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Abstract

Training neural networks sequentially in time to approximate solution fields of time-
dependent partial differential equations can be beneficial for preserving causality
and other physics properties; however, the sequential-in-time training is numerically
challenging because training errors quickly accumulate and amplify over time. This
work introduces Neural Galerkin schemes that update randomized sparse subsets
of network parameters at each time step. The randomization avoids overfitting
locally in time and so helps prevent the error from accumulating quickly over the
sequential-in-time training, which is motivated by dropout that addresses a similar
issue of overfitting due to neuron co-adaptation. The sparsity of the update reduces
the computational costs of training without losing expressiveness because many
of the network parameters are redundant locally at each time step. In numerical
experiments with a wide range of evolution equations, the proposed scheme with
randomized sparse updates is up to two orders of magnitude more accurate at a
fixed computational budget and up to two orders of magnitude faster at a fixed
accuracy than schemes with dense updates.

1 Introduction

In science and engineering, partial differential equations (PDEs) are frequently employed to model
the behavior of systems of interest. For many PDEs that model complicated processes, an analytic
solution remains elusive and so computational techniques are required to compute numerical solutions.

Global-in-time training There have been many developments in using nonlinear parameterizations
based on neural networks for numerically approximating PDE solutions. These include techniques
such as the Deep Galerkin Method [46], physics-informed neural networks (PINNs) [41], and others
[4, 21, 53, 15]; as well as early works such as [11, 42]. In most of these methods, a neural network is
used to represent the solution of a (time-dependent) PDE over the whole space-time domain. For this
reason they are termed global-in-time methods in the following. To approximate the solution, the
neural network is trained to minimize the PDE residual on collocation points sampled from the space-
time domain, which requires solving a large-scale optimization problem that can be computationally
expensive. Additionally, the solutions learned by global-in-time methods can violate causality, which
can become an issue for complex problems that rely on preserving physics [27]. We note that neural
networks have been used for approximating PDE solutions in various other ways, such as learning
specific component functions [23, 31, 43], finding closure models [2, 25, 50], de-noising [44], and
for surrogate modeling [33, 32, 18]. However, we are interested in this work in using neural networks
for directly approximating PDE solutions.
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Sequential-in-time training with the Dirac-Frenkel variational principle In this work, we follow
the Dirac-Frenkel variational principle, which has been used for numerical methods in the field of
quantum dynamics for a long time [10, 17, 26, 34, 28] and for dynamic-low rank and related solvers
[24, 45, 35, 39, 38, 22]. Instead of globally approximating a PDE solution in time, the Dirac-Frenkel
variational principle allows a sequential-in-time training that adapts a nonlinear parameterization,
such as a neural network, over time. In contrast to classical numerical methods in vector spaces, the
approximate solution in Dirac-Frenkel schemes is allowed to depend nonlinearly on its parameters
and so to lie on a smooth manifold. The update to the nonlinear parameterization is calculated at
each time step according to the orthogonal projection of the dynamics onto the tangent space of the
manifold induced by the nonlinear parameterization. The Dirac-Frenkel variational principle has
been adapted for the nonlinear approximation of PDEs with neural networks. In particular [14, 1, 7]
formulate a sequential-in-time method based on the Dirac-Frenkel variational principle.

The neural network represents the PDE solution at a point in time. The time-dependence then arises
by allowing the parameters—the weights and biases of the network—to vary in time. The network
parameters are then evolved forward according to the time dynamics which govern the PDE. This is
in contrast to global-in-time methods, in which time enters the network as an additional input variable.
By construction, an approximate solution obtained with a sequential-in-time method is causal, in that
the solution at future times depends only on the solution at the current time.

Although these methods have demonstrated success in solving various PDEs [34, 14, 7, 54, 16, 8, 30],
there are open challenges: First, the sequential-in-time training is prone to overfitting which can
lead to a quick accumulation of the residual over time. Second, the local training step has to be
repeated at each time step, which can be computationally costly, especially with direct solvers that
have costs increase quadratically with the number of network parameters. The work [16] proposes to
address the two issues by using iterative solvers, instead of direct ones, and by re-training the network
occasionally over the sequential-in-time training. We show with numerical experiments below that
the re-training of the network can be computationally expensive. Additionally, the performance
of iterative solvers depends on the condition of the problem, which can be poor in the context of
sequential-in-time training.

Our approach and contributions: Randomized sparse updates for schemes based on the Dirac-
Frenkel variational principle We build on the previous work in sequential-in-time methods
following a similar set up as [7] based on the Dirac-Frenkel variational principle. Where all previous
methods solve local training problems that update every parameter of the network at each time step,
we propose a modification such that only randomized sparse subsets of network parameters are
updated at each time step:

(a) The randomization avoids overfitting locally in time and so helps preventing the error
from accumulating quickly over the sequential-in-time training, which is motivated by dropout that
addresses a similar issue of overfitting due to neuron co-adaptation.

