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ABSTRACT

Retrieval-augmented generation (RAG) utilizes retrieved texts to enhance large
language models (LLMs). Studies show that while RAG provides valuable external
information (benefit), it may also mislead LLMs (detriment) with noisy or incorrect
retrieved texts. Although many existing methods attempt to preserve benefit and
avoid detriment, they lack a theoretical explanation for RAG. The benefit and
detriment in the next token prediction of RAG remain a ’black box’ that cannot
be quantified or compared in an explainable manner, so existing methods are data-
driven, need additional utility evaluators or post-hoc. This paper takes the first step
towards providing a theory to explain and trade off the benefit and detriment in
RAG. First, we model RAG as the fusion between distribution of LLM’s knowledge
and distribution of retrieved texts. Then, we formalize the trade-off between the
value of external knowledge (benefit) and its potential risk of misleading LLMs
(detriment) in next token prediction of RAG by distribution difference in this
fusion. Finally, we prove that the actual effect of RAG on the token, which is the
comparison between benefit and detriment, can be predicted without any training or
accessing the utility of retrieval. Based on our theory, we propose a practical novel
method, Tok-RAG, which achieves collaborative generation between the pure
LLM and RAG at token level to preserve benefit and avoid detriment. Experiments
in real-world tasks using LLMs such as OPT, LLaMA-2, and Mistral show the
effectiveness of our method and support our theoretical findings. Code is in
supplemental material and will be released on GitHub after acceptance.

1 INTRODUCTION

Retrieval-augmented generation (RAG) has shown promising performance in enhancing Large
Language Models (LLMs) by integrating retrieved texts (Xu et al., 2023; Shi et al., 2023; Asai et al.,
2023; Ram et al., 2023). Studies indicate that while RAG provides LLMs with valuable additional
knowledge (benefit), it also poses a risk of misleading them (detriment) due to noisy or incorrect
retrieved texts (Ram et al., 2023; Xu et al., 2024b;a; Jin et al., 2024a; Xie et al., 2023; Jin et al.,
2024b). Existing methods attempt to preserve benefit and avoid detriment by adding utility evaluators
for retrieval, prompt engineering, or fine-tuning LLMs (Asai et al., 2023; Ding et al., 2024; Xu et al.,
2024b; Yoran et al., 2024; Ren et al., 2023; Feng et al., 2023; Mallen et al., 2022; Jiang et al., 2023).
However, existing methods are data-driven, need evaluator for utility of retrieved texts or post-hoc. A
theory-based method, focusing on core principles of RAG is urgently needed, which is crucial for
consistent and reliable improvements without relying on additional training or utility evaluators and
improving our understanding for RAG.

This paper takes the first step in providing a theoretical framework to explain and trade off the benefit
and detriment at token level in RAG and proposes a novel method to preserve benefit and avoid
detriment based on our theoretical findings. Specifically, this paper pioneers in modeling next token
prediction in RAG as the fusion between the distribution of LLM’s knowledge and the distribution
of retrieved texts as shown in Figure 1. Our theoretical derivation based on this formalizes the core
of this fusion as the subtraction between two terms measured by the distribution difference: one is
distribution completion and the other is distribution contradiction. Further analysis indicates that
the distribution completion measures how much out-of-distribution knowledge that retrieved texts
provide to LLM in the prediction of the next token, representing the benefit of RAG for LLM at the
token level. However, since the retrieved texts may contain noisy or incorrect information, posing the
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Figure 1: Framework of our Tok-RAG. It performs collaborative generation between pure LLM and
RAG at the token-level by comparing benefit and detriment based on our theoretical findings about
distribution difference. The selected tokens at each step are used as the prefix for both pure LLM and
RAG. Tok-RAG preserves benefit and avoids detriment without any training or utility evaluators.

risk of misleading the LLM, distribution contradiction captures this risk by measuring the degree of
conflict between the LLM’s knowledge and the external knowledge from the retrieved texts. This
represents the detriment of RAG for LLM at token level. Thus, we prove that the fusion between
distribution of LLM’s knowledge and the retrieved texts in next token prediction of RAG is governed
by the combined effect of benefit and detriment, whose relationship is described as subtraction.

In this way, we successfully decouple benefit and detriment from next token prediction of RAG and
formalize them as the subtraction between two terms. This subtraction describes the trade-off between
the value of external knowledge and its potential risk of misleading LLM without accessing the
utility of the retrieved texts. We then prove that value of this subtraction is approximately positively
correlated with the similarity between the representation of RAG’s output and the representation
of retrieval texts. Finally, we establish a theory to predict the actual effect of RAG at token level.
Specifically, in next token prediction given prefix and retrieved texts, this theory determines whether
the benefit brought by retrieved texts on the prediction of the token outweighs the detriment.

Based on our theoretical results, we propose a practical novel method called Tok-RAG that can
achieve collaborative generation between pure LLM and RAG at token level to preserve benefit and
avoid detriment without any training or additional modules for utility evaluation of retrieved
texts. As shown in Figure 1, pure LLM and RAG generate the texts in parallel. At the generation
step where LLM and RAG generate the different tokens, Tok-RAG uses our theoretical results to
determine which token will be selected by comparing the values of benefit and detriment brought by
RAG to the token. Experimental results in real-world tasks such as Q&A and Long-Form Q&A based
on LLMs including OPT, LLaMA-2, and Mistral show the effectiveness of our method and support
our theoretical results. Our method does not need any additional modules or training but outperforms
baselines that need additional modules and fine-tuning LLMs by just accessing to the layers and
logits in inference, which indicates that our theoretical results are essential and fundamental for RAG.
The main contributions of this paper are:
• This paper takes the first step in theoretically giving the essential explanation of benefit and
detriment in RAG to make them explainable and comparable at token-level.
• We model RAG as distribution fusion and formalize the core of this fusion as the subtraction
between distribution completion and distribution contradiction, our analysis shows the former is
benefit and the latter is detriment for next token prediction of RAG. This subtraction describes the
trade-off between the value of external knowledge and its potential risk of misleading LLM.
• We provide a theory that actual effect of RAG (i.e., the comparison between benefit and detriment)
can be predicted at token level by representation similarity without any training or accessing the
utility of the retrieved texts, which is significant for fine-grained preserving benefit and avoiding
detriment in practical applications of RAG.
• Based on the theoretical results, we propose a practical novel method to enable pure LLM and RAG
to collaboratively generate at token level. Experimental results on real-world tasks across different
LLMs show the effectiveness of our method and support our theoretical results.
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2 THEORY TO UNDERSTAND BENEFIT AND DETRIMENT AT TOKEN LEVEL

RAG exhibits the duality, although retrieved texts can provide LLM with external knowledge (benefit),
they also pose a risk of misleading LLM due to the noise within the retrieved content (detriment).
This section provides the theoretical framework to explain and trade off benefit and detriment in RAG
at token level. First, we propose to use latent variable model to model the next token prediction in
RAG as the fusion between the distribution of LLM’s knowledge and the distribution of retrieved
texts. Second, our theoretical derivation formalizes the core of this fusion as the subtraction between
two terms measured by the distribution difference: one is distribution completion, and the other is
distribution contradiction. Our further discussion shows that distribution completion is actually the
benefit and distribution contradiction is detriment in the next token prediction of RAG. Last but not
least, we provide a theory to predict the actual effect of RAG at token level.

