
On the Limits of Language Generation:
Trade-Offs Between Hallucination and Mode Collapse

Alkis Kalavasis Anay Mehrotra Grigoris Velegkas

Yale University Yale University Yale University
alkis.kalavasis@yale.edu anaymehrotra1@gmail.com grigoris.velegkas@yale.edu

Abstract

Specifying all desirable properties of a language model is challenging, but certain require-
ments seem essential for any good model. Given samples drawn from an unknown language,
the trained model should (1) produce valid strings that have not been seen in the training data,
and (2) be expressive enough to capture the full richness of the language. Otherwise, if the lan-
guage model outputs invalid strings, it “hallucinates,” and if it fails to capture the full range of
the language, it suffers from “mode collapse.” In this paper, we ask whether it is possible for a
language model to meet both of these requirements.

We investigate this question within a statistical setting of language generation, building on
the seminal works of Gold [Gol67, Inf. Control], Angluin [Ang79, STOC], and Angluin [Ang88,
Tech. Report]. In this setting, the language model is presented with randomly sampled strings
from a distribution supported on an unknown language K, which is only known to belong
to a possibly infinite collection of candidate languages. The goal of the model is to generate
unseen strings from this target language. We say that the language model generates from K
with consistency and breadth if, as the size of the training set increases, the set of strings it can
output converges to the set of all unseen strings in K.

Kleinberg and Mullainathan [KM24, NeurIPS] posed an open question of whether consis-
tency and breadth in language generation are both possible. We answer this question nega-
tively: for a large class of language models – including next-token-prediction-based models
– this is impossible for most collections of candidate languages. This contrasts with the re-
cent positive result of Kleinberg and Mullainathan [KM24, NeurIPS], which demonstrated that
consistent generation, without requiring breadth, is possible for any countable collection of
candidate languages. Our finding highlights that generation with breadth is fundamentally
different from generation without breadth.

As a byproduct of our result, we also examine how many samples are required for gen-
eration with or without breadth, establishing near-tight bounds on the “learning curves” for
generation in the statistical framework of Bousquet, Hanneke, Moran, van Handel, and Yehu-
dayoff [BHM+21, STOC].

Finally, our results also give some hope for consistent generation with breadth: it is achiev-
able for any countable collection of languages when negative examples – in the form of strings
outside of K – are available in addition to strings inside of K. This suggests that feedback
in post-training, which encodes negative examples, can be crucial in reducing hallucinations
while also limiting mode collapse.

ar
X

iv
:2

41
1.

09
64

2v
1

 [
cs

.L
G

]
 1

4
N

ov
 2

02
4

mailto:alkis.kalavasis@yale.edu
mailto:anaymehrotra1@gmail.com
grigoris.velegkas@yale.edu

Contents

1 Introduction 1
1.1 Informal Results . 3

1.1.1 Setup and Definitions . 4
1.1.2 Main Results . 5

1.2 Technical Overview . 7
1.3 Additional Results With Relaxation of Consistency and Breadth 12
1.4 Takeaways, Discussion, and Open Problems . 14
1.5 Further Related Works . 16

2 Model and Preliminaries 19
2.1 Language Identification and Generation in the Limit 20

3 Overview of Results 23
3.1 Results for Identification and Generation Without Breadth 24

3.1.1 Universal Rates: Model and Preliminaries . 24
3.1.2 Universal Rates for Identification . 25
3.1.3 Universal Rates for Consistent Generation . 26

3.2 Results for Generation With Breadth . 27
3.2.1 Membership Oracle Problem . 27
3.2.2 Results for Generators for Which MOP(·) Is Decidable 28
3.2.3 A Family of Generators for Which MOP(·) Is Decidable 29
3.2.4 Results for Generation With Breadth in the Limit 30

3.3 Results for Generation With Approximate Consistency and Breadth 30
3.4 Further Results for Identification . 32

3.4.1 Exponential Rates for Identification Using Subset Oracle 32
3.4.2 Exponential Rates for Identification of Finite Collections 33
3.4.3 Exponential Rates for Identification of Collections of Finite Languages 33
3.4.4 Exponential Rates for Identification from Positive and Negative Examples . . 33

4 Organization of the Rest of the Paper 34

5 Proofs from Section 3.1 (Rates for Identification and Generation) 35
5.1 Proof of Theorem 3.1 (Rates for Identification) . 35
5.2 Proof of Theorem 3.2 (Rates for Generation) . 46

5.2.1 Optimal Rate for Non-Trivial Collections for Generation 46
5.2.2 A Sufficient Condition To Achieve Exponential Rate 51
5.2.3 Algorithm With Access To Subset Oracle . 52
5.2.4 Algorithm With Access To Membership Oracle 53

6 Proofs from Section 3.2 (Generation With Breadth) 55
6.1 Proof of Theorem 3.4 (MOP(·) Is Decidable For Iterative Generators) 55
6.2 Proof of Theorem 3.3 (Impossibility for Generation With Breadth) 56
6.3 Proof of Theorem 3.5 (Impossibility for Generation With Breadth in the Limit) 59

7 Proofs from Section 3.3 (Generation With Approximate Consistency and Breadth) 60
7.1 Proof of Theorem 3.7 (Impossibility in the Limit) . 60
7.2 Proof of Theorem 3.6 (Impossibility in the Statistical Setting) 63

8 Proofs from Section 3.4 (Further Results for Identification) 66
8.1 Proof of Proposition 3.8 (Identification Using Subset Oracle) 66
8.2 Proof of Proposition 3.9 (Identification of Finite Collections) 67
8.3 Proof of Proposition 3.10 (Identification of Collections of Finite Languages) 68
8.4 Proof of Theorem 3.11 (Identification from Positive and Negative Examples) 69

A Further Discussion on Decidability of MOP(·) 90

B Results With Subset Oracles 90
B.1 Identification in the Limit Without Tell-Tale Oracle via Subset Oracles 90
B.2 Best-Of-Both Worlds: Generating With Breadth When Possible 92

C Further Results for Consistent Generation With Approximate Breadth 92

D Further Comparison With Online Learning 96

E Borel-Cantelli Lemmas 98

1 Introduction

Language acquisition is a fundamental mystery across multiple scientific fields, ranging from Bi-
ology and Neuroscience to Sociology [SAN96; Bre07; Cla14; MIB+24]. Theoretical Computer Sci-
entists have been fascinated by language since the early days of the field: in the 1950s, Turing
[Tur50] introduced his famous test using language as an interface to cognition, Shannon [Sha51a]
studied statistics of printed English aiming at understanding its entropy and the extent to which
it could be compressed, and Mandelbrot [Man53] designed a statistical model to capture connec-
tions between language and the brain.

Over the years, language modeling has advanced through simple models, such as the word
n-gram model introduced by Shannon [Sha51b] and widely used in natural language processing
[BDd+92]. In the early 2000s, neural networks achieved a significant breakthrough in the field
[BDV00], leading to fascinating deep learning systems [MKB+10; LBH15; Gol16] built using tra-
ditional architectures like Recurrent Neural Networks [RHW86] and Long Short-Term Memory
[HS97]. In 2017, the field of language modeling was revolutionized by the introduction of the
Transformer architecture [Bah14; SVL14; VSP+17], which led to the development of Large Lan-
guage Models (LLMs). The achievements of LLMs have been groundbreaking; recent models can
perform well on tasks far beyond natural language processing [BCE+23; TLI+23]. Despite their
impressive performance, their extensive use has revealed that LLMs exhibit various bizarre be-
haviors even in seemingly mundane tasks [Bor23].

Perhaps the most well-known issue with current LLMs is hallucinations: the models generate
false but plausible-sounding text with surprising frequency [JLF+23; ZLC+23].1 Such hallucina-
tions, highlighted by popular media [WM23], could significantly impact safety, reliability, and
user trust as the adoption of these systems extends to new tasks [AOS+16; HCS+22]. The impor-
tance of this problem, among other concerns, led both the US [Bid23] and the EU [Sat23] to issue
calls for safeguards against misleading outputs generated by LLMs. In this direction, designing
LLMs that generate responses consistent with the ground truth is an effort that has gained a lot of
attention from Machine Learning (ML) practitioners [WWS+22; AP23; GZA+23; HYM+23; JLF+23;
FSW+24; KWT+24], policymakers [Bid23; Sat23; SK23], and theorists [HKK+18; KV24; KM24].

If the sole goal is to avoid hallucinations, then, of course, one could simply limit the range of
outputs generated by the language model. As an extreme example, consider a language model
that only outputs “I am a language model” and, therefore, never hallucinates. However, modern
LLMs do not just aim to generate a few valid outputs; their goal is to obtain the ability to express
a wide range of plausible outputs, thus capturing the richness of human language. The key chal-
lenge lies in avoiding hallucinations while achieving breadth. The problem of achieving consistent
generation with breadth is not new in the ML community, dating back at least to the era of Gen-
erative Adversarial Networks (GANs) [GPM+20]. In this line of work, mode collapse [GPM+20] is
the analog of lack of breadth; it refers to the phenomenon where the GAN assigns non-zero mass
only to a few modes of the true data distribution, thus producing a limited variety of samples and
becoming repetitive [AB17; SSA18; BZW+19]. The starting point of our work is exactly this puzzling
tension between consistent generation and breadth in language generation.

1We stress that LLMs outputting wrong facts based on errors in training data (e.g., “The Earth is flat”) or miscalcu-
lations (e.g., “1+1 = 3”) do not constitute hallucinations. A hallucination is a plausible but false text with unclear origin
(e.g., “Barack Obama was the president of the US and was born on January 1, 1958”).

1

We start with a mathematical specification inspired by classical work on learning theory, trac-
ing back to the seminal work of Angluin [Ang88], and the recent formulation of Kleinberg and
Mullainathan [KM24]: the domain X is a countable collection of strings, and there is an unknown
target language K which is a subset of this domain. We know that the true language lies within
a collection of possibly infinite but countably many languages L = {L1, L2, . . . }. There exists an
unknown distribution P over strings in K ∈ L that satisfies supp(P) = K; any distribution with
this property is said to be valid for K. The algorithm observes i.i.d. samples from P and aims
to learn how to generate unseen strings from the target language K – this, at a high level, is the
language generation problem. Intuitively, the target language K is capturing “facts” of the world;
everything that belongs to K is correct, whereas everything outside of K is unambiguously incor-
rect and can be thought of as a “hallucination.” Observe that K has to be infinite for the problem
to be well-defined as, otherwise, at some point, the algorithm will see all possible strings of K and,
from then on, would have no unseen strings to generate from.

Let us explore language generation further, with the immediate aim of quantifying an algo-
rithm’s progress toward becoming a useful generator. Consider a generating algorithm Gn

2 that
is trained on a set S of n i.i.d. examples from P. To quantify the inconsistency of Gn, we need an
objective. As discussed above, this objective should penalize Gn for outputting strings outside of
K and for repeating examples already seen in the training data S.3 For a target language K and a
model Gn trained on S, we consider the following generation error

gen_er(Gn) := Pr
S∼Pn

[supp(Gn) ⊃ K \ S] . (1)

In words, a model errs according to gen_er(·) if it either hallucinates by outputting strings from
X \ K or if it outputs something already contained in the training set S. This is inspired by the
notion of generation considered by Kleinberg and Mullainathan [KM24]; they call an algorithm
a consistent generator if its support becomes a subset of K \ S after seeing finitely many training
examples S. We relax this definition and call an algorithm a consistent generator for the collection L

if its error, as defined in Equation (1), asymptotically goes to zero for any valid distribution P.
Let us now review how prior work has approached issues with language generation algo-

rithms – foremost, hallucination. Under the above statistical setting, Kalai and Vempala [KV24]
made important progress showing that calibrated models must hallucinate by lower bounding the
hallucination rate by the model’s calibration. For a detailed comparison with our work, we refer
to Section 1.5. Closer to our paper, the work of Kleinberg and Mullainathan [KM24] explored lan-
guage generators that must not hallucinate, i.e., they must be consistent. They studied language
generation in an online setting where the data are not drawn from P but are given as a stream to
the learner, i.e., as an adversarial enumeration of the strings of the true language K. In their setting,
Gn is said to generate in the limit from K if, after some finite time n0 in the enumeration of K, Gn

is able to generate new unseen strings from K for all subsequent times n ≥ n0. They showed

2Formally, a generating algorithm is a sequence of mappings (Gn)n∈N: for each n, it is a computable mapping from
a training dataset of size n to a (computable) distribution (i.e., a sampling algorithm) over X. We will use the notation
(Gn)n to refer to the generating algorithm and the notation Gn or simply G for the induced distribution (generator) after
training; hence when we write x ∼ Gn or supp(Gn), we refer to the distribution obtained after training.

3When we require generating algorithm to achieve breadth, it is not important to enforce that the support does not
contain S. We will elaborate after the formal statement of Definition 4.

2

that there exists an algorithm that can generate in the limit from every countable list of candidate
languages.

This result is surprising because it contrasts with strong negative results for the well-studied
problem of language identification in the limit (where one wants to identify K in the limit and not
simply generate from it;4 see also Definition 9). The family of languages identifiable in the limit is
very limited: the results of Gold [Gol67] and Angluin [Ang79] showed that language identification
is a very difficult problem and most collections of languages are non-identifiable (in fact, there is
a tight characterization due to Angluin [Ang80] which we state in Definition 10). Hence, the
algorithm of Kleinberg and Mullainathan [KM24] shows that language generation in the limit is
much more tractable than identification. We note that while their algorithm operates in a non-
statistical setting, it will be an important building block for our results.

Kleinberg and Mullainathan [KM24] observed that their algorithm eventually becomes a con-
sistent generator but suffers from mode collapse: initially, it generates with breadth while being in-
consistent with the target language; later on, as a larger part of the stream is seen, it starts sacri-
ficing breadth in order to generate valid outputs. This behavior led them to leave the existence
of a consistent generator that achieves breadth as an interesting open question. In this work, we
will formally introduce a notion of breadth for language generation in our statistical setting (Sec-
tion 1.1.1). For now, we mention that our definition roots in the notion of mode collapse from
Generative Adversarial Networks (GANs) [AB17; GPM+20] and, roughly speaking, states that an
algorithm (Gn) generates with breadth from K if the probability that its support contains all the
unseen examples from the target language goes to 1, as the training samples from a valid dis-
tribution go to infinity. Now it is a good point to contrast breadth with consistency: consistent
generators aim at avoiding any elements outside of K while generators achieving breadth try to
cover all unseen elements of K. The question of Kleinberg and Mullainathan [KM24] is asking
whether the equilibrium condition that the support of the generator exactly matches the unseen
elements of K can eventually be achieved by some algorithm. This is the main question we aim to
address in this paper.

Is it possible to achieve consistent language generation with breadth or
is there some inherent trade-off between consistency and breadth?

1.1 Informal Results

Our main results confirm the tension between consistent generation and breadth for language
models, conjectured by Kleinberg and Mullainathan [KM24], in a strong way: informally, we show
that

A language model that generates with breadth must be inconsistent, i.e., it must hallucinate.

We focus on the probabilistic setting of Angluin [Ang88] which we have already introduced in-
formally. En route to our results in the probabilistic setting, we also obtain results in the online
setting of Gold [Gol67], Angluin [Ang79], and Kleinberg and Mullainathan [KM24], as we will

4Very briefly, a language collection L = {L1, L2, . . . } is called identifiable in the limit if there exists an algorithm
(An : Xn → N)n such that for any K ∈ L and any enumeration x1, x2, . . . of the strings of K appearing as a stream
to (An), there is a finite time n0 ∈ N after which the algorithm predicts the correct index of the true language, i.e.,
LAn(x1,...,xn) = K for any n ≥ n0.

3

see later. To facilitate a formal discussion of our contributions, we need to introduce some further
definitions.

1.1.1 Setup and Definitions

A generating (or learning) algorithm is a sequence of computable mappings (Gn) = (Gn)n∈N from
samples S ⊆ Xn to generators, which are simply distributions over the domain X. More formally,
a generating algorithm is a sequence of mappings from samples to Turing machines that generate
samples from an (explicitly or implicitly) defined distribution over strings.

In the statistical setting we consider, the learner observes samples from an unknown distribu-
tion which is valid for some unknown language K in the collection L = {L1, L2, . . . }.

Definition 1 (Valid Distribution [Ang88]). A distribution P over a countable domain X is valid with
respect to a countable language collection L if its support is the same as some language K ∈ L. In this case,
when we want to be specific about the language that P draws samples from, we say P is valid for K.

If the collection L is clear from context, we will simply say that P is valid. Based on this definition
and building on the model studied by Kleinberg and Mullainathan [KM24], we give the following
adaptation for consistent generation from a collection L in the statistical setting.

Definition 2 (Consistency). A generating algorithm (Gn) for a language collection L is consistent if for
any valid distribution P, it holds that limn→∞ gen_er(Gn) = 0. Otherwise, the algorithm is said to be
inconsistent.

Hence, an algorithm is said to be consistent if the generators it produces by training on any valid
distribution P converge to generating examples from the unseen part of P. Some of our results
explore when asymptotic consistency is achievable. However, the main focus of our work is on
understanding the rates at which consistency (and other desirable properties) can be attained – if
possible at all. In particular, we want to study the rate at which the generation error gen_er(Gn)

decreases as the number of samples n goes to infinity – that is, we want to study the learning curve
of consistent generation (and other tasks that we introduce later in this section). Bousquet, Han-
neke, Moran, van Handel, and Yehudayoff [BHM+21] characterized learning curves for binary
classification, formalizing the universal rates framework, earlier explored by Schuurmans [Sch97]
and Antos and Lugosi [AL98]. To this end, we borrow their definition of universal rates.

Definition 3 (Informal, Universal Rates; [BHM+21], see Definition 12). A generating algorithm (Gn)

has rate R(·), where limn→∞ R(n) = 0, for a language collection L if

∀P ∈ Val(L) ∃C, c > 0 such that gen_er(Gn) ≤ C · R(c · n) ∀n ∈ N ,

where Val(L) is the class of valid (realizable) distributions for L.

Observe that these learning curves are distribution-dependent since the constants c and C are
allowed to depend on P. This difference turns out to be crucial and can, sometimes, lead to sig-
nificant differences between universal rates and the corresponding distribution-independent rates
[BHM+21]. Among different universal rates, exponential universal rates are of specific interest as
they are often the best possible rate, as we will see later. We say that the algorithm (Gn) generates
with an exponential universal rate if R(n) = exp(−n) in the above definition. Next, we turn to
language generation with breadth.

4

Definition 4 (Breadth). A generating algorithm (Gn) for a language collection L is said to achieve breadth
if, for any valid distribution P, it holds that limn→∞ Pr[supp(Gn) ⊇ K \ Sn] = 1, where Sn is the dataset
used to train Gn, i.i.d. from P. Otherwise, the algorithm suffers from mode collapse.

Definition 4 is inspired by the literature on GANs (see e.g., [AB17; GPM+20]). For instance, con-
sider the work of Arjovsky and Bottou [AB17], which studies distributions G and P induced by the
generator and nature, respectively, and says that mode collapse occurs when the KL divergence
KL (P∥G) :=

∫
log (P(x)/G(x)) dP(x) → ∞. In particular, mode collapse happens when there is

some string x ∈ supp(P) for which G(x) = 0. In other words, the generator has breadth when
supp(G) ∪ Sn ⊇ supp(P), which recovers our definition for breadth by noting that supp(P) = K
since P is valid for K and that, to be compatible with the definition of consistency (Definition 2),
we bar a generator from repeating strings it has already seen. (It is worth mentioning that one can
modify the definition of breadth to require supp(Gn) ⊇ K without changing any of our results;
see Remark 2.) We also note that the definition of consistency we use can also be derived in an
analogous fashion by requiring the reverse KL divergence (i.e., KL (G∥P)) to be finite.

Putting the definitions of consistency and breadth together implies that an algorithm generates
with consistency and breadth if, eventually, its support matches the set of unseen strings in K, i.e.,
K \ Sn at the n-th step. After presenting our main results, in Section 1.3, we discuss relaxations of
this notion of consistent generation with breadth.

A last ingredient for our results concerns the decidability of a folklore Theoretical Computer
Science problem, which we call the membership oracle problem, that has motivated extensive work
in formal languages and complexity theory [Soa99; Sip12]. A generator G , which is the output of
some generating algorithm, corresponds to some Turing machine, as is standard in the language
inference literature, that samples according to a distribution over X [BB75; Ang79; AS83; AB91].

Definition 5 (Membership Oracle Problem). Given a generator G , the membership oracle problem for
G , denoted as MOP(G), is defined as follows: given the description of G and a string x, output Yes if
x ∈ supp(G) and output No otherwise.

This problem is, in general, undecidable due to a reduction to the halting problem (Section A);
nevertheless, its decidability depends on the structure of the Turing machine as we will see shortly.
The above definition naturally extends to generating algorithms.

Definition 6 (MOP for Generating Algorithms). The membership oracle problem is decidable for a
generating algorithm (Gn) if, for any n ∈ N and any S ⊆ Xn, MOP(·) is decidable for the induced
generator G = Gn(S).

We note that the above definitions implicitly assume that the generator Gn(S) depends only on the
randomness of S; we could extend this by allowing Gn(S) to be a distribution over generators.

1.1.2 Main Results

We now have all the ingredients to state our first result, which establishes that, for all generat-
ing algorithms for which MOP(·) is decidable, (consistent) generation with breadth is as hard as
language identification in the statistical setting.

5

As in Definition 3, we will say that the generating algorithm (Gn) generates with breadth from
L at some rate R(·) if, for any K ∈ L, valid distribution P, and n ∈ N,

E
S∼Pn

1 {supp(Gn) ̸= K \ S} ≤ C · R(c · n) ,

for some distribution-dependent constants C, c > 0. If no rate R(·) satisfying limn→∞ R(n) = 0
exists, we will say that (Gn) does not generate with breadth at any rate.

Informal Theorem 1 (see Theorem 3.3). For every language collection L that is not identifiable in the
limit, no generating algorithm (Gn), for which MOP(·) is decidable, can generate from L with breadth at
any rate.

Recall that the family of languages non-identifiable in the limit is quite broad. Based on the re-
sults of Gold [Gol67] and Angluin [Ang79; Ang80] on the problem of language identification in
the limit, our impossibility result holds for most interesting collections of languages. For Informal
Theorem 1 to be valuable and meaningful though, we further need to show that there exists an
algorithm that generates without breadth for the collections of languages for which our impossi-
bility result is true. Our next result states that this is indeed possible: there exists an algorithm
that generates with (almost) exponential universal rates for any countable language collection L.

Informal Theorem 2 (see Theorem 3.3). For every language collection L that is not identifiable in the
limit, there exists a generating algorithm (Gn), for which MOP(·) is decidable, that generates (possibly)
without breadth from L at exponential rates. Further, if L is identifiable in the limit, then there exists a
generating algorithm (Gn), for which MOP(·) is decidable, that generates with breadth from L at (almost)
exponential rates.

Informal Theorem 2 shows that any countable collection of languages not only admits a consis-
tent generator in the limit under an adversarial enumeration of the target language (as shown by
Kleinberg and Mullainathan [KM24]), but the statistical rate at which consistency (as per Defini-
tion 2) is achieved is exponential in the number of samples. Further, for identifiable collections of
languages, we give an algorithm that generates with breadth at an (almost) exponential rate.

The combination of Informal Theorem 1 and 2, reveals a strong separation between generation
with and without breadth for any generating algorithm for which MOP(·) is decidable. What is
missing is an answer to: how large is the class of generators for which the membership oracle
problem MOP(·) is decidable? It turns out there is a very broad class of language generators for
which this is the case and which also captures modern LLMs, as we show next.

A Family of Generators for Which MOP(·) Is Decidable. Motivated by the structure of modern
language models [BJM83; BCP+90; BCE+23; TLI+23; OAA+24], we consider a family of iterative
generators. A generator is said to be iterative if it generates text one alphabet or “token” at a
time (see Definition 14). To generate each token, the generator can perform an arbitrary (but
finite) amount of computation and, possibly, use randomness. For this to make sense, one has to
imagine strings of X as strings over some finite alphabet Σ. This holds without loss of generality
as X is countably infinite and, hence, there is a one-to-one mapping from X to strings over Σ (due

6

to which X can be thought of as a set of strings over Σ).5 We show that for any iterative generator,
the membership oracle problem is decidable and our Informal Theorem 1 is applicable.

Informal Theorem 3 (see Theorem 3.4). For any iterative generator G , MOP(G) is decidable.

Observe that this family of next-token generators is very general. First, it captures existing large
language models: for instance, to simulate an LLM L, we define the next-token predictor as a
Turing machine that simulates L on the provided string until L generates one new token. Next, it
also captures systems where an LLM can interact with another Generative AI model or algorithmic
system (such as a diffusion model or a code interpreter) – as these auxiliary systems can also be
simulated by the generator. Given this, it becomes evident that this class of generators for which
MOP(·) is decidable is fairly large and interesting.

Implications for the Gold-Angluin Model. We repeat that all the aforementioned results hold in
the statistical setting. En route to obtaining our results in this setting (Informal Theorems 1 and 2),
we show several connections to the online setting of Gold [Gol67], Angluin [Ang79; Ang80], and
Kleinberg and Mullainathan [KM24], which lead to the following result.

Informal Theorem 4 (see Theorem 3.5). For any language collection L that is not identifiable in the
limit, no generating algorithm (Gn), for which MOP(·) is decidable, can generate from L with breadth in
the limit.

To be more concrete, a generating algorithm generates with breadth in the limit if its support is
eventually K \ Sn, where Sn is the set of the first n positive examples (i.e., examples that belong to
K). We emphasize that Informal Theorem 4 is in a similar spirit as our Informal Theorem 1, but
holds in the online model instead of the statistical model discussed earlier. In particular, Informal
Theorem 4 combined with the algorithm of Kleinberg and Mullainathan [KM24] give a separation
between consistent generation with and without breadth in the Gold-Angluin model. Further, as
explained before, this result applies to any iterative generator due to Informal Theorem 3. More-
over, as MOP(·) is decidable for the generating algorithm of Kleinberg and Mullainathan [KM24]
(since its support contains a singleton element x which can be computed by running their algo-
rithm), the above result, in particular, shows that the algorithm of Kleinberg and Mullainathan
[KM24] cannot generate with breadth in the limit from any non-identifiable collection.

Organization of Rest of the Introduction. We proceed with an exposition of our techniques
in order to obtain our main results presented above. In Section 1.3, we relax the definitions of
consistency and breadth and give more “robust” trade-offs between hallucination and breadth.
Next, in Section 1.4, we give a list of open problems for future work. Finally, Section 1.5 contains
an extensive overview of related works.

1.2 Technical Overview

In this section, we present the technical tools we develop to obtain our main results.

5In a bit more detail, since X and Σ∗ are countably infinite, they have enumerations x1, x2, . . . and s1, s2, There-
fore, given any string si ∈ Σ∗ generated by an iterative generator, one can map it to a string xi ∈ X, thereby getting a
generator for X.

7

A Natural Strategy to Prove Informal Theorem 1. At first glance, there seems to be a natural
strategy to prove Informal Theorem 1: assume that there exists a consistent generating algorithm
with breadth G = (Gn) for some non-identifiable collection L in the statistical setting and then
show that this implies identification in the statistical setting, which would contradict the fact that
L is non-identifiable. To implement this strategy one needs a method to utilize G , along with the
positive samples from the target language K, for identification. This raises the question: what
additional power can G give that the positive samples do not already provide?

Initial Attempts to Implement the Strategy. Indeed, if one uses no additional properties of G ,
then its outputs provide no more information than an adversarial enumeration of K. To develop
some intuition, we begin by considering some properties of the generator and explaining why
they are insufficient to enable identification.

1. G is non-adaptive. First, one may want to utilize the fact that the generator G is fixed and, hence,
the samples it outputs cannot adapt to the specific algorithm being used based on the outputs
of the algorithm. Hence, it will probably provide an algorithm-independent enumeration of the
true language. However, this is not helpful in general since there exist simple non-identifiable
language collections that remain non-identifiable for many enumerations of the target language.

2. G samples from a fixed distribution. Another property one may want to leverage is the stochas-
ticity of the generator: G samples its outputs from a fixed distribution (which is valid for K).
However, even this does not enable the identification of non-identifiable collections due to a re-
sult by Angluin [Ang88]. Angluin shows that even if the positive examples are i.i.d. from a valid
distribution and do not appear as an adversarial enumeration (as in Gold [Gol67]), this does not
enable identification of any collection L that is non-identifiable in the limit. (We prove a stronger
version of this result in Lemma 5.5.)

3. G samples from a simple distribution. Moreover, the difficulty in the above negative result is not
the complexity of the encoded distribution: it holds even when G samples from a distribution that
is computable by a Turing machine.

At this point, it is not clear how to utilize access to a generator G which generates with breadth
from K. Next, we present a strong form of access to the generator G that is useful for identification.

4. Access to Subset Queries “supp(G) ⊆ Li” and “Li ⊆ Lj”. For one of their algorithms, Kleinberg
and Mullainathan [KM24] utilize a subset oracle that answers queries of the form “is Li ⊆ Lj?”. (In
general, this oracle is not guaranteed to be computable). One can imagine an extension of this or-
acle that, given an index i and description of the generator G , outputs whether supp(G) ⊆ Li. The
existence of this oracle turns out to be sufficient to identify K, as we explain next: After a finite
amount of time, Kleinberg and Mullainathan [KM24]’s algorithm creates a list of “critical” lan-
guages C1, C2, . . . , of the following form (see Theorem 4.1 in Kleinberg and Mullainathan [KM24])

C1 ⊇ C2 ⊇ · · · ⊇ (Ci := K) ⊇ Ci+1 ⊇

In words, this list has two properties (1) K appears in this list, say, at Ci = K for some i < ∞
and (2) each language Cj in the list is a subset of the preceding language Cj−1. Given this list and
the aforementioned subset oracle, one can easily identify the index of K as the largest j for which
supp(G) = K ⊆ Cj. This assumption allows to identify any collection in the limit given access to a

8

consistent generation G with breadth. However, this type of access is not very practical since it is
not clear when such an oracle is implementable.

Our Approach. Our first idea is that a much weaker form of access to G – membership oracle to
supp(G) – is sufficient for identification. This is where the membership oracle problem MOP(·)
(Definition 5) appears in the proof. In fact, given this idea, it is not difficult to show that with that
type of access, we can go from a generator with breadth in the online setting to an identification
algorithm in the online setting; and, hence, get Informal Theorem 4. However, our focus is the
statistical setting where there are several additional challenges in using the membership oracle to
supp(G).

A. Need for Universal Rates for Generation and Identification. The key issue is the following: In the
statistical setting, if we assume that we have a generator with breadth at rate R(·), then we can
hope to show an implication that we can get an identification algorithm at rate R(·). However,
this need not imply a contradiction to the identifiability of L as in the online setting. This is
because, even though L is non-identifiable in the online setting, it may become identifiable at some
rate R′(·) in the statistical setting. Indeed, this is the case in binary classification, where there
are simple hypothesis classes (such as thresholds over reals) that are not learnable in Littlestone’s
online setting [Lit88] but become learnable (at a universal – and uniform – linear rate) in the
statistical setting; in fact, any hypothesis class is learnable in the statistical setting under universal
rates, since there is a Bayes consistent algorithm, under benign assumptions [BHM+21].

Hence, to get a contradiction, we first need to understand the taxonomy of universal rates
for generation and identification. We remark here that both the learning task (e.g., classification,
regression, identification, and generation) and loss function used in the problem are pivotal for
the landscape of rates that one gets; for instance, with the zero-one loss for binary classification
one gets a trichotomy of rates [BHM+21], but with the L1-loss for regression, one gets infinitely
many rates [AHK+24].

To overcome the above challenge, we provide statistical rates for identification and generation.
We start with identification. We show that if L is identifiable in the limit in the adversarial Gold-
Angluin setting with positive examples [Gol67; Ang80], then it is identifiable under Definition 12
with (almost) exponential (universal) rates. This is the less technical part of the proof so we will
give a high-level approach.

B. Identification in the Limit =⇒ Identification at (Almost) Exponential Rates. Our idea is reminiscent
of Bousquet, Hanneke, Moran, van Handel, and Yehudayoff [BHM+21] and requires splitting the
input dataset into multiple batches whose size is carefully selected, running the online algorithm
on each batch, and then taking a majority vote over the outputs of the algorithm. We remark that
there are some technical issues which require further care, compared to Bousquet et al. [BHM+21].
First, unlike the setting of Bousquet et al. [BHM+21], we only see positive examples and we get no
feedback about our guesses. Thus, we cannot use their approach to “estimate” a time after which
the learner will stop making mistakes. Moreover, when we run the learners on multiple batches,
it can be the case that different batches output different indices of languages that correspond to K
(since the target language can appear at multiple positions in the countable collection L).

Thus, taking a majority vote over these indices might not work. Nevertheless, we manage to
handle these issues and get almost exponential rates for collections that satisfy Angluin’s criterion

9

for identification in the limit [Ang79]. A bit more concretely, to circumvent the first issue, our
approach is to “guess” the right batch size, and this guess needs to be an increasing function of n –
this is why we get almost exponential rates instead of exactly exponential rates (Lemma 5.5). The
second issue is more subtle. At a high level, we use a voting scheme where the output of every
batch L̂i gives a “vote” to every language L ∈ L such that L̂i = L, and we predict the lowest-
indexed language that is voted by at least half of the batches. In its current form, this scheme
is not computable, nevertheless, we show that it can be modified so that it becomes computable
(Lemma 5.4).

The more interesting half of establishing universal rates for identification is the lower bound
showing that if a collection is not identifiable in the limit, it is also not identifiable in the statistical
setting at any rate R(·) such that limn→∞ R(n) = 0.

C. Impossible to Identify in the Limit =⇒ Impossible to Identify at Any Rate. Recall that the statis-
tical setting was studied by Angluin [Ang88]. Angluin [Ang88] showed that every learner, with
probability at least 1/3, does not converge to outputting a (stable) index of the target language in
an infinite stream of examples drawn from a valid distribution. In other words, with probability
at least 1/3, the algorithm will either stabilize to an index that does not correspond to the target
language or it will not stabilize to any index. Notice that this does not rule out algorithms that
output different indices of the target language, for all but finitely many n ∈ N. The first step to-
wards establishing our desired lower bound is to strengthen Angluin’s result: we show that any
learning algorithm, with probability at least 1/3, outputs indices that do not correspond to the tar-
get language infinitely often. More formally, let us consider an identification algorithm hn, which
maps a training set of n examples x1, . . . , xn to an index hn(x1, . . . , xn) so that Lhn(x1,...,xn) is the n-th
prediction for the true language. The aforementioned lower bound means that6

Pr
{xi : i∈N}∼P∞

[
lim sup

n→∞

{
Lhn(x1,...,xn) ̸= K

}]
≥ 1

3
, (2)

where X ∼ P∞ corresponds to an infinite i.i.d. draw from P. One may be tempted to conclude
that this implies that with probability 1/3 we cannot identify the target language (in the statistical
setting). However, the quantity we wish to bound away from 0 to derive the desired lower bound
is

lim sup
n→∞

Pr
x1,...,xn∼Pn

[{
Lhn(x1,...,xn) ̸= K

}]
.

It is well-known that for any sequence of events {En}n∈N,

Pr
[

lim sup
n→∞

En

]
≥ lim sup

n→∞
Pr[En] . (3)

This, however, is not sufficient to deduce the result we need; we need the opposite inequality.
Hence, Angluin’s guarantee does not suffice to get our lower bound. In order to show our re-
sult, we use a boosting argument (Lemma 5.8): if there exists a learner hn whose probability of

6Informally, lim sup of a sequence of events captures the events that occur infinitely often. For instance,
Pr[lim supn→∞ En] represents the probability that infinitely many of the events E1, E2, . . . occur. On the other hand,
lim supn→∞ Pr[En], roughly speaking, denotes the largest value that the probabilities Pr[E1], Pr[E2], . . . , . . . approach
infinitely often as n → ∞.

10

misidentification
Pr

x1,...,xn∼Pn

[
Lhn(x1,...,xn) ̸= K

]
converges to a number strictly less that 1/2, then we can convert it to a learner whose error rate
decreases (almost) exponentially quickly. This (almost) exponential rate, in particular, implies that

∞

∑
n=1

Pr
x1,...,xn∼Pn

[
Lhn(x1,...,xn) ̸= K

]
< ∞ .

This, crucially, enables us to use the Borel-Cantelli lemma (see Lemma E.1) which gives us that
Pr

[
lim supn→∞

{
Lhn(x1,...,xn) ̸= K

}]
= 0 , and, thus, a contradiction to Equation (2). This implies

the desired impossibility result.
As consequence of the above results, we get a dichotomy for universal identification rates:

Informal Theorem 5 (see Theorem 3.1). For any language collection L that is identifiable in the limit
and for any g(n) = o(n), there exists a learner that identifies L at rate exp(−g(n)). Otherwise, L is not
identifiable at any rate.

We remark that if we have access to subset queries for L, we can show that there exists an algo-
rithm that achieves exactly exponential rates, for all identifiable collections (see Proposition 3.8).

Next, we move to understanding universal rates for language generation.

D. Universal Rates for Generation (Possibly Lacking Breadth) Without Boosting. One might suspect
that a similar batching argument would give us exponential rates for generation: just run the on-
line algorithm of Kleinberg and Mullainathan [KM24] multiple times and aggregate. The issue
is that aggregation for generation is different than prediction: for prediction, it is clear how to
implement majority vote as a boosting technique; for generation, it is unclear how to aggregate
different generated strings which is, typically, necessary to obtain a boosting algorithm. One im-
mediate attempt is to take majority votes over the strings that each batch outputs; unfortunately,
even if the majority of them are generating from the target language, they might be outputting
different strings, thus, even a few batches outputting the same invalid strings are enough to fool
our aggregation rule.

Another tempting approach is to mimic the strategy we used to aggregate different indices of
the target language in the identification setting: we go over every output of the batches and we let
them give a vote to each of the languages in L they belong to.7 It is not hard to see that every batch
whose output corresponds to a valid generator will vote for the target language. Unfortunately,
it will also vote for all supersets of the target language. This is exactly the heart of the difficulty
of identification: telling apart supersets of the target language from the target language, which
is colloquially called overgeneralization. Taking it to the extreme, imagine that the first language
of the collection contains all the strings, i.e., L1 = X. Then, all the batches will vote for L1. This
is problematic for two reasons: generating a fresh string from the majority-voted language is as
good as random guessing, and choosing a string among the ones that voted for the majority-voted
language is as good as picking one of the outputs of all batches uniformly at random.