(b) The sparsity of the updates reduces the computational costs of training without losing
expressiveness because many of the network parameters are redundant locally at each time step.

Our numerical experiments indicate that the proposed scheme is up to two orders of magnitude more
accurate at a fixed computational cost and up to two orders of magnitude faster at a fixed accuracy.

We release our code implementation here: https://github.com/julesberman/RSNG

2 Sequential-in-time training for solving PDEs

2.1 Evolution equations, Dirac-Frenkel variational principle, Neural Galerkin schemes

Given a spatial domain X ⊆ Rd, and a time domain T = [0, T ) ⊆ R, we consider a solution field
u : T × X → R so that u(t, ·) : X → R is in a function space U at each time t, with dynamics

∂tu(t,x) =f(x, u) for (t,x) ∈ T × X
u(0,x) =u0(x) for x ∈ X (1)

where u0 ∈ U is the initial condition and f can include partial derivatives of u to represent PDEs.
We focus in this work on Dirichlet and periodic boundary conditions but the following approach
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Figure 1: We propose Neural
Galerkin schemes that update ran-
domized sparse subsets of network
parameters with the Dirac-Frenkel
variational principle. Randomization
avoids overfitting locally in time,
which leads to more accurate approxi-
mations than dense updates. Sparsity
reduces the computational costs of
training without losing expressive-
ness because many parameters are
redundant locally in time.

can be applied with, e.g., Neumann boundary conditions as well [7]. One approach for imposing
Dirichlet boundary conditions is by choosing parameterizations that satisfy the boundary conditions
by definition [48].

Sequential-in-time training methods approximate u with a nonlinear parameterization such as a
neural network û : X ×Θ → R, where the parameter vector θ(t) ∈ Θ ⊆ Rp depends on time t; the
parameter θ(t) has p components and enters nonlinear in the second argument of û. The residual of
(1) at time t is

r(x;θ(t), θ̇(t)) = ∇θû(x;θ(t)) · θ̇(t)− f (x, û(·;θ(t))) , (2)

where we applied the chain rule to ∂tû(·;θ(t)) to formally obtain θ̇(t). Methods based on the
Dirac-Frenkel variational principle [10, 17, 34] seek θ̇(t) such that the residual norm is minimized,
which leads to the least-squares problem

min
θ̇(t)

∥∇θ(t)û(·;θ(t))θ̇(t)− f(·; û(·;θ(t)))∥2L2(X ) , (3)

in the L2(X ) norm ∥ · ∥L2(X ) over X . The least-squares problem (3) gives a θ̇(t) such that the
residual is orthogonal to the tangent space at û(·;θ(t)) of the manifold MΘ = {û(·;θ) |θ ∈ Θ}
induced by the parameterization û; see Figure 1. Schemes that solve (3) over time have also been
termed Neural Galerkin schemes [7] because (3) can be derived via Galerkin projection as well.

The tangent space at û(·;θ(t)) is spanned by the spanning set {∂θi û(·;θ(t))}pi=1, which are the
component functions of the gradient ∇θ(t)û(·;θ(t)); it is important to stress that {∂θi û(·;θ(t))}pi=1
is not necessarily a basis of the tangent space because it can contain linearly dependent func-
tions and be non-minimal. The least-squares problem (3) can be realized by assembling a ma-
trix whose columns are the gradient sampled at n ≫ p points x1, . . . ,xn ∈ X resulting in
J(θ(t)) = [∇θ(t)û(x1;θ(t)), . . . ,∇θ(t)û(xn;θ(t))]

T ∈ Rn×p, which is a batch Jacobian ma-
trix to which we refer to as Jacobian for convenience in the following. Additionally, we form the
right-hand side vector f(θ(t)) = [f(x1;θ(t)), . . . , f(xn;θ(t))]

T ∈ Rn and thus the least-squares
problem

min
θ̇(t)

∥J(θ(t))θ̇(t)− f(θ(t))∥22 . (4)

The choice of the points x1, . . . ,xn is critical so that solutions of (4) are good approximations of
solutions of (3); however, the topic of selecting the points x1, . . . ,xn goes beyond this work here and
so we just note that methods for selecting the points exist [1, 7] and that we assume in the following
that we select sufficient points with n ≫ p to ensure that solutions of (4) are good approximations of
solutions of (3)

2.2 Problem Formulation

Challenge 1: Parameters are redundant locally in time. Typically, parameterizations û based on
deep neural networks lead to Jacobian matrices J(θ(t)) that are low rank in the least-squares problem
(4); see, e.g., [37] and Figure 2(a). In our case, a low-rank matrix J(θ(t)) means that components
in θ̇(t) are redundant, because we assume that the samples x1, . . . ,xn are sufficiently rich. Even
if J(θ(t)) is low rank and thus the components in θ̇(t) are redundant, the problem (4) can still be
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(a) low-rankness of Jacobian (b) residual growth (c) co-adaptation of neurons

