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ABSTRACT

Exhaled breath analysis has become an advantageous alternative to traditional
medical diagnostic methods. Electronic nose (eNose) sensors can enable low-cost,
non-invasive disease screening from exhaled breath. Still, progress is limited by
small, site-specific datasets and sensor-specific temporal artifacts (e.g., baseline
drift). In this paper, we introduce Scent of Health, the largest printed-metal-oxide
eNose clinical dataset with curated temporal splits. We also introduce breath di-
agnosis as a realistic multivariate time-series task with temporally stratified splits
that mimic deployment. We provide a reproducible benchmark, including clas-
sical algorithms with handcrafted features, convolutional neural networks with
data augmentation, and specialized time series classification methods, and show
that, while these methods offer useful inductive biases, substantial gaps remain in
robustness and generalization under drift and limited labels. Our findings demon-
strate that machine learning for data from eNose can achieve clinically relevant
performance in detecting malignant lung neoplasms and differentiating respira-
tory diseases. The substantial sample size of this dataset addresses a critical gap
in research and provides a valuable resource for developing and validating disease
classification models and olfactory data representation.

1 INTRODUCTION

Recent advances in artificial intelligence have been mainly driven by progress on richly annotated,
high-volume datasets and architectures that can exploit temporal and high-dimensional structure
(e.g., transformers and modern convolutional models). Yet, despite impressive successes in vision
and language, specific sensory modalities remain underserved by openly available benchmarks and
accompanying algorithmic studies. One of the most notable is the chemical sensing modalities un-
derlying olfaction and breathomics. Exhaled breath contains complex mixtures of volatile organic
compounds that encode clinically relevant metabolic information, and electronic-nose (eNose) tech-
nology offers a practical, portable route to digitize these signals for non-invasive diagnostics (Lee
et al.,|2024). However, the literature relies mainly on small cohorts or site-specific collections, which
limits the development of robust representation learning and reliable clinical evaluation for breath-
based screening (Li et al.,|2023)). The scarcity of olfactory data stems from two primary challenges:
the intrinsic difficulty of capturing odor information and the lack of standardized, affordable smell-
digitization technology. While highly accurate, gold-standard methods like gas chromatography-
mass spectrometry are often prohibitively expensive and lack the usability for large-scale data col-
lection. Consequently, researchers are searching for more cost-effective, accurate, and scalable
sensor technologies, such as electronic noses, to obtain reliable odor fingerprints. One promising
direction is the on-chip printing of tailored metal oxide nanomaterials, a technique that enables the
fabrication of dense arrays of analyte-specific microsensors. The resulting devices produce complex,
data-rich response patterns to volatile compounds, creating a robust input for Al models in olfactory
analytics (Goikhman et al.| 2022} |Gohel et al.| 2024b).

However, two technical gaps impede progress in machine learning for breathomics. First, the field
lacks large, well-curated clinical collections that span multiple pathologies and support rigorous
out-of-distribution and cross-site evaluation; this scarcity makes it difficult to study model gener-
alization, sensor drift adaptation, and clinically meaningful performance thresholds. Recent efforts
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to assemble clinical breath molecule catalogs and to perform cross-site validation show promise but
remain limited in scale or scope for broad benchmarking (Kuo et al., [2024). Second, eNose out-
puts are naturally multivariate time series with sensor-specific dynamics, cross-sensor correlations,
and measurement artifacts (e.g., baseline drift), so standard image/text architectures are not directly
optimal without careful representation design and domain-aware augmentation.

In this work, we address both gaps. We introduce a large clinical eNose breathomics collection
and cast odor diagnosis as a multivariate time-series learning problem with realistic temporal and
deployment challenges. Our dataset enables the development and evaluation of both classical and
modern time-series techniques, from strong feature-based tabular learners to dedicated time-series
architectures, and supports validation against temporal sensor drift and week-wise splits that mimic
realistic deployment shifts. To establish informative baselines and highlight the algorithmic chal-
lenges that olfactory signals present, we evaluate a spectrum of approaches that have shown strong
performance on time-series tasks: random-kernel convolutional methods, deep convolutional en-
sembles, and recent self-supervised/contrastive representation learning approaches for time series.
These methods illustrate complementary trade-offs between speed, sample efficiency, and robustness
to temporal perturbations; they also point to promising directions (data augmentation, pre-training,
domain adaptation) for future work on sensor-based diagnostics.