7The astute reader might realize that, as stated, this strategy is not computable – as we explain, even if one could
implement it, this aggregation scheme does not work.

11

Perhaps surprisingly, it turns out that a much simpler approach works: we show that the al-
gorithm of Kleinberg and Mullainathan [KM24] directly enjoys exponential rates in the statistical
setting, without the use of batching and boosting. This observation is based on a sufficient con-
dition that allows one to use an algorithm that works “in the limit” to obtain exponential rates in
the statistical setting, without any modification (see Lemma 5.11).

Informal Theorem 6 (see Theorem 3.2). For any countable language collection L there exists a generat-
ing algorithm that generates from L at an (optimal) exponential rate.

This pair of results for identification (Informal Theorem 5) and generation (Informal Theo-
rem 6) allow us to get Informal Theorem 1 and 2. The idea for Informal Theorem 1 is that we will
use the algorithm G that generates with breadth at some rate R(·) for an arbitrary non-identifiable
collection L and membership oracle access to G in order to get an identification algorithm for L

with some rate R′(·) such that limn→∞ R′(n) = 0. This is a contradiction since Informal Theorem 5
shows that L admits no rate in the universal setting. Finally, Informal Theorem 2 follows almost
immediately from our universal rates result for generation.

1.3 Additional Results With Relaxation of Consistency and Breadth

Next, we study a relaxation of consistent generation with breadth, which we call unambiguous
generation, and ask: is there a generator that unambiguously generates from a non-identifiable collection?

In this section, we will allow the generator to repeat examples in the training data. Like all
of our results with breadth, this choice is not crucial, and all of the results have analogs where
the generator does not repeat training examples (see Remark 2). We make this choice for sim-
plicity. We show that unambiguous generation (which we define later in this section) from non-
identifiable collections is impossible for any generator G for which MOP(G) is decidable and that
satisfies the natural property that G “stabilizes” after seeing sufficiently many examples:

Definition 7 (Stability). A generating algorithm (Gn) is stable for a language collection L if for any target
language K ∈ L and for any enumeration of K, there is some finite n∗ ∈ N such that for all n, n′ ≥ n∗, it
holds that supp(Gn) = supp(Gn′).

We make some initial remarks about stable generators. First, any generator G that is consistent
and achieves breadth is also stable, since after some finite time its support, union the training set,
becomes K and remains so. (Here, whether G repeats training examples or not is not crucial –
the two types of generators are interchangeable; see Remark 2.) Second, this notion of stability
can be seen as trying to capture practical heuristics such as learning rate schedules and early
stopping that reduce the amount of changes to the generator as more and more samples are seen.
Moreover, the original work of Gold [Gol67] also requires the identifier to stabilize to a consistent
guess, and, more recently, the stability property of learning algorithms was explored in the PEC
learning setting of Malliaris and Moran [MM23].

Having defined stability, we proceed to discuss relaxations of generation with breadth. In-
tuitively, consistent generation with breadth requires the generator to eventually stop making
mistakes – where a mistake is any element x that G incorrectly includes (if x ̸∈ K or x is part of
the training samples) or excludes (if x ∈ K) from its support. We now relax this and only require
that, eventually, the generator G makes finitely many mistakes. Observe that this is a non-trivial

12

requirement because the languages contain infinitely many strings and, so, at the start, G is ex-
pected to make infinitely many mistakes. A valuable observation is that it is possible for two
languages L1 and L2 to only differ in finitely many strings even if each contains infinitely many
strings. With this observation, it is not too hard to see that the aforementioned requirement is too
weak to capture a reasonable notion of generation from the target language K. Indeed, it would
allow generators that, given examples from K, perpetually generate outputs (with breadth) from
a language L that is not the actual target language – which is a severe form of hallucination.

Hence, to create a meaningful model, we must impose some further restrictions on the mis-
takes of the generator G . The above example motivates that, at the least, the generator G should
be “closer” to generating from K than some language L ̸= K with L ∈ L. We call such a generator
unambiguous.

Definition 8 (Unambiguous Generator). A generating algorithm G = (Gn) is unambiguous for a lan-
guage collection L if, for any K ∈ L and every enumeration of K, its support eventually becomes closer to
K than to any other language L ̸= K in L in terms of the symmetric difference metric, i.e., there exists some
n∗ ∈ N such that for all n ≥ n∗ it holds that

|supp(Gn)△K| < min
L∈L : L ̸=K

|supp(Gn)△L| ,

where recall that for two sets S and T, S△T := (S \ T) ∪ (T \ S).

Figure 1: An Unambiguous Generator That neither Has Consistency nor Breadth. In this example, the
language collection L has two languages L and K, where K denotes the target language. The red
curve denotes L, the dashed green curve denotes K, and the blue curve denotes the support of
supp(Gn). The generator Gn hallucinates since supp(Gn) \ K ̸= ∅ and does not achieve breadth for
the target K since B = K \ supp(Gn) is non-empty. Nevertheless, this generator is unambiguous
as |supp(Gn) \ K|+ |B| < |supp(Gn) \ L|+ |A| .

Here, we pause to observe that this notion of generation is a significant relaxation of generation
with breadth that we considered earlier (Definition 4). Not only does it allow the generator to
hallucinate certain strings not in the target K and omit strings actually in K for arbitrarily long,
the number of hallucinations and omissions can be arbitrarily large, depending on the structure

13

of the language collection L. Surprisingly, we show that even this very weak notion of “consistent
generation with breadth” is not achievable by a large class of generators.

Informal Theorem 7 (see Theorem 3.6). For every language collection L that is not identifiable in the
limit, no stable generating algorithm (Gn) for which MOP(·) is decidable, can generate unambiguously
from L at any rate.

Thus, under mild conditions, no stable algorithm can generate unambiguously from a non-identifiable
collection. Moreover, we also prove an analog of Informal Theorem 7 in the online setting (see
Theorem 3.7), which extends our earlier result for generation with breadth in the online setting
(Informal Theorem 4). This raises several questions regarding unambiguous generation, which
we leave as interesting open problems (see Section 1.4). Note that while this impossibility result
has a benign requirement that the generator is stable, it already considerably extends our main
result Informal Theorem 1, since any generator that achieves breadth must be stable – otherwise,
its support cannot settle on the target language K. (Note that while Informal Theorem 1 requires
the generator to not repeat training examples, any generator that repeats training examples can be
converted into one that does not repeat training examples and vice-versa; see Remark 2.)

1.4 Takeaways, Discussion, and Open Problems

We believe that a key takeaway of our results is that the question of Kleinberg and Mullainathan
[KM24] seems to open an avenue towards a formal modern theory of language generation bridg-
ing learning theory and traditional TCS fields, like complexity theory and formal languages. As
we explain in the subsequent technical overview, our tools contribute to this direction by con-
necting classical lines of work on identification of formal languages tracing back to Gold [Gol67],
Angluin [Ang79; Ang80; Ang88] and computability theory [Soa99; Sip12], to modern learning
paradigms such as learning curves [BHM+21] and language generation [KV24; KM24].

Next, we emphasize that our impossibility result (Theorem 3.3) is not a dead end for language
generation. Instead, it illustrates the need for additional human feedback during the post-training
process – which provides additional information over positive samples alone – to achieve effective
language models. Indeed, if both positive and negative examples are available, then generation
with breadth is achievable for all countable collections of languages.8 In other words, our results
can be seen as further theoretical evidence of the benefits of post-training with human feedback,
highlighting its importance in developing language models that achieve both consistency and
breadth, and adding to prior theoretical results from Kalai and Vempala [KV24].

Further, we underline that even though we focus on a prompt-less generation setting [KV24;
KM24], most of our results immediately extend to a prompted setting using the approach of Klein-
berg and Mullainathan [KM24].

Remarks and Open Questions. We now state a few remarks regarding our results and pose some
interesting open questions. First, as a byproduct of our results, we establish almost tight rates for

8This follows from the work of Gold [Gol67], which showed that any countable collection of languages can be
identified with such feedback. Using appropriate batching and boosting, we show that this identification algorithm
(which works in the limit) can be converted to a generation algorithm with breadth that achieves an exponential rate.
Concretely, Theorem 3.11 shows how to identify at an exponential rate and Proposition 6.5 shows how to convert this
to a generation algorithm.

14

identification and generation with positive examples (see Section 3.1 and Section 3.4 for formal
statements and discussion). Obtaining tight rates for these tasks is an interesting problem.

Next, our impossibility results capture a large class of language-generating algorithms but do
not completely forbid consistent generation with breadth. An immediate open question is how
much further we can extend the class of generating algorithms for which the impossibility result
in Informal Theorem 1 holds.

Open Question 1. Is there a class of generative algorithms for which the induced generators can
be modeled as Turing machines and which achieve breadth and consistency for all countable
collections of languages?

Further, we also proved a more robust version of our main result (Informal Theorem 1), namely,
Informal Theorem 7, which showed that no algorithm from a large class of generators can generate
while making a “small” number of hallucinations or omissions (also see Section 3.3 for another
robust version of Informal Theorem 1). It is interesting to understand if one can prove a more
robust version of Informal Theorem 1. To this end, we propose the following problem.

Open Question 2. What is the Pareto frontier of an approximate notion of breadth and consis-
tency? In other words, if we fix a collection of languages and allow the generator to hallu-
cinate at some given rate, what is the minimal fraction of the mass from the target language
that this generator has to miss?

Next, to the best of our knowledge, it is not possible to test if a language collection is identifiable
in the limit (without access to a strong oracle); this, for instance, becomes evident by inspecting
Angluin’s criterion for identifiable collections (see Definition 10). Hence, we would like to know
the following:

Open Question 3. Is there a best-of-both-worlds algorithm between consistent generation and
generation with breadth, i.e., is there an algorithm that will always generate in the limit
from the target language consistently but, whenever identification is possible, it will also
achieve breadth?

We make some initial progress on this question by showing that the algorithm proposed by Klein-
berg and Mullainathan [KM24] already achieves this best-of-both worlds guarantee, provided it
has access to a subset oracle for L that answers queries of the form “is Li ⊆ Lj?” (see Section B.2).

Finally, our algorithm that achieves (almost) exponential rates for identification uses an algo-
rithm for identification in the limit as a black box. However, our algorithm that achieves exponen-
tial rates for generation makes use of certain specific properties of the algorithm of Kleinberg and
Mullainathan [KM24]. Thus, we ask the following question.

Open Question 4. Is there a black-box transformation from an algorithm that generates in the
limit in the online setting to an algorithm that generates with exactly exponential rates in the
statistical setting?

15

1.5 Further Related Works

Our setting is based on the statistical formulation of Angluin [Ang88], who studied identification
from stochastic examples in the limit. However, Angluin [Ang88] does not provide any learn-
ing rates which is one of the main aspects of our work. In terms of techniques, our inspiration
for the statistical rates comes from universal learning, initiated by Bousquet, Hanneke, Moran,
van Handel, and Yehudayoff [BHM+21] and studied in Bousquet et al. [BHM+21], Hanneke et
al. [HKM+22], Kalavasis, Velegkas, and Karbasi [KVK22], Bousquet et al. [BHM+23], Hanneke,
Moran, and Zhang [HMZ23], and Attias et al. [AHK+24]. However, as we have already explained
there are various differences between our setting and our techniques (we provide a more extensive
and self-contained discussion in Section D).

Our work connects various disjoint strands of research and we discuss each one of them below.

Theory on Hallucinations. In terms of rigorous evidence about hallucinations in LLMs, we
have already mentioned the work of Kalai and Vempala [KV24] at the start of Section 1. The
result of Kalai and Vempala [KV24] is that calibrated9 language models must hallucinate. The
fascinating implication of this result is that one can lower bound the rate of hallucination, i.e., the
quantity ES∼Pn, x∼Gn 1 {x /∈ K}, by the extent of a model’s calibration. Their intuition is that the
root of hallucinations are rare patterns in the training data. Informally, their main result (under
assumptions on K and P) is that for any trained model Gn with n samples, the hallucination rate
ES∼Pn, x∼Gn 1 {x /∈ K} ≥ R̂ − MisP(Gn) − 1/√

n, where R̂ is the fraction of facts that only appear
once in the training data and MisP(Gn) is the amount of miscalibration of the model. Hence, if the
model is calibrated, i.e., MisP(Gn) ≈ 0, the hallucination rate is lower bounded by the rare facts’
rate. Compared to our work, their goal is to show a quantitative lower bound, which is obtained
under assumptions on the training distribution P and the fact that the model is calibrated. Our
goal is different: we want to understand whether a model can achieve breadth while avoiding hal-
lucinations building on the recent work of Kleinberg and Mullainathan [KM24]. We also refer the
reader to Kalai and Vempala [KV24] for an extensive overview of applied works on hallucinations.

Peng, Narayanan, and Papadimitriou [PNP24] use communication complexity to prove that
the transformer layer is incapable of composing functions if the domains of the functions are large
enough. This work could also be seen as rigorous evidence about the hallucinations of LLMs since
function composition is a fundamental task for reasoning [GLL+24].

The work of Xu, Jain, and Kankanhalli [XJK24] is also studying hallucinations of LLMs. They
define hallucination as a failure to identify the target function which belongs to an uncountable
collection of functions. This is significantly stronger than the definition we and prior works [KV24;
KM24] have considered (making their impossibility results significantly easier to prove). Their
main result is that all LLMs must hallucinate. This is easy to see: consider an LLM learning to
predict the next element in a sequence of 0s and 1s, after observing only a finite prefix of the
enumeration, it has no way of knowing the next element in the order (since they allow both con-
tinuations) and, hence, the target sequence cannot be identified.

Finally, the work of Aithal et al. [AML+24], which is mainly empirical, aims to explain halluci-
nations on the other important family of generative models, namely diffusion-based models, via

9The exact definition of calibration is not important for this work: a language model is calibrated if, roughly speak-
ing, the strings that the model assigns probability mass p, appear in a p fraction of the true distribution [Daw82].

16

mode interpolation which, in theory, relies on difficulties in approximating non-smooth parts of
the score function.

Language Learning. In our results, we make no implicit assumption about the architecture
of our models; this is in accordance with the works of Solomonoff [Sol64], Gold [Gol67], An-
gluin [Ang82], Angluin and Smith [AS83], Angluin [Ang88], Pitt [Pit89], and Kleinberg and Mul-
lainathan [KM24]. However, there are various works aiming at understanding language learning
capabilities of specific architectures, e.g., [Elm90; GS01; Mer19; BAG20; EGZ20; Hah20; HHG+20;
YPP+21; MS23]. For instance, Liu et al. [LAG+23] show that low-depth transformers can repre-
sent the computations of any finite-state automaton, while Sanford, Hsu, and Telgarsky [SHT23]
identify a particular mathematical problem that cannot be computed by single-layer multi-head
transformers. The aforementioned works share some similarities with us in the sense that they fo-
cus on whether models can be trained to generate or recognize strings in a fixed formal language.
Akyürek et al. [AWK+24] study in-context language learning: the language model is prompted
with a finite collection of strings from an unknown regular language (which changes across dif-
ferent tasks), and must infer the distribution over strings corresponding to the full language. In a
similar spirit, Edelman et al. [EEG+24] study in-context learning of Markov chains. Other related
works are those of Xie et al. [XRL+22] and Hahn and Goyal [HG23] that study conditions under
which in-context learning can arise for language learning.

Allen-Zhu and Li [AL24] design context-free grammars and empirically study the consistent
generation (accuracy) and breadth (diversity) of GPT models on these synthetic examples. In
comparison to this work, we provide a theoretical treatment of the trade-off between consistency
and breadth under a very abstract model, studied by Gold [Gol67], Angluin [Ang79; Ang88], and
Kleinberg and Mullainathan [KM24]. Our results indicate that, even in a very idealized frame-
work, achieving (perfect) consistency and breadth is impossible. We view the empirical findings
of Allen-Zhu and Li [AL24] as an exciting indication that, in the real world (or more concretely
in controlled experiments on “small” models and synthetic datasets), a balance between (imper-
fect) consistency and breadth is possible and modern LLMs can achieve it. Further understanding
how much consistency and breadth one can achieve at the same time theoretically is an exciting
direction.

Finally, in a concurrent and independent work, Li, Raman, and Tewari [LRT24] also study lan-
guage generation, interpreting it in a learning-theoretic setting reminiscent of the PAC framework
and the online learning setting of Littlestone [Lit88]. They propose “non-uniform generatability”
– which relaxes “uniform generatability” [KM24] – and characterize the collections for which uni-
form and non-uniform generatability are achievable in the Gold-Angluin model; in particular, un-
like Kleinberg and Mullainathan [KM24] they also allow the collection L to contain uncountably
many languages. These dimensions are analogs to the Littlestone dimension (and its extension to
the non-uniform setting [Lu23]), which only holds for finite collections of languages. Moreover,
they show the proposed dimension is incomparable to the VC dimension. Finally, they give anal-
ogous characterizations in the “prompted generation” setting, extending some of the results of
Kleinberg and Mullainathan [KM24]. Our work is orthogonal to theirs: first, we study trade-offs
between generating with and without breadth – both in a statistical setting and the Gold-Angluin
model – and, second, we study the “learning curves” for generation and identification in the
framework of Bousquet et al. [BHM+21].

17

Probably Eventually Correct Learning. As we mentioned Gold’s model is a predecessor of the
famous PAC model of Vapnik [Vap13] and Valiant [Val84]. A natural question is whether there is
a conceptual meeting point for the two works. Is there a notion of “PAC learning in the limit?”
The answer to this question is affirmative and comes from the field of algorithmic stability (see e.g.,
[ABL+22; BGH+23; CMY23; KKM+23; MSS23] and the references therein), studied in the context
of binary classification [MM23].

Malliaris and Moran [MM23] introduce the Probably Eventually Correct (PEC) model of learn-
ing. Here we fix a collection L = {L1, L2, . . . } of languages and a distribution P over positive and
negative labeled examples (in contrast to the standard identification setting of Gold). PEC learning
focuses on distributions P realizable by the collection L in the sense of Bousquet et al. [BHM+21]
(see Section D). An algorithm is said to PEC learn L if for any realizable distribution P, with prob-
ability 1 over i.i.d. samples {(xi, yi) : i ∈ N} drawn from P, there exists time t∗ ∈ N such that for
all t ≥ t∗, given {(xi, yi) : 1 ≤ i ≤ t}, the algorithm outputs an Lt ∈ L such that

Pr
(x,y)∼P

[Lt(x) ̸= y] = 0 .

Malliaris and Moran give a combinatorial characterization of the collections of languages that
are PEC learnable: a collection of languages L is PEC learnable if and only if it does not shatter
an infinite Littlestone tree. We stress that, when the learner has access to positive and negative
examples, the absence of an infinite Littlestone tree does not characterize identification in our
setting. This is in stark contrast with binary classification. In particular, in Section D, we show
that there exists a set of languages that have an infinite Littlestone tree, hence not learnable in the
online setting of Bousquet et al. [BHM+21], but it allows for identification in the limit with positive
and negative examples. In fact, the collection we use in Example 3 is identifiable in the limit even
with just positive examples. This already sets the stage for a starkly different landscape of optimal
learning rates between the setting of Bousquet et al. [BHM+21] and Angluin [Ang88], as we will
see in Section 3.1.

As we said before, the online model of Gold [Gol67] and the classical online setting of Little-
stone [Lit88] have various differences. Lu [Lu23] studies non-uniform online learning in order
to bridge the gaps between the inductive inference model of Gold [Gol67] and classical online
learning. In this setting, the adversary is oblivious and fixes the true language K in advance (as
in Gold’s model). At each round, an example from K is revealed, the learner makes a prediction
but then she observes feedback. The model is non-uniform in the sense that the mistake bound
depends on K.

Learning from Positive Examples. Learning from positive examples occurs very frequently in
real-world applications and has been extensively studied. A lot of work has been done on learn-
ing from positive examples in Gold’s model of learning in the limit [Gol67; Ang80; Ber86; Ang88;
Shi90; ZL95]. Apart from that, an extension of Valiant’s PAC model has been also studied [Nat87;
Den98]. Natarajan [Nat87] considered the setting where the learner only has access to positive
examples and showed that even very simple classes such as halfspaces in two dimensions are
not learnable from positive examples alone. Denis [Den98] relaxed this requirement: they study
a setting where the learner has access to both positively labeled examples but also to unlabeled
examples [DGL05]. At the heart of virtually all of the results in this line of work is the use of unla-
beled samples in order to generate negative examples. When the original distribution is uniform,

18

better algorithms are known: De, Diakonikolas, and Servedio [DDS15] gave efficient learning
algorithms for DNFs and LTFs, Frieze, Jerrum, and Kannan [FJK96] and Anderson, Goyal, and
Rademacher [AGR13] gave efficient learning algorithms for learning d-dimensional simplices. On
the other side, Rademacher and Goyal [RG09] and Eldan [Eld11] give lower bounds for learning
with positive examples.

Recently, interest in learning from positive examples has sparked from work on truncated
statistics (e.g., [DGT+18; DGT+19; KTZ19; FKT20; DKT+21; Ple21; DNS23; DLN+24; DKP+24;
LMZ24]). Kontonis, Tzamos, and Zampetakis [KTZ19] show how to learn concept classes of
bounded Gaussian surface area from positive Gaussian examples and Lee, Mehrotra, and Zam-
petakis [LMZ24] generalize this to show how to learn concept classes approximable by polynomi-
als in the L2-norm from positive examples. However, all these works focus on computationally
efficient learning/testing while we focus on statistical consistency of identification and generation
without any restrictions on computation time.

2 Model and Preliminaries

In this section, we introduce notation and preliminaries that are useful in subsequent sections.

Countable Domains and Enumerations. We always assume that languages are subsets of some
fixed infinite and countable domain X. Since X is infinite and countable, after a suitable bijective
mapping, one can think of X as N. In some cases, one may also like to think of X as the set of
(arbitrarily long) strings over a finite alphabet Σ, i.e., Σ∗. This is again without loss of generality
since N is bijective to {0, 1}∗ (e.g., using the standard binary encoding). Depending upon the
context, we use one interpretation (X = N) or the other (X = Σ∗), whichever is more intuitive.
The notion of enumeration is important in our work; fix a set L ⊆ X. We refer to L as a language.
An enumeration of L is a complete and ordered listing of all the elements in L that allows for,
potentially, repetitions of elements. In particular, an enumeration x1, x2, . . . of L has the property
that for any element w ∈ L there is a finite index i such that xi = w. For example, 1, 2, 3, . . . is
a valid enumeration of N but 2, 4, 6, . . . is not (since, in the latter sequence, odd numbers do not
appear at any finite position).

Additional Notation. We use A , I , and G to denote algorithms, and often reserve G for a genera-
tor, i.e., an algorithm that given examples x1, . . . , xn ∈ X, outputs a new example from X. We use
P and D to denote distributions over the elements of some language L ⊆ X. We use standard no-
tation related to distributions: Fix a distribution P over language L. Given an element x ∈ X, P(x)
denotes the probability mass P assigns to x. The support of distribution P is denoted by supp (P),
i.e., supp (P) := {x ∈ L : P(x) > 0}. As a shorthand, given a sequence x1, x2, . . . , xn, for each index
1 ≤ i ≤ n, we use x≤i to denote the prefix {x1, x2, . . . , xi}. Finally, we use standard notation for
indicator functions and limits: Given an expression E (such as h ̸= K or s ∈ K), 1 {E} denotes the
indicator that E is true. For a function R : N → R≥0, R ↓ 0 denotes that limn→∞ R(n) = 0.

Language Collections and Membership Oracle to Languages. We always consider a countable
collection of languages L = {L1, L2, . . . } and assume we have access to a membership oracle that,
given an index i and a string s, outputs 1{s ∈ Li}, as is standard in all prior works [Gol67; Ang80;

19

KM24]. This is motivated by the fact that if these languages are “reasonable,” e.g., they are gener-
ated by context-free grammars or decided by Turing machines [Sip12], then (1) there can be only
countably many of them and (2) each of them admits a membership oracle. Finally, we reserve the
letter K to denote the unknown target language K ∈ L. We will say that an example x is a positive
example for K if x ∈ K; otherwise x will be a negative example for K.

2.1 Language Identification and Generation in the Limit

In this section, we first present the Gold-Angluin model for identification in the limit and, then,
Kleinberg and Mullainathan’s model for generation in the limit.

Language Identification in the Limit

The problem of language identification in the limit from positive examples was introduced by
Gold [Gol67] and further studied by Angluin [Ang79; Ang80]. The setting is specified by a col-
lection of languages L = {L1, L2, . . . }. For a fixed collection L, an adversary and an identifier
play the following game: The adversary chooses a language K from L without revealing it to the
identifier, and it begins enumerating the strings of K (potentially with repetitions) x1, x2, . . . over
a sequence of time steps t = 1, 2, 3, The adversary can repeat strings in its enumeration, but
the crucial point is that for every string x ∈ K, there must be at least one time step t at which it
appears.

At each time t, the identification algorithm I , given the previous examples x1, x2, . . . , xt, out-
puts an index it that corresponds to its guess for the true language K.

Definition 9 (Language Identification in the Limit [Gol67]). Fix some language K from collection L.
The identification algorithm I identifies K in the limit if there is some t∗ ∈ N such that for all steps t > t∗,
the identifier’s guess it satisfies it = it−1 and Lit = K. The language collection L is identifiable in the limit
if there is an identifier that identifies in the limit any K ∈ L, for any enumeration of K.

Gold [Gol67] showed that collections of finite cardinality languages, i.e., each language in the
collection L is finite, can be identified in the limit from positive examples. This is true since in the
limit, one will see all the elements of the target (finite) language, at which point it can be identified.
The identification algorithm is the following: at time t, guess L to consist solely of the elements
that have occurred in the sequence. Since L is finite, there will be a finite time after which all
elements of L will have been revealed, so after that the algorithm will have identified the target.
Interestingly, all finite collections of languages are also identifiable in the limit [Gol67].

A super-finite collection of languages denotes any collection which contains all languages of
finite cardinality and at least one of infinite cardinality. Gold showed that super-finite collections
of languages cannot be identified in the limit from positive examples. Further, he showed that
negative examples help: any super-finite collection can be identified in the limit using positive
and negative examples10 (the idea is simple: keep guessing the infinite language until seeing a
negative example; then it reduces to the finite case).

10This means that the adversary presents an enumeration of the whole domain X, with a label indicating whether the
example is in the target language.

20

Theorem 2.1 ([Gol67]). Let L = {L∞, L1, L2, . . . } be the language collection with L1 ⊂ L2 ⊂ · · · ⊂
L∞ = ∪i≥1Li and for each i, |Li| < ∞. Then, there is no algorithm that identifies L in the limit from
positive examples. Moreover, this collection can be identified in the limit when the algorithm has access to
both positive and negative examples.

The above result already shows a separation in terms of identification between observing only pos-
itive examples and observing positive and negative examples in Gold’s model. Moreover, it raises
the question of whether there exist non-trivial collections of languages identifiable in the limit
from positive examples. In that direction, Angluin [Ang79] studied pattern languages (whose
definition is not important for our work) and showed that for that collection identification in the
limit is possible only with positive examples.

The next question is whether one can get a characterization of the language collections that can
be identified from positive examples. Angluin [Ang80] resolved this problem.

Definition 10 (Angluin’s Condition [Ang80]). Fix a language collection L = {L1, L2, . . . }. Suppose
there is a membership oracle which, given a string x and index i, answers 1{x ∈ Li}. The collection L is
said to satisfy Angluin’s condition if there is an oracle that given an index i enumerates a set of finite strings
Ti such that

Ti ⊆ Li and for all j ≥ 1, if Ti ⊆ Lj then Lj is not a proper subset of Li.

The difficulty in trying to identify a language from positive examples is the problem of over-
generalization. If while seeing positive examples the algorithm specifies a language that is a proper
superset of the true answer K, then by only seeing positive examples it will never see a counterex-
ample to that language. This would be avoided with positive and negative examples. Angluin’s
condition essentially ensures this over-generalization problem can be avoided by from just posi-
tive examples (without the help of negative examples).

Before proceeding to Angluin’s result, we stress one important point: inspecting Angluin’s
definition, we can see that it requires access to a procedure that finds this set of strings Ti. This
oracle is called a tell-tale oracle and is quite crucial for Angluin’s algorithm to work.

Definition 10 led to the following characterization.

Theorem 2.2 ([Ang80]). A countable language collection L is identifiable in the limit if and only if it
satisfies Angluin’s criterion.

Finally, let us consider the case of language identification with both positive and negative exam-
ples, i.e., when the adversary provides an enumeration of the whole domain X and every example
has a label indicating whether it is in the true language K. We mention that focusing on algorithms
equipped with membership oracle, the following result appears in Gold [Gol67].

Theorem 2.3 ([Gol67]). Any countable language collection is identifiable in the limit from positive and
negative examples.

To see how the algorithm works, let L = {L1, L2, . . .} and denote by Lz the smallest indexed
language in L for which Lz = K. The algorithm observes an enumeration of the form (xt, yt) ∈
X× {0, 1} for t ≥ 1. Recall this means that 1{xt ∈ K} = yt. The algorithm works as follows: in
every timestep t ∈ N, it predicts the lowest index of a consistent language, i.e., the smallest j ∈ N

21

for which 1{xτ ∈ Lj} = yτ for all τ ≤ t. Consider two cases: if z = 1, then the algorithm will
never predict any language Lz′ , z′ ≥ 2, so it will be correct from the first step. If z > 1, then for all
Lz′ , z′ < z, that come before Lz in the enumeration of L, there is a finite time tz′ when the example(
xtz′ , ytz′

)
contradicts the language Lz′ .

Language Generation in the Limit

We now move to language generation in the limit from positive examples, introduced by Klein-
berg and Mullainathan [KM24]. The setup is exactly the same as in the Gold-Angluin model (the
adversary provides an enumeration of K), but now the goal of the learner is to generate unseen
examples from K instead of identifying the index of K. Their formal definition is the following.

Definition 11 (Language Generation in the Limit [KM24]). Fix some language K from the collection
L = {L1, L2, . . . } and a generating algorithm G . At each step t, let St ⊆ K be the set of all strings that
the algorithm G has seen so far. G must output a string xt /∈ St (its guess for an unseen string in K).
The algorithm G consistently generates from K in the limit if, for all enumerations of K, there is some
t∗ ∈ N such that for all steps t ≥ t∗, the algorithm’s guess at belongs to K \ St. The collection L allows
for consistent generation in the limit if there is an algorithm G that, for any choice of the target language
K ∈ L, it consistently generates from K in the limit.

Definition 11 straightforwardly generalizes to randomized algorithms; consider the same setup as
before except that now the output string at may be randomized. The definition of generation is
also the same except that instead of requiring at ∈ K \ St one requires that the support At of the
distribution from which at is sampled is non-empty and satisfies At ⊆ K \ St.

Observe that language generation requires that the algorithm’s outputs are consistent with K
(in the limit), but allows the algorithm to not generate certain strings from K. For instance, if
K is the set of all strings, then the algorithm that always outputs even length strings (not in St),
generates from K in the limit but also misses infinitely many strings in K (namely, all strings of
odd length). Consistency is clearly a desirable notion: without consistency, algorithms may keep
outputting strings outside the target language K which, when K is the set of all meaningful and
true strings, inevitably leads to hallucinations.

A trivially consistent generator is one that outputs data already seen in the training set. As we
already mentioned, we count such outputs as mistakes. This form of predicting unseen positive
examples makes the task of generation interesting. At first sight, it seems that there is an easy
strategy that achieves generation in the limit: given an enumeration of all hypotheses L1, L2, . . .,
we sequentially generate from Li (i = 1, 2, . . .) until it becomes inconsistent with the sample Sn;
then we move to Li+1. This strategy seems natural for generation because we know that there is
some index k such that the true language K = Lk. This idea has a fundamental issue, already
reported by Kleinberg and Mullainathan [KM24]: if there exists an index i such that i < k and
Lk ⊊ Li, then the generator will get stuck at Li and never update.

A non-trivial solution to this problem was given by Kleinberg and Mullainathan [KM24]. They
show that all countable sets of languages in countable domains allow for generation in the limit
from positive examples; this is in stark contrast with identification in the limit from positive ex-
amples.

22

Theorem 2.4 (Theorem 1 in Kleinberg and Mullainathan [KM24]). There is an algorithm with the
property that for any countable collection of languages L = {L1, L2, . . . }, any target language K ∈ L,
and any enumeration of one of these languages K, the algorithm generates from K in the limit with positive
examples.

We now provide some intuition on how this algorithm works. Let L1, L2, . . . be an enumeration
of the collection of languages and K be the true language. Let z be an index such that Lz = K.
We say that a language Li is consistent with the sample St at time t if St is contained in Li. Now
assume that we have two languages Li and Lj with Li ⊆ Lj which are both consistent with St.
Then, it is clear that the generating algorithm should prefer to generate from Li rather than Lj: any
w ∈ Li \ St satisfies w ∈ Lj \ St. This property inspired Kleinberg and Mullainathan [KM24] to
define the notion of a critical language. Let Cn = {L1, L2, . . . , Ln}. A language Ln is critical at step t
if Ln is consistent with St and for every Li ∈ Cn that is consistent with St, it must be Ln ⊆ Li. There
are some key properties upon which the generating algorithm is built:

• At any time, there is at least one language consistent with St, the true one Lz = K. Also, there
is at least one critical language at any step t: for any t, the consistent language Li with the
lowest index i must be critical at step t, as it is the only consistent language in Ci.

• There exists times t for which Lz (which is K) is not critical. But eventually, Lz will become
critical at some step and then remain critical forever after that. Also, any critical language
coming after Lz must be a subset of Lz, thus it is safe to generate from it.

• Hence the algorithm, roughly speaking, keeps track of a list of critical languages and gen-
erates from the last one in the list; this is because, after some finite index, all the critical
languages are subsets of Lz and, hence, it is safe to generate from any of them.

More details about this algorithm will appear later on when we design our generation algorithms
for the probabilistic setting (see Section 5.2).

3 Overview of Results

In this section, we present the formal statements of our main results. We begin with statistical rates
for identification and for consistent generation (without the requirement of breadth) in Section 3.1.
Next, in Section 3.2, we present our results for generation with breadth – showing that no genera-
tor from a large family of generators (that includes present-day LLMs) can generate with breadth
from any language collection that is non-identifiable. Contrasting Kleinberg and Mullainathan
[KM24]’s result for generation without breadth, these results show that generation with breadth
is significantly harder – as hard as identification, for a large and natural class of generators. Sec-
tion 3.3 extends this impossibility result to a relaxation of generation with breadth, showing that
even this relaxed definition of generation and breadth cannot be achieved by the same large class
of generators. Finally, in Section 3.4, we present additional results for identification when one has
some additional structure (e.g., access to a stronger oracle) or information (e.g., negative examples).

23

3.1 Results for Identification and Generation Without Breadth

Prior work of Gold [Gol67] and Kleinberg and Mullainathan [KM24] studies language identifica-
tion and generation in an online, i.e., adversarial setting. In this work, we study the distributional
versions of these problems. The identification problem we study is not new and, in fact, goes back
to Angluin’s work in 1988 [Ang88]. However, Angluin [Ang88] does not provide any rate at which
language identification can be achieved as the number of samples observed increases (when it is
achievable).

Summary of Results in This Section. In this section, we give learning rates for both identification
and generation (see Theorems 3.1 and 3.2 respectively). For both tasks, we study the learning
curves – that is how the identification or generation error decays as the sample size increases.
As a result, we extend the results of Gold [Gol67] and Kleinberg and Mullainathan [KM24] to
the statistical setting. Our results in this section achieve a near-optimal rate for identification
(Theorem 3.1) and an optimal rate for generation (Theorem 3.2).

3.1.1 Universal Rates: Model and Preliminaries

We work under the universal rates framework, introduced by Bousquet, Hanneke, Moran, van
Handel, and Yehudayoff [BHM+21], in order to capture the notion of a learning curve for language
identification and generation. Following the notation we used before, recall that we have a count-
able set of languages L = {L1, L2, . . .}, where each L ∈ L is also countable and ∪L∈LL ⊆ X, for
some countable domain X. Recall the notion of a valid distribution proposed by Angluin [Ang88]
in this setting (Definition 1). Intuitively, this condition can be thought of as the equivalent of
realizability in the classification setting.

The learning algorithm is a sequence of (universally measurable and computable) functions
{hn}n∈N, where n captures the size of the training set. We are interested in understanding the
behavior of the error of the algorithm, which is defined appropriately based on the downstream
task – either identification or generation for this paper. Given some rate function R : N → [0, 1]
we say that we can achieve rate R(n) for the set of language L and the loss function er(·) if there
exists a learning algorithm {hn}n∈N whose error satisfies

(∀ valid P) (∃C, c) such that E[er(hn))] ≤ C · R(cn) , ∀n ∈ N .

Crucially, these learning curves are distribution-specific; the constants c, C depend on P but the
rate R holds universally for all valid distributions. Such learning curves are a well-studied topic
in learning theory [Sch97; AL98; BHM+21; VL23]. The above gives rise to the following definition.

Definition 12 (Learning Rates [BHM+21]). Given a language collection L, an error function er(·), and
a rate function R : N → [0, 1] satisfying limn→∞ R(n) → 0, we say:

• Rate R is achievable for L if there is an algorithm {hn}n∈N such that for every valid distribution P,
there exist c, C for which E[er(hn)] ≤ C · R(c · n), ∀n ∈ N.

• No rate faster than R(n) is achievable for L if for all algorithms {hn}n∈N there exists a valid distri-
bution P and c, C for which E[er(hn)] ≥ C · R(c · n), for infinitely many n ∈ N.

Further, we have the following.

24

• (Optimal Rate) Rate R is optimal for L if it is achievable and no rate faster than R is achievable.

• (No Rate) We say that L admits no rate if for every algorithm {hn}n∈N there exists a valid distribu-
tion P such that lim supn→∞ E[er(hn)] > 0.

In the case of identification, to avoid trivial cases, we consider collections L that contain at least
two distinct languages that contain one common element.

Definition 13 (Non-Trivial Collections of Languages for Identification). A language collection L is
non-trivial for identification if there exist two languages L1, L2 ∈ L such that L1 ̸= L2 and |L1 ∩ L2| > 0.