Figure 2: (a) Jacobians that have low rank locally in time imply that there are redundant parameters
in the neural network, which motivates the proposed sparse updates that lead to speedups without
losing expressiveness. (b) The residual grows quickly with sequential-in-time training (and dense
updates). This is not due to a limitation with the expressiveness of the network because directly fitting
the network to solutions indicates that there exist other parameters that can lead to lower residuals.
(c) Sequential-in-time training (with dense updates) results in co-adapted neurons as indicated by the
highly correlated columns of the J matrix. Plots for experiment with Allen-Cahn equation (Sec. 4).

solved with standard linear algebra methods such as the singular value decomposition (SVD) because
they compress the matrix J(θ(t)) and regularize for, e.g., the minimal-norm solution; however, the
costs of performing the SVD to solve (4) scales as O(np2), and thus is quadratic in the number of
parameters p. This means that a redundancy in θ̇(t) of a factor two leads to a 4× increase in the
computational costs. Note that the problem typically is poorly conditioned because J(θ(t)) is low
rank, which makes the direct application of iterative solvers challenging.

Challenge 2: Overfitting leads to high residual over time. The residual from solving (4) can
rapidly increase over time which in turn increases the overall error. This indicates that the tangent
space along the trajectory θ(t) becomes ill suited for approximating the right-hand side vector f(θ(t))
in (4). We compare the residual of the least-squares problem (4) that is obtained along a trajectory of
θ(t) from sequential-in-time training with the schemes above to the residual of (4) from a network
that is fit to the true solution at each point in time; details in Appendix A.1. As shown in Figure 2(b),
a lower residual is achieved by the network that is fit to the true solution.

We aim to understand this phenomenon through the lens of overfitting: the sequential-in-time training
can be thought of as successive fine-tuning, in the sense that at each time step we must make a small
update to our parameters to match the solution at the next time step. However, fine-tuning is well
known to be prone to over-fitting and model degeneration [3]. In the setting considered in this work,
overfitting means that the representation û(·;θ(t)) does not generalize well to the next time step. Not
generalizing well means that a local change to θ(t) is insufficient to move û(·;θ(t)) according to the
desired update given by θ̇(t) to match the right-hand side f(θ(t)), which implies that a large residual
is incurred when solving (4). A common approach to prevent overfitting is dropout [47], especially
when applied to fine-tuning tasks with dropout variants proposed in [3, 29], while other approaches
are formulated specifically around sparse updates [49, 52]. Dropout is motivated by the observation
that dense updates to parameters in neural networks can cause overfitting by leading neurons to
co-adapt. Typically, co-adaptation is characterized by layer-wise outputs with high covariance [9]. In
the case of sequential-in-time training with the schemes discussed above, co-adaptation implies the
columns of the Jacobian matrix J(θ(t)) are correlated and thus close to linearly dependent. So as
neurons co-adapt, component functions of the gradient become redundant and may be less suited
for approximating f(θ(t)) causing the high residual for the least-squares problem; see Figure 2(b).
This could also be characterized by the ill conditioning issue pointed out in [16]. We see empirical
evidence of co-adaptation in Figure 2(c), where we plot component functions of the gradient and see
that they are strongly correlated at the end time T .
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3 Randomized Sparse Neural Galerkin (RSNG) schemes

We introduce randomized sparse Neural Galerkin (RSNG) schemes that build on the Dirac-Frenkel
variational principle to evolve network parameters θ(t) sequentially over time t but update only
sparse subsets of the components of θ(t) and randomize which components of θ(t) are updated. The
sparse updates reduce the computational costs of solving the least-squares problem (4) while taking
advantage of the low rank structure of J(θ) which indicates components of the time derivative θ̇(t)
are redundant and can be ignored for updating θ(t) without losing expressiveness. The randomization
of which components of θ(t) are updated prevents the overfitting described above.

3.1 Randomized sketch of residual

To define the sketch matrix St, let e1, . . . , ep be the p-dimensional canonical unit vectors so that ei
has entry one at component i and zeros at all other components. We then define s independent and
identically distributed random variables ξ1(t), . . . , ξs(t) that depend on time t. The distribution of
ξi(t) is π, which is supported over the set of indices {1, . . . , p}. The random matrix St of size p× s
is then defined as St = [eξ1(t), . . . , eξs(t)]. The corresponding sketched residual analogous to (2) is

rs(x;θ(t), θ̇s(t)) = ∇θû(x;θ(t))Stθ̇s(t)− f(x, û(·;θ(t)) , (5)

where now θ̇s(t) ∈ Rs is of dimension s ≪ p.