2.1 PRIMARY DEFINITIONS AND ASSUMPTIONS

Retrieved Texts List R. R is the list that contains retrieved passages for RAG, the format of R is:

R = {r1, r2, r3, ..., rn},
in which ri is a passage. In textual format of R, ri−1 and ri is separated by a delimiter such as
"[Retrieved Passage]", denoted as d.

The Distribution of Retrieved Texts List. pR(·) is the distribution of retrieved texts list R. It is the
language modeling distribution just like the distribution p(·) of the LLM. This distribution p(·) is
learned through training LLM on large corpus with next-token prediction paradigm. p(xi|x1:i−1)
represents the probability distribution predicted by the LLM for xi, given the prefix x1:i−1. The
LLM is capable of generating reasonable and coherent text based on the distribution patterns of
vocabulary and context learned from the large training data. Here, pR(·) refers to the distribution
p(·) learned when the training data that is limited to the retrieved passages list R, and it represents
the vocabulary and contextual distribution patterns of the retrieved passages list R. Define ri is the
i-th passage in the retrieved passages list R, so pR(ri) represents the joint probability of the natural
language sequence ri = [r1i , r

2
i , r

3
i , ..., r

l
i] under the distribution pR(·), in which rxi is the x-th token

in passage ri. Specifically, according to the chain rule, pR(ri) can be decomposed into the product of
a series of conditional probabilities:

pR(ri) = pR(r
1
i ) · pR(r2i |r1i ) · pR(r3i |r1i , r2i ) · · · ·pR(rli|r1i , r2i , r3i , ..., rl−1

i ),

Latent Variable Inference as Hidden Markov Model. Inspired by previous studies that prove
LLMs implicitly perform latent variable inference (Zhang et al., 2023; Wang et al., 2024), we first
propose to analyze RAG by latent variable inference like Hidden Markov Model (HMM) Xie et al.
(2021), where the latent concept z determines the transition probability matrix between hidden states
h, and both hidden states and latent concepts together determine the prediction of the token.

Assumptions. Based on previous work (Xie et al., 2021; Zhang et al., 2023), we make the following
assumptions that:
Assumption 1. All tokens can be predicted, which means that for every token x, there is some hidden
state h lower bounds it that p(x|h, z∗) > c1 > 0.
Assumption 2. Delimiter d is an important distinguishing signal between each passage r in the
retrieved texts R. The delimiter hidden state hd implies that p(d | hd, z) = 1, meaning that the
hidden state hd uniquely determines the output d when z is given, making the probability of observing
d equal to 1. For any delimiter hidden state hd and other hidden state h, there are upper and lower
bounds on the transition probability from h to hd: 0 ≤ c2 ≤ p(hd|h, z) ≤ c3.

2.2 MODEL NEXT TOKEN PREDICTION IN RAG AS DISTRIBUTION FUSION

We propose to analyze RAG by latent variable inference to model the next token prediction in RAG
as the fusion between the distribution of LLM’s knowledge and the distribution of retrieved texts.
Given the prefix x1:i−1 = {x1, x2, ...xi−1}, from the perspective of the latent variable inference, the
probability distribution of the token xi at the i-th step is described as this:

p(xi|x1:i−1) =

∫
Z
p(xi|x1:i−1, z)p(z|x1:i−1) dz, (1)

3
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in which Z is the space of high dimensional concept variable, p(z|x1:i−1) is the probability that
the model samples latent concept z from Z given the prefix x1:i−1, and p(xi|x1:i−1, z) means
the probability for token xi conditioned on the prefix x1:i−1 and the sampled latent concept z.
p(xi|x1:i−1) can be obtained by integrating over all latent concepts from the space Z . Latent variable
model has been applied in many methods such as LDA (Blei et al., 2003). Recent studies prove
that in-context learning of LLMs can also be seen as the latent variable model, in which the LLMs
sample the concept across the input examples (Xie et al., 2021; Zhang et al., 2023). Inspired by this,
we analyze the next token prediction of RAG given prefix x1:i−1 as sampling the shared Retrieved
Concept z∗ from the input retrieved texts list R = {r1, r2, ..., rn} (ri is a retrieved passage), and then
predicting p(xi|R, x1:i−1), which can be formalized as:

p(xi|R, x1:i−1) =

∫
Z
p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz (2)

= p(xi|R, x1:i−1, z
∗)p(z∗|R, x1:i−1) +

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz.

Equation 2 describes RAG as distribution fusion. The first term is the prediction that is only
conditioned on z∗, which is the distribution from retrieved texts. The second term is the prediction
that marginalizes out all latent concepts except z∗, which is the distribution in LLMs.

2.3 FORMALIZE AND EXPLAIN BENEFIT AND DETRIMENT BY DISTRIBUTION DIFFERENCE

In this section, we make further derivation on the distribution fusion in Equation 2 to formalize the
core of this fusion as the subtraction between two terms measured by the distribution difference: one
is distribution completion, and the other is distribution contradiction. Our analysis reveals that for the
next token prediction, distribution completion is actually the benefit and distribution contradiction
is the detriment. Specifically, inspired by (Xie et al., 2021), the Equation 2 can be transformed as
(detailed proof can be found in Appendix A):

p(xi|R, x1:i−1) =

∫
Z
p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz (3)

∝
∫
Z
p(xi|R, x1:i−1, z)p(R, x1:i−1|z)p(z) dz (4)

∝
∫
Z
p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, v(z) = log

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

(5)

Define ri is a passage in the retrieved texts list R, we can get (see detailed proof in Appendix B):

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

≈ log
∏n

i=1 O(1)p(ri|z)∏n
i=1 O(1)p(ri|z∗)

(6)

→ n ∗ 1

n

n∑
i=1

log
p(ri|z)
p(ri|z∗)

= n ∗ Er∼PR

[
log

p(r|z)
p(r|z∗)

]
(7)

∝ pR(r)log
p(r|z)
p(r|z∗)

= pR(r)log
pR(r)

p(r|z∗)
− pR(r)log

pR(r)

p(r|z)
(8)

= −( KL(pR(r)∥p(r|z))︸ ︷︷ ︸
Distribution Completion: Benefit

− KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
Distribution Contradiction: Detriment

), (9)

pR(·) is the distribution of the retrieved texts, p(·) is the distribution of the LLM’s knowledge. v(z) is
an important term in distribution fusion because it reflects the proportion between the latent concept
from the space of LLMs and from the retrieved texts. Details are in Appendix C.

Discuss the Benefit and Detriment Based on the Theoretical Results. In Equation 9, the first term
represents the distribution difference (KL divergence) between retrieved texts (pR(r)) and LLM’s
knowledge (p(r|z)) given the concept z, which is sampled from Z (latent variables in LLM). This
can be defined as distribution completion that measures how much out-of-distribution knowledge
that retrieved texts provide to LLM in the prediction of the token xi. This term is actually the benefit
for the prediction of token xi in RAG. This is because that if the retrieved text r is perfect, pR(r)

4
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would be infinitely close to the ground-truth distribution. The larger the difference between pR(r)
and p(r|z), the more the knowledge distribution about xi in the LLM’s knowledge deviates from the
ground truth. This means the retrieved texts can provide more valuable out-of-distribution knowledge
to the LLM to predict xi, resulting in greater benefit.