Notice that if the collection L does not satisfy Definition 13, then one can identify the target lan-
guage K immediately after observing a single element from K.

In the case of generation, the “non-triviality” condition turns out to be more nuanced, e.g.,
compared to the case of identification above or binary classification [BHM+21]. We give an infor-
mal definition below, and we refer to Definition 17 for the formal one and a discussion about its
necessity.

Informal Definition 1 (Non-Trivial Collections of Languages for Generation, see Definition 17). A
language collection L is non-trivial for generation if any algorithm needs to see at least two examples from
the target language to be able to generate from it.

3.1.2 Universal Rates for Identification

For any language collection L = {L1, L2, . . . } and n ∈ N, with true language K ∈ L, and set of
examples x1, . . . , xn ∈ Xn, an identification algorithm In gets as input x1, . . . , xn and outputs an
index In(x1, . . . , xn). We define the identification error of the learner {In : Xn → N}n∈N as

er(In(x1, . . . , xn)) = 1{LIn(x1,...,xn) ̸= K} . (4)

Under this definition, Ex1,...,xn∼P[er(In)] = Prx1,...,xn∼P[LIn(x1,...,xn) ̸= K], i.e., the probability that it
fails to identify the correct language after it sees n examples from P.11

Our main result for identification is a fundamental dichotomy: every non-trivial collection of
languages is identifiable with positive examples at either an (almost) exponential rate or it is not
identifiable at any rate.

Theorem 3.1 (Dichotomy of Rates for Identification with Positive Examples). For every collection of
countably many languages L that is non-trivial for identification exactly one of the following holds:

• For every g(n) = o(n) there exists a learner that identifies L at rate e−g(n). Moreover, no learner can
achieve a rate faster than e−n.

• L is not identifiable at any rate.

Concretely, the first condition holds for L if and only if it satisfies Angluin’s condition (Definition 10).

11One subtle point is that this definition allows the learner to output any index j ∈ N such that Lj = K and there may
be many such indices since we do not assume all languages in L are distinct. Our identification algorithms will have
the property that they output the smallest index at which K appears in L = {L1, L2, . . . }.

25

This dichotomy of rates differs from prior universal rates for classification where the usual theme
is a trichotomy of rates [BHM+21; KVK22; HMZ23]. Moreover, while in the universal setting for
binary classification, any measurable class of functions is learnable at arbitrarily slow rates, in
identification, this is not the case: there exist collections of languages that do not admit a Bayes
consistent learner and these are exactly the collections that do not satisfy Angluin’s condition. For
the full proof, we refer the reader to Section 5.1.

3.1.3 Universal Rates for Consistent Generation

The main difference between this setting and the setting of language identification is the definition
of the error rate. There exists a valid text-generating distribution P, meaning one that is supported
on some target language K ∈ L, and the learning (or rather, generating) algorithm is a sequence
of (universally measurable and computable) functions {Gn : Xn → X}n∈N, where each Gn takes
as input n samples generated i.i.d. from P and outputs a new word, with the goal that this word
belongs to the target language (see Remark 1). As in the online setting, to avoid trivial solutions,
we want to generate examples that do not appear in the training set.

Remark 1 (Notation for Generating Algorithms). More formally, a generating algorithm is a col-
lection of mappings {Gn}n∈N, where for each n, Gn is a mapping from the domain of n training
samples Xn to the set of “generators” or (randomized) Turing machines G that, on each execution,
output a sample from X. For this section, it is sufficient to imagine generators as being determin-
istic (i.e., generating samples from a point mass) and, hence, we simplify writing Gn as a mapping
from Xn to X. In the next section, where we study generation with breadth, to have any hope of
achieving breadth, we need to consider Gn in its full generality as a mapping from Xn to G.

Now, we are ready to define the generation error: for any n ∈ N and set of examples x1, . . . , xn ∈ Xn

we define the generation error of the learner {Gn : Xn → X}n∈N for this task as

er(Gn(x1, . . . , xn)) = 1{Gn(x1, . . . , xn) /∈ K \ {x1, . . . , xn}} . (5)

Notice that, under this definition,

E
x1,...,xn∼Pn

[er(Gn(x1, . . . , xn))] = Pr
x1,...,xn∼Pn

[Gn(x1, . . . , xn) /∈ K \ {x1, . . . , xn}] ,

i.e., the probability that the learner fails to generate a new word from the target language after
observing n examples from it. Our main result in this section is that we can achieve consistent
generation with exponential rates.

Theorem 3.2 (Rates for Generation). For every countable collection of languages L there exists a gen-
erating algorithm that generates from L at rate e−n. Conversely, for every collection of languages that is
non-trivial for generation (Definition 17), no generating algorithm can achieve rate faster than e−n.

Surprisingly, this shows that consistent generation can be achieved at an exponential rate for any
countable collection of languages. We mention that the result we prove is slightly stronger: we
show that, for any L, with probability at least 1 − C · e−c·n, we can generate infinitely many new
strings from K, after training the algorithm on n examples – not just a single word. Together, Theo-
rems 3.1 and 3.2 show that the stark separation between language identification and generation in
the online setting, obtained by Kleinberg and Mullainathan [KM24], also extends to the statistical
setting of Angluin [Ang88] and Bousquet et al. [BHM+21]. The proof of Theorem 3.2 appears in
Section 5.2; see Figure 3 for an outline of the proof.

26

3.2 Results for Generation With Breadth

Next, we present our results for language generation with breadth. Clearly, generation with
breadth is a stronger requirement than generation. But, at least intuitively, it is weaker than identi-
fication: it only requires one to generate samples from the entire support of K and not identify the
index of K. Contrary to this intuition, our results show that, for a large class of generators, genera-
tion with breadth is as hard as identification. Our results show that, while this class of generators
is powerful enough to generate without breadth, no generator in this class can achieve generation
with breath for non-identifiable collections of languages.

3.2.1 Membership Oracle Problem

The family of generators we consider is implicitly determined by the decidability of a certain
problem associated with the generator.

Definition 5 (Membership Oracle Problem). Given a generator G , the membership oracle problem for
G , denoted as MOP(G), is defined as follows: given the description of G and a string x, output Yes if
x ∈ supp(G) and output No otherwise.

As mentioned before the decidability of problems is extensively studied in formal languages and
complexity theory [Sip12]. Our main result (Informal Theorem 1 whose formal statement appears
as Theorem 3.3) applies to any generator G for which MOP(G) is decidable. Note that our result
only needs a decider of MOP(G) to exist – this is purely a property of the generation algorithm
used – and it does not, for instance, require the individuals training the generator or the users to
have access to the decider in any fashion.

To gain some intuition about the membership oracle problem, let us consider a simple example.

Example 1 (Standard Next-Token Predictor). Let Gnext-token be a text generator or language model
that generates text token-by-token: at each step t, it generates certain scores {pt(σ) : σ ∈ Σ} and
outputs token σ with probability ∝ pt(σ). It is not important how these scores are generated. They
can be generated in various ways. For instance, they can be the logit-scores of transformer-based
models. They could also, be generated by thresholding logit-scores in any complicated but com-
putable way – such as, by using beam search, top-K, or top-p sampling [HBD+20]. MOP(Gnext-token)

is decidable and, in fact, there is a simple decider: given a string w of length n, it computes the
scores for the first n iterations; where in the t-th iteration (t > 1), it conditions on the event that
Gnext-token has generated the string w1w2 . . . wt−1 so far. Then it computes the following function
and outputs the result {

Yes if ∏n
t=1 pt(wt) > 0 ,

No otherwise .

We stress that our main result only needs the existence of such a decider, and does not require the
individuals training the generator or the users to have any access to it.

27

3.2.2 Results for Generators for Which MOP(·) Is Decidable

Before stating our result about the rate at which generation with breadth can be achieved, we
need to define the corresponding error function. For the error to make sense, let G be the set of
(randomized) Turing machines that do not take any input and output one element from X (on
each execution). Given a target language K and examples x1, . . . , xn ∈ X, we define the error for
generation with breadth for the learner {Gn : Xn → G}n∈N as

er(Gn(x1, . . . , xn)) = 1{supp(Gn(x1, . . . , xn)) ̸= K \ {x1, . . . , xn}} ,

where supp(Gn(x1, . . . , xn)) is the set of strings Gn(x1, . . . , xn) can output with positive probability,
i.e., it is the support of the distribution of outputs of Gn(x1, . . . , xn). The above means that we count
each step t as a mistake if the generating algorithm has a positive probability of outputting a string
outside of K (i.e., hallucination), a zero probability of outputting an unseen element of K (i.e., mode
collapse), or a positive probability of repeating a seen training example.

Remark 2 (Generating Examples From the Training Set). For generation without breadth, it is im-
portant to restrict the generator from outputting elements it has already seen. Otherwise, the fu-
tile generator, which always outputs the first training sample it sees, achieves generation without
breadth. This requirement, however, is not important for generation with breadth: any generator
G that generates with breadth without repeating training examples can be converted to one G ′

that generates with breadth and repeats the training examples and vice versa.12 Hence, all of our
results hold with either notion of generation with breadth.

Our main result shows a separation between the rates achievable for generation with and
without breadth by any generating algorithm for which MOP(·) is decidable.

Theorem 3.3. Let G be the set of all generating algorithms (Gn) for which MOP(·) is decidable (Defi-
nitions 5 and 6). For every collection of countably many languages L that is non-trivial for generation
(Definition 17) and not identifiable in the limit:

• No generating algorithm in G generates with breadth from L at any rate; and

• There is a generating algorithm in G that generates consistently without breadth from L at rate e−n.
Conversely, no generating algorithm (even outside of G) can generate at a rate faster than e−n.

Further, for any collection of countably many languages L that is non-trivial for generation (Definition 17)
and identifiable in the limit, and for any g(n) = o(n), there is a generating algorithm in G that generates
with breadth from L at rate e−g(n). Conversely, no generation algorithm can generate consistently at a rate
faster than e−n, even without the breadth requirement.

Thus, while generation without breadth is achievable for any countable collection of languages
(whether it is identifiable or non-identifiable), generators in G can only generate with breadth
from identifiable collections – which are a very restricted subset of all languages [Gol67; Ang80;
KM24]. It remains to discuss which types of generators MOP(·) is decidable for, and we present a

12For instance, G ′ can run G with probability 1/2 and with the remaining 1/2 probability output a training sample
selected uniformly at random. Given G ′, G can be implemented by rejection sampling as follows: repeatedly execute
G ′ until it generates an unseen element x and output x.

28

large family in the next section. Meanwhile, due to Example 1, it is already clear that Theorem 3.4
applies to present-day LLMs. The proof of this result appears in Section 6.2; see Figure 5 for an
outline of the proof.

Our negative result leaves several interesting questions open which we already discussed in
Section 1.4.

3.2.3 A Family of Generators for Which MOP(·) Is Decidable

Example 1 already shows that MOP(·) is decidable for many existing language models. Next, we
show that MOP(·) is decidable under even fewer restrictions on the generator G – informally, we
will allow for any generator which generates text token-by-token.

Definition 14 (Token-by-Token Generators). Token-by-token generators G are parameterized by ran-
domized Turing machines M. M can be randomized and halts on all inputs. Given M, the corresponding
token-by-token generator GM generates outputs as follows: for each t ∈ N,

1. Let w1w2 . . . wt−1 be the tokens generated so far.

2. Let At be any auxiliary information generated so far, where A1 is the empty string.

3. Generate (st, At+1) by running M with input w1w2 . . . wt−1 and At.

4. If st = EOS (i.e., end of string), then output s1 . . . st and halt; otherwise proceed to iteration t + 1.

Note that token-by-token generators are a very powerful class: for instance, any distribution over
Σ∗ for some finite alphabet Σ admits a token-by-token generator by the Bayes rule. That said, of
course, one can also construct non-token-by-token generators.

We show that MOP(G) is decidable for all token-by-token generators.

Theorem 3.4. For any token-by-token generator G , MOP(G) is decidable.

Next, we demonstrate that token-by-token generators capture several interesting language mod-
els. First, the family of token-by-token generators captures existing large language models (LLMs):
for instance, to simulate an LLM L, we define the next token predictor M as a Turing machine that
simulates L on the provided string until L generates one new token. Further, since we do not place
computational restrictions on M, M can also simulate interactions between LLMs or auxiliary sys-
tems that select a suitable LLM to respond depending on the request–a strategy that has led to
recent advances in text generation [SDD+23; JSR+24; Kni24; Tea24]. Finally, due to a reduction
to the halting problem, there are some generators for which MOP(·) is undecidable and give an
explicit example in Section A.

Remark 3 (Noisy Membership Oracle). A supposedly weaker requirement than the decidability of
MOP(·) is the existence of a noisy oracle that, given a string x, correctly (and in finite time) decides
the membership of x into supp(G) with a probability at least 2/3. However, due to the folklore
result that BPP ⊆ EXP [AB09], a noisy oracle is equivalent to the decidability of MOP(·).

29

3.2.4 Results for Generation With Breadth in the Limit

In this section, we state the implications of our techniques for generation with breadth in the
adversarial or online setting of Gold [Gol67] and Angluin [Ang79; Ang80].

Theorem 3.5. For every non-identifiable collection of countably many languages L, no generating algo-
rithm, for which MOP(·) (Definitions 5 and 6) is decidable, can generate with breadth from L in the limit.
If L is identifiable, then there is a generator G (for which MOP(G) is decidable) that generates with breadth
from L.

This result makes important progress on a question left open by Kleinberg and Mullainathan
[KM24] for a fairly large family of generators, which includes all iterative generators due to The-
orem 3.4. In particular, MOP(·) is decidable for the generation algorithm of Kleinberg and Mul-
lainathan [KM24] (since it is deterministic and the unique element it outputs can be computed
by executing the algorithm) and, hence, the above result shows that Kleinberg and Mullainathan
[KM24]’s algorithm cannot generate with breadth in the limit from any non-identifiable collection.
Further, in Section 3.3 we strengthen this result by showing that even a relaxed notion of genera-
tion with breadth remains unreachable for a large class of generators. The proof of this result can
be found in Section 6.3.

3.3 Results for Generation With Approximate Consistency and Breadth

In this section, we study a relaxation of generation with breadth, which we call unambiguous
generation, and ask: Is there a generator that unambiguously generates from a non-identifiable collection?

We recall that, in this section, we will allow the generator to repeat examples in the training
data. Like all of our results with breadth, this choice is not crucial, and all of the results have
analogs where the generator does not repeat training examples (Remark 2). We make this choice
to simplify the notation.

We refer the reader to Section 1.3 for a discussion and motivation of the definition for unam-
biguous generation, which we restate below.

Definition 8 (Unambiguous Generator). A generating algorithm G = (Gn) is unambiguous for a lan-
guage collection L if, for any K ∈ L and every enumeration of K, its support eventually becomes closer to
K than to any other language L ̸= K in L in terms of the symmetric difference metric, i.e., there exists some
n∗ ∈ N such that for all n ≥ n∗ it holds that

|supp(Gn)△K| < min
L∈L : L ̸=K

|supp(Gn)△L| ,

where recall that for two sets S and T, S△T := (S \ T) ∪ (T \ S).

This notion is a significant relaxation of generation with breadth that we considered so far (see
Section 3.2): Not only does it allow the generator to hallucinate certain strings not in the target K
and omit strings actually in K for arbitrarily long, the number of hallucinations and omissions can
be very large and, depending on the structure of the language collection L, even arbitrarily large.

Surprisingly, even this very weak notion of “generation with breadth” turns out to be un-
achievable by a very large family of generators. Concretely, it is unachievable by any generator
for which MOP(·) is decidable and that satisfies the natural property that it stabilizes after a finite
time. We state the formal notion of stability below.

30

Definition 7 (Stability). A generating algorithm (Gn) is stable for a language collection L if for any target
language K ∈ L and for any enumeration of K, there is some finite n∗ ∈ N such that for all n, n′ ≥ n∗, it
holds that supp(Gn) = supp(Gn′).

Before turning to our formal result, we need to construct the error function that defines unambigu-
ous generation, and we use the natural choice: for a language K and examples xi1 , . . . , xin ∈ X, we
denote and we define the error for unambiguous generation for the generating algorithm {Gn : Xn →
G}n∈N on input Sn = {xi1 , . . . , xin} as13

er(Gn(Sn)) = 1

{
|supp(Gn(Sn))△K| < min

L∈L : L ̸=L
|supp(Gn(Sn))△L|

}
,

where supp(Gn(Sn)) is the set of strings Gn(Sn) can output with positive probability. Similar to the
case of identification and generation, we say that an algorithm achieves unambiguous generation
for a collection L at some rate R, where R : N → R≥0, R ↓ 0, if for any valid distribution P

with respect to L there are c, C > 0 so that Exi1 ,...,xin∼Pn [er(Gn(xi1 , . . . , xin))] ≤ C · R(c · n). The
following result shows that this notion of generation is not achievable, for a large and natural
class of generating algorithms.

Theorem 3.6 (Impossibility of Unambiguous Generation). For every non-identifiable collection of
countably many languages L, no stable generating algorithm, for which MOP(·) (Definitions 5 and 6)
is decidable, can unambiguously generate from L at any rate.

Note that while this result has a benign requirement that the generator is stable, it already con-
siderably extends our main result Theorem 3.3, since any generator that achieves breadth must be
stable – otherwise, its support cannot settle on the target language K. (To be precise, Theorem 3.3
required generators to not repeat their training examples, but this requirement is not crucial and
any generator that does repeat its training examples can be converted into one that does not repeat
its training examples, and vice-versa; see Remark 2.)

In addition to Theorem 3.6, we also prove its analog in the online setting – significantly extend-
ing our earlier impossibility result in the online setting (Theorem 3.5). Before stating the result in
the online, we introduce unambiguity in the limit, which is a natural counterpart to its statistical
definition:

• A generating algorithm G = (Gn) is said to be unambiguous for a collection L = {L1, L2, . . . }
if, for any K ∈ L and enumeration xi1 , xi2 , . . . of K, there is an n0 ≥ 1, such after seeing n ≥ n0

elements Sn = xi1 , . . . , xin ,

|supp(Gn(Sn))△K| < min
L∈L : L ̸=K

|supp(Gn(Sn))△L| .

Theorem 3.7 (Impossibility of Unambiguous Generation in the Limit). For every non-identifiable
collection of countably many languages L, no generating algorithm stable in the limit for which MOP(·)
(Definitions 5 and 6) is decidable can unambiguously generate from L in the limit.

13Recall that G is the set of (randomized) Turing machines that do not take any input and output one element from X

(on each execution).

31

The proofs of Theorems 3.6 and 3.7 appear in Section 7.1 and 7.2, respectively. To develop some
intuition, we recommend reading the proof of Theorem 3.7 before the proof of Theorem 3.6.

Remark 4. In Section C, we study another notion of generation with approximate breadth which,
informally, requires that the generating algorithm is consistent and puts zero mass only on finitely
many points of the target language K. This is also a weakening of generation with breadth and
turns out to be incomparable to the notion of unambiguous generation studied in this section.

3.4 Further Results for Identification

In this section, we present identification algorithms that achieve exact exponential rate when one
has some additional structure – access to a stronger oracle, or a finite collection L, or a countable
collection L of finite languages – or additional information – negative examples.

In Section 3.4.1, we allow the identifier to make queries of the form “is Li ⊆ Lj?” Next,
in Section 3.4.2, we consider generation from collections L containing finitely many languages
L = {L1, L2, . . . , Lk}. (Note that each language in L can still be infinite.) Finally, in Section 3.4.4,
in addition to positive examples, we also give the identifier access to negative examples (i.e., ele-
ments x ∈ X not in the target language K).

3.4.1 Exponential Rates for Identification Using Subset Oracle

Our first result shows that when L satisfies Angluin’s condition and the learning algorithm has
access to a subset oracle for L (which answers queries of the form “Li ⊆ Lj?”) then it is possible
to achieve exact exponential rates.

Proposition 3.8. For every countable language collection L that satisfies Angluin’s condition (Defini-
tion 10), there exists a learning algorithm that has access to a subset oracle for L and identifies L at a
rate e−n. Formally, a subset oracle is a primitive that, given two indices i and j, outputs Yes if Li ⊆ Lj;
otherwise, it outputs No.

Recall that our algorithm that achieves almost exponential rates requires merely black-box access
to an algorithm that identifies L in the limit. In other words, it does not make use of the particular
structure of the online identification algorithm. To achieve exact exponential rates, we make use
of a particular algorithm: the one proposed by Kleinberg and Mullainathan [KM24]. At a high
level, the proof consists of the following steps:

C1 First, we show that Kleinberg and Mullainathan [KM24]’s algorithm with access to a subset
oracle for L can, in fact, identify the target language (see Section B.1).

C2 Next, we identify a sufficient condition that allows one to use any identification algorithm
that identifies L in the limit to obtain exponential rates (see Lemma 8.1). Interestingly, this
conversion does not need any changes to the identification algorithm.

C3 Finally, we show that the algorithm of Kleinberg and Mullainathan [KM24] satisfies this
condition.

The full proof of Proposition 3.8 appears in Section 8.1.

32

3.4.2 Exponential Rates for Identification of Finite Collections

We now shift our attention to finite collections of languages. Gold [Gol67] and Angluin [Ang80]
showed that all finite collections are identifiable in the limit. We show that for such collections
we can get exact exponential rates, without the need of the subset oracle we used in the previous
result (Proposition 3.8).

Proposition 3.9. For every finite language collection L, there exists a learning algorithm which identifies
L at a rate e−n.

The proof of this result builds on the proof of Proposition 3.8. In particular, we show that the
algorithm of prior work satisfies the sufficient condition that allows an algorithm that identifies L
in the limit to obtain exponential rates (Condition C2). The full proof of Proposition 3.9 appears
in Section 8.2.

3.4.3 Exponential Rates for Identification of Collections of Finite Languages

We now move on to a result about identifying countable collections of finite languages with exactly
exponential rates. Gold [Gol67] showed such collections are identifiable in the limit through a very
simple algorithm: predict the first language that contains the set of all examples seen so far. We
show that for such collections we can get exact exponential rates.

Proposition 3.10. For every countable language collection L that only contains languages of finite size,
there exists a learning algorithm which identifies L at a rate e−n.

The idea of the proof is simple. Since any valid distribution has finite support, for large enough n,
the sample will contain all the elements of the support with probability 1 − C · e−c·n. The formal
proof of Proposition 3.10 appears in Section 8.3.

3.4.4 Exponential Rates for Identification from Positive and Negative Examples

We now shift our attention to a setting – introduced by Gold [Gol67] – where, in addition to an
enumeration of the target language K, one also receives an enumeration of X \ K.

Let us first recall the difference between the different types of information in the two settings.
In the case of just positive examples (considered so far), the adversary picks a target language K
from L along with an enumeration of this language, and presents the examples from this enu-
meration sequentially to the learner. In the case of positive and negative examples, the adversary
again picks a target language K from L, but now it chooses a labeled enumeration of the whole do-
main X, where now the label of each element indicates whether it belongs to the target language
K or not. It is known that every countable collection of languages is identifiable in the limit with
positive and negative examples [Gol67].

Naturally, we need a different notion of a valid distribution in this setting. We adopt a definition
that was proposed by Angluin [Ang88].

Definition 15 (Valid Distributions Under Positive and Negative Examples [Ang88]). A distribution
P over X× {0, 1} is valid with respect to a collection of languages L if and only if supp(P) = X and there
exists some K ∈ L such that for all x ∈ X it holds that Pr(X,Y)∼P[Y = 1 | X = x] = 1 {x ∈ K} .

33

Our main result in this setting is that every countable collection of languages is identifiable with
positive and negative examples at an optimal exponential rate.

Theorem 3.11 (Identification with Positive and Negative Examples). For every countable collection
of languages L, there exists a learner that identifies L at rate e−n. Conversely, for every countable collection
of languages L that is non-trivial for identification, no learner can identify L at rate faster than e−n.

The proof of Theorem 3.11 appears in Section 8.4. Our proof of this result is inspired by the
approach of Bousquet et al. [BHM+21]. First, we show the exponential rates lower bound by
directly using a result of Bousquet et al. [BHM+21]. In order to get the upper bound, we use a
black-box transformation from any learner that identifies L in the limit, to a learner that achieves
exponential rates in the statistical setting.

The approach shares similarities to the one with just positive examples (see Section 1.2, Para-
graph B). The crucial reason why we can obtain exactly exponential rates here, instead of almost
exponential rates as in the previous setting, is that we can use the negative examples to accurately
estimate the correct sizes of the batches we use, instead of having to use “guesses” of increasing
size as we did in the setting of just positive examples.

To give a more concrete comparison to the binary classification setting of Bousquet et al.
[BHM+21], let us first explain some results from this work. Bousquet et al. [BHM+21] define
the following infinite game sequential, which is appropriately rephrased using the terminology
from our work looks as follows:

• In every round, the adversary presents a word xt ∈ X to the learner.

• Subsequently, the learner predicts a label from {0, 1} for this word, denoted by ŷt.

• Then, the adversary reveals the true label yt to the learner.

The only constraint on the adversary is that at any given point t ∈ N, there has to be some
language K ∈ L such that yt′ = 1{xt′ ∈ K}, for all t′ ≤ t. In other words, the choices of the labels
have to be consistent with some language K ∈ L. Crucially, the consistent language does not need
to be fixed in advance and it can keep changing throughout the interaction. In their setting, the
learner “wins” the game if it makes only finitely many mistakes. They provide a necessary and
sufficient condition on the structure of L which determines the existence of a winning strategy for
the learner: the learner can win this game if and only if L does not have an infinite Littlestone
tree (see Definition 22). Interestingly, this condition does not capture the existence of a winning
strategy for the learner in Gold’s setting: we have constructed a language family L which has
an infinite Littlestone tree, but it is identifiable in the limit from positive and negative examples.
Perhaps more surprisingly, this language is identifiable even with just positive examples. The
construction appears in Section D.

4 Organization of the Rest of the Paper

We next describe the organization of the rest of the paper.

• The proofs of Section 3.1 (statistical rates for identification and generation) can be found
in Section 5. The proof for the identification universal rates appears in Section 5.1 and for
generation in Section 5.2.

34

• The proofs of Section 3.2 can be found in Section 6. In Section 6.1, we discuss the decidability
of MOP(·). In Section 6.2 we provide our main result that generation with breadth is not
possible for generating algorithms for which MOP(·) is decidable. Finally, in Section 6.3, we
see the implications of this result for generation in the limit.

• The proofs of Section 3.3 appear in Section 7. In Section 7.1 we give the proof of the result in
the online setting and in Section 7.2 the proof of the result in the statistical setting.

• The proofs of Section 3.4 appear in Section 8. In Section 8.1 we give the proof of exponential
rates for identification using a subset oracle, in Section 8.2 the proof of exponential rates for
identification of finite collections using a membership oracle, and in Section 8.3 the proof of
exponential rates for identification of countable collections of finite languages. The proof for
the identification rates with positive and negative examples appears in Section 8.4.

5 Proofs from Section 3.1 (Rates for Identification and Generation)

5.1 Proof of Theorem 3.1 (Rates for Identification)

In this section, we give the full proof of Theorem 3.1; see Figure 2 for an outline. As we alluded to
before, the first step in the proof is to show that all non-trivial collections are not learnable at rate
faster than e−n.

Theorem 3.1

For non-trivial collections
e−n is the best possible rate

Identification in the limit
=⇒ Almost exponential rate

L is not identifiable in the limit =⇒
L cannot be identified at any rate

Lemma 5.1 Lemma 5.5

Proposition 5.2 Proposition 5.3

Lemma 5.8

Lemma 5.4 Lemma 5.7

Theorem 5.6

Figure 2: Outline of Proof of Theorem 3.1

Lemma 5.1 (Exponential Rate Is Best Possible for Identifying Any Non-trivial Collection). Let L be
a non-trivial collection of countably many languages. Then, for any identification algorithm A = {hn}n∈N

there exists a valid distribution P such that E[er(hn)] ≥ e−2n, for infinitely many n ∈ N.

35

Proof. Since L is non-trivial, there exist two distinct languages Li, Lj ∈ L and x ∈ X such that
x ∈ Li, x ∈ Lj. Let PLi ,PLi be valid distributions for Li, Lj that place at least 1/2 on x and if the
languages have more elements, they spread the remaining mass on the rest of the elements ar-
bitrarily; otherwise they put the remaining mass on x. Notice that since Li ̸= Lj at least one of
them has at least one more element other than x. For any n ∈ N, under both distributions, with
probability at least 2−n the algorithm will only see the element x appearing in the samples. Let En

be that event and condition on it. Notice that

Pr
[

Lhn(x,...,x) = Li | En

]
+ Pr

[
Lhn(x,...,x) = Lj | En

]
≤ 1 ,

where the probability is with respect to the randomness of the identification algorithm. Thus, we
have that either Pr

[
Lhn(x,...,x) ̸= Li | En

]
≥ 1/2 or Pr

[
Lhn(x,...,x) ̸= Lj | En

]
≥ 1/2 for each n ∈ N.

Hence, by the pigeonhole principle, for at least one of Li, Lj, the previous inequality holds for
infinitely many n ∈ N. Assume, without loss of generality, that it holds for Li and let N̂ denote
the set of n ∈ N for which it holds. Then, for each n ∈ N̂, we have that

E
X1,...,Xn∼Pn

Li

[er(hn(X1, . . . , Xn))] = Pr
X1,...,Xn∼Pn

Li

[Lhn(X1,...,Xn) ̸= Li]

≥ Pr
X1,...,Xn∼Pn

Li

[Lhn(X1,...,Xn) ̸= Li | En] · Pr
X1,...,Xn∼Pn

Li

[En]

≥ 1
2n · Pr[Lhn(x,...,x) ̸= Li | En] (by the definition of En)

≥ 1
2n+1 , (due to the assumption on Li)

which concludes the proof.

We now move on to the (almost) exponential rates upper bound for identification. This will be
done via a transformation from learners that achieve identification in the limit in Gold’s model
[Gol67] to learners that achieve (almost) exponential rates in our setting. The first step in this
result is to show that when we draw countably many samples from P all the elements of the target
language will appear in the sample.

Proposition 5.2 (Infinite Draws Are Enumerations). Let P be a probability distribution supported on a
countable domain and {Xi}i∈N, where every Xi is i.i.d. from P. Then,

Pr
{Xi}i∈N∼P∞

[supp(P) = ∪i∈N{Xi}] = 1.

Proof. For the direction Pr{Xi}i∈N∼P∞ [supp(P) ⊇ ∪i∈N{Xi}] notice that for any element x /∈ supp(P)

Pr
{Xi}i∈N∼P∞

[x ∈ ∪i∈N{Xi}] ≤ ∑
i∈N

Pr
Xi∼P

[x = Xi] = 0 . (6)

Hence,

Pr
{Xi}i∈N∼P∞

[supp(P) ⊇ ∪i∈N{Xi}] = 1 − Pr
{Xi}i∈N∼P∞

[∃x /∈ supp(P), x ∈ ∪i∈N{Xi}]

≥ 1 − ∑
x/∈supp(P)

Pr
{Xi}i∈N∼P∞

[x ∈ ∪i∈N{Xi}]

(6)
= 1 .

36

For the other direction, i.e., Pr{Xi}i∈N∼P∞ [supp(P) ⊆ ∪i∈N{Xi}], notice that for any element x ∈
supp(P), PrX∼P[X = x] is a positive constant px > 0 and let (En := {Xn = x})n∈N be a sequence
of events. Notice that these events are independent and that

∑
n∈N

Pr[En] = ∑
n∈N

px = ∞ .

Hence, we can apply the second Borel-Cantelli lemma (see Lemma E.2) and get that

Pr
[

lim sup
n→∞

En

]
= 1 . (7)

In other words, the element x will appear infinitely often in the stream X1, . . . , with probability
one. Therefore,

Pr
{Xi}i∈N∼P∞

[supp(P) ⊆ ∪i∈N{Xi}] = 1 − Pr
{Xi}i∈N∼P∞

[∃x ∈ supp(P) : x /∈ ∪i∈N{Xi}]

≥ 1 − ∑
x∈supp(P)

Pr
{Xi}i∈N∼P∞

[x /∈ ∪i∈N{Xi}]

(7)
= 1 .

Next, we show that for any algorithm A that identifies the target language in the limit in the
adversarial (online) setting and for any valid distribution P there is some number t∗ := t∗(A,P) ∈
N such that, when we draw t∗ many i.i.d. samples from P and use them to simulate the adversarial
game with A, it will identify the target language with probability at least 6/7. We denote the time
of the last mistake of the algorithm A = {hn}n∈N on a sequence x1, x2, . . . by TA(x1, x2, . . .), i.e.,

TA(x1, x2, . . .) = inf
{

n0 ∈ N : Lhn(x1,...,xn) ̸= K , ∀n ≥ n0

}
.

Proposition 5.3 (Tail Bound on the Distribution of Last Mistake). Fix any countable collection of
languages L and let K ∈ L be the true language. For any algorithm A = {hn}n∈N that identifies L in the
limit in the online setting from positive examples and any valid distribution P for K (Definition 1), there
exists a number t∗ ∈ N such that

Pr
{Xi}i∈N∼P

∞
[TA(X1, X2, . . .) ≤ t∗] ≥ 6

7
.

Proof. Let X1, X2, . . . , be a countable i.i.d. sample from P. From Proposition 5.2 we get that this
sample is a valid input to A since, with probability one, it consists only of elements of K and
eventually every element of K appears in this sequence. Consider the execution of A on prefixes
of the sequence and denote by TA := TA(X1, X2, . . .) the time it made its last mistake. We have that
Pr{Xi}i∈N∼P∞ [TA ∈ N] = 1. Thus,

lim
t→∞

Pr
{Xi}i∈N∼P∞

[TA(X1, X2, . . .) ≥ t] = 0 .

Thus, as required, there exists some t∗ ∈ N such that

Pr
{Xi}i∈N∼P∞

[TA(X1, X2, . . .) ≥ t∗] ≤ 1
7

.

37

Thus far we have shown that for every valid distribution P there exists some number t∗ ∈ N so
that if we simulate the online learning process with t∗ samples i.i.d. from P, then the algorithm
identifies the true language K correctly with probability at least 6/7. However, the number t∗ de-
pends on the distribution P, and hence we cannot immediately devise a learning strategy based
on it. To make the exposition easier to follow, let us first assume that we do know t∗; we will
shortly relax this assumption. For n sufficiently large consider the following algorithm:

• We split the input sequence into n/t∗ non-overlapping batches, where the i-th batch consists
of the elements X(i−1)·t∗+1, . . . , Xi·t∗ .

• We use each of these sequences as an input to a copy of A and we get n/t∗ many predictors{
hi

n

(
X(i−1)·t∗+1, . . . , Xi·t∗

)}
i∈[n/t∗]

.

• Since these predictors might be outputting different indices (descriptions) of the same lan-
guage, we find the smallest indexed language the output of each classifier can be mapped
to. In other words, if ji is the index outputted by the i-th batch, we find the smallest num-
ber j′ ∈ N such that Lji = Lj′ , and we set ji := j′. Since we only have query access to the
languages, we can only approximate this step. In particular, for every n ∈ N, we set ji := j′

if j′ ∈ N is the smallest number for which 1
{

xℓ ∈ Lji
}
= 1

{
xℓ ∈ Lj′

}
, for all ℓ ∈ [n]. The

details are handled in Lemma 5.4.

• We predict the index that at least (5/7) · (n/t∗) of the predictors agree upon; if no such lan-
guage exists we output one arbitrarily.

Before moving to the general case where t∗ is unknown, it is instructive to explain why the previ-
ous approach achieves exponential rates. Using standard concentration bounds, it is not hard to
see that with probability at least 1 − c · e−C·n, where c and C are P-dependent constants, at least a
5/7 fraction of the predictors will output an index that describes the true language. Conditioned
on that event, it is immediate that a 5/7-majority is well-defined and predicting based on it yields
the correct answer.

Let us now explain how to handle the actual problem setting, in which as we mentioned, we
do not have knowledge of t∗. Let f : N → N be some (very slowly) increasing function of the
input size n, which we will specify shortly. Given that function, we use the following modified
approach, where t∗ is replaced by f (n).

• We split the input sequence into n/ f (n) non-overlapping batches, where the i-th batch consists
of the elements X(i−1)· f (n)+1, . . . , Xi· f (n).

• We use each of these sequences as an input to a copy of A and we get n/ f (n) many predictors{
hi

n

(
X(i−1)· f (n)+1, . . . , Xi· f (n)

)}
i∈[n/ f (n)]

.

• We use the post-processing approach from Lemma 5.4, that we also explained above.

• We predict the index that at least (5/7) · (n/ f (n)) of the predictors agree upon; if no such
language exists we output one arbitrarily.

38

Since f (·) is increasing, there is some n0 ∈ N such that f (n0) = t∗. Thus, for n ≥ n0 we can
repeat the previous argument; with probability at least 1 − c · e−C·n/ f (n), at least (5/7) · (n/ f (n))

of the predictors will be outputting the correct target language, so taking the majority vote over
them yields the desired result. Notice that now we do not achieve exactly exponential rates, but
for every sublinear function g(·) we can achieve rates e−g(n).

We first state and prove the post-processing lemma to map the outputs of predictors that cor-
respond to different indices of the target language K to the same index. For this result, it is useful
to define the notion of “projection” of a language onto a subset of X.

Definition 16 (m-Projection of a Language). Let X = {x1, x2, . . .} be a countable domain and let L ⊆ X

be a language. For any m ∈ N we denote by L[m] := L ∩ {x1, x2, . . . , xm} the projection of the language
onto the first m elements of the domain.

The point of the next lemma is the following: in the enumeration of the language collection L,
we allow repetitions of K (as in Gold’s model). Hence, when running multiple copies of our
identification algorithms, the majority of them will identify K; yet we cannot guarantee that they
will identify the same index for K (due to multiple appearances of K in the enumeration). This
lemma guarantees that there exists a sufficiently large prefix of the enumeration of the domain X

so that the projection of predicted languages will be mapped to the smallest index version of K in
L, which we denote by Lz below.

Lemma 5.4 (Post-processing to Map to Lowest-Index Occurrence of K). Let L = {L1, L2, . . . , } be a
countable collection of languages over X = {x1, x2 . . .} and K ∈ L. Let z := min{j ∈ N : Lj = K} be the
first index at which the target language appears in L. Let I = (i1, . . . , im) be a multiset of indices and for
all 1 ≤ ℓ ≤ maxj∈[m] ij, n ∈ N, let

în
j = min{1 ≤ ℓ ≤ ij : Lℓ[n] = Lij [n]} ,

be the index of the first language that has the same projection as Lij . Then, there exists a number n0 :=
n0(K,L,X) that depends on K,L,X, but not I, such that for all n ≥ n0

Lij = K =⇒ în
j = z, ∀j ∈ [m] .