3.2 Projections onto randomized approximations of tangent spaces

Using the sketch matrix St, we obtain from the spanning set {∂θi û(·;θ(t))}pi=1 of component func-
tions of ∇θû(·;θ(t)) a subset {∂θξi(t) û(·;θ(t)}

s
i=1 with s functions. The set {∂θξi(t) û(·;θ(t)}

s
i=1

spans at least approximately the tangent space at û(·;θ(t)) of MΘ but has only s ≪ p elements. The
motivation is that the full spanning set {∂θi û(·;θ(t))}pi=1 contains many functions that are close to
linearly dependent (Jacobian is low rank) and thus sub-sampling the component functions still gives
reasonable tangent space approximations that preserves much of the expressiveness; see Figure 1.
While the low rankness depends on the complexity of the problem and parametrization, we observe
low rankness in all our examples; see Appendix A.1 for further discussion.

We now introduce a least-squares problem based on the sparse spanning set {∂θξi(t) û(·;θ(t)}
s
i=1 that

is analogous to the least-squares problem problem based on the full spanning set given in (4). We
seek θ̇s(t) ∈ Rs with s components that solves

min
θ̇s(t)∈Rs

∥∇θû(·;θ(t))Stθ̇s(t)− f(·; û(·;θ(t)))∥2L2(X ) . (6)

To obtain θ̇(t) to update θ(t), we set θ̇(t) = Stθ̇s(t). Thus, the components of θ̇(t) that are selected
by St are set to the corresponding value of the component of θ̇s(t) and all other components are set
to zero, which means that the corresponding components of θ(t) are not updated. We can realize
(6) the same way as the full least-squares problem in (4) by using the full Jacobian matrix and St to
define the sparse Jacobian matrix as Js(θ(t)) = J(θ(t))St and the right-hand side vector f(θ(t))
analogous to Section 2 to obtain the discrete least-squares problem

min
θ̇s(t)

∥Js(θ(t))θ̇s(t)− f(θ(t))∥22 . (7)

The choice of the distribution π is critical and depends on properties of the Jacobian matrix J(θ(t)).
Distributions based on leverage scores provide tight bounds with regard to the number of columns
one needs to sample in order for the submatrix to be close to an optimal low rank approximation of
the full matrix with high probability [13]. But these distributions can be expensive to sample from.
Instead, uniform sampling provides a fast alternative.

The number of columns will not grow too quickly if the full matrix is sufficiently incoherent [19].
This means some columns do not carry a disproportionate amount of information relative to other
columns. We numerically see that in our case the Jacobian matrix J(θ(t)) is sufficiently incoherent.
Thus we can choose a uniform distribution over the set of indices {1, . . . , p} to get the benefits of
low rank approximation in a computationally efficient way.
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Algorithm 1 Randomized Neural Galerkin scheme with sparse updates

Fit parameterization û(·;θ(0)) to initial condition u0 to obtain θ(0)

for k = 1, . . . ,K do
Draw realization of sketching matrix Sk as described in Section 3.1
Solve for sparse update ∆θ(k−1)

s with least-squares problem (9)
Lift sparse update ∆θ(k−1) = Sk∆θ(k−1)

s

Update θ(k) = θ(k−1) + δt∆θ(k−1)

end for

3.3 Discretizing in time

We discretize the time interval T with K ∈ N regularly spaced time steps 0 = t0 < t1 < · · · <
tK = T with δt = tk − tk−1 for k = 1, . . . ,K. At time t0, we obtain θ(0) ∈ Rp by fitting the initial
condition u0. We then update

θ(k) = θ(k−1) + δt∆θ(k−1) (8)

for k = 1, . . . ,K so that θ(k) is the time-discrete approximation of θ(tk) and thus û(·;θ(k)) approx-
imates the solution u at time tk. The sparse update ∆θ(k−1)

s approximates θ̇s(tk−1) and is obtain by
the time-discrete counterpart of (7), which is given by

min
∆θ

(k−1)
s

∥Js(θ(k−1))Sk∆θ(k−1)
s − f(θ(k−1))∥22 , (9)

if time is discretized with the forward Euler method. Other discretization schemes can be used as
well, which then lead to technically more involved problems (9) that remain conceptually similar
though. The sparse update is lifted to ∆θ(k−1) = Sk∆θ(k−1)

s so that the update (8) can be computed.

3.4 Computational procedure of RSNG

We describe the proposed RSNG procedure in algorithmic form in Algorithm 1. We iterate over
the time steps k = 1, . . . ,K. At each time step, we first sketch the Jacobian matrix by creating a
submatrix from randomly sampled columns. Notice that Sk need not actually be assembled as its
action on the Jacobian matrix can be accomplished by indexing. We then solve the least-squares
problem given in (9) using our sketched Jacobian to obtain ∆θ(k−1)

s . A direct solve of this system
dominates the computational cost of making a time step and scales in O(ns2) time. The components
of ∆θ(k−1) corresponding to the indices that have not been selected are filled with zeros. We then
update the parameter θ(k−1) to θ(k) via ∆θ(k−1).