The key contributions of this work are the following:

* S-O-H (Scent of Health): A novel and extensive medical olfactory dataset comprising
1,027 patients across eight distinct groups (control and seven clinically significant disease
groups), together with recommended train/test splits that control for temporal drift and re-
alistic validation, it is the largest and most diverse dataset for this type of eNose device,
capturing breath samples via a unique 17-sensor array of printed metal oxide (ZnO) mi-
crosensors on a temperature-controlled chip.

* Benchmarking and reproducible baselines: We provide a comprehensive benchmark
for odor classification as a multivariate time-series analysis problem. It includes classical
feature-based learners, and self-supervised representation baselines, evaluated under splits
that expose drift and sample-size limitations.

* Practical analysis of deployment challenges: We quantify the effects of sensor drift and
temporally concentrated sampling, and we report cross-validation strategies that minimize
leakage while reflecting clinical deployment scenarios. These findings align with recent
cross-site studies and underscore the need for domain adaptation in eNose applications.

2 RELATED WORK

Exhaled breath analysis as a non-invasive diagnostic method and a way to monitor disease progres-
sion has advantages over other traditional methods, such as blood and urine analysis. Exhaled air
contains volatile organic compounds (VOCs), which are the end products of organic matter transfor-
mations in the body, and changes in the composition of VOCs can be used to diagnose diseases. In
the last decade, this technology has been actively introduced into clinical practice as an alternative
to traditional research methods, including gas chromatography/mass spectrometry, since gas chro-
matography and mass spectrometry are quite labor-intensive, expensive, and have low portability
(Chen et al., [2021).

eNose technology for breath analysis represents a rapidly advancing field with significant potential
to transform medical diagnostics. Substantial progress has been made in demonstrating the clini-
cal validity of this approach for various conditions, particularly lung cancer. The technology offers
numerous advantages, including non-invasiveness, rapid results, cost-effectiveness, and potential
for point-of-care testing. The eNose system is not inferior to this method and can detect mixtures
of volatile metabolites even in low concentrations, without identifying individual chemicals. Ma-
chine learning methods allow the electronic nose to accurately identify odors using qualitative and
quantitative analysis (Li et al.| 2023).

Recently developed sensors (Goikhman et al., 2022)) for the eNose applications allow for a large-
scale study of the applicability of technology in diagnosing diseases by exhaled air. Previously
presented works on the diagnosis of diseases by exhaled air focused on diseases of certain organ
groups, for example, the digestive tract (Tiele et al.| 2019), lungs and respiratory tract (Baldini et al.}
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Table 1: Latest studies on eNose for medical diagnostics

Target disease Sample size Metrics (%) Reference

COPD 56 Acc. 82 (Rodriguez-Aguilar et al.| 2019)
Malignant neoplasm of lungs 145 Spec. 84 (Van de Goor et al.|[2018)
Chronic renal failure 98 Acc. 86 (Kalidoss et al.[[2021)
Tuberculosis 224 Spec. 87 (Bruins et al.!|[2013)

Diabetes mellitus 240 Acc. 93 (Weng et al.| [2023)

Asthma 38 ROC AUC 80 (Tenero et al.;[2020)

Malignant neoplasm of rectum 210 ROC AUC 84  (van Keulen et al.|[2020)

2020), excretory system (Capuano et al., |2025)), or used the data from a limited number of patients
or did not use analog technologies of the eNose. General trends in the field include the prevalence
of limited datasets, typically comprising tens to hundreds of patients. Table [T]features recent studies
that employed eNose technology, primarily with metal oxide sensor arrays, for disease diagnostics
via exhaled breath analysis. Regrettably, in most similar studies, datasets are not disclosed, which
could otherwise have helped advance the research in olfactory modality for medical diagnostics
and other applications. Most studies focus on the applicability of the electronic nose to respiratory
diseases. These investigations generally examine either individual diseases or groups of conditions
united by their anatomical location (Mortazavi et al., 2025).