Before we give the formal proof, let us explain the main idea and the implication of this result.
For every language L that precedes Lz, there exists some element x ∈ X such that 1{x ∈ L} ̸=
1{x ∈ Lz}. This will enable us to detect and remove all languages different from K preceding
Lz. Then, by taking projections onto large enough prefixes we indeed map any Lj = K, j > z, to
Lz. This result will be useful for our constructions that require aggregating outputs from different
executions of the algorithm which, without this post-processing step, can output different indices.

Proof of Lemma 5.4. Assume without loss of generality that for some j ∈ [m] we have that Lij = K,
otherwise the statement holds vacuously. We will handle the cases z = 1, z > 1 separately.

Case A (z = 1): For any j ∈ [m] for which Lij = K and any n ∈ N we have that Lij [n] = Lz[n],
and since z = 1 this is the first index for which the equality holds. Hence, in this case, the claim
holds with n0 = 1.

39

Case B (z > 1): Since Lz is the first occurrence of K in L, for all languages Lℓ with 1 ≤ ℓ < z, there
exists some x ∈ X such that 1{x ∈ Lj} ̸= 1{x ∈ Lz}. Let xzℓ be the smallest indexed element of
X for which the previous holds. Moreover, let n0 = max1≤ℓ<z zℓ. Notice that for all n ≥ n0 and all
1 ≤ j < z, holds that Lj[n] ̸= Lz[n]. Furthermore, for all n ∈ N and all j ∈ [m] such that Lij = K it
holds that Lij [n] = Lz[n]. Combining these two claims, we can deduce that for all j ∈ [m] such that
Lij = K and for all n ≥ n̂0 the first index i ∈ N such that Lij [n] = Li[n] is indeed z. Notice that n0

depends only on the enumeration of L,X, and the target language K.

We are now ready to state and prove the formal result regarding the identification rates of collec-
tions that are identifiable in the limit.

Lemma 5.5 (Reduction From Identification at Almost-Exponential Rate to Online Identification).
Let L = {L1, L2, . . . } be a countable collection of languages and g : N → N be a sublinear function. For
any algorithm A = {hn}n∈N that identifies L in the limit in the online setting with positive examples and
any valid distribution P there exists an algorithm A′ = {h′n}n∈N such that for all n ∈ N

E
X1,...,Xn∼Pn

[er(h′n(X1, . . . , Xn))] ≤ c · e−C·g(n) .

Proof. Let K := {Li1 , Li2 , . . . } ⊆ L be the set of all languages in L that correspond to represen-
tations of K, i.e., for all L ∈ K it holds that L = K. First, notice that since g(n) = o(n) we can
construct some non-decreasing function f : N → N with limn→∞ f (n) = ∞ and n/ f (n) ≥ g(n). Let
t∗ ∈ N be a number such that

Pr
X1,...,Xt∗∼Pt∗

[Lht∗ (X1,...,Xt∗)
∈ K] ≥ 6

7
.

From Proposition 5.3 such a number t∗ is guaranteed to exist. Hence, there is some n0 such that
for all n ≥ n0, f (n) ≥ t∗. Thus, for all n ≥ n0

Pr
X1,X2,...,X f (n)∼P f (n)

[
Lh f (n)(X1,...,X f (n))

∈ K
]
≥ 6

7
.

Recall the error of the classifier h f (n)(·) as defined in Equation (4). We have that for all n ≥ n0, it

holds that er
(

h f (n)

)
is a Bernoulli random variable with p ≤ 1/7. Thus, if we have a collection of

t̂n := n/ f (n) such i.i.d. random variables, using Hoeffding’s bound [DP09] we get that

Pr
X1,...,Xn

[
1
t̂n

t̂n

∑
i=1

er
(

h f (n)

(
X(i−1)·t̂n+1, . . . , Xi·t̂n

))
≥ 2

7

]
≤ e−2t̂n/49 ≤ e−2g(n)/49 .

Thus, for n ≥ n0, at least a 5/7-fraction of the predictors outputs an index that corresponds to the
target language. We condition on that event E n

0 for the rest of the proof.
Let In = (i1, . . . , it̂n

) be the multiset of the indices of the languages outputted by the predictors
in the previous step and z = min{ℓ ∈ N : Lℓ = K}. Then, using Lemma 5.4 we know that there
exists some n̂0 := n̂0(K,L,X) such that for all n ≥ n̂0

Lij = K =⇒ în
j = z, ∀j ∈ [t̂n] ,

40

where în
j is defined in Lemma 5.4. Thus, letting În =

(
în
1 , . . . , în

t̂n

)
we have that for all n ≥

max{n0, n̂0}, at least a 5/7-fraction of the indices in În are exactly the index z.
Thus, for all n ≥ max{n0, n̂0} and conditioned on the event E n

0 , we have that the 5/7-majority
vote over the indices in În corresponds to the the first occurrence of K in L. Since E n

0 occurs with
probability at least 1 − e−2g(n)/49, this concludes the proof.

We now move on to the final ingredient we require for the proof of Theorem 3.1. It remains
to show that Angluin’s condition characterizes the collections of languages that can be identified
at an (almost) exponential rate. First, we discuss a result from Angluin [Ang88] which our proof
builds upon. Let us first briefly describe the convergence criterion in Angluin’s paper. There is a
valid distribution P that is supported over some K ∈ L and the algorithm is presented with an
infinite sequence of i.i.d. draws from P. After seeing each example, the learner must output some
i ∈ N with the goal being that Li = K. In that setting, an algorithm learns the target language if
for all but finitely many n ∈ N it outputs the same index i ∈ N for which Li = K. Notice that
the learning requirement is two-fold: i) the learner needs to stabilize, and ii) the index it predicts
needs to correspond to the target language. In that setting, Angluin [Ang88] showed the following
result.

Theorem 5.6 (Corollary 10 [Ang88]). Let L be a countable collection of languages over a countable
domain X that does not satisfy Angluin’s condition (Definition 10). Then, for every learning algorithm
A = {hn}n∈N there exists a valid distribution P supported on some K ∈ L such that, with probability at
least 1/3 over the i.i.d. draw of {Xn}n∈N, the learner does not identify K.

In particular, Angluin’s result shows that, with probability at least 1/3, the learner will either not
stabilize to any number i ∈ N or it will stabilize to a number j ∈ N with Lj ̸= K. Our next result
provides a strengthening of Angluin’s result since it shows that with probability at least 1/3, the
learner will, in fact, predict infinitely many times indices that do not correspond to K.

Lemma 5.7. Let L be a countable collection of languages over a countable domain X that does not satisfy
Angluin’s condition (Definition 10). Then, for every learning algorithm A = {hn}n∈N there exists a valid
distribution P supported on some K ∈ L such that

Pr
{Xi}i∈N∼P∞

[
∃ i1 < i2 < i3 < . . . : Lhij (X1,...,Xij)

̸= K, ∀j ∈ N
]
≥ 1

3
.

Proof. Let L be a countable collection of languages that does not satisfy Angluin’s condition. As-
sume towards contradiction that there is learner {hn}n∈N that, for any valid distribution P, with
probability cP < 1/3 misidentifies K infinitely often , i.e., for any valid distribution P

Pr
{Xi}i∈N∼P∞

[
∃ i1 < i2 < i3 < . . . : Lhij (X1,...,Xij)

̸= K, ∀j ∈ N
]
= cP <

1
3

. (8)

We will construct a different learner {h′n} which, for all valid distributions P, learns the corre-
sponding target language K in Angluin’s setting [Ang88] with probability at least 2/3. This will
create the desired contradiction with Theorem 5.6. Let h′n be a learner that works as follows.

41

Learner h′n

Input: Access to any infinite draw X1, X2, . . . from P∞ and oracle access to learner h(·)

Description:

1. For each n ∈ N do:

(a) Compute i∗ = hn(X1, . . . , Xn)

(b) Compute h′n(X1, . . . , Xn) as the smallest index j∗ such that Lj∗ classifies the first n
elements x1, x2, . . . , xn of the domain X in the same way as Li, i.e.,

h′n(X1, . . . , Xn) := min
{

j ∈ [i∗] : 1
{

xi ∈ Lj
}
= 1 {xi ∈ Li∗} , ∀i ∈ [n]

}
.

Notice that this can be done with O (n · i∗) many membership queries; where we send n
queries to each of the first i∗ languages in L.

Let z ∈ N be the smallest number for which Lz = K. We will handle the cases z = 1 and z > 1
separately.

Case A (z = 1): If Lh(X1,...,Xn) = K, we have that 1
{

x ∈ Lh(X1,...,Xn)

}
= 1 {x ∈ L1} for all x ∈ X.

Hence, since 1 is the smallest index, we have that for all n ∈ N

Lhn(X1,...,Xn) = K =⇒ h′n(X1, . . . , Xn) = z .

In this case, we define n0 := 1.

Case B (z > 1): Let 1 ≤ z′ < z. Then, since Lz is the first language for which Lz = K it must
be the case that Lz′ ̸= Lz. Hence, the set Sz′ := {x ∈ X : 1 {x ∈ Lz′} ̸= 1 {x ∈ Lz}} is non-empty.
We let ℓz′ := min {i ∈ N : xi ∈ Sz′} , i.e., let ℓz′ be the smallest number that xℓz′

certifies that Lz′ is
different from Lz. Notice that ℓz′ < ∞. We also define n0 := max {ℓ1, . . . , ℓz−1} , Notice that for all
n ≥ n0 we have that

Lhn(X1,...,Xn) = K =⇒ h′n(X1, . . . , Xn) = z .

Let E denote the event that

|{n ∈ N : hn(X1, . . . , Xn) ̸= K}| < ∞ .

Notice that, by definition of cP,
Pr

{Xi}i∈N∼P∞
[E] = 1 − cP .

In other words, conditioned on the event E , the learner {hn}n∈N makes finitely many mistakes.
Thus, conditioned on E , for every draw D := {Xi}i∈N ∼ P∞ there is some number nD ∈ N such
that hn(X1, . . . , Xn) = K, ∀n ≥ nD. Let n′ = max {nD, n0} . Then, conditioned on E , for every
n ≥ n′ we have that

h′n(X1, . . . , Xn) = z .

Since cP < 1/3 (see Equation (8)), 1 − cP > 2/3 which implies that the learner {h′n}n∈N converges
in Angluin’s model with probability greater than 2/3, for any choice of a valid data-generating
distribution P. This contradicts Theorem 5.6 and concludes the proof.

42

Let us now explain why Lemma 5.7 does not immediately imply a lower bound in our setting.
First, notice that the previous result says that any learner {hn}n∈N must make infinitely many
errors with probability at least 1/3, under some valid data-generating distribution P. Expressing
this using a lim sup(·) implies that14

Pr
{Xi}i∈N∼P∞

[
lim sup

n→∞
{Lhn(X1,...,Xn) ̸= K}

]
≥ 1

3
.

Since R : N → R≥0 is a rate function, it satisfies limn→∞ R(n) = 0. Thus, in order to show that L
is not learnable at any rate, it is enough to show that for any learner {hn}n∈N, there exists a valid
distribution P such that PrX1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
does not converge as n → ∞, or if it does

converge it holds that
lim
n→∞

Pr
X1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
̸= 0 .

For this, it suffices to show that

lim sup
n→∞

Pr
X1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
> 0 , (9)

for some valid distribution P. It follows from the reverse of Fatou’s lemma that for every sequence
of events {En}n∈N

Pr
[

lim sup
n→∞

En

]
≥ lim sup

n→∞
Pr[En] ,

which is not sufficient to deduce the result we need. In fact, it is not hard to construct a family of
events such that {En}n∈N such that Pr [lim supn→∞ En] = 1, but lim supn→∞ Pr[En] = 0 : consider
an infinite stream of independent coin flips, where the probability of success of the n-th try is 1/n.
The second Borel-Cantelli lemma (see Lemma E.2) implies the result. Hence, we need to study the
particular structure of our problem to show that lim supn→∞ Pr[En] > 0. .

In fact, to deduce that lim supn→∞ Pr[En] > 0, we show a stronger result: the lim sup of the
probability of error of the learner is not merely bounded away from zero, but, it is at least 1/2

(Lemma 5.8). To that end, we follow a strategy which consists of the following two main steps:

• First, we assume that there exists a learner {hn}n∈N such that for every valid distribution P

there is some c > 0 such that

lim sup
n→∞

Pr
X1,...,Xn∼Pn

[{
Lhn(X1,...,Xn) ̸= K

}]
≤ 1

2
− c .

Then, we show that using the learner {hn}n∈N we can construct a learner {h′n}n∈N such that
for all valid distributions EX1,...,Xn∼Pn [1{Lh′n(X1,...,Xn) ̸= K}] ≤ C · e−c·n/ log n, where c, C are
distribution-dependent constants. This can be viewed as a boosting argument for iden-
tification. To make this argument work, we also need to use our post-processing result
(Lemma 5.4) to map different outputs that correspond to K to the same index.

14Informally, lim sup of a sequence of events captures the events that occur infinitely often. For instance,
Pr[lim supn→∞ En] represents the probability that infinitely many of the events En occur. On the other hand,
lim supn→∞ Pr[En] roughly speaking denotes the largest value that the probabilities Pr[E1], Pr[E2], . . . , . . . approach
infinitely often as n → ∞.

43

• Subsequently, using the Borel-Cantelli lemma (see Lemma E.1) we show that for {h′n}n∈N it
holds that for any valid distribution P

Pr
{Xi}i∈N∼P∞

[
lim sup

n→∞

{
Lh′n(X1,...,Xn) ̸= K

}]
= 0 ,

which, combined with Lemma 5.7, leads to a contradiction.

The formal statement and the proof of the result follow.

Lemma 5.8. For every countable collection of languages L that does not satisfy Angluin’s condition, and
every learning algorithm A = {hn}n∈N there exists a valid distribution P supported on K ∈ L such that

lim sup
n→∞

Pr
X1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
≥ 1

2
.

Proof. Assume towards contradiction that there exists a countable collection of languages L that
does not satisfy Angluin’s condition and a learning algorithm A = {hn}n∈N such that for all target
languages K ∈ L and for all valid distributions P supported over K there exists some c < 1/2 such
that

lim sup
n→∞

Pr
X1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
= c .

Let also c̃ := 1/2 − c > 0 By definition of the limit superior, it holds that∣∣∣∣{n ∈ N : Pr
X1,...,Xn∼Pn

[Lhn(X1,...,Xn) ̸= K] > c +
c̃
2

}∣∣∣∣ < ∞ .

For the rest of the proof, let us fix some valid distribution P. Let n0 be the largest number such that
PrX1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
> c + (c̃/2). Notice that n0 depends on P. The previous argument

shows that n0 < ∞. For all n > n0 we have that

Pr
X1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
≤ c +

c̃
2
=

1
2
− c̃

2
.

Consider the algorithm A′ = {h′n}n∈N that works as follows: for every n, it splits the dataset into
t̂n := n/log n consecutive and non-overlapping batches, each of size log n. Then, it runs algorithm
hlog n on each of the batches. Let ij denote the output of the j-th batch, In = (i1, . . . , it̂n

) denote the
multiset of all these indices and z = min{ℓ ∈ N : Lℓ = K}. Then, using Lemma 5.4 we know that
there exists some n̂0 := n̂0(K,L,X) such that for all n ≥ n̂0

Lij = K =⇒ în
j = z, ∀j ∈ [t̂n] ,

where în
j is defined in Lemma 5.4. Thus, letting În =

(
în
1 , . . . , în

t̂n

)
we have that for all n ≥

max{n0, n̂0}, all the indices of In that correspond to some index of K are mapped to z in the collec-
tion În.

Finally, the algorithm outputs the majority vote over the indices in În. Using a standard Cher-
noff bound, we see that

Pr

 ∑
j∈[t̂n]

1
{

în
j ̸= z

}
n/ log n

≥ 1
2
− c̃

4

 ≤ e−c̃22n/ log (n), ∀n ≥ max{n0, n̂0} .

44

This implies that

Pr
X1,...,Xn

[
h′n(X1, . . . , Xn) ̸= z

]
≤ e−c̃22n/ log (n), ∀n ≥ max{n0, n̂0} .

Thus, we have that

∑
n∈N

Pr
X1,...,Xn∼Pn

[Lh′n(X1,...,Xn) ̸= K] = ∑
n≤max{n0,n̂0}

Pr
X1,...,Xn∼Pn

[Lh′n(X1,...,Xn) ̸= K]

+ ∑
n>max{n0,n̂0}

Pr
X1,...,Xn∼Pn

[Lh′n(X1,...,Xn) ̸= K]

≤ max{n0, n̂0}+ ∑
n>max{n0,n̂0}

Pr
X1,...,Xn∼Pn

[Lh′n(X1,...,Xn) ̸= K]

≤ max{n0, n̂0}+ ∑
n>max{n0,n̂0}

Pr
X1,...,Xn∼Pn

[h′n(X1, . . . , Xn) ̸= z]

≤ max{n0, n̂0}+ ∑
n>max{n0,n̂0}

e−c̃22n/ log (n)

< ∞ .

Using the Borel-Cantelli lemma (see Lemma E.1), we get that

Pr
{Xi}i∈N∼P∞

[
lim sup

n→∞

{
Lh′n(X1,...,Xn) ̸= K

}]
= 0 .

Since this holds for all valid distributions P, it contradicts Lemma 5.7, which states that, for some
valid P′ (which depends on {h′n}n∈N), it holds that

Pr
{Xi}i∈N∼P′∞

[
lim sup

n→∞

{
Lh′n(X1,...,Xn) ̸= K

}]
≥ 1

3
.

This concludes the proof.

We now have all the components to prove Theorem 3.1 by following the outline in Figure 2.

Proof of Theorem 3.1. Let L be any non-trivial collection of languages. Then, Lemma 5.1 implies
that no learner can learn L at a rate faster than e−n.

Let us first consider the case that L satisfies Angluin’s condition. This implies that L is identi-
fiable in the limit (see Theorem 2.2). Let g : N → R, be some sublinear function, i.e., g(n) = o(n).
Then, Lemma 5.5 shows that there exists a learner that achieves rates e−g(n) for L.

Lastly, we consider the case where L does not satisfy Angluin’s condition. Then, Lemma 5.8
shows that for every learner {hn}n∈N, there exists a valid distribution P for which

lim sup
n→∞

Pr
X1,...,Xn∼Pn

[
Lhn(X1,...,Xn) ̸= K

]
≥ 1

2
.

Hence, L is not learnable at any rate. This concludes the proof.

45

5.2 Proof of Theorem 3.2 (Rates for Generation)

In this section, we prove Theorem 3.2 following the outline in Figure 3.
First, in Section 5.2.1 we formally define the family of collections that are non-trivial for genera-

tion (Definition 17) and show that (1) for any trivial collection, it is possible to generate after seeing
a constant number of examples (Lemma 5.9) and (2) an exponential rate is the best-possible for any
non-trivial collection (Lemma 5.10) . Next, in Section 5.2.2, we present a sufficient condition under
which a generation algorithm that works “in-the-limit” achieves exponential rate (without any
modifications). Finally, in Sections 5.2.3 and 5.2.4, we present algorithms that achieve exponential
rates given access to a subset oracle and membership oracle for the collection L respectively.

Theorem 3.2

For non-trivial collections e−n is the best possible rate Consistent generation at exponential rate

Lemma 5.9Lemma 5.10 Lemma 5.11

Lemma 5.12 Lemma 5.13

Figure 3: Outline of Proof of Theorem 3.2

5.2.1 Optimal Rate for Non-Trivial Collections for Generation

For the case of generation, we need a different notion of non-trivial languages from the one we
did for identification (see Definition 13). Indeed, assume that L = {L1, L2}, and L1 ̸= L2, L1 ∩
L2 = ∞. This collection satisfies Definition 13, thus no algorithm can identify at a rate faster than
exponential. However, it is not hard to see there is a consistent generation algorithm that does not
need any samples: just generate a string from L1 ∩ L2. Instead, the following condition turns out
to characterize collections that are non-trivial for generation.

Definition 17 (Non-trivial for Generation). A language collection L is non-trivial for generation if there
exists some x ∈ X and a finite set of languages L′ ⊆ L such that:

• each L ∈ L′ contains x; and

• the intersection of all languages in L′ is finite, i.e., |∩L∈L′ L| < ∞.

To verify that the definition of non-trivial collections is meaningful, we show in the following
result that for all trivial collections, there exists an algorithm that generates correctly with proba-
bility 1, for all valid distributions, when n is sufficiently large even if the training dataset contains

46

(a) Trivial for Generation (b) Trivial for Generation (c) Non-Trivial For Generation

Figure 4: Illustrations of language collections that are (a,b) trivial for generation and (c) non-
trivial for generation. In cases (a) and (c), the collection L has three languages – L1, L2, and L3 –
denoted by different colors. Case (b) illustrates the example in Example 2; here, the collection L

has infinitely many languages which follow a nested structure L1 ⊋ L2 ⊋ · · · ⊋ {0}.

only one distinct element. Interestingly, our result uses an algorithm that generates in the limit in
a setting that is slightly different from the one considered by Kleinberg and Mullainathan [KM24]:
we fix some target language K ∈ L, we give a single input x ∈ K to the algorithm and then we
run it for infinitely many steps, without giving any further inputs. We show that there exists some
nK,L ∈ N which depends only on K and the enumeration of L, but, crucially, not on x, such that
the algorithm generates correctly for every n ≥ nK,L. The algorithm is described below.

Generating in the limit from a trivial collection L = {L1, L2, . . .}

Input: A set of n elements {X1, . . . , Xn} from X, potentially containing repetitions

Description:

1. Select any arbitrary element x from {X1, . . . , Xn}
2. Initialize the index j = 1

3. while x /∈ Lj do: increment j by 1

When X1, . . . , Xn are drawn from a valid distribution this step terminates with probability 1

4. Compute Vn(x) := {Li ∈ L : x ∈ Li, 1 ≤ i ≤ n} ∪
{

Lj
}

5. Let k := 1

6. while xk /∈ ⋂
L∈Vn(x) L \ {X1, . . . , Xn} do: increment k by 1

When L is trivial for generation (see Definition 17) this step terminates with probability 1

7. return xk

Notice that the previous algorithm is indeed computable given access to a membership oracle for
each language in L.

Lemma 5.9 (Algorithm For Generation from Trivial Collections). For every collection of languages L
that is trivial for generation, there exists a generation algorithm (Gn)n∈N such that for every valid distri-
bution P with respect to L it terminates with probability 1 for all n ∈ N, and there exists some constant C
that depends on P,L, such that for all n ≥ C, it holds that

E
X1,...,Xn∼Pn

[1 {Gn(X1, . . . , Xn) ̸∈ supp(P) \ {X1, . . . , Xn}}] = 0 .

47

Proof. Let L be a trivial collection for generation (see Definition 17). Fix some valid distribution P

supported over target language K. Let z ∈ N be the smallest number such that Lz = K. Then, the
triviality condition states that for every x ∈ X and every finite set of languages L′ ⊆ L it holds
that either x /∈ L, for some L ∈ L′, or |∩L∈L′ L| = ∞. We have that, with probability 1, every i.i.d.
draw of n samples from P satisfies X1, . . . , Xn ∈ Lz. Choose an arbitrary x ∈ {X1, . . . , Xn} . Notice
again that, with probability 1, x ∈ K. Consider the execution of the algorithm described above
by fixing this x. Let us now verify that this algorithm generates some x′ ∈ K \ {X1, . . . , Xn} for
all n ≥ z, and terminates with probability 1 for all n ∈ N. First, notice that by definition of z,
when n ≥ z it holds that Lz ∈ Vn(x). Notice that, since for all L ∈ Vn(x) it holds that x ∈ L and
|Vn(x)| ≤ n < ∞, the triviality definition implies that for all n ≥ z,∣∣∣∣∣∣ ⋂

L∈Vn(x)

L

∣∣∣∣∣∣ = ∞ .

Hence, for all n ≥ z we have that

• K ∈ Vn(x), thus
⋂

L∈Vn(x) L ⊆ K.

•
∣∣∣⋂L∈Vn(x) L

∣∣∣ = ∞.

Thus, it holds that ∣∣∣∣∣∣ ⋂
L∈Vn(x)

L \ {X1, . . . , Xn}

∣∣∣∣∣∣ = ∞ .

Hence, the algorithm can generate unseen strings from the target language K for all n ≥ z, with
probability 1. Notice that z indeed only depends on K,L.

We now prove the termination property of our algorithm. To that end, it suffices to show that
both while loops terminate with probability 1. As we argued before, x ∈ Lz with probability 1,
hence, the first while loop terminates after at most z steps. We now consider the termination of
the second while loop. As we argued above,

∣∣∣⋂L∈Vn(x) L \ {X1, . . . , Xn}
∣∣∣ = ∞ with probability 1,

hence the loop will terminate after a finite number of steps. This concludes the proof.

We remark that the requirement that the set L′ in Definition 17 is finite is crucial. The next exam-
ple gives a collection of languages that is trivial for generation, yet it satisfies a modification of
Definition 17 that allows L′ to be infinite.

Example 2 (A Trivial Collection for Generation That “Almost” Satisfies Definition 17). Define the
domain X and the language collection L as follows

X = [0, 1] ∩ Q and L =

{[
0,

1
n

]
∩ Q : n ∈ N

}
,

where Q is the set of rational numbers. Notice that both X and L are countable, and each L ∈ L is
also countable. Consider the element x = 0 and the set L′ = L. First, notice that x ∈ L, ∀L ∈ L′ (by
definition of every L ∈ L). Moreover, it is not hard to see that ∩L∈L′ L = {0}, hence |∩L∈L′ L| = 1 <

∞. It is also not hard to see that every finite sub-collection L′′ ⊆ L, satisfies |∩L∈L′′ L| = ∞. Hence,
the conditions of Definition 17 can only be satisfied by infinite sub-collections. We can show that

48

there is an algorithm that generates from L, without seeing any example. Indeed, consider the
algorithm that in every round n ∈ N outputs the element 1/n. Let K be any target language. By
definition, there is some nK ∈ N such that 1/n ∈ K, for all n ≥ nK. Hence, this algorithm can
generate from K.

We now move on the proof the main result in this section. Similar to the identification setting
before, we show the main result in two parts. First, we show that for any non-trivial collection of
languages, no algorithm can generate at a rate faster than exponential. The approach shares some
high-level ideas with the identification setting, but the more complicated condition that character-
izes non-trivial generation makes the technical details more nuanced. In particular, leveraging the
non-triviality condition, we can deduce that there exists a finite set of elements {xℓ1 , . . . , xℓB} and
a finite collection of languages L′ so that ∩L∈L′ L = {xℓ1 , . . . , xℓB} . Then, whenever the training set
consists exactly of the elements {xℓ1 , . . . , xℓB} (containing also duplicates of them), no matter what
element x ∈ X \ {xℓ1 , . . . , xℓB} the algorithm generates, there exists some L ∈ L′ so that x /∈ L′.
This allows us to find some “hard” distribution, which depends on the generating algorithm, and
for which this event happens with exponentially small probability. The formal statement of the
result and the technical details of the proof follow.

Lemma 5.10 (Exponential Rate Is Optimal for Generating From Any Non-trivial Collection). Let L
be a non-trivial collection of languages for generation. Then, for any generating algorithm (Gn)n∈N there
exists a valid distribution P such that E[er(Gn)] ≥ C · e−c·n, for infinitely many n ∈ N.

Proof. Since L is non-trivial for generation, there exists some x ∈ X and a finite L′ ⊆ L such that
x ∈ ∩L∈L′ L and |∩L∈L′ L| = B < ∞. Let {xℓ1 , . . . , xℓB} := ∩L∈L′ L be the distinct elements that
appear in the intersection of the sub-collection L′. Define a collection of distributions {PL}L∈L′

that has two properties:

• For every L ∈ L′ it holds that PL is valid for L.

• All the distributions {PL}L∈L′ put exactly the same mass on every element of the set {xℓ1 , . . . , xℓB} .

Notice that, by definition of {xℓ1 , . . . , xℓB} , there are collections of distributions that satisfy these
two constraints.

For any n ≥ B, let En be the event that the training set is (xℓ1 , . . . , xℓB , xℓ1 , . . . , xℓ1) . Notice that
under any P ∈ {PL}L∈L′ ,

Pr
X1,...,Xn∼Pn

[En] ≥ C · e−c·n ,

for the same constants C, c for all P ∈ {PL}L∈L′ . Recall that for any valid distribution supported
on a target language K

er (Gn(X1, . . . , Xn)) = 1 {Gn(X1, . . . , Xn) /∈ K \ {X1, . . . , Xn}} .

Since |L| = ∞, ∀L ∈ L and |∩L∈L′ L| < ∞, it follows that |L′| ≥ 2. Let k := |L′|. By definition of L,
k < ∞, and by the previous argument k ≥ 2. Moreover, notice that, for all x ∈ X \ {xℓ1 , . . . , xℓB}
there exists L ∈ L′ such that x /∈ L. Indeed, if x ∈ L, ∀L ∈ L′ then x ∈ ∩L∈L′ L \ {xℓ1 , . . . , xℓB} , but
∩L∈L′ L \ {xℓ1 , . . . , xℓB} = ∅. For every distribution p over X it holds that

Pr
X∼p

[
X ∈ {xℓ1 , . . . , xℓB} or ∃L ∈ L′ such that X /∈ L

]
= 1 .

49

For every n ∈ N, n ≥ B, conditioned on the event En, since the algorithm is a randomized mapping
from the training set to X, we have that Gn (xℓ1 , . . . , xℓB , xℓ1 , . . . , xℓ1) = pn. We consider two cases:

• For infinitely many n ∈ N, n ≥ B it holds that

Pr
X∼pn

[X ∈ {xℓ1 , . . . , xℓB}] ≥
1
2

.

Let N̂ be the infinite set for which the previous holds. Then, for all P ∈ {PL}L∈L′ and for all
n ∈ N̂ it holds that

E
X1,...,Xn∼Pn

[er(Gn(X1, . . . , Xn))] = Pr
X1,...,Xn∼Pn

[Gn(X1, . . . , Xn) /∈ K \ {X1, . . . , Xn}]

≥ Pr
X1,...,Xn∼Pn

[Gn(X1, . . . , Xn) /∈ K \ {X1, . . . , Xn} | En] · Pr
X1,...,Xn∼Pn

[En]

≥ C · e−c·n · Pr[Gn(xℓ1 , . . . , xℓB , xℓ1 , . . . , xℓ1) /∈ K \ {xℓ1 , . . . , xℓB}]
(by the definition of En)

≥ C · e−c·n · Pr
X∼pn

[X ∈ {xℓ1 , . . . , xℓB}]

(by the definition of pn)

≥ C · e−c·n · 1
2

. (by the assumption on N̂)

Thus, taking as the target distribution any P ∈ {PL}L∈L′ we see that the algorithm indeed
has an exponential rates lower bound.

• For infinitely many n ∈ N, n ≥ B, it holds that

Pr
X∼pn

[
∃L ∈ L′ such that X /∈ L

]
≥ 1

2
.

Then, due to the pigeonhole principle, there is some L ∈ L′ such that for infinitely many
n ∈ N it holds that

Pr
X∼pn

[X /∈ L] ≥ 1
2k

.

Let N̂ be the infinite set for which the previous holds. Then, for the data-generating distri-
bution PL we have that

E
X1,...,Xn∼Pn

L

[er(Gn(X1, . . . , Xn))] = Pr
X1,...,Xn∼Pn

L

[Gn(X1, . . . , Xn) /∈ L \ {X1, . . . , Xn}]

≥ Pr
X1,...,Xn∼Pn

L

[Gn(X1, . . . , Xn) /∈ L \ {X1, . . . , Xn} | En] · Pr
X1,...,Xn∼Pn

[En]

≥ C · e−c·n · Pr[Gn(xℓ1 , . . . , xℓB , xℓ1 , . . . , xℓ1) /∈ K \ {xℓ1 , . . . , xℓB}]
(by the definition of En)

≥ C · e−c·n · Pr
X∼pn

[X /∈ L] (by the definition of pn)

≥ C · e−c·n · 1
2k

. (by the assumption on N̂)

Then, we can pick the target distribution to be PL, and the exponential lower bound follows.

The proof is concluded by noticing that, from the pigeonhole principle, at least one of the previous
two cases holds for any sequence of {pn}n∈N.

50

5.2.2 A Sufficient Condition To Achieve Exponential Rate

Let us now shift our attention to the upper bound. Following the approach of Kleinberg and
Mullainathan [KM24], we consider two settings: first, we assume access to a subset oracle which
can answer questions Li ⊆ Lj, for all i, j ∈ N. Then, we consider the setting where we only have
access to a membership oracle for each language in L.

Before describing our approach let us explain why a direct adaptation of the approach of Bous-
quet et al. [BHM+21] does not seem to work in this setting. Recall that Bousquet et al. [BHM+21]
transform in a black-box manner a learner which is eventually “correct” in the adversarial setting,
to a learner that achieves exponential rates in the statistical setting, by running multiple copies
of it on independent samples of the dataset, and then aggregating their results through a major-
ity vote. A crucial property of the learner of Bousquet et al. [BHM+21] is that the majority vote
is taken over objects that have binary values, namely the predicted label of the test point. One
immediate obstacle to applying this approach here, is that the eventually correct generators will
be outputting different valid strings in every iteration. Further, these valid strings might be even
coming from a different subsets of the true language. Thus, it is not clear at all which aggregation
strategy could lead to the desired result. One potential approach to circumvent this obstacle is to
have all the generated strings give “votes” to the different languages of L (potentially up to a cap
n) that they belong to. It is clear that after some finite n0, with probability at least 1 − C · e−c·n,
the target language K would be collecting votes from the majority of the strings. Unfortunately,
it is not hard to see that for infinitely many n0 ∈ N there must be another L′ ∈ L, L′ ̸= K, that is
accumulating more votes than K; if this was not the case we would have been able to identify K,
for all countable L, which contradicts our established lower bounds. Thus, it is not clear how to
make this aggregation strategy work either.

Nevertheless, we show that, perhaps surprisingly, a much simpler strategy works: we only
need to run one copy of the algorithm proposed by Kleinberg and Mullainathan [KM24] on the
entire dataset to get exponential rates. In fact, we identify a sufficient condition that allows us to
use any algorithm that works “in-the-limit” in the statistical setting without making any modifica-
tions to it. We believe that this idea might find other applications in the universal rates literature.

The following elementary result will be crucial for the analysis of both settings, i.e., the one
with the subset oracle and the one with just the membership oracle.

Lemma 5.11. Let L be a countable collection of languages. Let A = {hn}n∈N be an algorithm that
generates from L in the limit with positive examples with the following additional property:

• for every target language K ∈ L there exists a finite set of examples {xi1 , . . . , xiℓ} ⊆ K that depends
only on K and the enumeration of L,X, and

• a finite number n0 ∈ N that depends on K and the enumeration of L,X,

such that A always generates correctly if its input has size at least n0 and it contains xi1 , . . . , xiℓ . Then, A
generates from K with exponential rates in the statistical setting.

Proof. Let P be a valid data-generating distribution. Then, by definition, supp(P) = K, for some
K ∈ L. Let xi1 , . . . , xiℓ ⊆ K be a set of points such that after A takes as input this set it starts
generating correctly, i.e., for any S such that xi1 , . . . , xiℓ ⊆ S and |S| ≥ n0 it holds that h|S|(S) ∈ K \

51

S. Since P is a valid data-generating distribution it holds that xi1 , . . . , xiℓ ⊆ supp(P). Let pii , . . . , piℓ
be the mass of points xi1 , . . . , xiℓ under P. Suppose we draw n samples i.i.d. from P. Then, the
probability that we do not observe all xi1 , . . . , xiℓ in the sample is bounded as

Pr
X1,...,Xn∼Pn

[∃j ∈ [ℓ] : xij /∈ {X1, . . . , Xn}] ≤ ∑
j∈[ℓ]

Pr
X1,...,Xn∼Pn

[xij /∈ {X1, . . . , Xn}] (by a union bound)

= ∑
j∈[ℓ]

(
1 − pij

)n
(since we have i.i.d. draws)

≤ ∑
j∈[ℓ]

e−pij ·n (as 1 − z ≤ e−z for all z ∈ R)

≤ ℓ · e−minj∈[ℓ] pij ·n .

Thus, the algorithm generates correctly in the statistical setting after taking as input n ≥ n0 ∈ N

examples, with a probability at least 1 − C · e−c·n, for some distribution dependent constants C, c.
This concludes the proof.

In the next two sections, we will show that the algorithms proposed by Kleinberg and Mul-
lainathan [KM24] in the setting with access to a subset oracle or membership oracle already satisfy
this property. For completeness, we present their algorithms and the related definitions.

5.2.3 Algorithm With Access To Subset Oracle

We start with the algorithm of Kleinberg and Mullainathan [KM24] which requires access to a
subset oracle for L, i.e., an oracle that for any two languages Li, Lj ∈ L answers whether Li ⊆ Lj.
To that end, we first define the notion of critical language [KM24].

Definition 18 (Critical Language [KM24]). Let L = {L1, L2, . . . , } be a countable collection of lan-
guages. Let Sn = {xin , . . . , xin} ⊆ X. For any j ∈ N, we say that Lj is critical with respect to Sn if
Sn ⊆ Lj and for all i < j if Sn ⊆ Li then Lj ⊆ Li.

The intuition behind this definition is that if two languages Li, Lj are both critical and i < j, then
it is “safer” to generate from Lj. This is exactly the way the algorithm from Kleinberg and Mul-
lainathan [KM24] operates. To be more precise, in every iteration n ∈ N it performs the following
steps:

• Let Ln = {L1, L2, . . . , Ln} be the first n languages of L and Sn = {xi1 , . . . , xin} be the set of
examples observed so far.

• Let Cn ⊆ Ln be the set of the critical languages with respect to Sn within Ln (Definition 18).
If Cn = ∅ output an arbitrary x ∈ X and proceed to getting the (n + 1)-th input. This step
makes use of the subset oracle.15

• Let Lk ∈ Cn be the critical language with the highest index.