The whole integration process scales as O( T
δtns

2) in time.

4 Numerical experiments

We demonstrate RSNG on a wide range of evolution equations, where speedups of up to two orders
of magnitude are achieved compared to comparable schemes with dense updates. We also compare to
global-in-time methods, where we achieve up to two orders of magnitude higher accuracy.

4.1 Setup and equations

Examples We now describe the details of the PDEs that we use to evaluate our method. We choose
these particular setups to test our method on a diverse set of challenges including problems with global
and local dynamics and solutions with sharp gradients and fine grained details. For visualization of
the solutions of these equations see the Appendix A.4.

Reaction-diffusion problem modeled by Allen-Cahn (AC) equation: The Allen-Cahn equation models
prototypical reaction diffusion phenomena and is given as,

∂tu(t, x) = ϵ∂xxu(t, x) + u(t, x)− u(t, x)3.

We choose ϵ = 5× 10−3, with periodic boundary condition X = [0, 2π) and initial condition,

6



u0(x) =
1

3
tanh(2 sin(x))− exp(−23.5(x− π

2
)2)+ exp(−27(x− 4.2)2)+ exp(−38(x− 5.4)2)).

This initial condition results in challenging dynamics that are global over the spatial domain.

Flows with sharp gradients described by Burgers’ equation: The Burgers’ equation is given by,

∂tu(t, x) = ϵ∂xxu(t, x)− u(t, x)∂xu(t, x).

We choose ϵ = 1× 10−3, with periodic boundary condition X = [−1, 1) and initial condition,

u0(x) = (1− x2) exp(−30(x+ 0.5)2).

The corresponding solution field has sharp gradients that move in the spatial domain over time, which
can be challenging to approximate.

Charged particles in electric field: The Vlasov equation describes the time evolution of collisionless
charged particles under the influence of an electric field. The equation models the distribution of such
particles in terms of their position and velocity. We consider the case of one position dimension and
one velocity dimension, making our domain X ⊆ R2. The equation is given by,

∂tu(t, x, v) = −v∂xu(t, x, v) + ∂xϕ(x)∂vu(t, x, v)

where x is the position, v is the velocity and ϕ is the electric field. We consider the case with periodic
boundary condition X = [0, 2π)× [−6, 6) and initial condition,

u0(x, v) =
1√
2π

exp(
−v2

2
)

with a fixed electric field ϕ(x) = cos(x). This particular setup evolves into a distribution with fine
grained details along a separatrix surrounding the potential well.

Setup We parameterize with a feed-forward multi-layer perceptron. All our networks use linear
layers of width 25 followed by non-linear activation functions, except the last layer which has no
activation and is of width 1 so that û(x,θ(t)) ∈ R. To vary the number of total parameters p, we
vary the depth of networks ranging from 3–7 layers. We use rational activation functions which in our
experiments allowed for fitting initial conditions faster and more accurately than a standard choice
such as tanh or ReLU [5]. To enforce periodic boundary conditions, we modify the first layer so
that it outputs periodic embeddings as in [7]; for details see Appendix A.5. The periodic embedding
ensures that the boundary conditions are enforced exactly. For additional details on enforcing other
types of boundary conditions (e.g. Dirichlet and Neumann) exactly in neural networks see [12, 7, 48].
We sample points from the domain on an equidistant grid. For time integration we use a RK4 scheme
with a fixed time step size. The time step sizes are 5e−3, 1e−3, 5e−3 and we integrate up to end
time 4, 4, and 3 for the Allen-Cahn, Burgers’, and Vlasov equations, respectively. All error bars show
+/− two standard errors over three random realizations which results in different sketching matrices
at each time step. Relative errors are computed over the full space-time domain, unless the plot is
explicitly over time.

All gradients and spatial derivatives are computed with automatic differentiation implemented in
JAX [6]. All computations are done in single precision arithmetic which is the default in JAX. All
runtime statistics were computed on the same hardware, a Nvidia Tesla V100 w/ 32 GB memory. All
additional hyperparameters are described in Appendix A.5.

4.2 Results

RSNG achieves higher accuracy than schemes with dense updates at same computational costs
In Figure 3 we plot the relative error over time. The curves corresponding to “dense updates” use
a 3 layer network and integration is performed using dense updates. For RSNG, we use a 7 layer
network and integrate with sparse updates, setting the number of parameters we update, s, equal to
the total number of parameters in the 3 layer network and thus equal to the number of parameters that
are updated by “dense updates.” Thus, the comparison is at a fixed computational cost. The error
achieved with RSNG is one to two orders of magnitude below the error obtained with dense updates,
across all examples that we consider. In Figure 4(a), we see that as we increase the network size,
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(a) Allen-Cahn (b) Burgers’ (c) Vlasov

Figure 3: We plot the relative error over time for RSNG versus dense updates at s = 757. We see
RSNG leads to orders of magnitude lower errors than dense updates for the same costs.