3 ENOSE SYSTEM DESCRIPTION

3.1 MULTIELECTRODE CHIP DESIGN

In this study, a multielectrode chip with 18 Pt (150 nm)/Ti (5 nm) strip co-planar electrodes is utilized
to analyze the exhaled breath of patients. The chip, 10x10 mm?, represents a silicon crystal with a
silica layer of ca. 500 nm. Each pair of electrodes, distanced by 50 um and with a functional material
in between, forms an individual sensor segment, 17 in total. On-chip made two meander-shaped
thermoresistors and two meander-shaped heaters enabled to control precisely the temperature of the
chip surface during gas sensing measurements (Gohel et al.l 2024b; |Abayarathne et al., 2025} |Gohel
et al.,[2024a)). Subsequently, the prepared chip was wired to the ceramic card by ultrasonic bonding
and installed in a gas-tight chamber with a chamber volume of 0.76 cm3. The ceramic card with the
chip was connected to a custom-made printed circuit board (PCB) to operate the sensor array and
acquire the output signal at a sampling rate of ca. 0.4 Hz. An IR pyrometer Kelvin Compact 1200D.
was used to tune the temperature of the chip before and after the tests. Before testing the exhaled
breath samples, the chip was kept at 300 = 5 °C for 24 h in an air atmosphere for stabilization. The
operational temperature of the multielectrode chip was maintained at 300 + 5 °C.

3.2 SYNTHESIS AND ON-CHIP PRINTING OF FUNCTIONAL MATERIALS

The synthesis of functional materials for this study included the following route. A so-
lution of lithium hydroxide (LiOH, 0.315 g, 0.075 mol) was added to 25 mL of abso-
lute ethanol, using a dropping funnel. Afterwards, the obtained solution was added to solu-
tion of zinc nitrate (Zn(NOs)2), 1.49 g, 0.005 mol) and either indium/silver/cerium nitrate
(In(NO3)3/AgNO3/Ce(NOs3)y) or nickel acetate (Ni(C H3COO)2, 0.00025 mol) in 25 mL of
absolute ethanol. The addition was performed with vigorous stirring while the solution was cooled
to 2 °C in an ice-water bath (Ge et al., [2017). The mixture was then stirred for 2 hours under the
same conditions. Afterward, the precipitate was purified by centrifugation and rinsing alternately
with ethanol and cyclohexane in 6 consecutive cycles. The precipitate was dried in dry air at 60
°C, then annealed in a furnace at 200 °C for 2 hours to finally get the corresponding powders. All
chemicals were of at least analytical purity. The synthesized functional materials, i.e., zinc oxide or
metal-doped zinc oxides (ZnO, In — ZnO, Ag — ZnO, Ce — ZnO, and Ni — ZnQO) were placed
on the top of the chip using a printing approach. The materials are deposited onto the chip surface
using a REGEMAT 3D BIO V1 liquid bioprinter. As inks, particle suspensions are prepared with a
particle mass ratio of 5 wt. % in an aqueous ethylene glycol solution (chemically pure, 60 wt. %).
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As a result, printed lines with an average width of ca. 300 pm were obtained, each covering three
sensors. The prepared chip was annealed at 90 °C to remove the residual solvent.

4 DATA COLLECTION PROTOCOL

4.1 PARTICIPANT ENROLLMENT AND SCREENING

The study cohort comprised patients with specific target nosologies and healthy volunteers. All po-
tential participants were informed about the study’s objectives and procedures. Those who agreed to
participate provided written informed consent (see prior to any study-related activities. The
study protocol was approved by the Ethics Committee (see Section [7). A physician-researcher
screened each potential participant against predefined inclusion and exclusion criteria (detailed
in[A.2). Only individuals who met all inclusion criteria and none of the exclusion criteria were
enrolled in the study.