15Observe that it makes sense to output something arbitrary since the first consistent (in the sense that it contains the
observed training examples) language in L is critical by definition and hence if Cn = ∅, we have not yet encountered a
consistent language.

52

• Output the first unseen example from Lk, i.e., xj ∈ X such that j = min{i ∈ N : xi ∈ Lk, xi /∈
Sn}.

It is implicit in the analysis of Kleinberg and Mullainathan [KM24] that for every target language
K ∈ L, there exists a set xi1 , . . . , xiℓ ⊆ K and n0 ∈ N that depend only on K and the enumera-
tion of X,L, such that after n0 steps if the above algorithm takes as input any set S that contains
{xi1 , . . . , xiℓ}, then it always generates a new example correctly. We make this explicit in the fol-
lowing lemma and provide a proof for completeness.

Lemma 5.12 (Adaptation of (4.3) from Kleinberg and Mullainathan [KM24]). Let L = {L1, L2, . . .}
be a countable collection of languages, let K ∈ L and let z ∈ N be the smallest number such that Lz = K.
Then, there exist xi1 , . . . , xiℓ ∈ K that depend only on K and the enumeration of L, such that if the algorithm
of Kleinberg and Mullainathan [KM24] takes as input any set S for which xi1 , . . . , xiℓ ∈ S and |S| ≥ z,
where z depends only on K and the enumeration of L, then it generates correctly from K.

Proof. Let Li1 , . . . , Liℓ ⊆ L with i1, . . . , iℓ < z be the set of all languages that precede Lz in L for
which Lz ̸⊆ Lij , j ∈ [ℓ]. Then, for each such Lij there exists some x ∈ Lz so that x /∈ Lij . Let xij be
the smallest indexed element in X for which the previous holds. Notice that whenever xi1 , . . . , xiℓ
is part of the input sample S, then Lz is critical; this follows immediately from the definition of
criticality and the fact that the set S contradicts all the languages Li, i < z, such that Lz ̸⊆ Li.
Moreover, when |S| ≥ z, the algorithm outputs an unseen word from a critical language Lz′ with
z′ ≥ z. By definition of the critical language, this means that Lz′ ⊆ Lz. Hence, the algorithm
generates correctly.

An immediate consequence of Lemma 5.11 is that the algorithm of Kleinberg and Mullainathan
[KM24] with access to a subset query oracle generates with exponential universal rates.

5.2.4 Algorithm With Access To Membership Oracle

We now move on to the more involved version of the algorithm of Kleinberg and Mullainathan
[KM24] that only requires membership access to every L ∈ L. Recall this means that for every
x ∈ X, L ∈ L the algorithm can ask whether x ∈ L.

Before we describe the algorithm, we provide the definition of a modified notion of a critical
language [KM24], which is based on a notion of a projection of a language, which we defined in
Definition 16.16 Recall that, given some language L, we denote L[m] = L ∩ {x1, . . . , xm} (Defini-
tion 16).

Definition 19 (m-Critical Language [KM24]). Let L = {L1, L2, . . . , } be a countable collection of lan-
guages. Let Sn = {xin , . . . , xin} ⊆ X. For any j ∈ N, we say that Lj is m-critical with respect to Sn if
Sn ⊆ Lj and, for all i < j, if Sn ⊆ Li, then Lj[m] ⊆ Li[m].

We first give an intuitive description of the key modifications of the algorithm from the previous
section that are required to make it work only with access to a membership oracle. First, notice
that even though the algorithm cannot ask queries of the form Li ⊆ Lj, it can ask queries of the

16Kleinberg and Mullainathan [KM24] do not explicitly define this term; we use it to simplify our discussion.

53

form Li[m] ⊆ Lj[m], for any finite m ∈ N, by just asking 2m membership queries. Thus, the high-
level idea is to replace subset queries with queries of the form Li[m] ⊆ Lj[m], for a sufficiently
large m ∈ N. The exact details are provided below.

• Let Sn = {xi1 , . . . , xin} be the set of elements that have been presented to the learner up to
step n. At the beginning of step n, set mn = max{mn−1, in}.17

• Let Vn ⊆ {L1, L2, . . . , Ln} be the set of languages whose index is at most n and are consistent
with the input Sn, i.e., Sn ⊆ L, ∀L ∈ Vn. If no such languages exist, output an arbitrary x ∈ X

and proceed to reading the (n + 1)-th input example. Notice that this can be done with n2

membership queries.

• Let m = mn + 1 and Cm
n be the set of the m-critical languages within Vn. Notice that since

Vn ̸= ∅, for all m ∈ N there exists at least one m-critical language (the lowest indexed
language within Cn is m-critical for all m ∈ N).

• Let cm
n ∈ N be the largest index of a language in Cm

n . If for some i ≤ m, it holds that xi ∈ Lcm
n

and xi /∈ Sn, output xi
18 and let mn = m. Otherwise, let mn = mn + 1 and repeat the previous

bullet point.

Kleinberg and Mullainathan [KM24] showed that the previous algorithm terminates in finitely
many steps for every n ∈ N (Result (5.5) from Kleinberg and Mullainathan [KM24]). Moreover,
they proved that for any enumeration of any target language K ∈ L, there exists some n0 ∈ N so
that the algorithm generates correctly for all steps n ≥ n0 (Result (5.7) from Kleinberg and Mul-
lainathan [KM24]). In fact, it is implicit in their analysis that for all K ∈ L there exist xi1 , . . . , xiℓ ∈ K
that depend only on K and the enumeration of L,X, as well as a finite n0 ∈ L that depends only on
K and the enumeration of L,X, such that if an input sample S satisfies that i) xi1 , . . . , xiℓ ∈ S and
ii) |S| ≥ n0, then the algorithm generates correctly. We make this fact explicit in the next result.

Lemma 5.13 (Adaptation of (5.7) from Kleinberg and Mullainathan [KM24]). Let L = {L1, L2, . . .}
be a countable collection of languages, let K ∈ L be the target language, and let z ∈ N be the smallest
number such that Lz = K. Then, there exist xi1 , . . . , xiℓ ∈ K that depend only on K and the enumeration of
L,X, such that if the algorithm of Kleinberg and Mullainathan [KM24] takes as input any set S for which
xi1 , . . . , xiℓ ∈ S and |S| ≥ z, where z depends only on K and the enumeration of L, then it generates
correctly from K.

Proof. Let z ∈ N be the smallest number for which Lz = K. By definition, z has to be finite. Let
Lk1 , . . . , Liℓ be the set of all languages that precede Lz in L for which Lz ̸⊆ Lk j , j ∈ [ℓ]. Then, for any
such language Lk j there exists some x ∈ K such that x /∈ Lk j . Define xij to be the smallest indexed
element for which the previous holds. Hence, when the input sample S contains xi1 , . . . , xiℓ none of
the languages Lij , j ∈ [ℓ], are consistent with S. Consider any iteration n ∈ N, where xi1 , . . . , xiℓ ⊆
Sn, and n ≥ z. It follows immediately that Lz is m-critical for all m ∈ N, and hence it is contained
in the set Cm

n . Thus, for all m ∈ N, for the largest index cm
n of a language in Cm

n it holds that cm
n ≥ z.

Recall that since the algorithm terminates (Result (5.5) from Kleinberg and Mullainathan [KM24]),

17Set m0 = 0.
18If there are multiple such elements, output the one with the smallest index.

54

it will output some xm ∈ X such that xm /∈ Sn, xm ∈ Lz′ , z′ ≥ z, and Lz′ [m] ⊆ Lz[m]. This is because
for all m ∈ N, the largest index of a language in Cm

n cannot drop below z. Thus, it follows that
xm ∈ K \ Sn. Hence, the algorithm generates correctly.

We are now ready to prove Theorem 3.2.

Proof of Theorem 3.2. Let L be some non-trivial collection for generation. An immediate corollary
of Lemma 5.11 and Lemma 5.13 is that the algorithm of Kleinberg and Mullainathan [KM24] with
access to a membership query oracle generates with exponential universal rates.

The exponential rates lower bound for generation follows immediately from Lemma 5.10.

6 Proofs from Section 3.2 (Generation With Breadth)

6.1 Proof of Theorem 3.4 (MOP(·) Is Decidable For Iterative Generators)

In this section, we prove Theorem 3.4 which we restate below.

Theorem 3.4. For any token-by-token generator G , MOP(G) is decidable.

Recall that a token-by-token generator G is parameterized by a randomized Turing machine M,
where M has the property that it halts on all inputs. G generates as follows: in each iteration t,
it queries M to get the next token st and iterates until M outputs EOS (i.e., end of string). The
algorithm to decide MOP(G) is also simple: given a string s of length n, check token-by-token
whether G can output si conditioned on a prefix s1, s2, . . . , si−1 generated so far. If at any point, si

is not in the support of G (or rather M) then, output No. Otherwise, output Yes. At each step, we
can check if si can be generated by M using the folklore fact that membership oracles are decidable
for Turing machines that always hold (Lemma 6.1). Note that we cannot use this folklore result
directly for the generator G , since even though M halts in each iteration, G may not halt as the
number of iterations is not bounded.

Lemma 6.1. Consider a (randomized) Turing Machine M that halts on all inputs. The following problem
is decidable: given strings s and p and a description of M, output Yes if M can output s given input p and
output No otherwise.

The proof of Lemma 6.1 uses the following straightforward but subtle folklore lemmas.

Lemma 6.2. Consider a (randomized) Turing Machine M that halts on all inputs. M has the following
property: for each input string p, M performs at most a finite number of steps between any consecutive
reads of their (internal) tape containing random bits.

Lemma 6.3. Consider a (randomized) Turing Machine M that halts on all inputs. For each input string
p, there is a finite number np ≥ 1 such that M reads at most np random bits always (regardless of the
realization of the random bits).

These enable us to prove Lemma 6.1.

55

Proof of Lemma 6.1. Consider a string s ∈ Σ∗ of length m. We will check if M generates s with
positive probability by iteratively checking if, for each 1 ≤ t ≤ m, M generates token st with
positive probability conditioned on having generated s1 . . . st−1 so far.

Fix any 1 ≤ t ≤ m. Suppose M has passed all earlier checks and, hence, it generates s1 . . . st−1

with positive probability. Now, to complete the check for step t, it suffices to check that M gen-
erates st with positive probability having generated s1 . . . st−1 so far. Since M halts on all inputs,
Lemma 6.3 implies that there is a finite nt such that M reads at most nt bits of its internal random
tape when given the corresponding input. Moreover, Lemma 6.2 implies that M performs finitely
many operations between each of the nt consecutive reads of the internal random tape. Hence, one
can simulate the execution of M in finite time by checking all 2nt possible values of the random
bits of M. If, for any of these 2nt values, M outputs st then we know that M passes the test and,
otherwise, we know that M never generates st when provided the corresponding input.

One subtlety is that we do not know nt. This is easy to overcome: since nt is known to be finite,
we can iterate over nt ∈ N until we reach a value k where for each of the 2k values of the first k
random bits, M halts before reading the (k + 1)-th random bit.

Proof of Lemma 6.2

Proof of Lemma 6.2. The statement is vacuously true for M and p if M reads its internal tape at
most once on input p always. Suppose with positive probability (over the randomness on M’s
internal random tape), M reads its internal random tape at least twice given input p. Fix a value
r1 = v of the first random bit such that M will (eventually) read the second bit r2 on the random
tape. Consider the step after M has read r1. If M performs a non-finite amount of computation
before reading r2, then we have a contradiction to the fact that M is total since we have found an
assignment v of the first random bit on which M performs an infinite number of steps. Hence, the
result follows by contradiction.

Proof of Lemma 6.3

Proof of Lemma 6.3. Fix any input p to M. Toward a contradiction suppose that for any finite n ≥ 1,
there is (at least) one assignment v1, v2 . . . , vn of the first n bits on M’s internal random tape on
which M will read the (n + 1)-th random bit before halting. Therefore, for any n ≥ 1, we have an
assignment of the random bits for which M rates at least n + 1 random bits and, hence, perform
at least n + 1 steps before halting. This is a contradiction to the fact that M halts always, for each
value of the random bits on its internal tape.

6.2 Proof of Theorem 3.3 (Impossibility for Generation With Breadth)

In this section, we present the proof of Theorem 3.3 in two main parts; see Figure 5 for an outline.
First, we prove that if L is not identifiable in the limit, then no algorithm in G generates with

breadth from L at any rate. Recall that G is the class of generating algorithms for which MOP(·)
is decidable.

56

Theorem 3.3

Results for non-identifiable collections L Results for identifiable collections L

Algorithms in G cannot

generate with breadth

from L at any rate

Algorithms in G generate

(without breadth) at (the

optimal) exponential rate

Algorithms in G

generate with breadth at

almost exponential rate

Generation faster than

exponential is impossible

for non-trivial L

Lemma 6.4 Theorem 3.1 Proposition 6.5Theorem 3.2 MOP(·) is

decidable for

Kleinberg and

Mullainathan

[KM24]’s

algorithm

Lemma 5.10

Figure 5: Outline of Proof of Theorem 3.3

Lemma 6.4. Let L be a countable collection of languages that is not identifiable in the limit. Then, for every
rate R, there is no generating algorithm in G that can generate from L with consistency and breadth at rate
R.

Proof. Let L be a countable collection of languages that is not identifiable in the limit. Assume
towards a contradiction that there exists some generating algorithm (Gn) ∈ G that achieves con-
sistency and breadth at some rate R(n). Fix also some valid distribution P supported over a target
language K. This means that there exist c, C, that depend on P, such that

E
X1,...,Xn∼Pn

[1 {supp(Gn) ̸= K \ {X1, . . . , Xn}}] ≤ C · R(c · n) .

This can be equivalently written as

Pr
X1,...,Xn∼Pn

[supp(Gn) ̸= K \ {X1, . . . , Xn}] ≤ C · R(c · n) .

For every n ∈ N, we denote by En the event that supp(Gn) = K \ {X1, . . . , Xn} . Let z ∈ N be the
smallest number such that Lz = K. Recall that the elements of the universe are X = {x1, x2, . . .} .
Consider the following algorithm (In)n∈N for identification:

• For every n ∈ N, denote by {Xi}i∈[n] the sample i.i.d. from P. Output the smallest index
j ∈ [n] such that

1
{

xi ∈ Lj
}
= 1 {xi ∈ supp(Gn) ∪ {X1, . . . , Xn}} , ∀i ∈ [n] .

57

(Since Gn ∈ G, MOP(Gn) is decidable and, hence, the above j can be computed.) If no such
index exists, output an index arbitrarily.

We consider two cases.

Case A (z = 1): In this case, notice that if supp(Gn) = K \ {X1, . . . , Xn}, then, In(X1, . . . , Xn) = z.
This is because supp(Gn) ∪ {X1, . . . , Xn} = K and Lz = K, so for all x ∈ X it holds 1 {x ∈ Lz} =

1 {x ∈ supp(Gn) ∪ {X1, . . . , Xn}} . Thus,

Pr
X1,...,Xn∼Pn

[
LIn(X1,...,Xn) ̸= K

]
≤ Pr

X1,...,Xn∼Pn
[In(X1, . . . , Xn) ̸= z]

≤ Pr
X1,...,Xn∼Pn

[In(X1, . . . , Xn) ̸= z | E c
n] · Pr

X1,...,Xn∼Pn
[E c

n]

(since under En the algorithm identifies)

≤ 1 · Pr
X1,...,Xn∼Pn

[E c
n]

≤ C · R(c · n) .

Case B (z > 1): For every language Lj, j ∈ [z − 1], let ij ∈ N be the smallest number such that

1
{

xij ∈ Lj

}
̸= 1

{
xij ∈ Lz

}
. By definition of Lz, we have that ij is well-defined. Moreover, let

n∗ := maxj∈[z−1] ij. Notice that for all n ≥ n∗, under the event En, we have that In(X1, . . . , Xn) = z.
To see why this is the case, notice that

1. Under the event En it holds that 1 {x ∈ Lz} = 1 {x ∈ supp(Gn) ∪ {X1, . . . , Xn}} for all x ∈ X.

2. Since n ≥ n∗, for all j ∈ [z − 1] we have that ij ≤ n. Thus, under the event En it cannot be the
case that:

1
{

xi ∈ Lj
}
= 1 {xi ∈ supp(Gn) ∪ {X1, . . . , Xn}} , ∀i ∈ [n] .

Hence, using an identical argument as in the case z = 1 we have that

Pr
X1,...,Xn∼Pn

[
LIn(X1,...,Xn) ̸= K

]
≤ C · R(c · n), ∀n ≥ n∗ .

Since this holds for any valid distribution P, using different P-dependent constants, we see that the
algorithm (In)n∈N can identify L at a rate R. Since L is not identifiable in the limit, this contradicts
Theorem 3.1, and, hence, concludes the proof.

The last ingredient we need to prove Theorem 3.3 is an algorithm that given the index of a lan-
guage, samples from it with breadth.

Proposition 6.5. There exists a randomized computable algorithm A for which MOP(·) is decidable and
that, given as input a number z ∈ N and access to a collection of languages L = {L1, L2, . . . , }, satisfies
supp (A (z)) = Lz.

Proof. The algorithm works as follows. Given the index z of the target language:

58

• Sample a natural natural number n̂ ∈ N from some distribution supported over N.

• If xn̂ ∈ Lz, (this can be checked by querying the membership oracle) return xn̂. Otherwise,
repeat the previous bullet.

It follows immediately that this algorithm is computable and satisfies the requirements of the
statement, since it is implemented via rejection sampling using a membership oracle to Lz (which
is decidable), it is indeed in G.

We are now ready to prove Theorem 3.3.

Proof of Theorem 3.3. First, consider the case that L is not identifiable in the limit. Then, for every
rate R, Lemma 6.4 shows that no generating algorithm from G can generate from L with consis-
tency and breadth at rate R.

We now show that there is a consistent generation algorithm for L at an optimal exponential
rate. Notice that since L is non-trivial for generation, by Lemma 5.10, it holds that no algorithm can
achieve rate faster than exponential. Moreover, by Theorem 3.2 there exists an algorithm (namely
the one by Kleinberg and Mullainathan [KM24]) that achieves exponential rates. Moreover, since
this algorithm samples from a distribution that is a point mass, it is indeed in G.

Let us now consider the case that L is identifiable in the limit. Then, by Theorem 3.1, for every
g(n) = o(n), there exists an algorithm that identifies L at rate e−g(n). It is not hard to turn this
identification algorithm into an algorithm that is in G and generates with breadth via rejection
sampling. This happens as described in Proposition 6.5. Conditioned on the event that Lz = K,
the previous algorithm indeed generates with breadth. Finally, since L is non-trivial, no algorithm
(even outside of G) can achieve a faster than exponential rate for consistent generation (even with-
out breadth), by Lemma 5.10.

Remark 5. One subtlety in the above proof is that to use Kleinberg and Mullainathan [KM24]’s
algorithm for generation, we require it to output an arbitrarily large number of samples at each
step. While the vanilla version of Kleinberg and Mullainathan [KM24]’s algorithm only outputs
one sample at a time, it can easily be extended so that, given a number m ≥ 1, it outputs m samples
at each step. Moreover, the resulting algorithm is in G.

6.3 Proof of Theorem 3.5 (Impossibility for Generation With Breadth in the Limit)

In this section, we prove Theorem 3.5, which we restate below.

Theorem 3.5. For every non-identifiable collection of countably many languages L, no generating algo-
rithm, for which MOP(·) (Definitions 5 and 6) is decidable, can generate with breadth from L in the limit.
If L is identifiable, then there is a generator G (for which MOP(G) is decidable) that generates with breadth
from L.

Proof of Theorem 3.5. The proof of Theorem 3.5 is by a contradiction: we will show that if such
a generator exists, it can be used to build an identification algorithm I for L contradicting the
fact that L is non-identifiable. In addition to the generator G , this identification algorithm uses

59

another sub-routine: an algorithm IPN that, given a positive and negative enumeration of the
target, identifies it in the limit. Such an identification algorithm always exists due to a result by
Gold [Gol67]. The identifier I , which we construct, is as follows:

Input: Access to a generator G for L that (1) achieves consistency and breadth in the limit and
(2) for which MOP(G) is decidable, and access to the algorithm IPN that identifies L in the
limit from a positive and negative enumeration of the target language.

Description:

1. For each t ∈ N do:

(a) Observe the t-th sample st and let St be the set of samples seen so far

(b) Train the generator G from scratch over the t samples in St

(c) Label the first t strings x1, . . . , xt of the domain as MOP(G)(x1), . . . ,MOP(G)(xt)a

(d) Train IPN from scratch on samples x1, . . . , xt with labels MOP(G)(x1), . . . ,MOP(G)(xt)

(e) output the index guessed by IPN and go to the next iteration
aHere, MOP(G)(x) is the answer to the membership oracle problem for G given input x.

Since MOP(G) is decidable, the above algorithm can be implemented using a Turing machine. We
claim that the above algorithm identifies the target language K after a finite number of iterations.
Let z be the first index at which K appears. To formalize this, fix any enumeration s1, s2, . . . of the
target language K. Since G generates with breadth in the limit, there is a finite iteration tG after
which K generates with breadth from K and, hence, supp (G) = K. Hence, after iteration tG , for
any string x, MOP(G)(x) = 1 {x ∈ K}. In other words, IPN is provided with accurate positive and
negative labels in all subsequent iterations t ≥ tG . Since IPN identifies in the limit, there is a finite
tPN such that IPN identifies K once it is given labels for the first t ≥ tPN examples in the domain.
It follows that IPN and, hence, our algorithm identifies K after max

{
tG , tPN

}
< ∞ iterations. This

gives the desired contradiction, proving Theorem 3.5. Note that the above identification algorithm
does not need to know either tG or tPN. (Of course, as a consequence, our algorithm does not know
when it has identified K.)

7 Proofs from Section 3.3 (Generation With Approximate Consistency
and Breadth)

7.1 Proof of Theorem 3.7 (Impossibility in the Limit)

In this section, we prove Theorem 3.7, which we restate below.

Theorem 3.7 (Impossibility of Unambiguous Generation in the Limit). For every non-identifiable
collection of countably many languages L, no generating algorithm stable in the limit for which MOP(·)
(Definitions 5 and 6) is decidable can unambiguously generate from L in the limit.

60

Proof of Theorem 3.7. By the way of contradiction, suppose that there is an algorithm G = (Gn) for
which MOP(·) is decidable (at each n) and which is an unambiguous generator for L. We will use
G to construct an algorithm that identifies L in the limit, hence, contradicting the non-identifiablity
of L.

Fix any enumeration x1, x2, . . . of the domain X. For each language L ∈ L and number t ≥ 1,
define the t-prefix of L as the subset L[t] of the first t-elements of the domain {x1, . . . , xt} in L, i.e.,

L[t] := {x1, . . . , xt} ∩ L .

To complete the above outline, consider the following algorithm, which we claim identifies L.

Input: Access to a generator G for L that (1) that is unambiguous in the limit and (2) for which
MOP(·) is decidable at each step

Description:

1. For each t ∈ N do:

(a) Observe the t-th sample st and let St be the set of samples seen so far

(b) Train the generator Gt−1 on st to get Gt

(c) Create a set of languages consistent with observed samples CS(t) ⊆ {L1, . . . , Lt}
that includes each L ∈ {L1, . . . , Lt} that is consistent with St (i.e., L ⊇ St)

(d) Construct a set of languages consistent with the generator CG(t) ⊆ {L1, . . . , Lt}
that languages L from {L1, . . . , Lt} except if L[t] ̸⊆ supp(Gt) ∪ St, which can be
checked in finite time using a decider for MOP(Gt)

(e) output the index of the smallest-indexed language in CS(t)∩CG(t) (or an arbitrary
index if CS(t) ∩ CG(t) is empty)

Since the algorithm outputs the smallest index in CS(t) ∩ CG(t), it identifies K if it is the smallest-
indexed language in CS(t) ∩ CG(t). The following conditions ensure this:

(A) Lz ∈ CS(t) and Lz ∈ CG(t), where z is the smallest index at which K appears in L; and

(B) For any i < z, either Li ̸∈ CS(t) or Li ̸∈ CG(t)

We claim that there are finite times ta and tb where, for any t ≥ ta, Condition (A) holds and, for
any t ≥ tb, Condition (B) holds. This claim implies that the above algorithm identifies K in the
limit, leading to the desired contradiction.

Condition A holds after a finite time. Since St only contains samples from K, K ∈ CS(t) for all
t ≥ 1. Further, since G = (Gt) is an unambiguous generator for L in the limit, there exists a finite
t0 ≥ 0, such that for all t ≥ t0,

|supp(Gn)△K| < min
L∈L : L ̸=K

|supp(Gn)△L| . (10)

Hence, in particular, for all t ≥ t0

|supp(Gn) \ K| , |K \ supp(Gn)| < ∞ .

61

Figure 6: Figure illustrating the decomposition of supp(Gt)△K and supp(Gt)△L.

Furthermore, as G is stable, after some time t1, supp(Gn) stops changing. Consider any t ≥
max {t0, t1}. Since K \ supp(Gt) has finitely many elements and K \ supp(Gt) = K \ supp(Gt′) for
any t′ ≥ max {t0, t1}, there is a finite time t2 after which all elements of K \ supp(Gt) have been
observed. Therefore, for any t ≥ {t0, t1, t2}, it must holds that K ⊆ (supp(Gt) ∪ St) and, hence,
that K ∈ CG(t). Thus, it suffices to fix ta = max {t0, t1, t2}.

Condition B holds after a finite time. Since there are only finitely many i < z, it suffices to show
that for each i < z, there is a finite time ti after which either Li ̸∈ CS(t) or Li ̸∈ CG(t). Fix any
i < z. Consider two cases:

• Case A (K \ Li ̸= ∅): In this case, there exists an x ∈ K \ Li and, hence, after some finite time
ti when x has been observed Li ̸⊇ St and, hence, Li ̸∈ CS(t).

• Case B (K \ Li = ∅): In this case, Li ⊋ K, and our proof is based on the following observation.

Lemma 7.1. For any t ≥ ta and L ⊋ K, it holds that L \ supp(Gt) ̸= ∅.

Proof. Since t ≥ t0, Equation (10) holds. From Figure 6, observe that

|supp(Gt)△K| ≥ |supp(Gt)\L|+ |K\ supp(Gt)|
|supp(Gt)△L| = |supp(Gt)\L|+ |K\ supp(Gt)|+ |L\ (K ∪ supp(Gt))| .

Chaining the above with Equation (10) and canceling like terms implies

|L\ (K ∪ supp(Gt))| > 0 .

Hence, in particular, |L\supp(Gt)| > 0, which is the desired result.

62

Hence, in this case, Li \ supp(Gt) ̸= ∅. Let j(i) be the smallest natural number such
that xj(i) ∈ L but xj(i) ̸∈ supp(Gt). (Note that the value j(i) does not depend on t, since
as discussed in the proof of Condition A after t = ta, the supp(Gt) becomes stable and not
change in subsequent iterations.) Therefore, it follows that Li[j(i)] ̸⊆ supp(Gt)∪St for t ≥ ta

and, hence, for t ≥ max {i(j), ta} by construction, Li ̸∈ CG(t). This completes the proof of
Case B and by earlier discussion, also the proof of Theorem 3.7.

7.2 Proof of Theorem 3.6 (Impossibility in the Statistical Setting)

In this section, we prove the impossibility result for unambiguous generation in the statistical set-
ting. Our approach is to establish a connection to the online setting and leverage the impossibility
result we have already shown there (Theorem 3.7). Namely, we will show that given such an un-
ambiguous generator that works in the statistical setting, we can construct a generator that works
in the online setting, with high probability. Using the construction from Section 7.1, we can turn
this generator to one that identifies. The details of our approach follow.

First, we describe some constructions due to Angluin [Ang88] that will be useful for our
derivation. The following can be found in Example 3 from Angluin [Ang88].

Definition 20 (Distribution Induced by Sequence). Let σ = (xi1 , xi2 , . . . ,) be some countable sequence
of elements in X, and σj = xij , j ∈ N. Define Pσ to be a distribution such that its mass Pσ(x) on any point
x ∈ X is

Pσ(x) := ∑
j∈N : σj=x

1
2j+1 ,

with a sum over an empty set of indices interpreted as 0.

Angluin [Ang88] describes a way to draw i.i.d. samples from Pσ, given only access to finite pre-
fixes of σ and to an oracle that simulates a fair coin.19 The idea is natural: flip the fair coin until a
head is observed, let I be the random variable denoting the number of trials it needed, and output
the string xI+1. This process gives i.i.d. draws from Pσ.

Proposition 7.2 (Example 4 from Angluin [Ang88]). Let σ = (xi1 , xi2 , . . . ,) be some countable se-
quence of elements in X. Given access to an oracle that simulates fair coin flips and an oracle which given
input any j ∈ N returns σj, there exists a computable algorithm that samples from Pσ (Definition 20) and
terminates with probability 1.

The next result shows that a stable generating algorithm for which MOP(·) is decidable and
achieves unambiguous generation at some rate R(·), “stabilizes” to an unambiguous generator
when executed on an infinite i.i.d. stream of data drawn from a valid distribution.

Lemma 7.3. Let R : N → R≥0 be a rate function, i.e., limn→∞ R(n) = 0, let L be a countable language
collection, and (Gn : Xn → G)n∈N be a generating algorithm for which MOP(·) is decidable and which
satisfies the following two properties:

19In fact, Angluin’s construction generalizes to oracles that simulate any (non-deterministic) coin in a straightforward
way.

63

• (Gn)n∈N is a stable generator (Definition 7), and

• for its unambiguous generation error er(·), it holds that, for every valid distribution P with respect
to L there exist c, C > 0 such that EX1,...,Xn∼Pn [er (Gn (X1, . . . , Xn))] ≤ C · R(c · n).

Then, for every valid distribution P with respect to L it holds that

Pr
{Xi}i∈N∼P∞

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that er (Gn (X1, . . . , Xn)) = 0] = 1 .

In other words, the generating algorithm G = (Gn) stabilizes to an unambiguous generation in
the online sense with probability 1. Roughly speaking, given the above result, Theorem 3.6 will
follow from a contradiction to the impossibility result in the online setting Theorem 3.7.

Proof of Lemma 7.3. Assume towards contradiction that there exists some valid P with respect to L

so that

Pr
{Xi}i∈N∼P∞

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that {er (Gn (X1, . . . , Xn)) = 0}] = c′ < 1 .

Let us also denote c′′ := 1 − c′. Notice that c′′ > 0. Since P is a valid distribution with respect to L,
it is supported over some K ∈ L, so we have that, with probability 1, an infinite i.i.d. draw from P

is an enumeration of K (see Proposition 5.2). Let us call this event E1.
Moreover, since Gn is a stable generator (in an online sense), under the event E1 (i.e., when the

samples from P form an enumeration of K), there exists some smallest number t∗ := t∗(X1, . . .) ∈
N such that for all n ≥ t∗

supp (Gn (X1, . . . , Xn)) = supp (Gn+1 (X1, . . . , Xn+1)) .

Now, t∗ depends on the specific enumeration drawn and, hence, the distribution P induces a dis-
tribution over t∗. Further, note that with probability 1, t∗ < ∞. Hence, Pr{Xi}i∈N∼P∞ [t∗(X1, . . .) > n]
approaches 0 as n → ∞. In particular, there is some number n1 ∈ N such that for all n ≥ n1

Pr
{Xi}i∈N∼P∞

[t∗(X1, . . .) > n] ≤ c′′

3
.

Moreover, since the generator achieves rate R(·) and limn→∞ R(n) = 0, it holds that

lim
n→∞

Pr
X1,...,Xn∼Pn

[er (Gn (X1, . . . , Xn)) ̸= 0] = 0 .

Thus, there is some n2 ∈ N such that, for all n ≥ n2

Pr
X1,...,Xn∼Pn

[er (Gn (X1, . . . , Xn)) ̸= 0] ≤ c′′

3
.

Let n3 := max {n1, n2}. Hence, taking a union bound, we see that with probability at least 1− 2c′′/3

over the draw of {Xi}i∈N it holds that

• er (Gn3 (X1, . . . , Xn3)) = 0, and

• supp (Gn (X1, . . . , Xn)) = supp (Gn3 (X1, . . . , Xn3)) , for all n ≥ n3.

64

By the definition of er(·) (Equation (6),) for any n, n′ ∈ N, samples xi1 , . . . , xin and xj1 , . . . , xjn′ it
holds that

supp (Gn (xi1 , . . . , xin)) = supp
(

Gn′
(
xj1 , . . . , xjn′

))
=⇒

er (Gn (xi1 , . . . , xin)) = er
(

Gn
(
xj1 , . . . , xjn′

))
These two conditions immediately imply that, with probability at least 1− 2c′′/3 > c′, for all n ≥ n3

it holds that

• er (Gn (X1, . . . , Xn)) = 0, and

• supp (Gn+1 (X1, . . . , Xn+1)) = supp (Gn (X1, . . . , Xn)) .

Hence,

Pr
{Xi}i∈N∼P∞

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that {er (Gn (X1, . . . , Xn)) = 0}] > c′ ,

which gives the desired contradiction. This concludes the proof.

Having established the previous result, we are ready to show how to use such a generator that
works in the statistical setting to get a generator in the online setting. The idea of the proof is to
use the enumeration σ provided from the adversary to define a valid distribution Pσ (see Propo-
sition 7.2) and then run the aforementioned generator on this distribution.

Lemma 7.4. Let R : N → R≥0 be a rate function, i.e., limn→∞ R(n) = 0, let L be a language collection,
and (Gn : Xn → G)n∈N be generating algorithm for which MOP is decidable and satisfies the following two
properties:

• (Gn)n∈N is a stable generator (Definition 7), and

• for its unambiguous generation error, it holds that, for every valid distribution P with respect to L

there exist c, C > 0 such that EX1,...,Xn∼Pn [er (Gn (X1, . . . , Xn))] ≤ C · R(c · n).

Then, there is a randomized generating algorithm
(

G ′
n : Xn r→ G

)
n∈N

for which, for any target language
K ∈ L and every enumeration σ of K, it holds that

• (G ′
n)n∈N is a stable generator (Definition 7), and

•
Pr

[
∃n∗ ∈ N : ∀n ≥ n∗ it holds that er

(
G ′

n (σ1, . . . , σn)
)
= 0

]
= 1 ,

where the probability is with respect to the internal randomness of the algorithm.

Proof. Let K ∈ L be any target language and σ be any enumeration of K. Let Pσ be the distribution
defined in Definition 20. We know that, by definition, Pσ is valid with respect to L, since it is
supported on K. Let (G ′

n)n∈N be a generating algorithm which, for every n ∈ N, runs Gn on Pσ.
In order to draw samples from Pσ the generator G ′

n uses its internal randomness and the process

65

described in Proposition 7.2. Since Pσ is a valid distribution with respect to L, Lemma 7.3 gives us
that

Pr
{Xi}i∈N∼P∞

σ

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that {er (Gn (X1, . . . , Xn)) = 0}] = 1 .

Hence, this implies that

Pr
[
∃n∗ ∈ N : ∀n ≥ n∗ it holds that

{
er

(
G ′

n (σ1, . . . , σn)
)
= 0

}]
= 1 ,

where the probability is taken with respect to the internal randomness of the algorithm. Moreover,
since (Gn)n∈N is a stable generator it also holds that (G ′

n)n∈N is a stable generator. This concludes
the proof.

We are now ready to prove Theorem 3.6, which follows as corollary of Lemma 7.4 and the impos-
sibility result from the online setting (Theorem 3.7).

Proof of Theorem 3.6. Let L be a countable collection of languages. Assume that such a stable gener-
ating algorithm exists. Then, using the construction from Lemma 7.4 we get a stable generator that
generates unambiguously in the limit, for every target language K ∈ L and every enumeration σ

of K, with probability 1. This contradicts the impossibility result from Theorem 3.7.

8 Proofs from Section 3.4 (Further Results for Identification)

8.1 Proof of Proposition 3.8 (Identification Using Subset Oracle)

We first give a sufficient condition on the algorithm that identifies in the limit that allows one to
directly use it in the statistical setting and get exponential rates.

Lemma 8.1. Let L be a countable collection of languages. Let A = {hn}n∈N be an algorithm that identifies
L in the limit with positive examples with the following additional property:

• for every target language K ∈ L there exists a finite set of examples {xi1 , . . . , xiℓ} ⊆ K that depends
only on K, and the enumeration of L,X,

• and a finite number n0 ∈ N that depends on K, the enumeration of L,X,

such that A always identifies correctly if its input has size at least n0 and it contains xi1 , . . . , xiℓ . Then, A
identifies K with exponential rates in the statistical setting.

Proof. Let P be a valid data-generating distribution. Then, by definition, supp(P) = K, for some
K ∈ L. Let xi1 , . . . , xiℓ ⊆ K be a set of points such that after A takes as input this set it starts
identifying correctly, i.e., for any S such that xi1 , . . . , xiℓ ⊆ S and |S| ≥ n0 it holds that Lh|S|(S) = K.
Since P is a valid data-generating distribution it holds that xi1 , . . . , xiℓ ⊆ supp(P). Let pii , . . . , piℓ

66

be the mass of points xi1 , . . . , xiℓ under P. Suppose we draw n samples i.i.d. from P. Then, the
probability that we do not observe all xi1 , . . . , xiℓ in the sample is bounded as

Pr
X1,...,Xn∼Pn

[∃j ∈ [ℓ] : xij /∈ {X1, . . . , Xn}] ≤ ∑
j∈[ℓ]

Pr
X1,...,Xn∼Pn

[xij /∈ {X1, . . . , Xn}] (by a union bound)

= ∑
j∈[ℓ]

(
1 − pij

)n
(since we have i.i.d. draws)

≤ ∑
j∈[ℓ]

e−pij ·n (using that 1 − z ≤ e−z for all z ∈ R)

≤ ℓ · e−minj∈[ℓ] pij ·n .

Thus, the algorithm identifies correctly in the statistical setting after taking as input n ≥ n0 ∈ N

examples, with probability at least 1 − C · e−c·n, for some distribution dependent constants C, c.
This concludes the proof.

We are now ready to prove Proposition 3.8.

Proof of Proposition 3.8. Let L be a collection that is identifiable in the limit and assume access to
a subset oracle. From Section B.1 we know that the algorithm of Kleinberg and Mullainathan
[KM24] given access to a subset oracle identifies any identifiable collection L in the limit . More-
over, by Lemma 5.12 we get that this algorithm satisfies the condition of Lemma 8.1, thus this
result immediately gives us that the algorithm of Kleinberg and Mullainathan [KM24] obtains ex-
ponential rates for identification in the statistical setting (assuming access to a subset oracle).