(a) fix sparsity s, vary #network parameters p (b) fix #network parameters p, vary sparsity s

Figure 4: (a) RSNG benefits from the additional expressiveness of larger networks (larger p) while
only using a fixed number of parameters (fixed s) at each time step. (b) As we decrease the number
of parameters s in the sparse update, but keep the total number of parameters p of the network the
same, we achieve lower errors than dense updates. Thus, RSNG outperforms dense updates while
incurring lower computational costs. Error bars generated over random sketch matrices, St.

the relative error decreases as the sparse updates allow us to exploit the greater expressiveness of
larger networks while incurring no additional computational cost in computing (9). But we note that
increasing the size of the full network will make computations of J(θ) and f(θ) more expensive
because of higher costs of computing gradients. However, for the network sizes that we consider in
this work, this effect is negligible compared to the cost of solving (9).

RSNG achieves speedups of up to two orders of magnitude In Figure 5(a), we compare the
runtime of RSNG to the runtime of a scheme with dense updates that uses a direct solver and to the
runtime of a scheme with dense updates that uses an iterative solver as proposed in [16]. The time is
computed for Burgers’ equation and the sparsity s of RSNG is chosen such that all methods reach a
comparable level of error. We find that RSNG is faster than direct solves with dense updates by two
orders of magnitude and faster than the iterative solver by one order of magnitude.

The results show that while using an iterative solver as in [16] does speed up the method relative
to direct solves with dense updates, it can still be quite slow for networks with many parameters p.
Additionally, convergence of the iterative method given in [16] requires a number of hyperparameters
to be chosen correctly, which may require an expensive search or a priori knowledge about the
solution. Note that our RSNG method does not preclude the use of an iterative method to speed up
the least-squares solves further.
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(a) runtime at 2e−4 relative error with s = 125 (b) error versus runtime

Figure 5: RSNG has lower computational costs than dense updates with direct and iterative least-
squares solvers. Plots for numerical experiment with Burgers’ equation

To address the overfitting problem, the work [16] refits the network to the current approximate
solution from a random initialization periodically during time integration. In Figure 5(b), we show
the relative error versus the runtime for the iterative solver with various numbers of refits and for
RSNG at different sparsity s. While refitting the network can reduce the relative error, it incurs a high
computational cost. By contrast, for appropriate sparsity s, RSNG outperforms the method given in
[16] in both speed and accuracy.

Varying sparsity s at fixed number of total parameters p in network We now study the effect
of varying the sparsity s (i.e., number of parameters updated by sparse updates) for a fixed network
of total size p, in this case a 7 layer network. In Figure 4(b), we see that for a network of fixed size,
sparse updates can reduce the relative error by about 2–3× when compared to dense updates. This is
notable as the computational costs decrease quadratically with s. Thus, the combination of sparsity
and randomized updates in RSNG can deliver both improved performance and lower computational
cost. We see that at the beginning, when the number s is too small, the expressiveness suffers and
the error becomes large. This is because if s is less than the rank of the dense Jacobian then the
sparsified Jacobian will necessarily have less representational power. However, we stress that RSNG
is robust with respect to s in the sense that for a wide range of s values the error is lower than for
dense updates.

The high error when performing dense updates s = p in Figure 4(b) for Allen-Cahn and Burgers’
equation is due to the overfitting problem described in Section 2.2. As updates become denser, the
method is more likely to overfit to regions of the parameter space in which the Jacobian, J(θ), is
ill suited for approximating the right-hand side f at future time steps (see Section 2). We can see
this explicitly in Figure 6 where we plot the residual over time for sparse and dense updates on the
Allen-Cahn equation. Initially, the dense updates lead to a lower residual. This makes sense as they
begin at the same region of parameters space. But as the two methods navigate to different regions
of parameters space, we see RSNG begins to incur a lower residual relative to dense updates. This
indicates that RSNG ameliorates the problem of overfitting and so leads to a lower residual as shown
in Figure 6(b).

Comparison with global-in-time methods We compare our method to global-in-time methods
which aim to globally minimize the PDE residual over the entire space-time domain. We compare to
the original PINN formulation given in [41]. Additionally we compare to a variant termed Causal
PINNs, which impose a weak form of time dependence through the loss function [51]. We select
this variant as it claims to have state of the art performance among PINNs on problems such as
the Allen-Cahn equation. In Table 1, we see that our sequential-in-time RSNG method achieves
a higher accuracy by at least one order of magnitude compared to PINNs. Additionally, in terms
of computational costs, RSNG outperforms both PINN variants, as their global-in-time training is
expensive and requires many residual evaluations. We note that the training time of PINNs is directly
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(a) residual at early times (b) residual over full time

Figure 6: Plot (a) shows the
residual of dense and sparse up-
dates at early time steps. Ini-
tially, dense updates must have
a lower residual as JSt spans a
subspace of the tangent space
given by J . But in plot (b),
we see that after a few time
steps, dense updates overfit and
the residual grows quicker than
with sparse updates.