Considering that the retrieved texts are not always perfect and may contain incorrect information
and noise that contradict the correct knowledge of LLM, the second term corresponds to the dis-
tribution contradiction can be used to measure this risk. It represents the distribution difference
(KL divergence) between the retrieved texts (pR(r)) and LLM’s knowledge given the concept z∗,
which is sampled from retrieved texts (p(r|z∗)). p(r|z∗) is the prediction made by LLM conditioned
on the concept z∗ sampled from the retrieved texts. If the external knowledge in the retrieved texts
contradicts LLM’s knowledge, p(r|z∗) will deviate from pR(r) (the actual distribution of the re-
trieved texts). Therefore, the difference between p(r|z∗) and pR(r) primarily stems from the LLM’s
resistance to any external knowledge in the retrieved texts that conflicts with LLM’s knowledge. The
larger difference indicates the stronger resistance from LLM, and the more confident the LLM is in
its pre-trained knowledge, which means the greater the potential detriment caused by the retrieved
texts. So this term is actually the detriment for the prediction of token xi in RAG.
Corollary 1. Two terms about distribution difference in Equation 9 measure the benefit and detriment
respectively. The subtraction between benefit and detriment describes the trade-off relationship
between the value of external knowledge and its potential risk of misleading LLM in the next token
prediction without accessing the utility of retrieved texts.

2.4 ACTUAL EFFECT OF RAG CAN BE PREDICTED AT TOKEN LEVEL

Based on above analysis, we successfully formalize the benefit and detriment in next token prediction
of RAG by measuring distribution difference. Next, we further explore the method to compare the
values of benefit and detriment. Specifically, we derive Theorem 1 and Theorem 2 from Equation 2:
Theorem 1. Define D = ∥p(xi|R, x1:i−1)− pR(xi|x1:i−1)∥1 to measure the difference between the
distribution of RAG (p(xi|R, x1:i−1)) and the distribution of retrieved texts (pR(xi|x1:i−1)) in token
prediction of xi conditioned on prefix x1:i−1. Both benefit and detriment are important terms of the
upper and lower bounds of D, which can be described as:

∥Φ∥1 −
√
2KL(pR(r)∥p(r|z∗)) ≤ D ≤ ∥Φ∥1 +

√
2KL(pR(r)∥p(r|z∗)), (10)

Φ ≈ α

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp

−(KL(pR(r)∥p(r|z))︸ ︷︷ ︸
benefit

−KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
detriment

 p(z) dz,

in which α is a constant. Our detailed proof of Theorem 1 can be found in Appendix D.
Theorem 2. D is the difference, so 1

D can be treated as similarity between p(xi|R, x1:i−1) and
pR(xi|x1:i−1). The result of benefit minus detriment is approximately positively correlated with 1

D :

KL(pR(r)∥p(r|z))︸ ︷︷ ︸
benefit

−KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
detriment

∝ 1

D
. (11)

Our proof of Theorem 2 and the maximum error analysis of this approximation is in Appendix E.
Corollary 2. The difference between values of benefit and detriment in Equation 11 indicates the
extent to which the benefit (value of external knowledge) outweighs the detriment (potential risk of
misleading LLM) in the prediction of token xi. This difference is approximately positively correlated
with the representation similarity, which is the value that can be predicted.
Recapping our motivation that aims to build a theory to predict whether the positive impact of the
retrieved texts R on xi (benefit) outweighs the potential risk of misleading the LLM (detriment).
The key for this is comparing the values of benefit and detriment. As stated in Theorem 2, the result
of benefit minus detriment is approximately positively correlated with 1

D . Therefore, the value of 1
D

at which the benefit minus detriment equals zero is an important threshold. A 1
D value greater than

this threshold indicates that benefit exceeds detriment, while a value less than this threshold indicates
that detriment outweighs benefit. We derive Theorem 3 to identify this dividing point and map the
value order between benefit and detriment of token xi to the relationship between representation
similarity, which can be calculated in practical applications:

5
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Figure 2: Attention score for xi (blue line) and difference of word distribution change (yellow line)
vary with layers. stage 1: Lexical and Syntactic. stage 2: Text Matching. stage 3: Distribution Fusion.

Theorem 3. Define M = ∥p(xi|R, x1:i−1) − p(xi|x1:i−1)∥1 to measure the difference between
distribution of RAG (p(xi|R, x1:i−1)) and pure LLM (p(xi|x1:i−1)), so 1

M can be treated as the
similarity between them. 1

D = 1
M is the dividing point in which benefit is equal to detriment, and the

value order between 1
D and 1

M can indicate the value order between benefit and detriment as:

J =


KL(pR(r)∥p(r|z)) < KL(pR(r)∥p(r|z∗)), detriment outweighs benefit. if 1

D < 1
M

KL(pR(r)∥p(r|z)) = KL(pR(r)∥p(r|z∗)), detriment is equal to benefit. if 1
D = 1

M
KL(pR(r)∥p(r|z)) > KL(pR(r)∥p(r|z∗)), benefit outweighs detriment. if 1

D > 1
M

(12)

Our detailed proof of Theorem 3 can be found in Appendix F. Equation 12 is a novel principle that
can compare the values of benefit and detriment in RAG at token level. It does not rely on additional
modules to access the utility of retrieved texts or training but simply compares 1

D and 1
M .

Corollary 3. The actual effect of RAG, i.e., the comparison between benefit and detriment, can be
predicted at token level by the similarity relationships between p(xi|R, x1:i−1), p(xi|x1:i−1), and
pR(xi|x1:i−1), without additional modules to access the utility of retrieved texts.
The next section introduces how to apply above theoretical findings to improve RAG in practice.

3 TOK-RAG: IMPROVE RAG BASED ON TOKEN-LEVEL THEORY

Tok-RAG is a novel method that enables the LLM and RAG to collaborate at token level for generation
to preserve benefit and avoid detriment based on our token-level theory. Tok-RAG makes pure LLM
and RAG generate in parallel at token level as shown in Figure 1. It determines which token will be
selected by comparing the values of benefit and detriment brought by RAG to the token according to
the size relationship between 1

D and 1
M in Equation 12. The terms related to the comparison between

1
D and 1

M consist of three parts: (1) p(xi|R, x1:i−1) can be directly obtained from the prediction
of RAG; (2) p(xi|x1:i−1) can be directly obtained from the prediction of pure LLM; (3) however,
the distribution of retrieved texts conditioned on the prefix x1:i−1, pR(xi|x1:i−1), is hard to directly
obtained, which is the main challenge that the following Section 3.1 aims to solve.

3.1 DISTRIBUTION PREDICTION FOR RETRIEVED TEXTS

Our theoretical analysis in Section 2.2 shows that RAG can be modeled as fusing the distribution from
retrieved texts with LLMs’ distribution. Therefore, an intuitive idea is that the retrieved distribution
pR(xi|x1:i−1) can be approximately predicted by capturing the signal from the retrieved texts in
distribution fusion. The main challenges in achieving this are: (1) determining where distribution
fusion occurs, and (2) capturing the signal fused from retrieved texts and transforming it to distribution
pR(xi|x1:i−1). To address these challenges, in the following parts, we first explore the operating
mechanism of RAG and then propose a novel method that dynamically determines the layers where
distribution fusion occurs and use the signal from retrieved texts in these layers as pR(xi|x1:i−1).