4.2 PRE-SAMPLING PREPARATION AND DATA LOGGING

Upon enrollment, the physician completed a standardized participant questionnaire to record demo-
graphic and clinical data, including a unique study identification number, full name, year of birth,
gender, clinical diagnosis (coded with ICD-10|World Health Organization|(2019)), and correspond-
ing Electronic Health Record (EHR) number.

Prior to breath sample collection, participants adhered to a standardized pre-sampling protocol de-
signed to minimize confounding variables. This included a minimum 4-hour fasting period, absti-
nence from smoking for at least 4 hours, abstinence from alcohol for 48 hours, and the avoidance of
perfumes and other strong odors on the day of sampling.

4.3 BREATH SAMPLE COLLECTION AND ANALYSIS

Exhaled breath samples were collected using individual, sterile, disposable 2-liter bags, chosen for
their biocompatibility and standard medical-grade quality. A key methodological constraint was that
each participant could provide only a single sample for the entire study; the provision of multiple
samples for the investigation of different diseases was not permitted.

Following this preparation, participants rested in a seated position for five minutes before providing a
single deep exhalation into the bag. The electronic nose (eNose) device was initialized, with system
status confirmed via indicator lights.

For measurement, the sampling bag was connected to the eNose’s intake port via a cross-shaped
valve. An airtight seal was verified by a pressure sensor triggered upon gentle compression of
the bag. The measurement cycle was initiated from the software interface, with the multivariate
time-series sensor data automatically saved to a database upon completion. Each sampling bag
was discarded after a single use, and the eNose’s sensing chamber was purged with clean, dry air
between samples to prevent cross-contamination. Samples were analyzed immediately or stored at
room temperature for no more than 4 hours to ensure sample integrity.

4.4 COLLECTED DATA

Patient data is stored in a JSON structure. The primary sensor for olfactory analysis is the "eNose”,
which records a multivariate time series of approximately 15 minutes in duration across 17 distinct
channels. Auxiliary sensors within the device simultaneously monitor environmental parameters,
including temperature, pressure, humidity, and C'O5 levels, which are stored in separate JSON fields.

A total of 1027 samples were collected. The distribution of the patient cohort is presented in Table[2]
The minimum age of patients in the study is 18, and the maximum is 89. In general the distribution
by gender was as follows: 567 (55.4%) women and 457 (44.6%) men.

The sensor output exhibits substantial variation in magnitude across its 17 channels, with each chan-
nel degrading at a unique rate over time (Fig. [T). The peak response for all channels occurs near the



Under review as a conference paper at ICLR 2026

Table 2: Distribution and demographic characteristics of the S-O-H dataset samples by diagnostic
group

Diagnostic Group (ICD-10 Code) N % Mean Age AgeSD Male, %
Healthy Individuals (Z00) 164 16.0 38.77 12.76 0.25
Hepatitis B/C (B18) 138 13.5 50.88 13.44 0.55
Gastritis and Duodenitis (K29) 138 13.5 52.32 16.27 0.36
Non-alcoholic Fatty Liver Disease (K76) 128 12.5 47.96 16.21 0.39
Diabetes Mellitus Type II (E11) 128 12.5 60.40 11.92 0.30
Chronic Renal Failure (N18) 128 12.5 59.82 14.61 0.50
COPD (J44) 100 9.8 64.16 10.43 0.64
Lung Cancer (C34) 100 9.8 66.71 8.63 0.73
Total 1027 100.0 52.9%* 15.1%* 0.41*

Note: SD = Standard Deviation.
* Weighted average or overall proportion for the entire cohort.
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Figure 1: An example of sensor output and signal deterioration over time.

timestamp labeled “endTimeGases” in the associated JSON file, while the durationSec” parameter
records the total length of the measurement.

