mathcal{L}_{trans} + \lambda_{corner} \mathcal{L}_{corner}$$
(23)

where the weight factors λ_{rot} , λ_{trans} , and λ_{corner} are set as 10, 1e4, and 1e3, respectively. In our framework, the ground truth object poses are optional. For example, in comparison on the HO3D dataset, since HOLD [7] does not use any pose annotations, our method does not access the ground truth poses in this experiment either.

B.5 Overall Loss

In addition to the aforementioned loss functions, we further introduce several regularization terms to enhance the robustness and physical plausibility of our framework. Specifically, we follow [37] to incorporate a Skinning Loss \mathcal{L}_{skin} for regularizing the forward skinning network. To preserve local geometric consistency during deformation, we employ an as-isometric-as-possible constraint, which consists of $\mathcal{L}_{iso-pos}$ and $\mathcal{L}_{iso-cov}$ to restrict neighboring 3D Gaussian centers and covariance matrices, ensuring they maintain similar distances after deformation. Furthermore, we treat the centers of hand and object Gaussians as hand-object point clouds, and following [16], apply distance-based penetration loss \mathcal{L}_{pen} and contact loss \mathcal{L}_{cont} between them to enforce physically plausible contact and prevent interpenetration. The overall loss can be formulated as:

$$\mathcal{L}_{total} = \lambda_{rgb} \mathcal{L}_{rgb} + \lambda_{mask} \mathcal{L}_{mask} + \lambda_{perc} \mathcal{L}_{perc} + \lambda_{pose} \mathcal{L}_{pose} + \lambda_{cont} \mathcal{L}_{cont} + \lambda_{pen} \mathcal{L}_{pen} + \lambda_{skin} \mathcal{L}_{skin} + \lambda_{iso-pos} \mathcal{L}_{iso-pos} + \lambda_{iso-cov} \mathcal{L}_{iso-cov},$$
(24)

where λ_{rgb} , λ_{mask} , λ_{perc} , λ_{pose} , λ_{cont} , λ_{pen} , λ_{skin} , $\lambda_{iso-pos}$, and $\lambda_{iso-cov}$ are set to 1, 0.1, 0.01, 1, 20, 10, 0.1, 1, and 100, respectively.

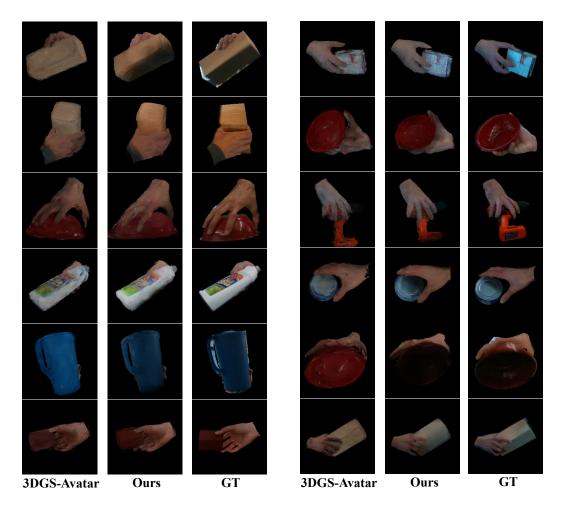


Figure 6: Qualitative results on DexYCB dataset.

C Discussion of Mesh Alignment

Existing SDF-based methods [3, 20, 2] reconstruct object meshes within a unit bounding box using non-uniform scaling and evaluate pose-independent reconstruction via ICP with translation and scaling. In contrast, 6-DoF pose-driven methods [7] use ICP with translation, scaling, and rotation for alignment. Table 9 shows that our method outperforms SDF-based approaches under both alignment strategies.

D Qualitative Results

We present more qualitative comparisons of hand-object rendering on DexYCB in Fig. 6. The rendering results of our method show more delicate colors and more robust hand-object poses, and can adapt to the light and shadow patterns between hand and object.

E Societal Impacts

This paper proposes a fine-grained hand-object interaction modeling framework from monocular RGB images, with the positive impact of broadening access to immersive technologies in AR/VR, HCI, and robotics applications. A possible negative impact may arise from privacy and fairness concerns due to implicit data collection and dataset bias, necessitating cautious and transparent deployment in real-world applications.

NeurIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the paper's contributions and scope?

Answer: [Yes]

Justification: The abstract and introduction clearly state three contributions: (1) a hand-object Gaussian splatting framework for interacting hand-object photo-realistic reconstruction from unconstrained RGB images, without relying on dense 3D surface annotations, (2) visual and geometric perceptual generalization mechanisms yielding implicit representations generalizable across various scenes and motions, and (3) SOTA reconstruction and rendering performance on two datasets.

Guidelines:

- The answer NA means that the abstract and introduction do not include the claims made in the paper.
- The abstract and/or introduction should clearly state the claims made, including the contributions made in the paper and important assumptions and limitations. A No or NA answer to this question will not be perceived well by the reviewers.
- The claims made should match theoretical and experimental results, and reflect how much the results can be expected to generalize to other settings.
- It is fine to include aspirational goals as motivation as long as it is clear that these goals are not attained by the paper.

2. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discuss limitations in Sec. 5.

Guidelines:

- The answer NA means that the paper has no limitation while the answer No means that the paper has limitations, but those are not discussed in the paper.
- The authors are encouraged to create a separate "Limitations" section in their paper.
- The paper should point out any strong assumptions and how robust the results are to violations of these assumptions (e.g., independence assumptions, noiseless settings, model well-specification, asymptotic approximations only holding locally). The authors should reflect on how these assumptions might be violated in practice and what the implications would be.
- The authors should reflect on the scope of the claims made, e.g., if the approach was only tested on a few datasets or with a few runs. In general, empirical results often depend on implicit assumptions, which should be articulated.
- The authors should reflect on the factors that influence the performance of the approach. For example, a facial recognition algorithm may perform poorly when image resolution is low or images are taken in low lighting. Or a speech-to-text system might not be used reliably to provide closed captions for online lectures because it fails to handle technical jargon.
- The authors should discuss the computational efficiency of the proposed algorithms and how
 they scale with dataset size.
- If applicable, the authors should discuss possible limitations of their approach to address problems of privacy and fairness.
- While the authors might fear that complete honesty about limitations might be used by reviewers as grounds for rejection, a worse outcome might be that reviewers discover limitations that aren't acknowledged in the paper. The authors should use their best judgment and recognize that individual actions in favor of transparency play an important role in developing norms that preserve the integrity of the community. Reviewers will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and a complete (and correct) proof?

Answer: [NA]

Justification: The paper does not include theoretical results.

Guidelines:

- The answer NA means that the paper does not include theoretical results.
- All the theorems, formulas, and proofs in the paper should be numbered and cross-referenced.
- All assumptions should be clearly stated or referenced in the statement of any theorems.
- The proofs can either appear in the main paper or the supplemental material, but if they appear in the supplemental material, the authors are encouraged to provide a short proof sketch to provide intuition.
- Inversely, any informal proof provided in the core of the paper should be complemented by formal proofs provided in appendix or supplemental material.
- Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main experimental results of the paper to the extent that it affects the main claims and/or conclusions of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The network architectures, dataset splits, and implement details are detailed in the main paper. The loss functions are provided in the supplemental material.

Guidelines:

- The answer NA means that the paper does not include experiments.
- If the paper includes experiments, a No answer to this question will not be perceived well by the reviewers: Making the paper reproducible is important, regardless of whether the code and data are provided or not.
- If the contribution is a dataset and/or model, the authors should describe the steps taken to make their results reproducible or verifiable.
- Depending on the contribution, reproducibility can be accomplished in various ways. For example, if the contribution is a novel architecture, describing the architecture fully might suffice, or if the contribution is a specific model and empirical evaluation, it may be necessary to either make it possible for others to replicate the model with the same dataset, or provide access to the model. In general, releasing code and data is often one good way to accomplish this, but reproducibility can also be provided via detailed instructions for how to replicate the results, access to a hosted model (e.g., in the case of a large language model), releasing of a model checkpoint, or other means that are appropriate to the research performed.
- While NeurIPS does not require releasing code, the conference does require all submissions
 to provide some reasonable avenue for reproducibility, which may depend on the nature of
 the contribution. For example
 - (a) If the contribution is primarily a new algorithm, the paper should make it clear how to reproduce that algorithm.
 - (b) If the contribution is primarily a new model architecture, the paper should describe the architecture clearly and fully.
 - (c) If the contribution is a new model (e.g., a large language model), then there should either be a way to access this model for reproducing the results or a way to reproduce the model (e.g., with an open-source dataset or instructions for how to construct the dataset).
- (d) We recognize that reproducibility may be tricky in some cases, in which case authors are welcome to describe the particular way they provide for reproducibility. In the case of closed-source models, it may be that access to the model is limited in some way (e.g., to registered users), but it should be possible for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instructions to faithfully reproduce the main experimental results, as described in supplemental material?