Exploring the Mechanism of RAG. This part finds that the mechanism of RAG can be decomposed
into two parts. The first is text matching, which means extracting information relevant to the
generation of xi from the retrieved texts R. The second is distribution fusion, which means fusing
the distribution from the retrieved texts with the distribution in LLM’s knowledge. When performing
RAG, LLMs first perform text matching in the middle layers, extracting relevant knowledge from
the retrieved texts. As the depth increases, the matching becomes increasingly accurate, reaching
a turning point. In the deep layers after this turning point, LLMs instead carry out distribution
fusion, and the attention shifts from R to x1:i−1. Distribution of R used for fusion comes from the

6
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matching information around the turning point (because matching decreases after the turning point).
Recapping the two challenges introduced at the beginning of Section 3.1, for the first challenge, we
identify the layer where distribution fusion starts by detecting the turning point in Figure 2. For the
second challenge, we use the matching information in the layer where distribution fusion starts to
approximate the distribution pR(xi|x1:i−1). Our experiments about these findings are introduced in
Exp 1. and Exp 2.. Experiments are conducted based on LLaMA-2-7B on Natural Question dataset.
We also perform these experiments using more LLMs (OPT-6.7B, Mistral-7B) on more datasets
(TriviaQA, WebQ and Squad). The conclusions of them are consistent with LLaMA-2-7B on Natural
Question, and detailed results can be found in Appendix H.

Exp 1. For text matching, we quantify the relevance of the information in the retrieved texts to the
generation of token xi by the attention score between token xi and the tokens in the retrieved texts
R. We analyze how the sum of attention scores from token xi to tokens in R varies across layer. As
shown by the blue line in Figure 2: (1) The value increases sharply to a peak in shallow layers (0-5),
which is mainly because LLMs capture the low-level lexical and syntactic information on the entire
input (Tenney et al., 2019). (2) The value first decreases, then increases to a maximum point in the
middle layers (5-23), which is mainly because LLMs select the relevant semantics that can be used to
generate xi from R and complete this selection at the maximum point. (3) The value decreases after
the maximum point in deep layers (24-32). This is because that LLMs use the selected knowledge at
the maximum point for distribution fusion to predict xi, the attention shifts from R to prefix x1:i−1.

Exp 2. For distribution fusion, since distribution fusion is often marked by a change in word
distribution (Bengio et al., 2000), we identify the occurrence of distribution fusion in RAG by
comparing the change in word distribution between pure LLM and RAG. (Chuang et al., 2023;
Schuster et al., 2022) prove the language heads can be directly applied to the hidden states, so
we propose to obtain the word distribution of hidden states in each layer by language heads ϕ as
ϕ(hl

i), in which hl
i is the hidden states for token xi in the l-th layer. We then measure the word

distribution change in the l-th layer by Jensen-Shannon Divergence (JSD) between ϕ(hl−1
i ) and ϕ(hl

i)

as: C = JSD(ϕ(hl−1
i )∥ϕ(hl

i)). The difference of word distribution change between pure LLM and
RAG in the l-th layer is described as:

Dl = |JSD(ϕ(h̃l−1
i )∥ϕ(h̃l

i))− JSD(ϕ(hl−1
i )∥ϕ(hl

i))|, (13)

in which h̃l−1
i and h̃l

i are from RAG, hl−1
i and hl

i are from pure LLM. The yellow line in Figure 2
shows Dl is very small in the shallow and middle layers (0-23) and rises sharply in the deep layers
(24-32). This suggests that distribution fusion occurs in deep layers.

Dynamically Identify the Layer Where Distribution Fusion Starts. For p(xi|R, x1:i−1), the layer
where distribution fusion starts can be located by detecting the turning point in Figure 2. Specifically,
we use f(l) to denote the attention score for xi and g(l) to denote the difference of word distribution
change in Equation 13 varies with layer l. The layer where distribution fusion starts is:

l∗ = ⌊1
2
(argmax

l
f(l) + min{l : g(l) > a})⌋. (14)

The first term is the l that maximizes f(l), which is the third turning point in the blue line of Figure 2.
The second term means the minimum l value for which g(l) is greater than a (hyperparameter, can be
set to 5e-7 according to our statistics), which is the turning point in the yellow line of Figure 2. We
take the average of the two values and round down as the layer l∗ where distribution fusion starts.

Matching as Distribution. The matching information between R = [rt1, rt2, ..., rtm] (rt is the
token in R) and token xi at turning point (the l∗-th layer) can be used to approximate the distribution
pR(xi|x1:i−1) of the retrieved texts R conditioned on x1:i−1. The matching information consists of
two parts, one is the attention score, which can measure the matching between retrieved tokens and
current token xi at the hidden state level. The other is the similarity of word embeddings, which can
measure the matching between retrieved tokens and current token xi at the word distribution level:

Att = softmax

(
(h̃l∗

i Wq)(h̃
l∗

1:mWk)
T

√
dk

)
,WordSim = softmax

(
(xl′−l∗

i A)(rtl
∗

1:mA)T
)
, (15)

Wq and Wk are matrices in attention (Vaswani et al., 2017), h̃l∗

i is the hidden state of token xi and
h̃l∗

1:m are hidden states of R. A is word embedding matrix, xl′−l∗

i is the token with the largest logits
increase in word distribution from layer l∗ to the final layer l′, rtl

∗

1:m are tokens in R. Then:
pR(xi|x1:i−1) = softmax (Att⊙WordSim) ,⊙ is element-wise multiplication. (16)
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3.2 TOKEN-LEVEL COMPARISON BETWEEN BENEFIT AND DETRIMENT IN PRACTICE

Equation 12 shows that the relationship between Sim(p(xi|R, x1:i−1), pR(xi|x1:i−1)) and
Sim(p(xi|R, x1:i−1), p(xi|x1:i−1)) indicates the value order between benefit and detriment (Sim(·, ·)
is the similarity). We propose to use the token semantics as the representation for p(xi|R, x1:i−1),
pR(xi|x1:i−1) and p(xi|x1:i−1) and use cosine to compute the similarity. It not only follows the
principle of Equation 12 but also takes into account the semantic similarity, which is more robust in
practical applications. Specifically, we use word embedding matrix of LLMs to calculate the weighted
average word embedding for p(xi|R, x1:i−1) as wRAG = 1∑

p′

∑
(p′,w)∈V p′w, for each token in

vocabulary V, p′ is its logits from p(xi|R, x1:i−1) and w is its word embedding. We can also use this
to get the weighted average word embedding wLLM for p(xi|x1:i−1) and wIR for pR(xi|x1:i−1).
The similarity between them can be calculated via cosine similarity as:

Sim(p(xi|R, x1:i−1), pR(xi|x1:i−1)) = cos(wRAG,wIR) (17)
Sim(p(xi|R, x1:i−1), p(xi|x1:i−1)) = cos(wRAG,wLLM ) (18)

Combining our theoretical analysis of Theorem 1, 2 and 3, we can derive this principle to compare
the values of benefit and detriment brought by RAG to the token xi in practical applications:

s =

{
benefit win if cos(wRAG,wIR) ≥ cos(wRAG,wLLM ),

detriment win if cos(wRAG,wIR) < cos(wRAG,wLLM ),
(19)

Given the prefix x1:i−1, RAG generates the token xi and LLM w/o RAG generates x′
i. We compare

the value of benefit and detriment by Eqn 19. If benefit wins, xi is selected, otherwise, x′
i is selected.