4.5 VALIDATION SCHEME

The data was collected over 11 weeks (Fig. [2). As exhaled air samples were gathered from outpa-
tient patients, ensuring consistent collection for each disease became challenging. The experiment
was designed so that the analysis of patients with specific conditions was heavily concentrated in
time. Due to sensor degradation and drift over time, data leakage in the disease classification was
possible. To minimize this effect, we suggested an individual train/test split for each of the eight
conditions. There were two criteria for selecting patients for validation. Firstly, the positive valida-
tion samples should be distant from the positive training samples. Secondly, the negative validation
samples should include samples that are close in time to the negative train samples. We divided
the experiments into weeks and used these chunks to create the train/test splits. The data collection
period spanned over eleven weeks, three of which were used for validation, and the rest for training.
The suggesed train/test split is provided in Table 3]

5 EXPERIMENTAL EVALUATION

5.1 CNN-BASED ODOR SIGNAL MAP CLASSIFICATION

The key idea behind this approach is to treat time series data as images |Semenoglou et al.| (2023),
Hatami et al.|(2018)). To address sensor degradation over time, the time series data is smoothed using
the weightlet transformation and then normalized using min-max scaling. Next, polynomial features
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Figure 2: Distribution of the samples collected from patients throughout the study.

Table 3: Suggested train/test split. Every sample from each week is put into either the train or the
test subsets. Regarding a particular ICD-10 code as a positive class, ”+” and empty indicate weeks
selected for test and train, respectively

ICD-10 code Z00 E11 K29 K76 B18 C34 NI18 J44

Week

1 + +

2 + + + + +

3 + + + + +

4 + +

5 +
6 +
7 +
8 +

9 + +

10 + + + +

11 + +

are extracted from the smoothed and normalized time series using the PolynomialFeatures function
from the sklearn.preprocessing library. These features are then combined with the original data to
create a floating-point matrix that can be interpreted as an image. This result of the aggregation
is illustrated in Fig. 3] A neural network with several convolutional and fully connected layers
processes the data and classifies it. The inference time for the whole process is less than one second
on a laptop using only the CPU, so the algorithm could be implemented on embedded systems.

5.2 TABULAR ODOR CLASSIFICATION WITH CATBOOST

Our hypothesis for this approach was grounded in the assumption that readings from the sensors
exhibit a curve pattern with a saturation plateau, which can be modeled as a kinetic curve. Addi-
tionally, we used other basic statistical features to describe our time series data|[Faouzi| (2022). Prior
to any preprocessing, the time series data is clipped according to the ’startTimeGases’ and ’end-
TimeGases’ parameters from the breath analysis experiment. The time series data is smoothed with
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Table 4: Binary classification results for the proposed train/test split, ROC AUC (best metrics)

Model Features 7200 E11 K29 K76 B18 C34 NI18 J44

logfit_4 0.454 0535 0.407 0.663 0.689 0.515 0.598 0.496
CatBoost logfit_2 0482 0536 0.507 0.669 0.657 0.492 0.531 0.467
stats_5 0.513 0.557 0464 0.642 0.703 0.52 0.553 0.443
stats_3 0.513 0557 0464 0.642 0.703 0.52  0.553 0.443
CNN polynomial 0.635 0.548 0.564 0.600 0.615 0.713 0.697 0.508

* logfit4: Ryaz, Ro, ts0, k;
* logfit 2: t50, k.

We also compared this approach to two sets of basic statistical parameters:

e stats_3: minimum, maximum, mean, median and standart deviation values of each time
series;

 stats_5: mean, median and standart deviation values of each time series.