8.2 Proof of Proposition 3.9 (Identification of Finite Collections)

Similar to the previous section, we will show that there exists an algorithm that satisfies Lemma 8.1,
i.e., for any finite collection of (potentially infinite) languages, it identifies with exponential rates.
Recall the domain X has an enumeration X = {x1, . . . , } . Consider the following algorithm for
identification.

Algorithm Algorithm 8.2 - Identifying a finite collection L = {L1, . . . , Lk} in the limit

Description:

1. for each t ∈ N do:

(a) Let St = {xi1 , . . . , xit} , where xiℓ is the element the algorithm sees in round ℓ

(b) Construct a version space Vt containing all languages L ⊇ St

(c) Let V ′
t =

{
L ∈ Vt : ∀j ∈ [t], ∀L′ ∈ Vt it holds that xj ∈ L =⇒ xj ∈ L′}

(d) if V ′
t ̸= ∅ then: output the smallest index j such that Lj is in V ′

t

(e) else: output an arbitrary index j

Proof of Proposition 3.9. Let us first show that the previous algorithm identifies in the limit. Let
k := |L| denote the size of L. Consider any target language K ∈ L. Notice that L can be partitioned
into three sets: the languages L ∈ L such that L = K, the languages L ∈ L such that K ⊊ L and

67

the languages L ∈ L such that K ̸⊆ L. Then, for every language Lj ∈ L such that K ̸⊆ Lj there
exists some x ∈ K such that x /∈ Lj. Let ij ∈ N be the smallest number for which xij ∈ K, xij /∈ Lj.
Let L′ ⊆ L be the set of all such languages and X′ the set of all such smallest indexed x ∈ X.
Notice that, since we consider a fixed enumeration of X throughout, the set X′ depends only on
the target language K and the enumerations of L,X. Since the collection L is finite we have that
|X′| < k < ∞.

Now consider any language L ∈ L such that K ⊊ L. Let L′′ ⊆ L be the set of all such languages.
Then, for every Lj ∈ L′′ there is some x ∈ Lj such that x /∈ K. Let i′j be the smallest such index.
Define

n0 := max
j∈N

{
i′j : Lj ∈ L′′

}
,

i.e., the largest index among these elements. Since the collection L is finite it holds that n0 <

∞. Consider any execution of the algorithm in any round t ∈ N for which the input sample S
satisfies i) X′ ⊆ S, and ii) |S| ≥ n0. The first condition on S implies that for this round Vt =

{L ∈ L : K ⊆ L} . Moreover, the second condition implies that V ′
t = {L ∈ L : L = K}. Thus, the

smallest j ∈ N such that Lj ∈ V ′
t is the smallest index z ∈ N such that Lz = K. Thus, there is

some large enough t∗ so that the algorithm outputs the index z for all t ≥ t∗. Moreover, the set X′

and the number n0 satisfy the conditions of Lemma 8.1, thus the algorithm identifies with exact
exponential rates in the statistical setting. This concludes the proof.

8.3 Proof of Proposition 3.10 (Identification of Collections of Finite Languages)

In this section, we give the proof of Proposition 3.10.

Proof of Proposition 3.10. Recall Gold’s algorithm [Gol67] that identifies in the limit for such collec-
tions L: at any step n ∈ N let Sn be the set of elements the adversary has presented so far. Output
min

{
j ∈ N : Sn ⊆ Lj

}
. Consider any valid distribution P with respect to L. Then, P is supported

on some language K ∈ L. Let {xi1 , . . . , xik} := K and pij be the mass of element xij , j ∈ [k]. For
every n ∈ N, let En be the event that the n i.i.d. draws from P contain the set {xi1 , . . . , xik}, i.e.,

{xi1 , . . . , xik} = {X1, . . . , Xn} .

Notice that under En, the algorithm identifies correctly. Then, for the complement of this event,
we have that

Pr
X1,...,Xn∼Pn

[∃j ∈ [k] : xij /∈ {X1, . . . , Xn}] ≤ ∑
j∈[ℓ]

Pr
X1,...,Xn∼Pn

[xij /∈ {X1, . . . , Xn}] (by a union bound)

= ∑
j∈[k]

(
1 − pij

)n
(since we have i.i.d. draws)

≤ ∑
j∈[k]

e−pij ·n (using that 1 − z ≤ e−z for all z ∈ R)

≤ k · e−minj∈[k] pij ·n .

This concludes the proof.

68

8.4 Proof of Theorem 3.11 (Identification from Positive and Negative Examples)

We now move on to the task of language identification with both positive and negative examples.
The main difference between this setting and binary classification is that the objective function
is different. In particular, in our setting, the learner is required to identify the target language,
whereas in the classification setting the learner is required to output a function that labels most
of the elements of the domain according to some target labeling function. Thus, it is clear that
the identification task is more challenging than the classification task. Sticking to the notation we
used before, we have a countable set of languages L = {L1, L2, . . .}, where each L ∈ L is also
countable and ∪L∈LL ⊆ X, for some countable domain X. Recall the notion of valid distribution in
this setting [Ang88]: a distribution P is valid with respect to L if and only if supp(P) ⊆ X× {0, 1}
and there exists some K ∈ L such that for all x ∈ K we have P[(x, 1)] > 0,P[(x, 0)] = 0 and for all
x /∈ K we have P[(x, 0)] > 0,P[(x, 1)] = 0 (see Definition 15).

Next, recall that for any n ∈ N and and set of labeled examples Sn = (x1, y1), . . . , (xn, yn) ∈
(X× {0, 1})n the error of the learner {hn : (X× {0, 1})n → N}n∈N for this task is

er(hn(Sn)) = 1
{

Lhn(Sn) ̸= K
}

. (11)

Notice that, under this definition, E[er(hn)] = Pr [Lhn ̸= K] , i.e., the probability that hn fails to
identify the correct language after it sees n examples from the data-generating distribution.

Our proof proceeds in two parts. First, we show that for all countable collections of languages
that are non-trivial for identification (Definition 13) exponential rate is the best possible for identi-
fication with positive and negative examples. The approach is essentially identical to Lemma 5.1
and the lower bound from Bousquet et al. [BHM+21]. Then, we show that all countable collections
of languages are learnable at exponential rates with positive and negative examples.

The formal statement regarding the exponential rates lower bound follows.

Lemma 8.2. Let L be a non-trivial collection of languages. Then, for any learning algorithm A = {hn}n∈N

there exists a valid distribution P such that E[er(hn)] ≥ C · e−c·n, for infinitely many n ∈ N.

Proof. Since L is non-trivial, there exist L, L′ ∈ L and x ∈ X such that L ̸= L′ and x ∈ L, x ∈ L′.
Let PL,PL′ be valid distributions for L, L′ that place at least 1/2 mass on (x, 1) and they spread
the remaining mass arbitrarily as follows: half of the remaining mass of PL (respectively PL′) is
spread arbitrarily on all the elements of L (respectively L′) with label 1, and the other half on all
the elements of K \ L (respectively K \ L′) with label 0. Notice that since L ̸= L′ at least one of
them has at least one more element other than x. For any n ∈ N, under both distributions, with
probability at least 2−n, the algorithm will only see the element (x, 1) appearing in the sample. Let
En be that event and condition on it. Notice that

Pr
[

Lhn((x,1),...,(x,1)) = L | En

]
+ Pr

[
Lhn(x,...,x) = L′ | En

]
≤ 1 ,

where the probability is with respect to the randomness of the learning algorithm. Thus, we have
that Pr

[
Lhn((x,1),...,(x,1)) ̸= L | En

]
≥ 1/2 or Pr

[
Lhn((x,1),...,(x,1)) ̸= L′ | En

]
≥ 1/2. By the pigeonhole

principle, for at least one of L, L′, the previous inequality holds for infinitely many n ∈ N. Assume

69

without loss of generality it holds for L and denote by N̂ the set of n ∈ N for which it holds. Then,
for all n ∈ N̂ we have that

E
(X1,Y1),...,(Xn,Yn)∼Pn

L

[er (hn ((X1, Y1), . . . , (Xn, Yn)))] = Pr
(X1,Y1),...,(Xn,Yn)∼Pn

L

[
Lhn((X1,Y1),...,(Xn,Yn)) ̸= L

]
≥ Pr

(X1,Y1),...,(Xn,Yn)∼Pn
L

[
Lhn((X1,Y1),...,(Xn,Yn)) ̸= L | En

]
·

Pr
(X1,Y1),...,(Xn,Yn)∼Pn

L

[En]

≥ 1
2n · Pr

[
Lhn((x,1),...,(x,1)) ̸= L | En

]
(by the definition of En)

≥ 1
2n+1 , (due to the assumption on L)

which concludes the proof.

We now move on to establishing the upper bound. Following the approach from the setting with
only positive examples, we show that an infinite draw of i.i.d. samples from any valid distribution
is a “complete presentation” of the target language K, i.e., all the elements of K appear with label 1
and all elements outside of K appear with label 0. This follows immediately from Proposition 5.2.

The next step towards proving Theorem 3.11 is to show if A is an algorithm that identifies the
target language in the limit in the adversarial (online) setting of Gold [Gol67] with positive and
negative examples, then A is a consistent algorithm in the statistical setting. This implies that for
any valid distribution P, there is some number t∗ := t∗(A,P) ∈ N such that, when we draw t∗

many i.i.d. samples from P, it will identify the target language with probability at least 6/7. We
denote the time of the last mistake of algorithm A = {hn}n∈N on a labeled sequence of examples
(x1, y1), (x2, y2), . . . by TA(x1, y1, x2, y2, . . .), i.e.,

TA(x1, y1, x2, y2, . . .) = inf
{

n0 ∈ N : Lhn(x1,y1,...,xn,yn) = K, ∀n > n0

}
.

The next result formalizes the claim. Its proof is almost identical to Proposition 5.3, but we present
it for completeness.

Proposition 8.3. Fix any family of languages L over a countable domain. For any algorithm A =

{hn}n∈N that identifies L in the limit with positive and negative examples in the online setting and any
valid distribution P (Definition 15), there exists a number t∗ such that

Pr
{(Xi ,Yi)}i∈N∼P

∞
[TA(X1, Y1, X2, Y2, . . .) ≤ t∗] ≥ 6

7
.

Proof. Let (X1, Y1), (X2, Y2), . . . , be a countable i.i.d. sample from P. From Proposition 5.2 we get
that this sample is a valid input to A since, with probability one, all elements of K appear with
label 1 and all elements of X \ K appear with label 0. Consider the execution of A on prefixes of
the sequence and denote by TA := TA(X1, Y1, X2, Y2, . . .) the time it made its last mistake. We have
that Pr{(Xi ,Yi)}i∈N∼P∞ [TA ∈ N] = 1. Thus,

lim
t→∞

Pr
{(Xi ,Yi)}i∈N∼P∞

[TA(X1, Y1, X2, Y2 . . .) ≥ t] = 0 .

70

Thus, as required, there exists some t∗ ∈ N such that

Pr
{(Xi ,Yi)}i∈N∼P∞

[TA(X1, Y1, X2, Y2, . . .) ≥ t∗] ≤ 1
7

.

The problem is that this time t∗ depends on the algorithm A and the unknown distribution P.
Suppose we knew a number t∗ so that for all t ≥ t∗

E
S∼Pt

[er(ht(S)) > 0] = Pr
S∼Pt

[
Lht(S) ̸= K

]
<

1
4

.

Then, we could design an identification algorithm {hn}n∈N with exponential rates as follows.
First, we break up the data into batches, each of length t∗. Second, we run the identification
algorithm from the online setting separately for each batch. Finally, we aggregate these algorithms
by taking a majority vote. Now, by the definition of t∗ and Hoeffding’s inequality, the probability
that more than one-third of the classifiers have not identified the language is exponentially small.

There are two issues with this approach:

• In our language setting, it can be the case that two identification algorithms are correct but
output different indices for the true language. This was also an issue for the positive exam-
ples case and we can resolve it in a similar way using Lemma 5.4.

• The second issue is that t∗ depends on the distribution P. In the previous case of positive ex-
amples, the solution was to guess the number t∗ using some very slowly increasing function
g(n). This was the reason why we did not manage to get exponential rates. Interestingly, in
the setting where we have access to positive and negative examples, we can estimate t∗ from
samples, as we see below.

The main lemma behind this result is the following and corresponds to an adaptation of Lemma
4.4 from Bousquet et al. [BHM+21] with a different loss function. This lemma will allow us to get
exactly exponential rates, compared to the rates obtained in the positive examples regime.

Lemma 8.4 (Estimation of Stopping Time). Let Sn be n i.i.d. examples observed from P which is valid
with respect to some language K ∈ L. There exists universally measurable tn = tn(Sn), whose definition
does not depend on P, so that the following holds. Given t∗ such that

Pr
St∗

[
Lht∗ (St∗)

̸= K
]
<

1
8

,

there exist C, c > 0 independent of n (but depending on P, t∗) so that

Pr[tn ∈ T] ≥ 1 − Ce−cn

where
T =

{
1 ≤ t ≤ t∗ : Pr

St

[
Lht(St) ̸= K

]
<

3
8

}
.

Given the above lemma, we are now ready to complete the proof of Theorem 3.11.

71

Proof of Theorem 3.11. First, the exponential rate lower bound follows immediately from Lemma 8.2.
The output of our identification algorithm hn is the majority of the hi

tn
for i ∈ In = {1, 2, . . . , ⌊n/(2tn)⌋},

after we apply to them the post-processing computation described in Lemma 5.4 to map them to
the same index of K. Let z ∈ N be the smallest number for which Lz = K. It remains to show that

E
Sn∼Pn

[er(hn)] = Pr
Sn∼Pn

[
Lhn(Sn) ̸= K

]
≤ Ce−cn ,

for some constants C, c > 0 depending on P.
Let us consider our predictors {hi

tn
}i∈In that are obtained by running the identification algo-

rithm on independent parts of the dataset of size tn. Since these predictors might be outputting
different indices (descriptions) of the same language, we find the smallest indexed language the
output of each classifier can be mapped to. By Lemma 5.4, for n sufficiently large, all the indices
from the outputs of the classifiers hi

tn
, i ∈ In, that correspond to K will be mapped to z.

Let us fix t ∈ T, where T is defined in Lemma 8.4, and consider the predictors {hi
t} for i ∈

I = {1, 2, . . . , ⌊n/(2t)⌋}. We also denote by {ĥi
t} the output of predictor {hi

t} after applying the
post-processing result from Lemma 8.4. For n sufficiently large, standard concentration bounds
give that

Pr

[
1
|In| ∑

i∈In

1{ĥi
t ̸= z} >

7
16

]
< e−⌊n/2t∗⌋/128 .

This means that, except on an event of exponentially small probability, we have that ĥi
t outputs

index z. Recall that Lz = K.
Now we employ our estimation tn in the above calculation. In particular,

Pr
[

ĥi
tn
̸= z for at least half of i ∈ In

]
≤ p1 + p2 ,

where
p1 := Pr[tn /∈ T] < Ce−cn ,

and

p2 := Pr
[
∃t ∈ T : hi

t does not predict K for at least half indices
]
≤ t∗e−⌊n/2t∗⌋/128 .

This gives the desired result.

We conclude this section with the proof of Lemma 8.4.

Proof of Lemma 8.4. We split the training set Sn into two sets and we further split the sets into
batches. The idea is to use the first set to train multiple independent instances of the online learn-
ing algorithm and the second set to estimate its identification error.

More concretely, let A the algorithm that identifies in the limit. For each batch size 1 ≤ t ≤
⌊n/2⌋ and batch index 1 ≤ i ≤ ⌊n/(2t)⌋, we let

Ii
t = ht

(
X(i−1)t+1, Y(i−1)t+1, Xit, Yit

)
be the index of the output of the learning algorithm that is trained on batch i of a subset of the
dataset that has size t. This is a mapping from the training samples to indices of the predicted
language.

72

For every fixed t, the outputs
{

Ii
t
}

i≤⌊n/2t⌋ are trained on different parts of the first half of the
training set and they are independent of the whole second half of the training set. This means that
we can view every

{
Ii
t
}

i≤⌊n/2t⌋ as an independent draw of the distribution of ht(·). To estimate
the identification error of ht(·), we will make use of the second half of the training set. We define

êt =
1

⌊n/2t⌋

⌊n/2t⌋

∑
i=1

1
{
1
{

Xs ∈ LIi
t

}
̸= Ys for some

n
2
≤ s ≤ n

}
.

We underline that this can be computed using just membership calls to the predicted languages.
Now observe that, almost surely,

êt ≤ et =
1

⌊n/2t⌋

⌊n/2t⌋

∑
i=1

1

{
Pr

(X,Y)∼P

[
1
{

X ∈ LIi
t

}
̸= Y

]
> 0

}
=

1
⌊n/2t⌋

⌊n/2t⌋

∑
i=1

1
{

LIi
t
̸= K

}
.

We define t̂n = inf{t ≤ ⌊n/2⌋ : êt < 1/4}, where we assume that inf ∅ = ∞.
We now want to bound the probability that t̂n > t⋆. Using Hoeffding’s inequality we get that

Pr
[
t̂n > t⋆

]
≤ Pr

[
êt⋆ ≥

1
4

]
≤ Pr

[
et⋆ ≥

1
4

]
= Pr

[
et⋆ −

1
8
≥ 1

8

]
= Pr

[
et⋆ − E[et⋆] ≥

1
8

]
≤ e−⌊n/2t⋆⌋/32 .

This implies that t̂n ≤ t⋆ except for an event with exponentially small probability.
Moreover, there is some ε > 0 such that for all 1 ≤ t ≤ t⋆ with

Pr
St∼Pt

[
Pr

(X,Y)∼P

[
1
{

X ∈ Lht(St)

}
̸= Y

]
> 0

]
>

3
8

,

we have that PrSt∼Pt

[
Pr(X,Y)∼P

[
1
{

X ∈ Lht(St)

}
̸= Y

]
> ε

]
> 1/4 + 1/16 (this holds by continuity).

Now fix some 1 ≤ t ≤ t⋆ such that

Pr
St∼Pt

[
Pr

(X,Y)∼P

[
1
{

X ∈ Lht(St)

}
̸= Y

]
> 0

]
>

3
8

(if it exists). Then, using Hoeffding’s inequality again we get that

Pr

[
1

⌊n/2t⌋

⌊n/2t⌋

∑
i=1

1

{
Pr

(X,Y)∼P

[
1
{

X ∈ LIi
t

}
̸= Y

]
> ε

}
<

1
4

]
≤ e⌊n/2t⋆⌋/128 .

For any language L such that Pr(X,Y)∼P [1 {X ∈ L} ̸= Y] > ε, then

Pr [1 {Xs ∈ L} ̸= Ys for some n/2 ≤ s ≤ n] ≥ 1 − (1 − ε)n/2 .

As we mentioned before, {Ii
t}i≤⌊n/2t⌋ are independent of (Xs, Ys)s>n/2. Thus, applying a union

bound we get that the probability that all Ii
t that have Pr(X,Y)∼P

[
1
{

X ∈ LIi
t

}
̸= Y

]
> ε make at

least one error on the second half of the training set is

Pr
[
1

{
Pr

(X,Y)∼P

[
1
{

X ∈ LIt
i

}
̸= Y

]
> ε

}
≤ 1

{
1
{

Xs ∈ LIt
i

}
̸= Ys for some n/2 < s ≤ n

}
for all i ∈ [⌊n/2t⌋]

]
≥ 1 −

⌊ n
2t

⌋
(1 − ε)n/2 .

73

Thus, we get that

Pr[t̂n = t] ≤ Pr
[

êt <
1
4

]
≤

⌊n
2

⌋
(1 − ε)n/2 + e−⌊ n

2t⋆ ⌋/128 .

Using the previous estimates and applying a union bound, we get that

Pr[t̂n /∈ T] ≤ e−⌊n/2t⋆⌋/32 + t⋆
⌊n

2

⌋
(1 − ε)n/2 + t⋆e−⌊n/2t⋆⌋/128 ≤ Ce−cn ,

for some constants C, c > 0. Note that C = C(P, t∗) and c = c(P, t∗).

Acknowledgments

We thank Ahmad Beirami and Manolis Zampetakis for helpful discussions and references after
the original draft. We thank Dylan McKay for discussions and references about the theory of com-
putation during the preparation of this paper, and specifically for informing us about Lemmas 6.2
and 6.3. We thank Kyriakos Lotidis for useful discussions about the lower bound of Angluin
[Ang88]. We also thank Yuan Deng, Sid Mitra, Ansong Ni, Argyris Oikonomou, Xizhi Tan, and
Manolis Zampetakis for their feedback on a draft of this paper. Alkis Kalavasis was supported by
the Institute for Foundations of Data Science at Yale. Grigoris Velegkas was supported by the AI
Institute for Learning-Enabled Optimization at Scale (TILOS).

74

References

[AB09] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 2009. ISBN: 9781139477369. URL: https://books.google.com/books?
id=nGvI7cOuOOQC (cit. on p. 29).

[AB17] Martin Arjovsky and Leon Bottou. “Towards Principled Methods for Training Gener-
ative Adversarial Networks”. In: International Conference on Learning Representations.
2017. URL: https://openreview.net/forum?id=Hk4_qw5xe (cit. on pp. 1, 3, 5).

[AB91] Leonard M Adleman and Manuel Blum. “Inductive Inference and Unsolvability”. In:
The Journal of Symbolic Logic 56.3 (1991), pp. 891–900. DOI: 10.2307/2275058 (cit. on
p. 5).

[ABL+22] Noga Alon, Mark Bun, Roi Livni, Maryanthe Malliaris, and Shay Moran. “Private
and Online Learnability Are Equivalent”. In: J. ACM 69.4 (Aug. 2022). ISSN: 0004-
5411. DOI: 10.1145/3526074. URL: https://doi.org/10.1145/3526074 (cit. on
p. 18).

[AGR13] Joseph Anderson, Navin Goyal, and Luis Rademacher. “Efficient Learning of Sim-
plices”. In: Proceedings of the 26th Annual Conference on Learning Theory. Ed. by Shai
Shalev-Shwartz and Ingo Steinwart. Vol. 30. Proceedings of Machine Learning Re-
search. Princeton, NJ, USA: PMLR, June 2013, pp. 1020–1045. URL: https://proceedings.
mlr.press/v30/Anderson13.html (cit. on p. 19).

[AHK+24] Idan Attias, Steve Hanneke, Alkis Kalavasis, Amin Karbasi, and Grigoris Velegkas.
“Universal Rates for Regression: Separations between Cut-Off and Absolute Loss”.
In: Proceedings of Thirty Seventh Conference on Learning Theory. Ed. by Shipra Agrawal
and Aaron Roth. Vol. 247. Proceedings of Machine Learning Research. PMLR, June
2024, pp. 359–405. URL: https://proceedings.mlr.press/v247/attias24a.html
(cit. on pp. 9, 16).

[AL24] Zeyuan Allen-Zhu and Yuanzhi Li. Physics of Language Models: Part 1, Learning Hier-
archical Language Structures. 2024. arXiv: 2305.13673 [cs.CL]. URL: https://arxiv.
org/abs/2305.13673 (cit. on p. 17).

[AL98] András Antos and Gábor Lugosi. “Strong Minimax Lower Bounds for Learning”.
In: Machine Learning 30.1 (1998), pp. 31–56. DOI: 10.1023/A:1007454427662. URL:
https://doi.org/10.1023/A:1007454427662 (cit. on pp. 4, 24).

[AML+24] Sumukh K Aithal, Pratyush Maini, Zachary C. Lipton, and J. Zico Kolter. Understand-
ing Hallucinations in Diffusion Models through Mode Interpolation. 2024. arXiv: 2406.
09358 [cs.LG]. URL: https://arxiv.org/abs/2406.09358 (cit. on p. 16).

[Ang79] Dana Angluin. “Finding Patterns Common to a Set of Strings (Extended Abstract)”.
In: Proceedings of the Eleventh Annual ACM Symposium on Theory of Computing. STOC
’79. Atlanta, Georgia, USA: Association for Computing Machinery, 1979, pp. 130–
141. ISBN: 9781450374385. DOI: 10.1145/800135.804406. URL: https://doi.org/10.
1145/800135.804406 (cit. on pp. 1, 3, 5–7, 10, 14, 17, 20, 21, 30, 96).

75

https://books.google.com/books?id=nGvI7cOuOOQC
https://books.google.com/books?id=nGvI7cOuOOQC
https://openreview.net/forum?id=Hk4_qw5xe
https://doi.org/10.2307/2275058
https://doi.org/10.1145/3526074
https://doi.org/10.1145/3526074
https://proceedings.mlr.press/v30/Anderson13.html
https://proceedings.mlr.press/v30/Anderson13.html
https://proceedings.mlr.press/v247/attias24a.html
https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2305.13673
https://arxiv.org/abs/2305.13673
https://doi.org/10.1023/A:1007454427662
https://doi.org/10.1023/A:1007454427662
https://arxiv.org/abs/2406.09358
https://arxiv.org/abs/2406.09358
https://arxiv.org/abs/2406.09358
https://doi.org/10.1145/800135.804406
https://doi.org/10.1145/800135.804406
https://doi.org/10.1145/800135.804406

[Ang80] Dana Angluin. “Inductive Inference of Formal Languages From Positive Data”. In:
Information and Control 45.2 (1980), pp. 117–135. ISSN: 0019-9958. DOI: https://doi.
org/10.1016/S0019-9958(80)90285-5. URL: https://www.sciencedirect.com/
science/article/pii/S0019995880902855 (cit. on pp. 3, 6, 7, 9, 14, 18–21, 28, 30, 33,
90).

[Ang82] Dana Angluin. “Inference of Reversible Languages”. In: J. ACM 29.3 (July 1982),
pp. 741–765. ISSN: 0004-5411. DOI: 10.1145/322326.322334. URL: https://doi.
org/10.1145/322326.322334 (cit. on p. 17).

[Ang88] Dana Angluin. Identifying Languages From Stochastic Examples. Yale University. De-
partment of Computer Science, 1988. URL: http://www.cs.yale.edu/publications/
techreports/tr614.pdf (cit. on pp. 1–4, 8, 10, 14, 16–18, 24, 26, 33, 41, 63, 69, 74).

[AOS+16] Dario Amodei, Chris Olah, Jacob Steinhardt, Paul Christiano, John Schulman, and
Dan Mané. Concrete Problems in AI Safety. 2016. arXiv: 1606.06565 [cs.AI]. URL:
https://arxiv.org/abs/1606.06565 (cit. on p. 1).

[AP23] Konstantinos Andriopoulos and Johan Pouwelse. Augmenting LLMs with Knowledge:
A Survey on Hallucination Prevention. 2023. arXiv: 2309.16459 [cs.CL]. URL: https:
//arxiv.org/abs/2309.16459 (cit. on p. 1).

[AS83] Dana Angluin and Carl H. Smith. “Inductive Inference: Theory and Methods”. In:
ACM Comput. Surv. 15.3 (Sept. 1983), pp. 237–269. ISSN: 0360-0300. DOI: 10.1145/
356914.356918. URL: https://doi.org/10.1145/356914.356918 (cit. on pp. 5, 17).

[AWK+24] Ekin Akyürek, Bailin Wang, Yoon Kim, and Jacob Andreas. “In-Context Language
Learning: Architectures and Algorithms”. In: Forty-first International Conference on
Machine Learning. 2024. URL: https://openreview.net/forum?id=3Z9CRr5srL (cit.
on p. 17).

[BAG20] Satwik Bhattamishra, Kabir Ahuja, and Navin Goyal. “On the Ability and Limita-
tions of Transformers to Recognize Formal Languages”. In: Proceedings of the 2020
Conference on Empirical Methods in Natural Language Processing (EMNLP). Ed. by Bon-
nie Webber, Trevor Cohn, Yulan He, and Yang Liu. Online: Association for Com-
putational Linguistics, Nov. 2020, pp. 7096–7116. DOI: 10.18653/v1/2020.emnlp-
main.576. URL: https://aclanthology.org/2020.emnlp-main.576 (cit. on p. 17).

[Bah14] Dzmitry Bahdanau. “Neural machine translation by jointly learning to align and
translate”. In: arXiv preprint arXiv:1409.0473 (2014) (cit. on p. 1).

[BB75] Lenore Blum and Manuel Blum. “Toward a Mathematical Theory of Inductive In-
ference”. In: Information and Control 28.2 (1975), pp. 125–155. ISSN: 0019-9958. DOI:
https : / / doi . org / 10 . 1016 / S0019 - 9958(75) 90261 - 2. URL: https : / / www .
sciencedirect.com/science/article/pii/S0019995875902612 (cit. on p. 5).

[BCE+23] Sébastien Bubeck, Varun Chandrasekaran, Ronen Eldan, Johannes Gehrke, Eric Horvitz,
Ece Kamar, Peter Lee, Yin Tat Lee, Yuanzhi Li, Scott Lundberg, Harsha Nori, Hamid
Palangi, Marco Tulio Ribeiro, and Yi Zhang. Sparks of Artificial General Intelligence:
Early experiments with GPT-4. 2023. arXiv: 2303.12712 [cs.CL]. URL: https://arxiv.
org/abs/2303.12712 (cit. on pp. 1, 6).

76

https://doi.org/https://doi.org/10.1016/S0019-9958(80)90285-5
https://doi.org/https://doi.org/10.1016/S0019-9958(80)90285-5
https://www.sciencedirect.com/science/article/pii/S0019995880902855
https://www.sciencedirect.com/science/article/pii/S0019995880902855
https://doi.org/10.1145/322326.322334
https://doi.org/10.1145/322326.322334
https://doi.org/10.1145/322326.322334
http://www.cs.yale.edu/publications/techreports/tr614.pdf
http://www.cs.yale.edu/publications/techreports/tr614.pdf
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/1606.06565
https://arxiv.org/abs/2309.16459
https://arxiv.org/abs/2309.16459
https://arxiv.org/abs/2309.16459
https://doi.org/10.1145/356914.356918
https://doi.org/10.1145/356914.356918
https://doi.org/10.1145/356914.356918
https://openreview.net/forum?id=3Z9CRr5srL
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://doi.org/10.18653/v1/2020.emnlp-main.576
https://aclanthology.org/2020.emnlp-main.576
https://doi.org/https://doi.org/10.1016/S0019-9958(75)90261-2
https://www.sciencedirect.com/science/article/pii/S0019995875902612
https://www.sciencedirect.com/science/article/pii/S0019995875902612
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712
https://arxiv.org/abs/2303.12712

[BCP+90] Peter F. Brown, John Cocke, Stephen A. Della Pietra, Vincent J. Della Pietra, Fredrick
Jelinek, John D. Lafferty, Robert L. Mercer, and Paul S. Roossin. “A statistical ap-
proach to machine translation”. In: Comput. Linguist. 16.2 (June 1990), pp. 79–85. ISSN:
0891-2017 (cit. on p. 6).

[BDd+92] Peter F. Brown, Vincent J. Della Pietra, Peter V. deSouza, Jenifer C. Lai, and Robert L.
Mercer. “Class-Based n-gram Models of Natural Language”. In: Computational Lin-
guistics 18.4 (1992), pp. 467–480. URL: https://aclanthology.org/J92-4003 (cit. on
p. 1).

[BDV00] Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. “A Neural Probabilistic Lan-
guage Model”. In: Advances in Neural Information Processing Systems. Ed. by T. Leen,
T. Dietterich, and V. Tresp. Vol. 13. MIT Press, 2000. URL: https://proceedings.
neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-
Paper.pdf (cit. on p. 1).

[Ber86] Robert C Berwick. “Learning From Positive-Only Examples: The Subset Principle
and Three Case Studies”. In: Machine learning: An artificial intelligence approach 2 (1986),
pp. 625–645 (cit. on p. 18).

[BGH+23] Mark Bun, Marco Gaboardi, Max Hopkins, Russell Impagliazzo, Rex Lei, Toniann
Pitassi, Satchit Sivakumar, and Jessica Sorrell. “Stability Is Stable: Connections be-
tween Replicability, Privacy, and Adaptive Generalization”. In: Proceedings of the 55th
Annual ACM Symposium on Theory of Computing. STOC 2023. Orlando, FL, USA: As-
sociation for Computing Machinery, 2023, pp. 520–527. ISBN: 9781450399135. DOI:
10.1145/3564246.3585246. URL: https://doi.org/10.1145/3564246.3585246
(cit. on p. 18).

[BHM+21] Olivier Bousquet, Steve Hanneke, Shay Moran, Ramon van Handel, and Amir Yehu-
dayoff. “A Theory of Universal Learning”. In: Proceedings of the 53rd Annual ACM
SIGACT Symposium on Theory of Computing. STOC 2021. Virtual, Italy: Association
for Computing Machinery, 2021, pp. 532–541. ISBN: 9781450380539. DOI: 10.1145/
3406325.3451087. URL: https://doi.org/10.1145/3406325.3451087 (cit. on pp. 1,
4, 9, 14, 16–18, 24–26, 34, 51, 69, 71, 96–98).

[BHM+23] Olivier Bousquet, Steve Hanneke, Shay Moran, Jonathan Shafer, and Ilya Tolstikhin.
“Fine-Grained Distribution-Dependent Learning Curves”. In: Proceedings of Thirty
Sixth Conference on Learning Theory. Ed. by Gergely Neu and Lorenzo Rosasco. Vol. 195.
Proceedings of Machine Learning Research. PMLR, July 2023, pp. 5890–5924. URL:
https://proceedings.mlr.press/v195/bousquet23a.html (cit. on p. 16).

[Bid23] Joseph R Biden. “Executive Order on the Safe, Secure, and Trustworthy Development
And Use of Artificial Intelligence””. In: (2023). URL: https : / / www . whitehouse .
gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-
the- safe- secure- and- trustworthy- development- and- use- of- artificial-
intelligence/ (cit. on p. 1).

77

https://aclanthology.org/J92-4003
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://doi.org/10.1145/3564246.3585246
https://doi.org/10.1145/3564246.3585246
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://doi.org/10.1145/3406325.3451087
https://proceedings.mlr.press/v195/bousquet23a.html
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/
https://www.whitehouse.gov/briefing-room/presidential-actions/2023/10/30/executive-order-on-the-safe-secure-and-trustworthy-development-and-use-of-artificial-intelligence/

[BJM83] Lalit R. Bahl, Frederick Jelinek, and Robert L. Mercer. “A Maximum Likelihood Ap-
proach to Continuous Speech Recognition”. In: IEEE Transactions on Pattern Analysis
and Machine Intelligence PAMI-5.2 (1983), pp. 179–190. DOI: 10.1109/TPAMI.1983.
4767370 (cit. on p. 6).

[Bor23] Ali Borji. A Categorical Archive of ChatGPT Failures. 2023. arXiv: 2302.03494 [cs.CL].
URL: https://arxiv.org/abs/2302.03494 (cit. on p. 1).

[Bre07] Joan Bresnan. “Is Syntactic Knowledge Probabilistic? Experiments With the English
Dative Alternation”. In: Linguistics in Search of its Evidential Base. Ed. by Sam Feather-
ston and Wolfgang Sternefeld. Berlin, New York: De Gruyter Mouton, 2007, pp. 75–
96. ISBN: 9783110198621. DOI: doi:10.1515/9783110198621.75. URL: https://doi.
org/10.1515/9783110198621.75 (cit. on p. 1).

[BZW+19] David Bau, Jun-Yan Zhu, Jonas Wulff, William Peebles, Hendrik Strobelt, Bolei Zhou,
and Antonio Torralba. “Seeing What a GAN Cannot Generate”. In: Proceedings of the
International Conference Computer Vision (ICCV). 2019 (cit. on p. 1).

[Cla14] Alexander Clark. “Distributional Learning as a Theory of Language Acquisition”. In:
Proceedings of the 5th Workshop on Cognitive Aspects of Computational Language Learn-
ing (CogACLL). Ed. by Alessandro Lenci, Muntsa Padró, Thierry Poibeau, and Aline
Villavicencio. Gothenburg, Sweden: Association for Computational Linguistics, Apr.
2014, p. 29. DOI: 10.3115/v1/W14-0506. URL: https://aclanthology.org/W14-0506
(cit. on p. 1).

[CMY23] Zachary Chase, Shay Moran, and Amir Yehudayoff. “Stability and Replicability in
Learning”. In: 2023 IEEE 64th Annual Symposium on Foundations of Computer Science
(FOCS). 2023, pp. 2430–2439. DOI: 10.1109/FOCS57990.2023.00148 (cit. on p. 18).

[Daw82] A Philip Dawid. “The Well-Calibrated Bayesian”. In: Journal of the American Statisti-
cal Association 77.379 (1982), pp. 605–610. DOI: 10.1080/01621459.1982.10477856.
eprint: https : / / www . tandfonline . com / doi / pdf / 10 . 1080 / 01621459 . 1982 .
10477856. URL: https://www.tandfonline.com/doi/abs/10.1080/01621459.
1982.10477856 (cit. on p. 16).

[DDS15] Anindya De, Ilias Diakonikolas, and Rocco A. Servedio. “Learning From Satisfying
Assignments”. In: Proceedings of the 2015 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA). 2015, pp. 478–497. DOI: 10.1137/1.9781611973730.33. eprint:
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973730.33. URL: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611973730.33 (cit. on p. 19).

[Den98] François Denis. “PAC Learning from Positive Statistical Queries”. In: Algorithmic
Learning Theory. Ed. by Michael M. Richter, Carl H. Smith, Rolf Wiehagen, and Thomas
Zeugmann. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998, pp. 112–126. ISBN:
978-3-540-49730-1 (cit. on p. 18).

[DGL05] François Denis, Rémi Gilleron, and Fabien Letouzey. “Learning From Positive and
Unlabeled Examples”. In: Theoretical Computer Science 348.1 (2005). Algorithmic Learn-
ing Theory (ALT 2000), pp. 70–83. ISSN: 0304-3975. DOI: https://doi.org/10.1016/
j.tcs.2005.09.007. URL: https://www.sciencedirect.com/science/article/
pii/S0304397505005256 (cit. on p. 18).