The selected token will be concatenated with x1:i−1 as the new prefix for next step generation.

4 EXPERIMENTS

4.1 EXPERIMENTAL DETAILS

Practical RAG Performance. One experiment is in RAG setting for short-form Q&A given retrieved
texts with different qualities, it evaluates the robustness and performance of RAG. The other is RAG
for many long-form text generation tasks including dialogue, code generation, slot filling, language
modeling and long-form Q&A. Baselines include the methods that use additional modules to filter
irrelevant texts (NLI+RAG (Yoran et al., 2024)) or as action triggers (CRAG (Yan et al., 2024)),
fine-tune LLMs for robust RAG (RetRobust (Yoran et al., 2024) and INFO-RAG (Xu et al., 2024b))
and fine-tune LLMs to dynamically retrieve and critique retrieved texts (Self-RAG (Asai et al., 2023)).

Setup for Benefit-Detriment Comparison Experiment. As for benefit-detriment comparison
experiment. Given prefix x1:i−1 and retrieved texts R, our motivation aims to build a theory to predict
the actual effect of RAG on the prediction of xi, i.e., whether the positive impact of the retrieved
texts R on xi (benefit) outweighs the potential risk of misleading LLM (detriment). This is a binary
classification task at token-level. To evaluate this task, we construct test data and ground-truth as:
(1) For a sentence x, we truncate it at the i-th token to obtain the prefix x1:i−1 and the next token xi.
(2) Input prefix x1:i−1 to LLM w/o RAG and LLM w/ RAG to get the predicted token a and b.
(3) If b is xi but a not, it means LLM w/ RAG performs better than LLM w/o RAG, so the benefit is
greater than detriment, the ground-truth label is 1.
(4) If a is xi but b not, it means LLM w/o RAG performs better than LLM w/ RAG, so the benefit is
lower than detriment, the ground-truth label is 0.
We use the above method to traverse all sentences in the datasets to obtain prefix-ground-truth pairs
as samples. In evaluation, we input prefix to LLM w/ RAG and use our theoretical findings to judge
whether the benefit of the next predicted token is greater than detriment. We use AUC and F1-score
as the evaluation metrics for this binary classification task.

Baselines for Benefit-Detriment Comparison Experiment. Task in benefit-detriment comparison
experiment can also be viewed as predicting the correctness of the generated tokens. Therefore,
baselines for this are the methods that detect the LLMs’ hallucination. We use these baselines to
compare the values of benefit and detriment by comparing the hallucination degree at token level
between RAG and pure LLM (details in Appendix I.3). Baselines include: (1) Logprobs-based (Kuhn
et al., 2023), we use the value order between top-1 log-probability of the tokens output by pure LLM
and RAG to determine the value order between benefit and detriment. (2) Uncertainty-based, we
use Length-normalized Entropy (Malinin & Gales, 2020) to measure the uncertainty of the tokens

8
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Table 1: Accuracy on short-form open-domain Q&A given the retrieved texts containing different
ratios (0% to 100%) of hard negative passages (irrelevant but are ranked in top-10 by retrieval model).
Our Tok-RAG does not need any training or additional modules while baselines need.

Methods Train
LLM

Utility
Evaluator

TriviaQA WebQ Squad

Ratio of Hard Negative Passages Ratio of Hard Negative Passages Ratio of Hard Negative Passages
100% 80% 60% 40% 20% 0% 100% 80% 60% 40% 20% 0% 100% 80% 60% 40% 20% 0%

Standard RAG no ✔ no ✔ 43.8 67.0 71.3 76.2 78.2 81.9 23.9 35.8 40.6 43.4 48.4 53.1 8.6 31.0 43.2 53.0 58.8 67.2
NLI+RAG no ✔ need ✗ 50.8 61.2 68.2 73.0 76.4 79.1 30.7 40.3 44.5 47.5 50.9 52.8 9.9 21.1 33.7 43.4 51.7 60.5
CRAG no ✔ need ✗ 48.2 68.3 72.5 76.7 81.5 82.2 25.6 37.4 41.9 46.2 51.5 54.9 7.4 28.7 39.6 50.7 53.2 61.1
RetRobust need ✗ no ✔ 49.2 67.3 72.9 77.5 79.4 82.3 30.0 38.9 42.5 48.2 49.8 54.3 10.5 30.8 43.3 52.5 58.4 66.0
Self-RAG need ✗ no ✔ 43.0 68.7 73.5 76.4 80.8 82.2 18.3 34.8 42.2 47.2 51.3 57.0 5.5 27.8 38.9 46.4 52.5 58.3
INFO-RAG need ✗ no ✔ 49.7 68.4 73.2 77.9 80.0 82.5 29.7 38.0 43.9 48.1 49.4 54.8 10.7 30.1 43.5 53.7 59.2 67.5
Tok-RAG (Ours) no ✔ no ✔ 53.5 72.9 77.6 81.3 83.4 85.7 32.9 43.8 47.3 50.0 52.9 57.3 12.8 31.3 44.5 54.1 60.8 68.1

Table 2: Accuracy on various long-form NLP tasks.

Train
LLM

Utility
Evaluator

Dialogue Code Generation Slot Fill Language Model Long-form QA
Wow Python Java T-REx WikiText-103 ELI5Method

F1-Score CodeBLEU CodeBLEU Accuracy ROUGE ROUGE
Standard RAG no ✔ no ✔ 7.85 21.44 22.99 55.60 60.77 15.18
NLI+RAG no ✔ need ✗ 8.04 22.79 27.45 63.28 62.05 16.14
CRAG no ✔ need ✗ 8.96 24.90 30.03 64.17 62.28 17.03
RetRobust need ✗ no ✔ 9.03 23.18 29.74 63.19 62.40 16.90
Self-RAG need ✗ no ✔ 8.55 22.15 29.60 63.24 61.22 16.47
INFO-RAG need ✗ no ✔ 9.09 26.75 32.06 65.91 62.91 17.18
Tok-RAG (Ours) no ✔ no ✔ 9.68 27.44 32.59 68.70 64.28 17.59

and compare it between pure LLM and RAG. (3) Consistency-based, we run LLMs multiple times
and calculate consistency scores among multiple answers using Lexical and Semantic Similarity (Lin
et al., 2022; Chen et al., 2024). We compare these scores between pure LLM and RAG to indicate the
comparison between benefit and detriment.
Implementation details. As for retrieval in RAG, we follow (Xu et al., 2023) to use ColBERTv2 (San-
thanam et al., 2021)las the retriever, and use Wikipedia consisting of 21,015,324 passages (Karpukhin
et al., 2020) as retrieval database. All baselines and Tok-RAG share the same retrieval setup and
input. We use OPT-6.7B, LLaMA-2-7B, and Mistral-7B-v0.1 as LLMs in the benefit-detriment com-
parison experiment and use greedy-decoding strategy for generation. Details of retrieval, Tok-RAG,
baselines, datasets for each task and metrics are in Appendix I.