The feature engineering methods were applied exclusively to eight specific channels from the eNose
array, as these channels exhibited consistent signaling over time, a crucial requirement for effective
feature extraction. The resulting feature vectors for each patient comprised 32, 16, 24, and 40
elements, respectively, corresponding to each feature set. We adopted the following hyperparameters
for CatBoost classification: 1500 iterations, learning rate 0.05, loss function ’Logloss’, max tree
depth 10, L2 leaf regularization 8. The resulting binary classification results (Table ) indicate two
key insights for this straightforward approach. First, the inclusion of the minimum and maximum
time series values does not significantly affect model performance, as the preprocessing steps render
these parameters ineffective. Second, the fitted function parameters appear to be suboptimal and fail
to fully capture the information contained in the time series data.

5.3 RESULTS DISCUSSION

The results shown in Table 4] highlight the significant potential for disease screening using the metal
oxide electronic nose (eNose) sensor. The CNN-based method demonstrates promise in distinguish-
ing between healthy individuals and those with specific conditions, successfully identifying four out
of seven targeted conditions. While the feature-based approach performs better in classifying fatty
liver disease (K76) and hepatitis (B18), convolutional contrastive learning shows promising results
for malignant neoplasms of the lungs (C34) and chronic renal failure (N18). The best classification
results were obtained for hepatitis and malignant lung formations, with ROC AUC values surpassing
0.7.

In the future, we intend to gather more data from a variety of sensors and conduct experiments
to ensure that disease screenings are evenly distributed over time. To effectively demonstrate the
statistical significance of our results, a multi-fold experimental setup will be essential. In the current
experimental conditions, this was not possible due to the uneven distribution of disease screenings
over time.

Our baseline methods did not demonstrate significant effectiveness in classifying certain conditions,
such as gastritis, duodenitis, diabetes mellitus, and chronic obstructive pulmonary disease. It may be
necessary to explore different sensor configurations to improve the classification of these diseases.

6 CONCLUSION

This paper presents Scent of Health, a large clinical eNose breathomics collection with a repro-
ducible benchmark and a suite of baselines that expose the practical challenges of olfactory time-
series, particularly sensor drift, limited labeled data, and cross-site variability. Our experiments show
that while modern time-series classifiers provide strong starting points, significant gaps remain in
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robustness and generalization under realistic temporal splits, highlighting the need for targeted aug-
mentation, domain-adaptive pretraining, and sensor-aware modeling. By releasing the data, splits,
and code, we aim to catalyze machine-learning research on olfactory data, from improved time-
series architectures and pre-training strategies to robust adaptation techniques for sensor networks,
and to accelerate the translation of eNose technology toward reliable, non-invasive disease screen-
ing. The future work will focus on scalable pretraining across sites, principled drift-correction meth-
ods, and prospective clinical validation to move eNose systems from promising prototypes toward
reliable real-world tools.

7 ETHICS STATEMENT

Ethics approval from a local Ethics Committee at the ***Medical Research Organization*** was
received before the start of the study. Prior to their inclusion in the study, all participants provided
written informed consent.

8 REPRODUCIBILITY STATEMENT

Once the paper is accepted, we will make our dataset publicly available and pro-
vide a DOI. For review purposes, the csv and json files are temporarily available
at: https://figshare.com/s/98fe218cebb256fd3ed3, and https://figshare.
com/s/cab6ea5f4b034b86218f.L  The code is available at https://anonymous.
4open.science/r/enos—-8FD9/README . md.
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A APPENDIX

A.1 PATIENT INFORMED CONSENT FORM

Information for a research participant
Dear participant in the study!

You are invited to participate in the "Medical digital nose” research work. Participation in this study
is voluntary; if you refuse, this will not affect the quality of the provision of medical care to you. You
can stop participating in the study at any time. Your participation in the study can also be stopped
at any time by your attending physician, research doctor, or study participant. You will not have
any direct benefits from participating in this study, in addition to the fact that the data obtained can
subsequently serve for the development of medical science. The purpose of this scientific research is
to check the hypothesis of the existence of a dependence between the molecules of the air exhaled by
a person and diseases, to create a prototype of a medical Al approval for quick mass screening/early
diagnosis of diseases. The data obtained during the study will allow the “digital nose” to accurately
identify a set of substances released with exhaled air in patients with certain diseases. This will
further simplify the diagnosis, treatment, and conduct of patients with these diseases.