78

https://doi.org/10.1109/TPAMI.1983.4767370
https://doi.org/10.1109/TPAMI.1983.4767370
https://arxiv.org/abs/2302.03494
https://arxiv.org/abs/2302.03494
https://doi.org/doi:10.1515/9783110198621.75
https://doi.org/10.1515/9783110198621.75
https://doi.org/10.1515/9783110198621.75
https://doi.org/10.3115/v1/W14-0506
https://aclanthology.org/W14-0506
https://doi.org/10.1109/FOCS57990.2023.00148
https://doi.org/10.1080/01621459.1982.10477856
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1982.10477856
https://www.tandfonline.com/doi/pdf/10.1080/01621459.1982.10477856
https://www.tandfonline.com/doi/abs/10.1080/01621459.1982.10477856
https://www.tandfonline.com/doi/abs/10.1080/01621459.1982.10477856
https://doi.org/10.1137/1.9781611973730.33
https://epubs.siam.org/doi/pdf/10.1137/1.9781611973730.33
https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.33
https://epubs.siam.org/doi/abs/10.1137/1.9781611973730.33
https://doi.org/https://doi.org/10.1016/j.tcs.2005.09.007
https://doi.org/https://doi.org/10.1016/j.tcs.2005.09.007
https://www.sciencedirect.com/science/article/pii/S0304397505005256
https://www.sciencedirect.com/science/article/pii/S0304397505005256

[DGT+18] Constantinos Daskalakis, Themis Gouleakis, Chistos Tzamos, and Manolis Zampetakis.
“Efficient Statistics, in High Dimensions, from Truncated Samples”. In: 2018 IEEE
59th Annual Symposium on Foundations of Computer Science (FOCS). 2018, pp. 639–649.
DOI: 10.1109/FOCS.2018.00067 (cit. on p. 19).

[DGT+19] Constantinos Daskalakis, Themis Gouleakis, Christos Tzamos, and Manolis Zam-
petakis. “Computationally and Statistically Efficient Truncated Regression”. In: Pro-
ceedings of the Thirty-Second Conference on Learning Theory. Ed. by Alina Beygelzimer
and Daniel Hsu. Vol. 99. Proceedings of Machine Learning Research. PMLR, June
2019, pp. 955–960. URL: https://proceedings.mlr.press/v99/daskalakis19a.
html (cit. on p. 19).

[DKP+24] Ilias Diakonikolas, Daniel M. Kane, Thanasis Pittas, and Nikos Zarifis. “Statistical
Query Lower Bounds for Learning Truncated Gaussians”. In: Proceedings of Thirty
Seventh Conference on Learning Theory. Ed. by Shipra Agrawal and Aaron Roth. Vol. 247.
Proceedings of Machine Learning Research. PMLR, 30 Jun–03 Jul 2024, pp. 1336–
1363. URL: https://proceedings.mlr.press/v247/diakonikolas24b.html (cit. on
p. 19).

[DKT+21] Constantinos Daskalakis, Vasilis Kontonis, Christos Tzamos, and Emmanouil Zam-
petakis. “A Statistical Taylor Theorem and Extrapolation of Truncated Densities”. In:
Proceedings of Thirty Fourth Conference on Learning Theory. Ed. by Mikhail Belkin and
Samory Kpotufe. Vol. 134. Proceedings of Machine Learning Research. PMLR, Aug.
2021, pp. 1395–1398. URL: https://proceedings.mlr.press/v134/daskalakis21a.
html (cit. on p. 19).

[DLN+24] Anindya De, Huan Li, Shivam Nadimpalli, and Rocco A. Servedio. “Detecting Low-
Degree Truncation”. In: Proceedings of the 56th Annual ACM Symposium on Theory of
Computing. STOC 2024. Vancouver, BC, Canada: Association for Computing Machin-
ery, 2024, pp. 1027–1038. ISBN: 9798400703836. DOI: 10.1145/3618260.3649633. URL:
https://doi.org/10.1145/3618260.3649633 (cit. on p. 19).

[DNS23] Anindya De, Shivam Nadimpalli, and Rocco A. Servedio. “Testing Convex Trunca-
tion”. In: Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA). 2023, pp. 4050–4082. DOI: 10.1137/1.9781611977554.ch155. eprint: https:
//epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch155. URL: https:
//epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch155 (cit. on p. 19).

[DP09] D.P. Dubhashi and A. Panconesi. Concentration of Measure for the Analysis of Random-
ized Algorithms. Cambridge University Press, 2009. ISBN: 9781139480994. URL: https:
//books.google.com/books?id=UUohAwAAQBAJ (cit. on p. 40).

[EEG+24] Benjamin L. Edelman, Ezra Edelman, Surbhi Goel, Eran Malach, and Nikolaos Tsilivis.
The Evolution of Statistical Induction Heads: In-Context Learning Markov Chains. 2024.
arXiv: 2402.11004 [cs.LG]. URL: https://arxiv.org/abs/2402.11004 (cit. on
p. 17).

79

https://doi.org/10.1109/FOCS.2018.00067
https://proceedings.mlr.press/v99/daskalakis19a.html
https://proceedings.mlr.press/v99/daskalakis19a.html
https://proceedings.mlr.press/v247/diakonikolas24b.html
https://proceedings.mlr.press/v134/daskalakis21a.html
https://proceedings.mlr.press/v134/daskalakis21a.html
https://doi.org/10.1145/3618260.3649633
https://doi.org/10.1145/3618260.3649633
https://doi.org/10.1137/1.9781611977554.ch155
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch155
https://epubs.siam.org/doi/pdf/10.1137/1.9781611977554.ch155
https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch155
https://epubs.siam.org/doi/abs/10.1137/1.9781611977554.ch155
https://books.google.com/books?id=UUohAwAAQBAJ
https://books.google.com/books?id=UUohAwAAQBAJ
https://arxiv.org/abs/2402.11004
https://arxiv.org/abs/2402.11004

[EGZ20] Javid Ebrahimi, Dhruv Gelda, and Wei Zhang. “How Can Self-Attention Networks
Recognize Dyck-n Languages?” In: Findings of the Association for Computational Lin-
guistics: EMNLP 2020. Ed. by Trevor Cohn, Yulan He, and Yang Liu. Online: Associ-
ation for Computational Linguistics, Nov. 2020, pp. 4301–4306. DOI: 10.18653/v1/
2020.findings- emnlp.384. URL: https://aclanthology.org/2020.findings-
emnlp.384 (cit. on p. 17).

[Eld11] Ronen Eldan. “A Polynomial Number of Random Points Does Not Determine the
Volume of a Convex Body”. In: Discrete & Computational Geometry 46.1 (2011), pp. 29–
47. DOI: 10.1007/s00454-011-9328-x. URL: https://doi.org/10.1007/s00454-
011-9328-x (cit. on p. 19).

[Elm90] Jeffrey L. Elman. “Finding Structure in Time”. In: Cognitive Science 14.2 (1990), pp. 179–
211. DOI: https://doi.org/10.1207/s15516709cog1402_1. eprint: https://
onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1. URL: https:
//onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1 (cit. on p. 17).

[FJK96] A. Frieze, M. Jerrum, and R. Kannan. “Learning Linear Transformations”. In: Pro-
ceedings of 37th Conference on Foundations of Computer Science. 1996, pp. 359–368. DOI:
10.1109/SFCS.1996.548495 (cit. on p. 19).

[FKT20] Dimitris Fotakis, Alkis Kalavasis, and Christos Tzamos. “Efficient parameter esti-
mation of truncated boolean product distributions”. In: Conference on learning theory.
PMLR. 2020, pp. 1586–1600. URL: https://doi.org/10.1007/s00453-022-00961-9
(cit. on p. 19).

[FSW+24] Shangbin Feng, Weijia Shi, Yike Wang, Wenxuan Ding, Vidhisha Balachandran, and
Yulia Tsvetkov. “Don’t Hallucinate, Abstain: Identifying LLM Knowledge Gaps via
Multi-LLM Collaboration”. In: Proceedings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Papers). Ed. by Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar. Bangkok, Thailand: Association for Computational Lin-
guistics, Aug. 2024, pp. 14664–14690. URL: https://aclanthology.org/2024.acl-
long.786 (cit. on p. 1).

[GLL+24] Xinyan Guan, Yanjiang Liu, Hongyu Lin, Yaojie Lu, Ben He, Xianpei Han, and Le
Sun. “Mitigating Large Language Model Hallucinations via Autonomous Knowl-
edge Graph-Based Retrofitting”. In: Proceedings of the AAAI Conference on Artificial
Intelligence. Vol. 38. 16. 2024, pp. 18126–18134. URL: https://doi.org/10.1609/
aaai.v38i16.29770 (cit. on p. 16).

[Gol16] Yoav Goldberg. “A Primer on Neural Network Models for Natural Language Pro-
cessing”. In: Journal of Artificial Intelligence Research 57 (2016), pp. 345–420. DOI: https:
//doi.org/10.1613/jair.4992 (cit. on p. 1).

[Gol67] E. Mark Gold. “Language Identification in the Limit”. In: Information and Control 10.5
(1967), pp. 447–474. ISSN: 0019-9958. DOI: https : / / doi . org / 10 . 1016 / S0019 -
9958(67)91165- 5. URL: https://www.sciencedirect.com/science/article/
pii/S0019995867911655 (cit. on pp. 1, 3, 6–9, 12, 14, 17–21, 24, 28, 30, 33, 36, 60, 68,
70, 93, 96, 97).

80

https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://doi.org/10.18653/v1/2020.findings-emnlp.384
https://aclanthology.org/2020.findings-emnlp.384
https://aclanthology.org/2020.findings-emnlp.384
https://doi.org/10.1007/s00454-011-9328-x
https://doi.org/10.1007/s00454-011-9328-x
https://doi.org/10.1007/s00454-011-9328-x
https://doi.org/https://doi.org/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/pdf/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://doi.org/10.1109/SFCS.1996.548495
https://doi.org/10.1007/s00453-022-00961-9
https://aclanthology.org/2024.acl-long.786
https://aclanthology.org/2024.acl-long.786
https://doi.org/10.1609/aaai.v38i16.29770
https://doi.org/10.1609/aaai.v38i16.29770
https://doi.org/https://doi.org/10.1613/jair.4992
https://doi.org/https://doi.org/10.1613/jair.4992
https://doi.org/https://doi.org/10.1016/S0019-9958(67)91165-5
https://doi.org/https://doi.org/10.1016/S0019-9958(67)91165-5
https://www.sciencedirect.com/science/article/pii/S0019995867911655
https://www.sciencedirect.com/science/article/pii/S0019995867911655

[GPM+20] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley,
Sherjil Ozair, Aaron Courville, and Yoshua Bengio. “Generative Adversarial net-
works”. In: Commun. ACM 63.11 (Oct. 2020), pp. 139–144. ISSN: 0001-0782. DOI: 10.
1145/3422622. URL: https://doi.org/10.1145/3422622 (cit. on pp. 1, 3, 5).

[GS01] F.A. Gers and E. Schmidhuber. “LSTM Recurrent Networks Learn Simple Context-
Free and Context-Sensitive Languages”. In: IEEE Transactions on Neural Networks 12.6
(2001), pp. 1333–1340. DOI: 10.1109/72.963769 (cit. on p. 17).

[GZA+23] Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio César Teodoro Mendes, Allie Del
Giorno, Sivakanth Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo de Rosa, Olli
Saarikivi, Adil Salim, Shital Shah, Harkirat Singh Behl, Xin Wang, Sébastien Bubeck,
Ronen Eldan, Adam Tauman Kalai, Yin Tat Lee, and Yuanzhi Li. Textbooks Are All You
Need. 2023. arXiv: 2306.11644 [cs.CL]. URL: https://arxiv.org/abs/2306.11644
(cit. on p. 1).

[Hah20] Michael Hahn. “Theoretical Limitations of Self-Attention in Neural Sequence Mod-
els”. In: Transactions of the Association for Computational Linguistics 8 (Jan. 2020), pp. 156–
171. ISSN: 2307-387X. DOI: 10.1162/tacl_a_00306. eprint: https://direct.mit.
edu/tacl/article-pdf/doi/10.1162/tacl_a_00306/1923102/tacl_a_00306.
pdf. URL: https://doi.org/10.1162/tacl%5C_a%5C_00306 (cit. on p. 17).

[HBD+20] Ari Holtzman, Jan Buys, Li Du, Maxwell Forbes, and Yejin Choi. “The Curious Case
of Neural Text Degeneration”. In: International Conference on Learning Representations.
2020. URL: https://openreview.net/forum?id=rygGQyrFvH (cit. on p. 27).

[HCS+22] Dan Hendrycks, Nicholas Carlini, John Schulman, and Jacob Steinhardt. Unsolved
Problems in ML Safety. 2022. arXiv: 2109.13916 [cs.LG]. URL: https://arxiv.org/
abs/2109.13916 (cit. on p. 1).

[HG23] Michael Hahn and Navin Goyal. A Theory of Emergent In-Context Learning as Implicit
Structure Induction. 2023. arXiv: 2303.07971 [cs.CL]. URL: https://arxiv.org/abs/
2303.07971 (cit. on p. 17).

[HHG+20] John Hewitt, Michael Hahn, Surya Ganguli, Percy Liang, and Christopher D. Man-
ning. “RNNs Can Generate Bounded Hierarchical Languages With Optimal Mem-
ory”. In: Proceedings of the 2020 Conference on Empirical Methods in Natural Language
Processing (EMNLP). Ed. by Bonnie Webber, Trevor Cohn, Yulan He, and Yang Liu.
Online: Association for Computational Linguistics, Nov. 2020, pp. 1978–2010. DOI:
10.18653/v1/2020.emnlp- main.156. URL: https://aclanthology.org/2020.
emnlp-main.156 (cit. on p. 17).

[HKK+18] Steve Hanneke, Adam Tauman Kalai, Gautam Kamath, and Christos Tzamos. “Ac-
tively Avoiding Nonsense in Generative Models”. In: Proceedings of the 31st Conference
On Learning Theory. Ed. by Sébastien Bubeck, Vianney Perchet, and Philippe Rigollet.
Vol. 75. Proceedings of Machine Learning Research. PMLR, June 2018, pp. 209–227.
URL: https://proceedings.mlr.press/v75/hanneke18a.html (cit. on p. 1).

81

https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1145/3422622
https://doi.org/10.1109/72.963769
https://arxiv.org/abs/2306.11644
https://arxiv.org/abs/2306.11644
https://doi.org/10.1162/tacl_a_00306
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00306/1923102/tacl_a_00306.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00306/1923102/tacl_a_00306.pdf
https://direct.mit.edu/tacl/article-pdf/doi/10.1162/tacl_a_00306/1923102/tacl_a_00306.pdf
https://doi.org/10.1162/tacl%5C_a%5C_00306
https://openreview.net/forum?id=rygGQyrFvH
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2109.13916
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2303.07971
https://arxiv.org/abs/2303.07971
https://doi.org/10.18653/v1/2020.emnlp-main.156
https://aclanthology.org/2020.emnlp-main.156
https://aclanthology.org/2020.emnlp-main.156
https://proceedings.mlr.press/v75/hanneke18a.html

[HKM+22] Steve Hanneke, Amin Karbasi, Shay Moran, and Grigoris Velegkas. “Universal Rates
for Interactive Learning”. In: Advances in Neural Information Processing Systems. Ed.
by Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho. 2022. URL:
https://openreview.net/forum?id=dTTKMy00PTJ (cit. on p. 16).

[HMZ23] Steve Hanneke, Shay Moran, and Qian Zhang. “Universal Rates for Multiclass Learn-
ing”. In: Proceedings of Thirty Sixth Conference on Learning Theory. Ed. by Gergely Neu
and Lorenzo Rosasco. Vol. 195. Proceedings of Machine Learning Research. PMLR,
July 2023, pp. 5615–5681. URL: https://proceedings.mlr.press/v195/hanneke23a.
html (cit. on pp. 16, 26).

[HS97] Sepp Hochreiter and Jürgen Schmidhuber. “Long Short-Term Memory”. In: Neural
Computation 9.8 (Nov. 1997), pp. 1735–1780. ISSN: 0899-7667. DOI: 10.1162/neco.
1997.9.8.1735. eprint: https://direct.mit.edu/neco/article-pdf/9/8/1735/
813796/neco.1997.9.8.1735.pdf. URL: https://doi.org/10.1162/neco.1997.9.
8.1735 (cit. on p. 1).

[HYM+23] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang,
Qianglong Chen, Weihua Peng, Xiaocheng Feng, Bing Qin, and Ting Liu. A Survey
on Hallucination in Large Language Models: Principles, Taxonomy, Challenges, and Open
Questions. 2023. arXiv: 2311.05232 [cs.CL]. URL: https://arxiv.org/abs/2311.
05232 (cit. on p. 1).

[JLF+23] Ziwei Ji, Nayeon Lee, Rita Frieske, Tiezheng Yu, Dan Su, Yan Xu, Etsuko Ishii, Ye
Jin Bang, Andrea Madotto, and Pascale Fung. “Survey of Hallucination in Natural
Language Generation”. In: ACM Comput. Surv. 55.12 (Mar. 2023). ISSN: 0360-0300.
DOI: 10.1145/3571730. URL: https://doi.org/10.1145/3571730 (cit. on p. 1).

[JSR+24] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary,
Chris Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Flo-
rian Bressand, Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard
Lavaud, Lucile Saulnier, Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao, Théophile Gervet, Thibaut Lavril,
Thomas Wang, Timothée Lacroix, and William El Sayed. Mixtral of Experts. 2024.
arXiv: 2401.04088 [cs.LG]. URL: https://arxiv.org/abs/2401.04088 (cit. on
p. 29).

[KKM+23] Alkis Kalavasis, Amin Karbasi, Shay Moran, and Grigoris Velegkas. “Statistical In-
distinguishability of Learning Algorithms”. In: Proceedings of the 40th International
Conference on Machine Learning. Ed. by Andreas Krause, Emma Brunskill, Kyunghyun
Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett. Vol. 202. Proceedings
of Machine Learning Research. PMLR, July 2023, pp. 15586–15622. URL: https://
proceedings.mlr.press/v202/kalavasis23a.html (cit. on p. 18).

[KM24] Jon Kleinberg and Sendhil Mullainathan. “Language Generation in the Limit”. In:
Advances in Neural Information Processing Systems. Vol. 37. 2024. URL: https://arxiv.
org/abs/2404.06757 (cit. on pp. 1–4, 6–8, 11, 12, 14–17, 20, 22–24, 26, 28, 30, 32, 47,
51–55, 57, 59, 67, 91, 92).

82

https://openreview.net/forum?id=dTTKMy00PTJ
https://proceedings.mlr.press/v195/hanneke23a.html
https://proceedings.mlr.press/v195/hanneke23a.html
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://direct.mit.edu/neco/article-pdf/9/8/1735/813796/neco.1997.9.8.1735.pdf
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://arxiv.org/abs/2311.05232
https://doi.org/10.1145/3571730
https://doi.org/10.1145/3571730
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2401.04088
https://proceedings.mlr.press/v202/kalavasis23a.html
https://proceedings.mlr.press/v202/kalavasis23a.html
https://arxiv.org/abs/2404.06757
https://arxiv.org/abs/2404.06757

[Kni24] Will Knight. Inside the Creation of DBRX, the World’s Most Powerful Open Source AI
Model | WIRED. Mar. 2024. URL: https://www.wired.com/story/dbrx-inside-
the-creation-of-the-worlds-most-powerful-open-source-ai-model/ (cit. on
p. 29).

[KTZ19] Vasilis Kontonis, Christos Tzamos, and Manolis Zampetakis. “Efficient Truncated
Statistics with Unknown Truncation”. In: 2019 IEEE 60th Annual Symposium on Foun-
dations of Computer Science (FOCS) (2019), pp. 1578–1595. URL: https://api.semanticscholar.
org/CorpusID:199442432 (cit. on p. 19).

[KV24] Adam Tauman Kalai and Santosh S. Vempala. “Calibrated Language Models Must
Hallucinate”. In: Proceedings of the 56th Annual ACM Symposium on Theory of Com-
puting. STOC 2024. Vancouver, BC, Canada: Association for Computing Machin-
ery, 2024, pp. 160–171. ISBN: 9798400703836. DOI: 10.1145/3618260.3649777. URL:
https://doi.org/10.1145/3618260.3649777 (cit. on pp. 1, 2, 14, 16).

[KVK22] Alkis Kalavasis, Grigoris Velegkas, and Amin Karbasi. “Multiclass Learnability Be-
yond the PAC Framework: Universal Rates and Partial Concept Classes”. In: Ad-
vances in Neural Information Processing Systems. Ed. by S. Koyejo, S. Mohamed, A.
Agarwal, D. Belgrave, K. Cho, and A. Oh. Vol. 35. Curran Associates, Inc., 2022,
pp. 20809–20822. URL: https://proceedings.neurips.cc/paper_files/paper/
2022/file/82f0dae85424eb743017c90380e7ab9b-Paper-Conference.pdf (cit. on
pp. 16, 26).

[KWT+24] Katie Kang, Eric Wallace, Claire Tomlin, Aviral Kumar, and Sergey Levine. Unfamil-
iar Finetuning Examples Control How Language Models Hallucinate. 2024. arXiv: 2403.
05612 [cs.LG]. URL: https://arxiv.org/abs/2403.05612 (cit. on p. 1).

[LAG+23] Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang.
“Transformers Learn Shortcuts to Automata”. In: The Eleventh International Confer-
ence on Learning Representations. 2023. URL: https://openreview.net/forum?id=
De4FYqjFueZ (cit. on p. 17).

[LBH15] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. “Deep Learning”. In: Nature 521.7553
(2015), pp. 436–444. DOI: 10.1038/nature14539. URL: https://doi.org/10.1038/
nature14539 (cit. on p. 1).

[Lit88] Nick Littlestone. “Learning Quickly When Irrelevant Attributes Abound: A New
Linear-Threshold Algorithm”. In: Machine Learning 2.4 (1988), pp. 285–318. DOI: 10.
1007/BF00116827. URL: https://doi.org/10.1007/BF00116827 (cit. on pp. 9, 17, 18,
96, 97).

[LMZ24] Jane H. Lee, Anay Mehrotra, and Manolis Zampetakis. “Efficient Statistics With Un-
known Truncation, Polynomial Time Algorithms, Beyond Gaussians”. In: 2024 IEEE
65th Annual Symposium on Foundations of Computer Science (FOCS). 2024. URL: https:
//arxiv.org/abs/2410.01656 (cit. on p. 19).

[LRT24] Jiaxun Li, Vinod Raman, and Ambuj Tewari. Generation Through the Lens of Learning
Theory. 2024. arXiv: 2410.13714 [cs.LG]. URL: https://arxiv.org/abs/2410.13714
(cit. on p. 17).

83

https://www.wired.com/story/dbrx-inside-the-creation-of-the-worlds-most-powerful-open-source-ai-model/
https://www.wired.com/story/dbrx-inside-the-creation-of-the-worlds-most-powerful-open-source-ai-model/
https://api.semanticscholar.org/CorpusID:199442432
https://api.semanticscholar.org/CorpusID:199442432
https://doi.org/10.1145/3618260.3649777
https://doi.org/10.1145/3618260.3649777
https://proceedings.neurips.cc/paper_files/paper/2022/file/82f0dae85424eb743017c90380e7ab9b-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/82f0dae85424eb743017c90380e7ab9b-Paper-Conference.pdf
https://arxiv.org/abs/2403.05612
https://arxiv.org/abs/2403.05612
https://arxiv.org/abs/2403.05612
https://openreview.net/forum?id=De4FYqjFueZ
https://openreview.net/forum?id=De4FYqjFueZ
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1038/nature14539
https://doi.org/10.1007/BF00116827
https://doi.org/10.1007/BF00116827
https://doi.org/10.1007/BF00116827
https://arxiv.org/abs/2410.01656
https://arxiv.org/abs/2410.01656
https://arxiv.org/abs/2410.13714
https://arxiv.org/abs/2410.13714

[Lu23] Zhou Lu. Non-uniform Online Learning: Towards Understanding Induction. 2023. arXiv:
2312.00170 [cs.LG]. URL: https://arxiv.org/abs/2312.00170 (cit. on pp. 17, 18).

[Man53] Benoit Mandelbrot. “An Informational Theory of the Statistical Structure of Lan-
guage”. In: Communication theory 84 (1953), pp. 486–502. URL: http://pdodds.w3.
uvm.edu/research/papers/others/1953/mandelbrot1953a.pdf (cit. on p. 1).

[Mer19] William Merrill. “Sequential Neural Networks as Automata”. In: Proceedings of the
Workshop on Deep Learning and Formal Languages: Building Bridges. Ed. by Jason Eis-
ner, Matthias Gallé, Jeffrey Heinz, Ariadna Quattoni, and Guillaume Rabusseau.
Florence: Association for Computational Linguistics, Aug. 2019, pp. 1–13. DOI: 10.
18653/v1/W19-3901. URL: https://aclanthology.org/W19-3901 (cit. on p. 17).

[MIB+24] Kyle Mahowald, Anna A. Ivanova, Idan A. Blank, Nancy Kanwisher, Joshua B. Tenen-
baum, and Evelina Fedorenko. “Dissociating Language and Thought in Large Lan-
guage Models”. In: Trends in Cognitive Sciences 28.6 (2024), pp. 517–540. ISSN: 1364-
6613. DOI: https://doi.org/10.1016/j.tics.2024.01.011. URL: https://www.
sciencedirect.com/science/article/pii/S1364661324000275 (cit. on p. 1).

[MKB+10] Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-
pur. “Recurrent neural network based language model”. In: Interspeech. Vol. 2. 3.
Makuhari. 2010, pp. 1045–1048. URL: https://www.fit.vut.cz/research/group/
speech/public/publi/2010/mikolov_interspeech2010_IS100722.pdf (cit. on p. 1).

[MM23] Maryanthe Malliaris and Shay Moran. The Unstable Formula Theorem Revisited via Al-
gorithms. 2023. arXiv: 2212.05050 [math.LO]. URL: https://arxiv.org/abs/2212.
05050 (cit. on pp. 12, 18).

[MS23] William Merrill and Ashish Sabharwal. “The Parallelism Tradeoff: Limitations of
Log-Precision Transformers”. In: Transactions of the Association for Computational Lin-
guistics 11 (2023), pp. 531–545. DOI: 10.1162/tacl_a_00562. URL: https://aclanthology.
org/2023.tacl-1.31 (cit. on p. 17).

[MSS23] Shay Moran, Hilla Schefler, and Jonathan Shafer. “The Bayesian Stability Zoo”. In:
Advances in Neural Information Processing Systems. Ed. by A. Oh, T. Naumann, A.
Globerson, K. Saenko, M. Hardt, and S. Levine. Vol. 36. Curran Associates, Inc., 2023,
pp. 61725–61746. URL: https://proceedings.neurips.cc/paper_files/paper/
2023/file/c2586b71fd150fb56952e253a9c551cc-Paper-Conference.pdf (cit. on
p. 18).

[Nat87] Balaubramaniam Kausik Natarajan. “On Learning Boolean Functions”. In: Proceed-
ings of the Nineteenth Annual ACM Symposium on Theory of Computing. STOC ’87. New
York, New York, USA: Association for Computing Machinery, 1987, pp. 296–304.
ISBN: 0897912217. DOI: 10.1145/28395.28427. URL: https://doi.org/10.1145/
28395.28427 (cit. on p. 18).

[OAA+24] OpenAI, Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya,
Florencia Leoni Aleman, Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal
Anadkat, Red Avila, Igor Babuschkin, Suchir Balaji, Valerie Balcom, Paul Baltescu,
Haiming Bao, Mohammad Bavarian, Jeff Belgum, Irwan Bello, Jake Berdine, Gabriel

84

https://arxiv.org/abs/2312.00170
https://arxiv.org/abs/2312.00170
http://pdodds.w3.uvm.edu/research/papers/others/1953/mandelbrot1953a.pdf
http://pdodds.w3.uvm.edu/research/papers/others/1953/mandelbrot1953a.pdf
https://doi.org/10.18653/v1/W19-3901
https://doi.org/10.18653/v1/W19-3901
https://aclanthology.org/W19-3901
https://doi.org/https://doi.org/10.1016/j.tics.2024.01.011
https://www.sciencedirect.com/science/article/pii/S1364661324000275
https://www.sciencedirect.com/science/article/pii/S1364661324000275
https://www.fit.vut.cz/research/group/speech/public/publi/2010/mikolov_interspeech2010_IS100722.pdf
https://www.fit.vut.cz/research/group/speech/public/publi/2010/mikolov_interspeech2010_IS100722.pdf
https://arxiv.org/abs/2212.05050
https://arxiv.org/abs/2212.05050
https://arxiv.org/abs/2212.05050
https://doi.org/10.1162/tacl_a_00562
https://aclanthology.org/2023.tacl-1.31
https://aclanthology.org/2023.tacl-1.31
https://proceedings.neurips.cc/paper_files/paper/2023/file/c2586b71fd150fb56952e253a9c551cc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/c2586b71fd150fb56952e253a9c551cc-Paper-Conference.pdf
https://doi.org/10.1145/28395.28427
https://doi.org/10.1145/28395.28427
https://doi.org/10.1145/28395.28427

Bernadett-Shapiro, Christopher Berner, Lenny Bogdonoff, Oleg Boiko, Madelaine
Boyd, Anna-Luisa Brakman, Greg Brockman, Tim Brooks, Miles Brundage, Kevin
Button, Trevor Cai, Rosie Campbell, Andrew Cann, Brittany Carey, Chelsea Carlson,
Rory Carmichael, Brooke Chan, Che Chang, Fotis Chantzis, Derek Chen, Sully Chen,
Ruby Chen, Jason Chen, Mark Chen, Ben Chess, Chester Cho, Casey Chu, Hyung
Won Chung, Dave Cummings, Jeremiah Currier, Yunxing Dai, Cory Decareaux, Thomas
Degry, Noah Deutsch, Damien Deville, Arka Dhar, David Dohan, Steve Dowling,
Sheila Dunning, Adrien Ecoffet, Atty Eleti, Tyna Eloundou, David Farhi, Liam Fe-
dus, Niko Felix, Simón Posada Fishman, Juston Forte, Isabella Fulford, Leo Gao, Elie
Georges, Christian Gibson, Vik Goel, Tarun Gogineni, Gabriel Goh, Rapha Gontijo-
Lopes, Jonathan Gordon, Morgan Grafstein, Scott Gray, Ryan Greene, Joshua Gross,
Shixiang Shane Gu, Yufei Guo, Chris Hallacy, Jesse Han, Jeff Harris, Yuchen He,
Mike Heaton, Johannes Heidecke, Chris Hesse, Alan Hickey, Wade Hickey, Peter
Hoeschele, Brandon Houghton, Kenny Hsu, Shengli Hu, Xin Hu, Joost Huizinga,
Shantanu Jain, Shawn Jain, Joanne Jang, Angela Jiang, Roger Jiang, Haozhun Jin,
Denny Jin, Shino Jomoto, Billie Jonn, Heewoo Jun, Tomer Kaftan, Łukasz Kaiser,
Ali Kamali, Ingmar Kanitscheider, Nitish Shirish Keskar, Tabarak Khan, Logan Kil-
patrick, Jong Wook Kim, Christina Kim, Yongjik Kim, Jan Hendrik Kirchner, Jamie
Kiros, Matt Knight, Daniel Kokotajlo, Łukasz Kondraciuk, Andrew Kondrich, Aris
Konstantinidis, Kyle Kosic, Gretchen Krueger, Vishal Kuo, Michael Lampe, Ikai Lan,
Teddy Lee, Jan Leike, Jade Leung, Daniel Levy, Chak Ming Li, Rachel Lim, Molly
Lin, Stephanie Lin, Mateusz Litwin, Theresa Lopez, Ryan Lowe, Patricia Lue, Anna
Makanju, Kim Malfacini, Sam Manning, Todor Markov, Yaniv Markovski, Bianca
Martin, Katie Mayer, Andrew Mayne, Bob McGrew, Scott Mayer McKinney, Chris-
tine McLeavey, Paul McMillan, Jake McNeil, David Medina, Aalok Mehta, Jacob
Menick, Luke Metz, Andrey Mishchenko, Pamela Mishkin, Vinnie Monaco, Evan
Morikawa, Daniel Mossing, Tong Mu, Mira Murati, Oleg Murk, David Mély, Ashvin
Nair, Reiichiro Nakano, Rajeev Nayak, Arvind Neelakantan, Richard Ngo, Hyeon-
woo Noh, Long Ouyang, Cullen O’Keefe, Jakub Pachocki, Alex Paino, Joe Palermo,
Ashley Pantuliano, Giambattista Parascandolo, Joel Parish, Emy Parparita, Alex Pas-
sos, Mikhail Pavlov, Andrew Peng, Adam Perelman, Filipe de Avila Belbute Peres,
Michael Petrov, Henrique Ponde de Oliveira Pinto, Michael, Pokorny, Michelle Pokrass,
Vitchyr H. Pong, Tolly Powell, Alethea Power, Boris Power, Elizabeth Proehl, Raul
Puri, Alec Radford, Jack Rae, Aditya Ramesh, Cameron Raymond, Francis Real, Kendra
Rimbach, Carl Ross, Bob Rotsted, Henri Roussez, Nick Ryder, Mario Saltarelli, Ted
Sanders, Shibani Santurkar, Girish Sastry, Heather Schmidt, David Schnurr, John
Schulman, Daniel Selsam, Kyla Sheppard, Toki Sherbakov, Jessica Shieh, Sarah Shoker,
Pranav Shyam, Szymon Sidor, Eric Sigler, Maddie Simens, Jordan Sitkin, Katarina
Slama, Ian Sohl, Benjamin Sokolowsky, Yang Song, Natalie Staudacher, Felipe Pet-
roski Such, Natalie Summers, Ilya Sutskever, Jie Tang, Nikolas Tezak, Madeleine B.
Thompson, Phil Tillet, Amin Tootoonchian, Elizabeth Tseng, Preston Tuggle, Nick
Turley, Jerry Tworek, Juan Felipe Cerón Uribe, Andrea Vallone, Arun Vijayvergiya,
Chelsea Voss, Carroll Wainwright, Justin Jay Wang, Alvin Wang, Ben Wang, Jonathan
Ward, Jason Wei, CJ Weinmann, Akila Welihinda, Peter Welinder, Jiayi Weng, Lilian

85

Weng, Matt Wiethoff, Dave Willner, Clemens Winter, Samuel Wolrich, Hannah Wong,
Lauren Workman, Sherwin Wu, Jeff Wu, Michael Wu, Kai Xiao, Tao Xu, Sarah Yoo,
Kevin Yu, Qiming Yuan, Wojciech Zaremba, Rowan Zellers, Chong Zhang, Marvin
Zhang, Shengjia Zhao, Tianhao Zheng, Juntang Zhuang, William Zhuk, and Barret
Zoph. GPT-4 Technical Report. 2024. arXiv: 2303.08774 [cs.CL]. URL: https://arxiv.
org/abs/2303.08774 (cit. on p. 6).

[Pit89] Leonard Pitt. “Probabilistic Inductive Inference”. In: J. ACM 36.2 (Apr. 1989), pp. 383–
433. ISSN: 0004-5411. DOI: 10.1145/62044.62053. URL: https://doi.org/10.1145/
62044.62053 (cit. on p. 17).

[Ple21] Orestis Plevrakis. “Learning from Censored and Dependent Data: The case of Lin-
ear Dynamics”. In: Proceedings of Thirty Fourth Conference on Learning Theory. Ed. by
Mikhail Belkin and Samory Kpotufe. Vol. 134. Proceedings of Machine Learning Re-
search. PMLR, Aug. 2021, pp. 3771–3787. URL: https://proceedings.mlr.press/
v134/plevrakis21a.html (cit. on p. 19).

[PNP24] Binghui Peng, Srini Narayanan, and Christos Papadimitriou. On Limitations of the
Transformer Architecture. 2024. arXiv: 2402.08164 [stat.ML]. URL: https://arxiv.
org/abs/2402.08164 (cit. on p. 16).

[RG09] Luis Rademacher and Navin Goyal. “Learning Convex Bodies is Hard”. In: COLT.
2009. URL: http://www.cs.mcgill.ca/~colt2009/papers/030.pdf#page=1 (cit. on
p. 19).

[RHW86] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. “Learning Inter-
nal Representations by Error Propagation”. In: Parallel Distributed Processing: Explo-
rations in the Microstructure of Cognition, Vol. 1: Foundations. Cambridge, MA, USA:
MIT Press, 1986, pp. 318–362. ISBN: 026268053X. DOI: https://ieeexplore.ieee.
org/document/6302929 (cit. on p. 1).

[SAN96] Jenny R Saffran, Richard N Aslin, and Elissa L Newport. “Statistical Learning by 8-
Month-Old Infants”. In: Science 274.5294 (1996), pp. 1926–1928. DOI: https://doi.
org/10.1126/science.274.5294.1926 (cit. on p. 1).

[Sat23] Adam Satariano. “E.U. Agrees on Landmark Artificial Intelligence Rules”. In: The
New York Times 8 (2023). URL: https://www.nytimes.com/2023/12/08/technology/
eu-ai-act-regulation.html (cit. on p. 1).

[Sch97] Dale Schuurmans. “Characterizing Rational versus Exponential Learning Curves”.
In: Journal of Computer and System Sciences 55.1 (1997), pp. 140–160. ISSN: 0022-0000.
DOI: https://doi.org/10.1006/jcss.1997.1505. URL: https://www.sciencedirect.
com/science/article/pii/S0022000097915051 (cit. on pp. 4, 24).

[SDD+23] Timo Schick, Jane Dwivedi-Yu, Roberto Dessi, Roberta Raileanu, Maria Lomeli, Eric
Hambro, Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. “Toolformer:
Language Models Can Teach Themselves to Use Tools”. In: Advances in Neural In-
formation Processing Systems. Ed. by A. Oh, T. Naumann, A. Globerson, K. Saenko,
M. Hardt, and S. Levine. Vol. 36. Curran Associates, Inc., 2023, pp. 68539–68551. URL:
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-
Paper-Conference.pdf (cit. on p. 29).