4.2 EXPERIMENTAL RESULTS

Experiment on Practical RAG. This experiment is under the practical autoregressive generation
setting for both short-form and long-form NLP tasks in RAG. Table 1 shows that for short-form
Q&A in RAG given the retrieved texts with various qualities, our Tok-RAG shows better robustness
and performance than baselines. Table 2 shows that our Tok-RAG can also perform better than
RAG baselines on various long-form NLP tasks. Tok-RAG does not need any additional modules
or training and outperforms the strong baselines that need additional modules to evaluate the utility
of retrieved texts or training LLMs. This means our Tok-RAG achieves a better trade-off between
benefit and detriment in RAG, avoiding detriment while securing benefit. It is because our theoretical
analysis helps us propose a more fundamental method in comparing benefit and detriment at token
level, while baselines cannot achieve. In this experiment, we adjust the radio of irrelevant passages in
the retrieved passage list from 0% to 100%, which can simulate the degree of noise in the retrieved
texts. LLM in this is LLaMA-2-7B.

Experiment on Benefit-Detriment Comparison. Table 3 shows that our Tok-RAG achieves better
performance in comparing the values of benefit and detriment at token level in RAG than baselines
across different tasks and LLMs. Baselines compare the benefit and detriment by detecting the degree
of hallucination, while our Tok-RAG can directly compare the benefit and detriment based on our
theoretical analysis, which is more fundamental so it performs better. The detailed setup for this
experiment can be found in Setup for Benefit-Detriment Comparison Experiment in Section 4.1.
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Table 3: Performance on comparing the valurs of benefit and detriment at token level. Significant
test with p-value ≤ 0.05 compared with all baselines are denoted as ‘+’. Setup in this experiment is
introduced in Setup for Benefit-Detriment Comparison Experiment in Section 4.1.

LLMs Methods # Generation Wikitext ASQA Bio NQ

Times AUC F1 AUC F1 AUC F1 AUC F1

OPT-6.7B

Logprobs 2 65.25 64.33 68.96 67.55 65.24 64.59 55.31 51.41
Uncertainty 2 64.12 63.50 66.14 63.96 65.78 64.60 56.03 52.15
Consistency-Lexical 10 64.01 62.17 69.42 67.04 65.41 65.28 55.06 51.13
Consistency-Semantic 10 65.93 64.22 70.11 69.50 65.76 64.37 56.24 52.88
Tok-RAG (Ours) 2 68.64+ 66.88+ 72.28+ 72.05+ 66.27+ 66.04+ 57.92+ 52.90+

Mistral-7B

Logprobs 2 73.52 72.90 68.05 66.86 65.22 64.39 57.04 57.23
Uncertainty 2 73.72 72.71 67.47 65.63 65.59 65.83 57.19 57.10
Consistency-Lexical 10 72.15 70.44 69.16 67.33 64.79 64.33 56.95 54.37
Consistency-Semantic 10 73.98 72.26 70.05 69.54 65.68 65.12 57.43 56.12
Tok-RAG (Ours) 2 75.85+ 74.11+ 71.51+ 71.47+ 66.37+ 66.04+ 58.52+ 57.56+

LLaMA-2-7B

Logprobs 2 73.47 72.95 68.50 68.04 62.11 60.94 67.40 69.24
Uncertainty 2 73.98 73.01 68.72 67.63 63.67 63.50 68.03 69.15
Consistency-Lexical 10 73.51 71.62 70.09 68.45 62.49 61.98 68.17 70.09
Consistency-Semantic 10 74.96 74.23 71.23 69.38 63.77 62.10 69.72 71.14
Tok-RAG (Ours) 2 81.89+ 80.42+ 76.96+ 76.80+ 64.08+ 64.19+ 70.50+ 72.45+

0 5 10 15 20 25 30
Layer

0.5

0.6

0.7

0.8

A
U

C

Wikitext103
ASQA
Bio
NQ

Figure 3: AUC varies with layer.

Ablation Study. Figure 3 shows the effectiveness of our dy-
namic layer selection strategy in Equation 14 and supports our
finding that RAG performs matching in middle layers. Figure 3
shows the AUC when l∗ in Equation 14 is set as a fixed value
from 0 to 32. Our dynamic layer selection strategy (dashed line)
is always better than any fixed layers (solid line). Besides, AUC
is higher in middle layers, which supports that RAG performs
matching in middle layers and the knowledge in retrieved texts
is extracted in the turning point. After the turning point, LLMs
instead perform distribution fusion, the matching cannot reflect
the distribution of retrieved texts, so AUC decreases.
Analysis on Computational Costs and Case Study. Please see Appendix J and L respectively.

5 RELATED WORK

Robust RAG. To make LLMs robust in RAG to avoid the detriment caused from noisy in retrieved
texts, some methods use additional modules to filter out irrelevant documents (Yoran et al., 2024; Yan
et al., 2024). Some methods train LLMs to make them robust to noisy in retrieved texts (Xu et al.,
2024b; Yoran et al., 2024). Some methods let LLMs dynamically determine whether the query needs
RAG (Asai et al., 2023; Xu et al., 2023; Ren et al., 2023; Feng et al., 2023; Mallen et al., 2022; Jiang
et al., 2023). All the previous works solve the contradiction between benefit and detriment in RAG
from the perspective of application but lacking essential and theoretical analysis, which limits the
understanding and cannot find the fundamental method to solve it. Our paper explains the benefit
and detriment in RAG by theoretical analysis and proposes a novel method to preserve benefit while
avoiding detriment without any additional modules or training.
Theoretical analysis of ICL. Our paper is inspired by theoretical analysis of ICL. Some works
explain ICL as one-step gradient descent (Von Oswald et al., 2023; Akyürek et al., 2022; Dai et al.,
2022). Besides, there are other explanations of ICL such as Bayes inference (Xie et al., 2021),
Bayes model averaging (Zhang et al., 2023), leaning topic structure (Li et al., 2023) and kernel
regression (Han et al., 2023). They focus on explaining why ICL occurs. Our contribution lies in
analyzing the benefit and detriment in RAG and proposing a practical method based on our theory.

6 CONCLUSIONS AND DISCUSSION

This paper takes the first step in theoretically giving the essential explanation of benefit and detriment
in RAG to make them explainable and comparable at token-level. We provide a theory about
describing the trade-off between the value of external knowledge and its potential risk of misleading
LLMs in next token prediction of RAG. We prove that the actual effect of RAG can be predicted at
token level by representation similarity. Based on our theoretical results, we propose a practical novel
method that enables pure LLM and RAG to collaborate at token level, gaining benefit while avoiding
detriment. Experiments show the effectiveness of our method and support our theoretical results.
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A PROOF FOR EQUATION 5

Proof. The transformation is motivated by (Xie et al., 2021) and we apply it to the analysis of RAG:

p(xi|R, x1:i−1) =

∫
Z
p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz (20)

=

∫
Z
p(xi|R, x1:i−1, z)

p(R, x1:i−1|z)p(z)
p(R, x1:i−1)

dz (21)

∝
∫
Z
p(xi|R, x1:i−1, z)p(R, x1:i−1|z)p(z) dz, p(R, x1:i−1) is a constant so we drop it

(22)

=

∫
Z
p(xi|R, x1:i−1, z)

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

p(z) dz,
1

p(R, x1:i−1|z∗)
is a constant so we add it

(23)