You have been proposed to participate in this study because you have previously established one
of the following diagnoses:

. You may also be offered participation in a group of healthy people.

This scientific study is conducted by the research tteam ——— . In total, the study is planned
to include 1024 participants.

If you agree to take part in this study:

1. You will be asked questions regarding your demographic data (age and gender) and the
presence of bad habits.

2. If the research doctor, based on the data of your medical card, decides that you can take
part in the study, you will be offered to exhale in a special bag equipped with an individual
trunk, for 1 minute under the researcher’s observation.

Afterward, the air from this bag will be analyzed in a special device, and the data obtained will be
used to train ML models. No other medical procedures or subsequent visits are provided during
the study. Therefore, this study does not bear any additional risks for you compared to the risks
in everyday life or during an outpatient medical examination and testing. No payments for your
participation in this study are provided. All information obtained during the above scientific research
will be strictly confidential and processed with strict compliance with the norms of the current
legislation on protecting medical secrets and individuals’ personal data. The data obtained during the
study, including medical information, will be impersonated by a research doctor. The information
received during this scientific research can also be analyzed and designed in a scientific publication.
The information identifying you will not be used anywhere, and it will be impossible to connect this
data with you by establishing your personality.

An independent ethics committee approved the conduct of this scientific research at

If you have questions regarding your rights as a participant in the study, you can contact the repre-
sentative of the Independent Ethics Committee observing the study in this research center:
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Full name of the contact person: ——— Phone number: ———— Contact information: The
main researcher is the head of the department .E-mail: —— phone:

Informed consent of the research participant

I (surname, name, patronymic of the patient) have read information about the
scientific research ”"Medical digital nose”, and I agree to participate in it. I confirm that the essence,
purpose, and risks of scientific research were explained to me clearly and in detail by a doctor or
another research team member. I had enough time to decide on participation in the study. I had
the opportunity to ask all the questions I was interested in, and I received comprehensive answers to
each one. I understand that I can at any time, at my desire, abandon further participation in the study,
and if I do this, this will not affect my subsequent treatment and the attention of doctors. I permit
researchers and the scientific organization conducting the study to process all personal data I reported
and information about the current state of my health received by the medical institution, both during
the implementation of the above scientific research and previously available. I voluntarily agree that
my depersonalized data obtained during scientific research will be used for scientific purposes and
published under the condition of compliance with the rules of confidentiality. I allow the medical
personnel participating in the study to contact me with potentially necessary additional information
on the further state of my health and proposals for participation in new research. I received a copy
of “information for the patient and the patient’s informed consent.”

Full name of the participant in the study
Signature of the research participant; Date
Full name of a research doctor

Signature of a research doctor; Date

A.2 INCLUSION AND EXCLUSION CRITERIA FOR THE STUDY
Inclusion criteria for the study:

1. Men and women aged 18 to 88 years;

2. The presence or the absence of established diseases for a group of patients or conditionally
healthy volunteers, respectively:

* Non-alcoholic fatty liver disease: K76*

* Gastritis and duodenitis: K29*

* Chronic obstructive pulmonary disease: J44*

* Diabetes mellitus type 2: E11*

* Chronic renal failure: N18*

* Malignant neoplasm of the lungs: C34*

* Hepatitis B and C: B18*

* Conditionally healthy - patients without specified ICD codes in the EHR

3. Availability of signed and dated informed consent from the patient/conditionally healthy
volunteer to participate in the study;

4. No pregnancy or lactation at the time of the study (according to the patient).
Non-inclusion criteria:

1. Inability to fully inhale and/or exhale the required volume;

2. Other diseases and conditions that, in the opinion of the researcher (healthcare profes-
sional), may affect the study results or negatively affect the patient’s condition.

Exclusion criteria for the study:

1. Withdrawal of informed consent by a research participant;

2. Inability of a research participant to understand and follow the instructions of a health care
professional.
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