PDE Method L2 Relative Error Time(s) s

Allen-Cahn PINN 6.85e−2 841 N/A
Allen-Cahn Causal PINN 3.84e−4 3060 N/A
Allen-Cahn RSNG 1.66e−5 776 800
Allen-Cahn RSNG 5.34e−5 63 150

Burgers’ PINN 2.34e−3 3451 N/A
Burgers’ Causal PINN 5.19e−4 23027 N/A
Burgers’ RSNG 6.07e−5 2378 800
Burgers’ RSNG 2.05e−4 188 125

Table 1: The sequential-in-time training with RSNG achieves about one order of magnitude higher
accuracy than global-in-time methods in our examples. Details on training in Appendix A.6.

dependent on the number of optimization iterations and thus they can be trained faster if one is willing
to tolerate even higher relative errors.

5 Conclusions, limitations, and future work

In this work, we introduced RSNG that updates randomized sparse subsets of network parameters in
sequential-in-time training with the Dirac-Frenkel variational principle to reduce computational costs
while maintaining expressiveness. The randomized sparse updates are motivated by a redundancy of
the parameters and by the problem of overfitting. The randomized sparse updates have a low barrier
of implementation in existing sequential-in-time solvers. The proposed RSNG achieves speedups
of up to two orders of magnitude compared to dense updates for computing an approximate PDE
solution with the same accuracy.

Current limitations leave several avenues for future research: first, as discussed in 3.2, uniform
sampling is only appropriate when the Jacobian matrix is of low coherence. Future work may
investigate more sophisticated sampling methods such as leverage score and pivoting elements of
rank revealing QR. Second, there are problems for which overfitting with dense updates is less of an
issue; e.g., the charged particles example in our work. Note that due to the sparsity of the updates,
RSNG still achieves a speedup compared to dense updates for the same accuracy for this example
though. However, more work is needed to better understand and mathematically characterize which
properties of the problems influence the overfitting issue.

We make a general comment about using neural networks for numerically solving PDEs: The
equations discussed in this paper are standard benchmark examples used in the machine-learning
literature; however, for these equations, carefully designed classical methods can succeed and
often have lower runtimes than methods based on nonlinear parameterizations [20, 36]. While
these equations provide an important testing ground to demonstrate methodological improvements,
future work will extend these results to domains where classical linear methods struggle, e.g.,
high-dimensional problems and problems with slowly decaying Kolmogorov n-widths [15, 7, 40].

We do not expect that this work has negative societal impacts.
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A Appendix

A.1 Details on Figure 2

For Figure 2a–b we look at quantities generated by fitting a network to the true solution at a point in
time t. This is done in the same way we fit initial conditions described in A.5, but in this context the
target function is taken to be the true solution at time t. For Figure 2(a), we compute the Jacobian of
the network fitted to the true solution at each point in time and then plot its spectrum. For Figure 2(b),
we take the network fitted to the true solution and compute the residual from the least-squares
problem 4 to give the data points in the "Direct fit" line.

In Figure 7 we provide versions of Figure 2(a) from the main text but for all the equations considered.
Vlasov is a more complex problem that exhibits a less sharp decay but is still distinctly rank deficient.

A.2 Details on Speed-Up

Here we provide additional results on the speed-up provided by RSNG for different equations. In
Figure 8 we provide versions of Figure 5(a) from the main text but for all the equations considered.
In Figure 9 we show how the runtime of Neural Galerkin schemes scales with s, thus showing the
quadratic speed-up provided by RSNG as we reduce s.

A.3 Applications to High Dimensional Problems

Neural Galerkin schemes have been shown to be a useful approach to high dimensional PDEs [7]. In
Figure 10 we demonstrate that RSNG may be applicable in these settings we well. We fit a neural
network to a numerical solution of the Fokker-Planck equation in 5 dimensions; see [7, Section 5.4.1]
for a description of the setup. The results show that for a sufficiently large network, the Jacobian has
a low-rank structure as in the examples in the paper and a steep decay in the singular values so that
random sketching strategies will likely be successful.

A.4 Ground Truth

The ground truth for the Allen-Cahn and Burgers’ equations were generated using a spectral method
with a fourth order integrator implemented in the spin solver as part of the Chebfun package in
Matlab. We used a spatial grid of 10 000 points and time step size of 1e−3.

The ground truth for the Vlasov equation was generated with a 4th order finite difference scheme in
space and an RK4 time integration scheme. We sample 106 points over the full 2D space domain and
a time step size of 1e−3 was used for time integration.

In Figure 11,12,13 we show plots of the ground truth solutions at the beginning, middle, and end
of integration time for the equations we examine. We can see that they display the characteristics
described in Section 4.1.