Answer: [Yes]

Justification: The paper uses publicly available datasets, and the code is released.

Guidelines:

- The answer NA means that paper does not include experiments requiring code.
- Please see the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- While we encourage the release of code and data, we understand that this might not be possible, so "No" is an acceptable answer. Papers cannot be rejected simply for not including code, unless this is central to the contribution (e.g., for a new open-source benchmark).
- The instructions should contain the exact command and environment needed to run to reproduce the results. See the NeurIPS code and data submission guidelines (https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.
- The authors should provide instructions on data access and preparation, including how to access the raw data, preprocessed data, intermediate data, and generated data, etc.
- The authors should provide scripts to reproduce all experimental results for the new proposed method and baselines. If only a subset of experiments are reproducible, they should state which ones are omitted from the script and why.
- At submission time, to preserve anonymity, the authors should release anonymized versions (if applicable).
- Providing as much information as possible in supplemental material (appended to the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyperparameters, how they were chosen, type of optimizer, etc.) necessary to understand the results?

Answer: [Yes]

Justification: The paper specify data splits in Sec. 4.1, along with hyperparameters, type of optimizer, and training protocols in Sec. 4.3, ensuring clear understanding of the results.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The experimental setting should be presented in the core of the paper to a level of detail that is necessary to appreciate the results and make sense of them.
- The full details can be provided either with the code, in appendix, or as supplemental material.

7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate information about the statistical significance of the experiments?

Answer: [No]

Justification: We follow common practice in the prior related works and do not report error bars due to the high computational cost of repeated training and evaluation.

Guidelines:

- The answer NA means that the paper does not include experiments.
- The authors should answer "Yes" if the results are accompanied by error bars, confidence intervals, or statistical significance tests, at least for the experiments that support the main claims of the paper.
- The factors of variability that the error bars are capturing should be clearly stated (for example, train/test split, initialization, random drawing of some parameter, or overall run with given experimental conditions).
- The method for calculating the error bars should be explained (closed form formula, call to a library function, bootstrap, etc.)
- The assumptions made should be given (e.g., Normally distributed errors).
- It should be clear whether the error bar is the standard deviation or the standard error of the mean.

- It is OK to report 1-sigma error bars, but one should state it. The authors should preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis of Normality of errors is not verified.
- For asymmetric distributions, the authors should be careful not to show in tables or figures symmetric error bars that would yield results that are out of range (e.g. negative error rates).
- If error bars are reported in tables or plots, The authors should explain in the text how they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the computer resources (type of compute workers, memory, time of execution) needed to reproduce the experiments?

Answer: [Yes]

Justification: The paper provide the type of compute workers and time consuming for training. Guidelines:

- The answer NA means that the paper does not include experiments.
- The paper should indicate the type of compute workers CPU or GPU, internal cluster, or cloud provider, including relevant memory and storage.
- The paper should provide the amount of compute required for each of the individual experimental runs as well as estimate the total compute.
- The paper should disclose whether the full research project required more compute than the experiments reported in the paper (e.g., preliminary or failed experiments that didn't make it into the paper).

9. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research fully conforms with NeurIPS ethical guidelines.

Guidelines:

- The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
- If the authors answer No, they should explain the special circumstances that require a deviation from the Code of Ethics.
- The authors should make sure to preserve anonymity (e.g., if there is a special consideration due to laws or regulations in their jurisdiction).

10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative societal impacts of the work performed?

Answer: [Yes]

Justification: The paper discuss societal impacts in the supplemental material.