=

∫
Z
p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, v(z) = log

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

(24)

B PROOF FOR EQUATION 6

Proof. For p(R, x1:i−1|z) in v(z) = log p(R,x1:i−1|z)
p(R,x1:i−1|z∗) , we can make further derivation as:

p(R, x1:i−1|z) = p(x1:i−1|R, z)p(R|z) (25)

According to the definition of latent variable model in the analysis of in-context learning from (Xie
et al., 2021) that views the latent variable inference as Hidden Markov Model (HMM) and the latent
concept z determines the transition probability matrix in HMM hidden states h, we can get the
following derivations :

p(x1:i−1|R, z)p(R|z) =
∑
h

p(x1:i−1|h, z)p(h|R, z)p(R|z), (26)

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

(27)

= log
∑

h p(x1:i−1|h, z)p(h|R, z)∑
h p(x1:i−1|h, z∗)p(h|R, z∗)

+ log
p(R|z)
p(R|z∗)

. (28)

According to our Assumption 1 that p(x|h, z∗) > c1 > 0, p(x1:i−1|h, z∗) in the denominator of the
first term in v(z) is always greater than c1:

p(x1:i−1|h, z∗) > c1.

And the numerator p(x1:i−1|h, z) in the numerator of the first term in v(z) is always lower than 1:

p(x1:i−1|h, z) < 1.

We replace p(x1:i−1|h, z) in the numerator with 1 and p(x1:i−1|h, z∗) in the denominator with c1,
and we get:

v(z) ≤ log
∑

h 1 · p(h|R, z)∑
h c1 · p(h|R, z∗)

+ log
p(R|z)
p(R|z∗)

(29)

= log
∑

h 1 · p(h|R, z)∑
h c1 · p(h|R, z∗)

+ log
p(R|z)
p(R|z∗)

(30)

= −logc1 + log
p(R|z)
p(R|z∗)

(31)

= −logc1 + log
∏n

i=1 p(ri|r1:i−1, z)∏n
i=1 p(ri|r1:i−1, z∗)

. (32)
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According to the chain rule, we can transform p(R, x1:i−1|z) as:
p(R, x1:i−1|z) = p(x1:i−1|R, z)p(R|z)

Eqn 26- 32 shows:

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

, // Eqn 5.

= log
p(x1:i−1|R, z)p(R|z)
p(x1:i−1|R, z∗)p(R|z∗)

= log
p(x1:i−1|R, z)

p(x1:i−1|R, z∗)
+ log

p(R|z)
p(R|z∗)

≤ −logc1 + log
p(R|z)
p(R|z∗)

.

So we can get:

log
p(x1:i−1|R, z)

p(x1:i−1|R, z∗)
≤ −logc1

p(x1:i−1|R, z)

p(x1:i−1|R, z∗)
≤ 1

c1

p(x1:i−1|R, z) ≤ p(x1:i−1|R, z∗)

c1
So p(x1:i−1|R, z) is bound by O(1) and then we can get:

p(R, x1:i−1|z) = p(x1:i−1|R, z)p(R|z)
≈ O(1)p(R|z)

Since ri is the passage in R, so we can get according to the chain rule:

p(R|z) =
n∏

i=1

p(ri|r1:i−1, z)

So we can get:

p(R, x1:i−1|z) = p(x1:i−1|R, z)p(R|z) ≈
n∏

i=1

O(1)p(ri|r1:i−1, z) (33)

n∏
i=1

O(1)p(ri|r1:i−1, z) =

n∏
i=1

∑
hd
i−1∈D

p(ri|hd
i−1, z)p(h

d
i−1|r1:i−1, z), (34)

ri is a passage in the retrieved texts list R, hd
i−1 is the hidden state for the delimiter between ri−1

and ri in R. Then, we decompose p(hd
i−1|r1:i−1, z) with chain rule:

p(hd
i−1|r1:i−1, z) =

∑
h

p(hd
i−1|h, r1:i−1, z)p(h|r1:i−1z).

According to the standard assumptions of HMM Rabiner (1989), hd
i−1 and r1:i−1 are conditionally

independent, so we can get:

p(hd
i−1|r1:i−1, z) =

∑
h

p(hd
i−1|h, z)p(h|r1:i−1z).

Assumption 2 assumes that for any delimiter hidden state hd and any other hidden state h, the
transition probability from h to hd has upper and lower bound as: 0 ≤ c2 ≤ p(hd|h, z) ≤ c3. Then
we can get: ∑

h

p(hd
i−1|h, z)p(h|r1:i−1z) =

∑
h

O(1)p(h|r1:i−1z).

= O(1)
∑
h

p(h|r1:i−1z) = O(1).
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Therefore, p(hd
i−1|r1:i−1, z) = O(1). Then Equation 34 is approximately equal to

∏n
i=1 O(1)p(ri|z),

which means that p(R, x1:i−1|z) ≈
∏n

i=1 O(1)p(ri|z), so we can get that:

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

≈ log
∏n

i=1 O(1)p(ri|z)∏n
i=1 O(1)p(ri|z∗)

(35)

→ O(1) + n ∗ 1

n

n∑
i=1

log
p(ri|z)
p(ri|z∗)

= O(1) + n ∗ Er∼Pr

[
log

p(ri|z)
p(ri|z∗)

]
(36)

∝ pR(r)log
p(r|z)
p(r|z∗)

= pR(r)log
pR(r)

p(r|z∗)
− pR(r)log

pR(r)

p(r|z)
(37)

= −(KL(pR(r)∥p(r|z))︸ ︷︷ ︸
benefit,denote as Ω

−KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
detriment,denote as Υ

), (38)

pR(·) is the distribution of the retrieved texts, p(·) is the distribution of the LLMs’ pre-trianed
knowledge.

C EFFECT OF v(z) IN DISTRIBUTION FUSION

Recapping the Equation 38, we find v(z) actually regulates the proportion between LLMs’ pre-trained
knowledge and retrieved knowledge in distribution fusion of RAG prediction:

• The more benefit outweigh detriment, v(z) → −∞ and exp(v(z)) → 0 for all z ̸= z∗, this indicates
that concepts z sampled from LLMs’ space contribute little to p(xi|R, x1:i−1). When z = z∗,
exp(r(z∗)) = 1, which means that latent variable model concentrates more on z∗ sampled from
retrieved texts. As v(z) decreases, the proportion of retrieved knowledge in becomes larger and
larger in fusion.

• The more detriment outweigh benefit, v(z) → +∞ and exp(v(z)) → +∞ for all z ̸= z∗ and when
z = z∗, exp(r(z∗)) = 1. This indicates that concepts z sampled from LLMs’ space contribute
more and more than z∗ sampled from retrieved texts as v(z) increases.

D PROOF FOR THEOREM 1

Proof. Recapping the Equation 2 that describes the distribution fusion in RAG via latent variable
model:

p(xi|R, x1:i−1) =

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz︸ ︷︷ ︸
denote as Φ

+ p(xi|R, x1:i−1, z
∗)p(z∗|R, x1:i−1)︸ ︷︷ ︸

denote as Λ

.

(39)

Since latent concept z∗ determines the hidden states h, Λ can be transformed as:

p(xi|R, x1:i−1, z
∗)p(z∗|R, x1:i−1) =

∑
h

p(xi|x1:i−1, h, z
∗)p(h|R, x1:i−1.z

∗)p(z∗|R, x1:i−1).