(a) Allen-Cahn (b) Burgers’ (c) Vlasov

Figure 7: Decay of singular values of J(θ(t))
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(a) Allen-Cahn, error 5e−5, s = 150 (b) Burgers’, error 2e−4, s = 125 (c) Vlasov, error 2e−4, s = 800

Figure 8: Speedups of RSNG over dense updates with direct and iterative solver.

(a) Allen-Cahn (b) Burgers’ (c) Vlasov

Figure 9: Speedups of RSNG scale quadratic with sparsity s.

Figure 10: Singular values of the
Jacobian of the network fit to a
Fokker-Planck solution in five di-
mension decays quickly too; pro-
viding indication that our RSNG
approach is applicable in these set-
tings as well.

(a) t = 0 (b) t = 2 (c) t = 4

Figure 11: True solution u(t, x) for Allen-Cahn

16



(a) t = 0 (b) t = 2 (c) t = 4

Figure 12: True solution u(t, x) for Burgers’

(a) t = 0 (b) t = 1.5 (c) t = 3

Figure 13: True solution (top) vs RSNG solution (bottom) for Vlasov

A.5 Architecture and Hyperparameters

For an input x ∈ Rd a periodic embedding layer with period P is defined with the optimization
parameters a, ϕ, b ∈ Rd as,

PeriodicEmbed(x) =
d∑

i=1

[
a cos(x

2π

P
+ ϕ) + b

]
i

.

This operation is the repeated w times for different parameters a, ϕ, b where w denotes the width of
the layer resulting in a output vector y ∈ Rw

To fit the initial condition, we minimize the L2 distance between the network and the initial condition
as well as the L2 distance between the first derivative of the network and the first derivative of the
initial condition with respect to the spatial domain X . We evaluate the loss function over 10 000
equispaced points for Allen-Cahn and Burgers’ equation and 200 000 points for Vlasov. We fit our
initial conditions with two nonlinear solvers. First we run L-BFGS with 1000 iterations, then we use
an Adam optimizer with the following hyperparameters,

• iterations : 100 000
• learning rate : 1e−3
• scheduler : cosine decay
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• decay steps : 500

The number of iterations and the number of points we sample are chosen to fit the initial condition to
high accuracy to avoid polluting the results in our analysis with errors of fitting the initial condition.

To assemble the Jacobian matrix J(θ(t)), the gradient of û is evaluated on samples generated from
the spatial domain. If not noted otherwise, we use 10 000 equidistant points for Allen-Cahn and
Burgers’ and 200 000 equidistant points for Vlasov. For the time-optimized RSNG results in Table 1
(rows 4 and 8) we use 1000 equidistant points for Allen-Cahn and Burgers’. In the dense and sparse
least-squares system we regularize the direct solver so as to avoid numerical instability. For this
we set the rcond parameters in numpy implementation of lstsq. The values used are 1e−4, 1e−4,
1e−5 for Allen-Cahn, Burgers’, and Vlasov respectively.

A.6 Global Methods Benchmark

Here we detail the training setups for our benchmarks of the global methods given in Table 1.

For all PINN experiments we sampled data on a grid with 100 points in the time domain and 256
points in the spatial domain. All PINNs were trained with the following hyperparameters:

• optimizer : Adam then L-BFGS
• spatial samples : 256
• time samples : 100
• activation : tanh

For the plain PINN experiments our architecture is a MLP with layers sizes as follows: [2, 128, 128,
128, 128, 1]. Boundary and initial conditions were enforced through a penalty in the loss function.

For the Causal PINNs we use the architecture described in the original paper, with periodic embedding
and “modified MLP layers.” The layer sizes were as follows: [periodic embedding, 128, 128,
128, 128, 1]. Our implementation uses much of the original code provided in [51]. We used only
one time-window for training as this is what was chosen in [51] for the Allen-Cahn equation. The
tolerance hyperparameter, which controls the degree to which the loss function enforces causal
training, was set to 100 and 50 for the Allen-Cahn and Burgers’ equations respectively. Additionally
the λic parameter, which controls the loss functions’ weighting on the initial condition, was set to
100 and 1 for the Allen-Cahn and Burgers’ equations respectively. These were both chosen via a
hyperparameter search. For details on the context and meaning of these hyperparameters see the
original paper [51].

The PINNs trained for Allen-Cahn used 1000 steps of Adam followed by 30000 steps of L-BFGS.
For Burgers’ equations we used 1000 steps of Adam followed by 60000 steps of L-BFGS. More steps
are needed for Burgers’ equation in order to sufficiently resolve the sharp gradient in the solution
due to the low viscosity number. We similarly choose a smaller timestep for Burgers’ in the Neural
Galerkin schemes. We note that fewer optimization iterations can be used for training PINNs but
this resulted in much larger errors in our experiments. In any case, widely varying the number
optimization iterations and other PINNs hyperparameters did not achieve errors in the range of what
RSNG achieves in these examples.
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