Guidelines:

- The answer NA means that there is no societal impact of the work performed.
- If the authors answer NA or No, they should explain why their work has no societal impact or why the paper does not address societal impact.
- Examples of negative societal impacts include potential malicious or unintended uses (e.g., disinformation, generating fake profiles, surveillance), fairness considerations (e.g., deployment of technologies that could make decisions that unfairly impact specific groups), privacy considerations, and security considerations.
- The conference expects that many papers will be foundational research and not tied to particular applications, let alone deployments. However, if there is a direct path to any negative applications, the authors should point it out. For example, it is legitimate to point out that an improvement in the quality of generative models could be used to generate deepfakes for disinformation. On the other hand, it is not needed to point out that a generic algorithm for optimizing neural networks could enable people to train models that generate Deepfakes faster.

- The authors should consider possible harms that could arise when the technology is being used as intended and functioning correctly, harms that could arise when the technology is being used as intended but gives incorrect results, and harms following from (intentional or unintentional) misuse of the technology.
- If there are negative societal impacts, the authors could also discuss possible mitigation strategies (e.g., gated release of models, providing defenses in addition to attacks, mechanisms for monitoring misuse, mechanisms to monitor how a system learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible release of data or models that have a high risk for misuse (e.g., pretrained language models, image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

- The answer NA means that the paper poses no such risks.
- Released models that have a high risk for misuse or dual-use should be released with necessary safeguards to allow for controlled use of the model, for example by requiring that users adhere to usage guidelines or restrictions to access the model or implementing safety filters.
- Datasets that have been scraped from the Internet could pose safety risks. The authors should describe how they avoided releasing unsafe images.
- We recognize that providing effective safeguards is challenging, and many papers do not require this, but we encourage authors to take this into account and make a best faith effort.

12. Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in the paper, properly credited and are the license and terms of use explicitly mentioned and properly respected?

Answer: [Yes]

Justification: All datasets and models used in the work are properly licensed and cited.

Guidelines:

- The answer NA means that the paper does not use existing assets.
- The authors should cite the original paper that produced the code package or dataset.
- The authors should state which version of the asset is used and, if possible, include a URL.
- The name of the license (e.g., CC-BY 4.0) should be included for each asset.
- For scraped data from a particular source (e.g., website), the copyright and terms of service of that source should be provided.
- If assets are released, the license, copyright information, and terms of use in the package should be provided. For popular datasets, paperswithcode.com/datasets has curated licenses for some datasets. Their licensing guide can help determine the license of a dataset.
- For existing datasets that are re-packaged, both the original license and the license of the derived asset (if it has changed) should be provided.
- If this information is not available online, the authors are encouraged to reach out to the asset's creators.

13. New Assets

Question: Are new assets introduced in the paper well documented and is the documentation provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.

- Researchers should communicate the details of the dataset/code/model as part of their submissions via structured templates. This includes details about training, license, limitations, etc.
- The paper should discuss whether and how consent was obtained from people whose asset is used.
- At submission time, remember to anonymize your assets (if applicable). You can either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper include the full text of instructions given to participants and screenshots, if applicable, as well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Including this information in the supplemental material is fine, but if the main contribution of the paper involves human subjects, then as much detail as possible should be included in the main paper.
- According to the NeurIPS Code of Ethics, workers involved in data collection, curation, or other labor should be paid at least the minimum wage in the country of the data collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human Subjects

Question: Does the paper describe potential risks incurred by study participants, whether such risks were disclosed to the subjects, and whether Institutional Review Board (IRB) approvals (or an equivalent approval/review based on the requirements of your country or institution) were obtained?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.

Guidelines:

- The answer NA means that the paper does not involve crowdsourcing nor research with human subjects.
- Depending on the country in which research is conducted, IRB approval (or equivalent) may be required for any human subjects research. If you obtained IRB approval, you should clearly state this in the paper.
- We recognize that the procedures for this may vary significantly between institutions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the guidelines for their institution.
- For initial submissions, do not include any information that would break anonymity (if applicable), such as the institution conducting the review.

16. Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or non-standard component of the core methods in this research? Note that if the LLM is used only for writing, editing, or formatting purposes and does not impact the core methodology, scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development does not involve LLMs as any important, original, or non-standard components.

Guidelines:

- The answer NA means that the core method development in this research does not involve LLMs as any important, original, or non-standard components.
- Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM) for what should or should not be described.