86

https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/62044.62053
https://doi.org/10.1145/62044.62053
https://doi.org/10.1145/62044.62053
https://proceedings.mlr.press/v134/plevrakis21a.html
https://proceedings.mlr.press/v134/plevrakis21a.html
https://arxiv.org/abs/2402.08164
https://arxiv.org/abs/2402.08164
https://arxiv.org/abs/2402.08164
http://www.cs.mcgill.ca/~colt2009/papers/030.pdf#page=1
https://doi.org/https://ieeexplore.ieee.org/document/6302929
https://doi.org/https://ieeexplore.ieee.org/document/6302929
https://doi.org/https://doi.org/10.1126/science.274.5294.1926
https://doi.org/https://doi.org/10.1126/science.274.5294.1926
https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html
https://www.nytimes.com/2023/12/08/technology/eu-ai-act-regulation.html
https://doi.org/https://doi.org/10.1006/jcss.1997.1505
https://www.sciencedirect.com/science/article/pii/S0022000097915051
https://www.sciencedirect.com/science/article/pii/S0022000097915051
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/d842425e4bf79ba039352da0f658a906-Paper-Conference.pdf

[Sha51a] Claude E. Shannon. “Prediction and Entropy of Printed English”. In: The Bell System
Technical Journal 30.1 (1951), pp. 50–64. DOI: 10.1002/j.1538-7305.1951.tb01366.x
(cit. on p. 1).

[Sha51b] Claude E Shannon. “The Redundancy of English”. In: Cybernetics; Transactions of the
7th Conference, New York: Josiah Macy, Jr. Foundation. 1951, pp. 248–272. URL: https:
//jontalle.web.engr.illinois.edu/uploads/537.F18/Papers/Shannon50b.pdf
(cit. on p. 1).

[Shi90] Takeshi Shinohara. “Inductive Inference From Positive Data Is Powerful”. In: Pro-
ceedings of the Third Annual Workshop on Computational Learning Theory. COLT ’90.
Rochester, New York, USA: Morgan Kaufmann Publishers Inc., 1990, pp. 97–110.
ISBN: 1558601465. URL: https : / / api . lib . kyushu - u . ac . jp / opac _ download _
md/3127/rifis-tr-20.pdf (cit. on p. 18).

[SHT23] Clayton Sanford, Daniel J Hsu, and Matus Telgarsky. “Representational Strengths
and Limitations of Transformers”. In: Advances in Neural Information Processing Sys-
tems. Ed. by A. Oh, T. Naumann, A. Globerson, K. Saenko, M. Hardt, and S. Levine.
Vol. 36. Curran Associates, Inc., 2023, pp. 36677–36707. URL: https://proceedings.
neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-
Paper-Conference.pdf (cit. on p. 17).

[Sip12] Michael Sipser. Introduction to the Theory of Computation. Introduction to the Theory of
Computation. Cengage Learning, 2012. ISBN: 9781133187813. URL: https://books.
google.com/books?id=4J1ZMAEACAAJ (cit. on pp. 5, 14, 20, 27).

[SK23] Adam Satariano and Cecilia Kang. “How Nations Are Losing a Global Race to Tackle
A.I.’s Harms.” In: The New York Times (Digital Edition) (2023), NA–NA. URL: https:
//www.nytimes.com/2023/12/06/technology/ai-regulation-policies.html
(cit. on p. 1).

[Soa99] R.I. Soare. Recursively Enumerable Sets and Degrees: A Study of Computable Functions
and Computably Generated Sets. Perspectives in Mathematical Logic. Springer Berlin
Heidelberg, 1999. ISBN: 9783540152996. URL: https://books.google.com/books?
id=9I7Pl00LU5gC (cit. on pp. 5, 14).

[Sol64] R.J. Solomonoff. “A Formal Theory of Inductive Inference. Part I”. In: Information and
Control 7.1 (1964), pp. 1–22. ISSN: 0019-9958. DOI: https://doi.org/10.1016/S0019-
9958(64)90223-2. URL: https://www.sciencedirect.com/science/article/pii/
S0019995864902232 (cit. on p. 17).

[SSA18] Konstantin Shmelkov, Cordelia Schmid, and Karteek Alahari. “How Good Is My
GAN?” In: Proceedings of the European conference on computer vision (ECCV). 2018,
pp. 213–229. URL: https://openaccess.thecvf.com/content_ECCV_2018/html/
Konstantin_Shmelkov_How_good_is_ECCV_2018_paper.html (cit. on p. 1).

[SVL14] Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. Sequence to Sequence Learning with Neu-
ral Networks. 2014. arXiv: 1409.3215 [cs.CL]. URL: https://arxiv.org/abs/1409.
3215 (cit. on p. 1).

87

https://doi.org/10.1002/j.1538-7305.1951.tb01366.x
https://jontalle.web.engr.illinois.edu/uploads/537.F18/Papers/Shannon50b.pdf
https://jontalle.web.engr.illinois.edu/uploads/537.F18/Papers/Shannon50b.pdf
https://api.lib.kyushu-u.ac.jp/opac_download_md/3127/rifis-tr-20.pdf
https://api.lib.kyushu-u.ac.jp/opac_download_md/3127/rifis-tr-20.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/73bf692447f174984f30499ec9b20e04-Paper-Conference.pdf
https://books.google.com/books?id=4J1ZMAEACAAJ
https://books.google.com/books?id=4J1ZMAEACAAJ
https://www.nytimes.com/2023/12/06/technology/ai-regulation-policies.html
https://www.nytimes.com/2023/12/06/technology/ai-regulation-policies.html
https://books.google.com/books?id=9I7Pl00LU5gC
https://books.google.com/books?id=9I7Pl00LU5gC
https://doi.org/https://doi.org/10.1016/S0019-9958(64)90223-2
https://doi.org/https://doi.org/10.1016/S0019-9958(64)90223-2
https://www.sciencedirect.com/science/article/pii/S0019995864902232
https://www.sciencedirect.com/science/article/pii/S0019995864902232
https://openaccess.thecvf.com/content_ECCV_2018/html/Konstantin_Shmelkov_How_good_is_ECCV_2018_paper.html
https://openaccess.thecvf.com/content_ECCV_2018/html/Konstantin_Shmelkov_How_good_is_ECCV_2018_paper.html
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215
https://arxiv.org/abs/1409.3215

[Tea24] The Mosaic Research Team. Introducing DBRX: A New State-of-the-Art Open LLM |
Databricks Blog. https://www.databricks.com/blog/introducing- dbrx- new-
state - art - open - llm. Mar. 2024. URL: https : / / www . databricks . com / blog /
introducing-dbrx-new-state-art-open-llm (cit. on p. 29).

[TLI+23] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux,
Timothée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Au-
relien Rodriguez, Armand Joulin, Edouard Grave, and Guillaume Lample. LLaMA:
Open and Efficient Foundation Language Models. 2023. arXiv: 2302.13971 [cs.CL]. URL:
https://arxiv.org/abs/2302.13971 (cit. on pp. 1, 6).

[Tur50] Alan M. Turing. “Computing Machinery and Intelligence”. In: Mind LIX.236 (1950),
pp. 433–460. DOI: 10.1093/MIND/LIX.236.433. URL: https://doi.org/10.1093/
mind/LIX.236.433 (cit. on p. 1).

[Val84] Leslie G Valiant. “A Theory of the Learnable”. In: Commun. ACM 27.11 (Nov. 1984),
pp. 1134–1142. ISSN: 0001-0782. DOI: 10.1145/1968.1972. URL: https://doi.org/
10.1145/1968.1972 (cit. on p. 18).

[Vap13] Vladimir Vapnik. The Nature of Statistical Learning Theory. Springer science & business
media, 2013. URL: https://doi.org/10.1007/978-1-4757-3264-1 (cit. on p. 18).

[VL23] Tom Viering and Marco Loog. “The Shape of Learning Curves: A Review”. In: IEEE
Transactions on Pattern Analysis and Machine Intelligence 45.6 (2023), pp. 7799–7819.
DOI: 10.1109/TPAMI.2022.3220744 (cit. on p. 24).

[VSP+17] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Łukasz Kaiser, and Illia Polosukhin. “Attention is All you Need”. In: Ad-
vances in Neural Information Processing Systems. Ed. by I. Guyon, U. Von Luxburg, S.
Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett. Vol. 30. Curran As-
sociates, Inc., 2017. URL: https://proceedings.neurips.cc/paper_files/paper/
2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf (cit. on p. 1).

[WM23] Karen Weise and Cade Metz. “When A.I. Chatbots Hallucinate”. In: The New York
Times 9 (2023), pp. 610–23. URL: https://www.nytimes.com/2023/05/01/business/
ai-chatbots-hallucination.html (cit. on p. 1).

[WWS+22] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, brian ichter brian, Fei
Xia, Ed Chi, Quoc V Le, and Denny Zhou. “Chain-of-Thought Prompting Elicits Rea-
soning in Large Language Models”. In: Advances in Neural Information Processing Sys-
tems. Ed. by S. Koyejo, S. Mohamed, A. Agarwal, D. Belgrave, K. Cho, and A. Oh.
Vol. 35. Curran Associates, Inc., 2022, pp. 24824–24837. URL: https://proceedings.
neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-
Paper-Conference.pdf (cit. on p. 1).

[XJK24] Ziwei Xu, Sanjay Jain, and Mohan Kankanhalli. Hallucination is Inevitable: An Innate
Limitation of Large Language Models. 2024. arXiv: 2401.11817 [cs.CL]. URL: https:
//arxiv.org/abs/2401.11817 (cit. on p. 16).

88

https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://www.databricks.com/blog/introducing-dbrx-new-state-art-open-llm
https://arxiv.org/abs/2302.13971
https://arxiv.org/abs/2302.13971
https://doi.org/10.1093/MIND/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1093/mind/LIX.236.433
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1145/1968.1972
https://doi.org/10.1007/978-1-4757-3264-1
https://doi.org/10.1109/TPAMI.2022.3220744
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://www.nytimes.com/2023/05/01/business/ai-chatbots-hallucination.html
https://www.nytimes.com/2023/05/01/business/ai-chatbots-hallucination.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/9d5609613524ecf4f15af0f7b31abca4-Paper-Conference.pdf
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817
https://arxiv.org/abs/2401.11817

[XRL+22] Sang Michael Xie, Aditi Raghunathan, Percy Liang, and Tengyu Ma. “An Explana-
tion of In-context Learning as Implicit Bayesian Inference”. In: International Confer-
ence on Learning Representations. 2022. URL: https://openreview.net/forum?id=
RdJVFCHjUMI (cit. on p. 17).

[YPP+21] Shunyu Yao, Binghui Peng, Christos Papadimitriou, and Karthik Narasimhan. “Self-
Attention Networks Can Process Bounded Hierarchical Languages”. In: Proceedings
of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing (Volume 1: Long Papers).
Ed. by Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli. Online: Association
for Computational Linguistics, Aug. 2021, pp. 3770–3785. DOI: 10.18653/v1/2021.
acl-long.292. URL: https://aclanthology.org/2021.acl-long.292 (cit. on p. 17).

[ZL95] Thomas Zeugmann and Steffen Lange. “A Guided Tour Across the Boundaries of
Learning Recursive Languages”. In: Algorithmic Learning for Knowledge-Based Sys-
tems: GOSLER Final Report. Ed. by Klaus P. Jantke and Steffen Lange. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 1995, pp. 190–258. ISBN: 978-3-540-44737-5. DOI:
10.1007/3-540-60217-8_12. URL: https://doi.org/10.1007/3-540-60217-8_12
(cit. on p. 18).

[ZLC+23] Yue Zhang, Yafu Li, Leyang Cui, Deng Cai, Lemao Liu, Tingchen Fu, Xinting Huang,
Enbo Zhao, Yu Zhang, Yulong Chen, Longyue Wang, Anh Tuan Luu, Wei Bi, Freda
Shi, and Shuming Shi. Siren’s Song in the AI Ocean: A Survey on Hallucination in Large
Language Models. 2023. arXiv: 2309.01219 [cs.CL]. URL: https://arxiv.org/abs/
2309.01219 (cit. on p. 1).

89

https://openreview.net/forum?id=RdJVFCHjUMI
https://openreview.net/forum?id=RdJVFCHjUMI
https://doi.org/10.18653/v1/2021.acl-long.292
https://doi.org/10.18653/v1/2021.acl-long.292
https://aclanthology.org/2021.acl-long.292
https://doi.org/10.1007/3-540-60217-8_12
https://doi.org/10.1007/3-540-60217-8_12
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219
https://arxiv.org/abs/2309.01219

A Further Discussion on Decidability of MOP(·)

In this section, we present a generating algorithm G = (Gn) for which MOP is undecidable. The
corresponding generating algorithm is static in the sense that G1 = G2 = For each t, Gt is the
following randomized Turing machine.

Input: None

Setup: The internal random tape contains symbols from {0, 1, 2}
Description:

1. Read bits r = r1r2 . . . from the random tape until the first 2 is found on the tape

2. Let b = 1 if r is of the form ⟨M⟩w where ⟨M⟩ is a valid representation of a Turing
machine and w is any (possibly) empty string

3. If r = 1 then: Execute M on input w and return ⟨M⟩w1 if M halts

4. Else: return 0

Proposition A.1. MOP(·) is undecidable for the above Turing machine.

Proof. The proof is a simple reduction to the halting problem, which is well-known to be undecid-
able. To see this, observe that to decide whether M halts on input w, it suffices to check if ⟨M⟩w1
is in the support of the above machine.

B Results With Subset Oracles

In this section, we design algorithms that have access to a subset oracle that, given indices i and j,
answers whether “Li ⊆ Lj?” We give two algorithms (1) an algorithm that identifies in the limit
without requiring tell-tale oracles and (2) a best-of-both-words algorithm that generates consis-
tently and achieves breadth whenever possible.

B.1 Identification in the Limit Without Tell-Tale Oracle via Subset Oracles

Angluin [Ang80] showed that a collection of (recursive) languages L is identifiable in the limit if
and only if each Li ∈ L has a finite “tell-tale” set Ti that, roughly speaking, enables one to eliminate
Li if it is not the target. If one has access to an oracle that, given an index i, outputs the tell-tale
Ti, then one can identify L using an algorithm by Angluin [Ang80]. Our next result shows that, if
one has access to queries of the form “Li ⊆ Lj?”, then one can identify any identifiable language
collection without access to a tell-tale oracle.

Theorem B.1. Let S be an oracle that, given indices i and j, outputs Yes if Li ⊆ Lj and outputs No
otherwise. Fix any identifiable collection of languages L = {L1, L2, . . . }. There is an algorithm A that
given, an enumeration of a target language K ∈ L (for any K) and access to S , identifies K in the limit.

Importantly, A does not need to be provided the tell-tale of K or any other language in L.

90

Interestingly, the algorithm in Theorem B.1 is the same as an algorithm proposed by Kleinberg
and Mullainathan [KM24]: the algorithm defines a certain notion of critical languages and selects
the last critical language, say Lj. Naturally, since we want to identify the language, instead of
outputting an element of Lj the algorithm will guess the index. This algorithm identifies K in the
sense that after some finite time t∗, it outputs an index z such that Lz = K. The specific index
z outputted, however, may change infinitely often. This can also be avoided by using the post-
processing routine in Lemma 5.4.

Proof. The algorithm to identify K is simple:

For t ∈ {1, 2, . . . } do:

1. Observe element xt and let St be the set of all elements observed so far

2. Construct a version space Vt consisting of all languages in L≤t consistent with St, i.e.,

Vt :
{

Lj : 1 ≤ j ≤ t , Lj ⊇ St
}

.

Define an language Li ∈ Vt to be critical if Li is the smallest-index language in Vt or Li is a
subset of all languages preceding it in Vt, i.e., if Li ⊆ Lj for all 1 ≤ j < i

3. Construct the set Ct ⊆ Vt of all critical languages

4. return i where Li is the largest-indexed language in the set of critical languages Ct

Let i be the first index such that K = Li. The above algorithm outputs an index z with Lz = K
when K is the last element of the set of critical languages Ct. This condition is implied by the
following two conditions.

(A) K is in the set of critical languages Ct.

(B) All the languages Lj with j > i that are included in Ct satisfy Lj = K.

Result (4.3) of Kleinberg and Mullainathan [KM24] shows that there is a finite time ta after which
Condition (A) holds. We will show that there is also a finite time tb after which Condition (B)
holds. This shows that, for any t ≥ max {ta, tb}, A outputs an index z(t) such Lz(t) = K. As
mentioned before one can convert this into an algorithm that outputs a fixed index (after some
finite time) using the post-processing routine in Lemma 5.4.

Condition (B) holds after a finite time. Since L is identifiable, it must satisfy Angluin’s tell-tale
criteria (Definition 10) and, hence, K = Li has a finite tell-tale set Ti. (Recall that Ti is not known to
us; our proof will not need this.) Fix any j > i and any time t ≥ ta (after which K is guaranteed to
be a critical language). If Lj is a critical language, then by the definition of critical languages and
the fact that K is critical (P1) Lj ⊆ K and (P2) Lj ∈ Vt. Further, if Lj ⊊ K, then Lj cannot contain the
tell-tale Ti of K (by the properties of tell-tales; Definition 10). Therefore, if St (the set of samples
seen until step t) contains Ti, then Lj cannot be in the version space as otherwise it would need to
contain Ti. It follows that, if St ⊇ Ti and t ≥ ta, then either P2 will be violated or P1 will imply that
Lj = K. Finally, since Ti is finite and, hence, there is a finite time t′b when all elements of Ti have
been observed and, the result follows by letting tb := max

{
ta, t′b

}
.

91

B.2 Best-Of-Both Worlds: Generating With Breadth When Possible

Consider the variant of the algorithm in the previous section which instead of outputting the index
of the last critical language outputs an unseen sample from the language. This is precisely the
algorithm of Kleinberg and Mullainathan [KM24].20 Kleinberg and Mullainathan [KM24] showed
that this algorithm consistently generates in the limit. An immediate corollary of the identification
result in the last section is that this algorithm also achieves breadth for any identifiable collection
L.

Corollary B.2. Let S be an oracle that, given indices i and j, outputs Yes if Li ⊆ Lj and outputs No
otherwise. Fix any collection of countably many languages L = {L1, L2, . . . }.

There is a generating algorithm G that given, an enumeration of a target language K ∈ L (for any
K) and access to S , consistently generates from K in the limit. Moreover, whenever L is identifiable, this
algorithm generates consistently with breadth in the limit.

Importantly, G does not need to be provided the tell-tale of K or any other language in L.

Finally, we recall that for any non-identifiable collection L, generation with breadth is impossible
whenever a MOP(G) can be implemented.

C Further Results for Consistent Generation With Approximate Breadth

Result in the Limit

In this section, we study another notion of generation with approximate breadth. Informally,
requires that the generating algorithm is consistent and puts zero mass only on finitely many points
of the target language K. The formal definition is as follows.

Definition 21 (Generation with Approximate Breadth). A generating algorithm G = (Gn) is said to
generate with approximate breadth for a collection L = {L1, L2, . . . } if, for any K ∈ L and enumeration
x1, x2, . . . of K, there is an n0 ≥ 1, such after seeing n ≥ n0 elements x1, . . . , xn, supp(Gn) ⊆ K and
|K \ supp(Gn)| is finite.

Observe that the above is a weakening of generation with breadth – since the generating algorithm
G is allowed to miss elements in the target language infinitely often. This weakening of generation
with breadth turns out to be incomparable to the notion of unambiguous generation studied in
Section 3.3. To see this, observe that (1) on the one hand, G can satisfy the above definition while
generating with breadth from a language L that is a strict subset of K and (2) on the other hand,
unambiguous generation allows the generator to generate samples outside of K infinitely often,
which is barred by the above definition.

Our main result in this section is as follows.
20Note that since we only output an element from the last critical language and not its index, we do not need to

perform the post-processing used in the previous section, so this is Kleinberg and Mullainathan [KM24]’s algorithm.

92

Theorem C.1 (Impossibility of Approximate Generation in the Limit). For every non-identifiable
collection of countably many languages L, no generating algorithm stable in the limit, for which MOP(·)
(Definitions 5 and 6) is decidable, can generate from L in the limit with approximate breadth according to
Definition 21.

The proof of Theorem C.1, like the proof of Theorem 3.5 is also by a contradiction to the non-
identifiability of L. The difference is that in this proof we also need to identify the finitely many
elements of K “missed” by G .

Proof. Recall that Gold [Gol67] showed that for any collection of countably many languages, there
is always an algorithm IPN that, given a positive and negative enumeration of the target, identifies
it in the limit. Now, toward a contradiction, suppose there is a stable generator for which MOP(G)

is decidable and it has the property described in Definition 21. We claim that using G and IPN,
we can construct an identifier for L (from positive examples), which contradicts the fact that L is
non-identifiable.

Fix any target language K, its enumeration s1, s2, . . . , and the (unknown) constant t∗, such that
after t∗ many iterations the algorithm achieves generation according to Definition 21. We claim
that the following algorithm identifies L.

Input: Access to a generator G for L that (1) that, in the limit, becomes consistent and satisfies
|K \ supp (G)| < ∞ and (2) for which MOP(G) is decidable, and access to the algorithm IPN

that identifies L in the limit from a positive and negative enumeration of the target language.

Description:

1. For each t ∈ N do:

(a) Observe the t-th sample st and let St be the set of samples seen so far

(b) Train the generator G from scratch over the t samples in St

(c) For each 1 ≤ i ≤ t, label the i-th string xi in the domain as yi = MOP(G)(xi)
a

(d) For each 1 ≤ i ≤ t, if xi ∈ St and yi = 0, set yi = 1 # to correct elements missed by G

(e) Train IPN from scratch on samples x1, . . . , xt with labels y1, . . . , yt

(f) output the index guessed by IPN and go to the next iteration
aHere, MOP(G)(x) is the answer to the membership oracle problem for G given input x.

Since MOP(G) is decidable, the above algorithm can be implemented using a Turing machine. We
claim that the above algorithm identifies the target language K after a finite number of iterations.
To formalize this, fix any enumeration s1, s2, . . . of the target language. Since after a finite time t∗, G
becomes consistent, stabilizes, and satisfies |K \ supp (G)| < ∞, after iteration t∗, for any string x,
MOP(G)(x) matches 1 {x ∈ K} except for the finitely many elements of M = K \ supp (G t). Note
that since G ’s support stabilizes, M is independent of the iteration t ≥ t∗. Let t′ be the time when all
elements of M appear in the enumeration s1, s2, Observe that in all iterations t ≥ max {t∗, t′},
the labels in Step 2 (d) correct all the mismatches between MOP(G)(x) matches 1 {x ∈ K} Finally,
since IPN identifies in the limit, there is a finite tPN such that IPN identifies K once it is given
labels for the first t ≥ tPN examples in the domain. Combining this with the previous information

93

implies that that IPN and, hence, our algorithm identifies K after max {t∗, t′, tPN} < ∞ iterations.
This gives the desired contradiction, proving Theorem C.1. Note that the above identification
algorithm does not need to know any of t∗, t′, and tPN.

Result in the Statistical Setting

Our approach to get this result follows the same high-level idea with Theorem 3.6. The error of a
generating algorithm in this setting, based on Definition 21 is

er (Gn) = 1 {supp(Gn) ̸⊆ K or |K \ supp(Gn)| = ∞} (12)

The formal statement is below.

Theorem C.2 (Impossibility of Approximate Generation). For every non-identifiable collection of
countably many languages L, no stable generating algorithm, for which MOP(·) (Definitions 5 and 6)
is decidable, can generate from L with approximate breadth according to Definition 21, at any rate.

Using the tools we developed for the setting of unambiguous generation, we can show the follow-
ing result which transforms a learner that works in the statistical setting into a learner that works
in the online setting. We start with the following lemma.

Lemma C.3. Let R : N → R≥0 be a rate function, i.e., limn→∞ R(n) = 0, let L be a language collection,
and (Gn : Xn → G)n∈N be generating algorithm for which MOP(·) is decidable and which satisfies the
following two properties:

• (Gn)n∈N is a stable generator (Definition 7), and

• for its approximate generation error er(·) (Equation (12)) it holds that, for every valid distribution P

with respect to L there exist c, C > 0 such that EX1,...,Xn∼Pn [er (Gn (X1, . . . , Xn))] ≤ C · R(c · n).

Then, for every valid distribution P with respect to L it holds that

Pr
{Xi}i∈N∼P∞

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that er (Gn (X1, . . . , Xn)) = 0] = 1 .

Proof of Lemma C.3. Assume towards contradiction that there exists some valid P with respect to
L so that

Pr
{Xi}i∈N∼P∞

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that {er (Gn (X1, . . . , Xn)) = 0}] = c′ < 1 .

Let us also denote c′′ := 1 − c′. Notice that c′′ > 0. Since P is a valid distribution with respect to L,
it is supported over some K ∈ L, so we have that, with probability 1, an infinite i.i.d. draw from P

is an enumeration of K (see Proposition 5.2). Let us call this event E1.
Moreover, since Gn is a stable generator (in an online sense), under the event E1 (i.e., when the

samples from P form an enumeration of K), there exists some smallest number t∗ := t∗(X1, . . .) ∈
N such that for all n ≥ t∗

supp (Gn (X1, . . . , Xn)) = supp (Gn+1 (X1, . . . , Xn+1)) .

94

Now, t∗ depends on the specific enumeration drawn and, hence, the distribution P induces a dis-
tribution over t∗. Further, note that with probability 1, t∗ < ∞. Hence, Pr{Xi}i∈N∼P∞ [t∗(X1, . . .) > n]
approaches 0 as n → ∞. In particular, there is some number n1 ∈ N such that for all n ≥ n1

Pr
{Xi}i∈N∼P∞

[t∗(X1, . . .) > n] ≤ c′′

3
.

Moreover, since the generator achieves rate R(·) and limn→∞ R(n) = 0, it holds that

lim
n→∞

Pr
X1,...,Xn∼Pn

[er (Gn (X1, . . . , Xn)) ̸= 0] = 0 .

Thus, there is some n2 ∈ N such that, for all n ≥ n2

Pr
X1,...,Xn∼Pn

[er (Gn (X1, . . . , Xn)) ̸= 0] ≤ c′′

3
.

Let n3 := max {n1, n2}. Hence, taking a union bound, we see that with probability at least 1− 2c′′/3

over the draw of {Xi}i∈N it holds that

• er (Gn3 (X1, . . . , Xn3)) = 0, and

• supp (Gn (X1, . . . , Xn)) = supp (Gn3 (X1, . . . , Xn3)) , for all n ≥ n3.

By the definition of er(·), for any n, n′ ∈ N, samples xi1 , . . . , xin and xj1 , . . . , xjn′ it holds that

supp (Gn (xi1 , . . . , xin)) = supp
(

Gn′
(
xj1 , . . . , xjn′

))
=⇒

er (Gn (xi1 , . . . , xin)) = er
(

Gn
(
xj1 , . . . , xjn′

))
These two conditions immediately imply that, with probability at least 1− 2c′′/3 > c′, for all n ≥ n3

it holds that

• er (Gn (X1, . . . , Xn)) = 0, and

• supp (Gn+1 (X1, . . . , Xn+1)) = supp (Gn (X1, . . . , Xn)) .

Hence,

Pr
{Xi}i∈N∼P∞

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that {er (Gn (X1, . . . , Xn)) = 0}] > c′ ,

which gives the desired contradiction. This concludes the proof.

Using the previous result, we derive the next statement regarding the conversion of a statistical
learner to an online one.

Lemma C.4. Let R : N → R≥0 be a rate function, i.e., limn→∞ R(n) = 0, let L be a language collection,
and (Gn : Xn → G)n∈N be generating algorithm for which MOP is decidable and satisfies the following two
properties:

• (Gn)n∈N is a stable generator (Definition 7), and

• for its approximate generation error (Equation (12)) it holds that, for every valid distribution P with
respect to L there exist c, C > 0 such that EX1,...,Xn∼Pn [er (Gn (X1, . . . , Xn))] ≤ C · R(c · n).

95

Then, there is a randomized generating algorithm
(

G ′
n : Xn r→ G

)
n∈N

for which, for any target language
K ∈ L and every enumeration σ of K, it holds that

• (G ′
n)n∈N is a stable generator (Definition 7), and

•
Pr

[
∃n∗ ∈ N : ∀n ≥ n∗ it holds that er

(
G ′

n (σ1, . . . , σn)
)
= 0

]
= 1 ,

where the probability is with respect to the randomness of the algorithm.

The proof of Lemma C.4 is identical to the proof of Lemma 7.4, since the only property of the error
function that is needed is that once the algorithm has stabilized then its error also stabilizes. For
completeness, we give the details below.

Proof of Lemma C.4. Let K ∈ L be any target language and σ be any enumeration of K. Let Pσ be
the distribution defined in Definition 20. We know that, by definition, Pσ is valid with respect to
L, since it is supported on K. Let (G ′

n)n∈N be a generator which, for every n ∈ N, runs Gn on Pσ.
In order to draw samples from Pσ the generator G ′

n uses its internal randomness and the process
described in Proposition 7.2. Since Pσ is a valid distribution with respect to L, Lemma C.4 gives
us that

Pr
{Xi}i∈N∼P∞

σ

[∃n∗ ∈ N : ∀n ≥ n∗ it holds that {er (Gn (X1, . . . , Xn)) = 0}] = 1 .

Hence, this implies that

Pr
[
∃n∗ ∈ N : ∀n ≥ n∗ it holds that

{
er

(
G ′

n (σ1, . . . , σn)
)
= 0

}]
= 1 ,

where the probability is taken with respect to the internal randomness of the algorithm. Moreover,
since (Gn)n∈N is a stable generator it also holds that (G ′

n)n∈N is a stable generator. This concludes
the proof.

The proof of Theorem C.2 follows as a corollary of the previous result (Lemma C.4) and Theo-
rem C.1.

Proof of Theorem C.2. Let L be a countable collection of languages. Assume that such a stable gen-
erating algorithm exists. Then, using the construction from Lemma C.4 to get a stable generator
that generates missing only finitely many elements in the limit, for every target language K ∈ L

and every enumeration σ of K, with probability 1. This contradicts the impossibility result from
Theorem C.1.

D Further Comparison With Online Learning

In this section, we provide some comparisons between the Gold-Angluin (GA) model [Gol67;
Ang79] and the online game of Bousquet et al. [BHM+21] (that extends the standard online learn-
ing model of Littlestone [Lit88]), which at first sight share a lot of similarities. However, there are
important differences between the two models, which we believe are worth highlighting.

96

Let us first recall the setting of Bousquet et al. [BHM+21], appropriately rephrased to the con-
text of our work. There is a domain X, a collection of languages L ⊆ {0, 1}X, and two players,
the learner and the adversary, play a game over an infinite sequence of discrete rounds. In every
round t ∈ N, the adversary presents an example xt ∈ X to the learner and the learner guesses
its label ŷt. Subsequently, the adversary reveals the true label yt to the learner. We say that the
learner makes a mistake if yt ̸= ŷt. This can be thought of as the learner trying to guess whether
the example belongs to the target language. The adversary has to satisfy the following constraint.
For every round t ∈ N there must be some Lt ∈ L such that 1 {xτ ∈ Lt} = yτ, ∀τ ≤ t. The goal
of the learner is to make finitely many mispredictions and the goal of the adversary is to force
infinitely many such mispredictions.

• In the GA model, the goal of the learner is to identify the true language in a finite number of
steps. In the online game of Bousquet et al. [BHM+21], the goal of the learner is to make a
finite number of mistakes in its predictions. Moreover, in the GA model, the learner observes
only positive examples while in the standard online setting, the adversary can provide both
positive and negative examples.

• The set of languages identifiable in the limit in Gold’s model is characterized by Angluin’s
criterion (Definition 10). The collections that are online learnable with a finite number of
mistakes is characterized by the absence of infinite Littlestone trees [BHM+21]. If there is a
uniform bound on the number of mistakes, then this corresponds to the standard finiteness
of the Littlestone dimension [Lit88].

• In the GA model, the adversary fixes the true language in advance. In (realizable) online
learning, the only thing that matters is consistency of the hypothesis class on the given ex-
amples, i.e., for every sequence of examples, along with their labels, there should exist some
hypothesis in the hypothesis class that perfectly labels the given sequence (which can change
as the online game progresses, see also Section 3 of Bousquet et al. [BHM+21]). This subtle
difference leads to starkly different learning landscapes.

• In the GA model, the adversary must include all elements of K in the enumeration (the
domain is countable). In Littlestone’s online setting, there is no such restriction (the feature
space can even be uncountable).

• Another crucial difference is that the algorithm does not receive feedback about its guess
in the GA model. This is in contrast to the standard online setting where, at each round,
the learner gets feedback about its prediction. However, it is important to stress that the
incentives of the adversaries in Gold’s model and in the model of Bousquet et al. [BHM+21]
are different. In the GA model, the goal is not to maximize the number of mistakes that the
learner does, but to essentially not allow the learner to identify the true target language.

To further show separations between the online setting of Gold [Gol67] and the online game of
Bousquet et al. [BHM+21], we will need two important definitions coming from the work of Bous-
quet et al. [BHM+21].

97

Definition 22 (Littlestone Tree [BHM+21]). A Littlestone tree for L is a complete binary tree of depth
d ≤ ∞ whose internal nodes are labeled by X, and whose two edges connecting a node to its children are
labeled 0 and 1, such that every finite path emanating from the root is consistent with a language L ∈ L.

More precisely, a Littlestone tree is a collection

{xu : 0 ≤ k < d, u ∈ {0, 1}k} ⊆ X

such that for every y ∈ {0, 1}d and n < d, there exists L ∈ L so that 1
{

xy≤k ∈ L
}
= yk+1 for 0 ≤ k ≤ n.

We say that L has an infinite Littlestone tree if there is a Littlestone tree for L of depth d = ∞.

For instance, thresholds over N do not have an infinite Littlestone tree (yet, they have Littlestone
trees of arbitrary length). On the other side, thresholds over the reals have an infinite Littlestone
tree. Given this definition, we can show a separation between the online setting of Bousquet et al.
[BHM+21] and the GA model.

First, we note that a language collection is not online learnable in the online setting of Bousquet
et al. [BHM+21] if and only if it has an infinite Littlestone tree. We will show that there exists a
countable language collection L over a countable domain that has an infinite Littlestone tree but
it is identifiable in the limit with positive examples.

Example 3 (Infinite Littlestone Tree but Identifiable with Positive Examples). Consider a count-
able domain X and fix an enumeration x∅, x0, x1, x00, x01, x10, x11, . . . of its elements. We use this
enumeration to create the nodes of a Littlestone tree, i.e. the root consists of x∅, its left, right child
is x0, x1, respectively etc. Then, for each level d ∈ N and any path y ∈ {0, 1}d we create a finite lan-
guage Ly with index y, whose elements are the elements of X that appear on the path with label 1.
We consider the language collection L = {Ly : y ∈ {0, 1}d, d ∈ N}. This means that for any finite
level d < ∞, we add all the 2d languages in the collection (where for any path y, Ly contains the
elements x that are labeled with 1 in the path). Hence, L contains all the finite prefixes of the paths
of the infinite Littlestone tree. The language collection L is countably infinite since the collection
of all finite paths of the binary tree admits an enumeration. By construction, this class induces an
infinite Littlestone tree and hence is not online learnable in the game of Bousquet et al. [BHM+21].
However, since it is a countable collection of finite languages, it is identifiable in the limit with
positive examples in the GA model (see also Section 3.4.3 and 8.3).

E Borel-Cantelli Lemmas

In this section, we present two well-known results due to Borel and Cantelli which are useful for
our derivations.

Lemma E.1 (First Borel-Cantelli Lemma). Let {En}n∈N be a sequence of events. If

∑
n∈N

Pr[En] < ∞ ,

then the probability that infinitely many of them occur is 0, that is

Pr
[

lim sup
n→∞

En

]
= 0 .

98

The previous result has a partial converse, which we state below.

Lemma E.2 (Second Borel-Cantelli Lemma). Let {En}n∈N be a sequence of independent events. If

∑
n∈N

Pr[En] = ∞ ,

then the probability that infinitely many of them occur is 1, that is

Pr
[

lim sup
n→∞

En

]
= 1 .

Notice that, unlike the first Borel-Cantelli lemma, the second one requires that the events are
independent.

99

	Introduction
	Informal Results
	Setup and Definitions
	Main Results

	Technical Overview
	Additional Results With Relaxation of Consistency and Breadth
	Takeaways, Discussion, and Open Problems
	Further Related Works

	Model and Preliminaries
	Language Identification and Generation in the Limit

	Overview of Results
	Results for Identification and Generation Without Breadth
	Universal Rates: Model and Preliminaries
	Universal Rates for Identification
	Universal Rates for Consistent Generation

	Results for Generation With Breadth
	Membership Oracle Problem
	Results for Generators for Which MOP Is Decidable
	A Family of Generators for Which MOP Is Decidable
	Results for Generation With Breadth in the Limit

	Results for Generation With Approximate Consistency and Breadth
	Further Results for Identification
	Exponential Rates for Identification Using Subset Oracle
	Exponential Rates for Identification of Finite Collections
	Exponential Rates for Identification of Collections of Finite Languages
	Exponential Rates for Identification from Positive and Negative Examples

	Organization of the Rest of the Paper
	Proofs from Section 3.1 (Rates for Identification and Generation)
	Proof of Theorem 3.1 (Rates for Identification)
	Proof of Theorem 3.2 (Rates for Generation)
	Optimal Rate for Non-Trivial Collections for Generation
	A Sufficient Condition To Achieve Exponential Rate
	Algorithm With Access To Subset Oracle
	Algorithm With Access To Membership Oracle

	Proofs from Section 3.2 (Generation With Breadth)
	Proof of Theorem 3.4 (MOP Is Decidable For Iterative Generators)
	Proof of Theorem 3.3 (Impossibility for Generation With Breadth)
	Proof of Theorem 3.5 (Impossibility for Generation With Breadth in the Limit)

	Proofs from Section 3.3 (Generation With Approximate Consistency and Breadth)
	Proof of Theorem 3.7 (Impossibility in the Limit)
	Proof of Theorem 3.6 (Impossibility in the Statistical Setting)

	Proofs from Section 3.4 (Further Results for Identification)
	Proof of Proposition 3.8 (Identification Using Subset Oracle)
	Proof of Proposition 3.9 (Identification of Finite Collections)
	Proof of Proposition 3.10 (Identification of Collections of Finite Languages)
	Proof of Theorem 3.11 (Identification from Positive and Negative Examples)

	Further Discussion on Decidability of MOP
	Results With Subset Oracles
	Identification in the Limit Without Tell-Tale Oracle via Subset Oracles
	Best-Of-Both Worlds: Generating With Breadth When Possible

	Further Results for Consistent Generation With Approximate Breadth
	Further Comparison With Online Learning
	Borel-Cantelli Lemmas