(40)

Let p(z∗|R, x1:i−1) = β:

p(xi|R, x1:i−1) = Φ + β
∑
h

p(xi|x1:i−1, h, z
∗)p(h|R, x1:i−1.z

∗) (41)

pR(xi|x1:i−1) =
∑
h

p(xi|x1:i−1, h, z
∗)pR(h|x1:i−1) (42)

pR(h|x1:i−1) ∝ p(x1:i−1|h, z∗)pR(h) (43)
p(h|R, x1:i−1, z

∗) ∝ p(x1:i−1|h, z∗)p(h|R, z∗) (44)
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let probabilities p(xi|x1:i−1, h, z
∗)p(x1:i−1|h, z∗) in Equation 40 is represented as matrix W ∈

R|X |×|H| for all possible xi ∈ X and h ∈ H, p(h|R, z∗) in Equation 44 is matrix B, pR(h) in
Equation 43 is u ∈ R|H|. We use 1-norm to calculate the difference between p(xi|R, x1:i−1) and
pR(xi|x1:i−1), which can be formalized as:

∥p(xi|R, x1:i−1)− pR(xi|x1:i−1)∥1 = ∥Φ+ βWB −Wu∥1. (45)

Then, according to the triangle inequality of 1-norm, the difference between p(xi|R, x1:i−1) and
pR(xi|x1:i−1) is bouned by:

∥Φ∥1 − ∥βWB −Wu∥1 ≤ ∥Φ+ βWB −Wu∥1 ≤ ∥Φ∥1 + ∥βWB −Wu∥1. (46)

We consider to further analyze ∥βWB −Wu∥1 inspired by Xie et al. (2021):

∥βWB −Wu∥1 =

|X |∑
i=1

|WT
i (βB − u)|i (47)

=

|X |∑
i=1

|
|H|∑
j=1

Wij(βB − u)j | (48)

≤
|X |∑
i=1

|H|∑
j=1

Wij |(βB − u)j | (49)

=

|H|∑
j=1

(

|X |∑
i=1

Wij)|(βB − u)j | (50)

=

|H|∑
j=1

|(βB − u)j | (51)

= ∥βB − u∥1 (52)

Then:

∥βB − u∥1 = 2TV (pR(·), βp(·|R, z∗)) TV is Total Variation Distance. (53)
≤ 2βTV (pR(·), p(·|R, z∗)) (54)

≤
√
2KL(pR(·)∥p(·|R, z∗)) Pinsker’s Inequality. (55)

≤
√

2KL(pR(·)∥p(·|z∗)) (56)

≈
√
2KL(pR(r)∥p(r|z∗)), (57)

in which r is the passage in R, KL(pR(r)∥p(r|z∗)) is actually the detrimentin Equation 9. Recapping
Equation 46, we can get:

∥Φ+ βWB −Wu∥1 ≤ ∥Φ∥1 +
√

2KL(pR(r)∥p(r|z∗)) (58)

Since 0 ≤ ∥βWB−Wu∥1 ≤ 2
√
2KL(pR(·)∥p(·|z∗)) and ∥Φ+βWB−Wu∥1 ≥ ∥Φ∥1−∥βWB−

Wu∥1, then the lower bound for ∥Φ+ βWB −Wu∥1 is included in:[
∥Φ∥1 −

√
2KL(pR(·)∥p(·|z∗)), ∥Φ∥1

]
, (59)

we take the minimum value as the lower bound. Define D = ∥p(xi|R, x1:i−1) − pR(xi|x1:i−1)∥1
is the difference between p(xi|R, x1:i−1) and pR(xi|x1:i−1), according to Equation 45 and 46, the
lower and upper bound for D is:

∥Φ∥1 −
√
2KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸

detriment

≤ D ≤ ∥Φ∥1 +
√
2KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸

detriment

, (60)
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For ease of description, we denote benefit KL(pR(r)∥p(r|z) as Ω and denote detriment
KL(pR(r)∥p(r|z∗) as Υ. Recapping Equation 5 and 9:

p(xi|R, x1:i−1) =

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz︸ ︷︷ ︸
denote as Φ

+ p(xi|R, x1:i−1, z
∗)p(z∗|R, x1:i−1)︸ ︷︷ ︸

denote as Λ

.

=

∫
Z
p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz

=

∫
Z
p(xi|R, x1:i−1, z)

p(R, x1:i−1|z)p(z)
p(R, x1:i−1)

dz

∝
∫
Z
p(xi|R, x1:i−1, z)p(R, x1:i−1|z)p(z) dz, p(R, x1:i−1) is a constant so we drop it

=

∫
Z
p(xi|R, x1:i−1, z)

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

p(z) dz,
1

p(R, x1:i−1|z∗)
is a constant so we add it

=

∫
Z
p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, v(z) = log

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

≈ −

KL(pR(r)∥p(r|z))︸ ︷︷ ︸
benefit,denote as Ω

−KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
detriment,denote as Υ


Φ in Equation 60 can be transformed as:

Φ =

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz (61)

=
p(R, x1:i−1|z∗)
p(R, x1:i−1)

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(v(z))p(z) dz (62)

= α

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, (p(R, x1:i−1|z∗) and p(R, x1:i−1) are constants)

(63)

≈ α

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(−(Ω−Υ))p(z) dz (Equation 9). (64)

Now the Theorem 1 has been proven.

E PROOF FOR THEOREM 2

In this section, we try to prove that the gap between values of benefit and detriment is approximately
positively correlated with the similarity ( 1

D ) between p(xi|R, x1:i−1) and pR(xi|x1:i−1). To achieve
this, we can start from Equation 60 to prove that the gap between values of benefit and detriment is
negatively correlated with the difference (D) between p(xi|R, x1:i−1) and pR(xi|x1:i−1), which is
actually the reciprocal of similarity ( 1

D ). Specifically, we want to prove that the gap between values
of benefit and detriment (KL(pR(r)∥p(r|z)− KL(pR(r)∥p(r|z∗)) is negatively correlated with both
lower and upper bound in Equation 60. For ease of description, we denote benefit KL(pR(r)∥p(r|z)
as Ω and denote detriment KL(pR(r)∥p(r|z∗) as Υ.

Proof. Recapping Equation 5 and 9:
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p(xi|R, x1:i−1) =

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz︸ ︷︷ ︸
denote as Φ

+ p(xi|R, x1:i−1, z
∗)p(z∗|R, x1:i−1)︸ ︷︷ ︸

denote as Λ

.

=

∫
Z
p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz

=

∫
Z
p(xi|R, x1:i−1, z)

p(R, x1:i−1|z)p(z)
p(R, x1:i−1)

dz

∝
∫
Z
p(xi|R, x1:i−1, z)p(R, x1:i−1|z)p(z) dz, p(R, x1:i−1) is a constant so we drop it

=

∫
Z
p(xi|R, x1:i−1, z)

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

p(z) dz,
1

p(R, x1:i−1|z∗)
is a constant so we add it

=

∫
Z
p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, v(z) = log

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

≈ −

KL(pR(r)∥p(r|z))︸ ︷︷ ︸
benefit,denote as Ω

−KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
detriment,denote as Υ


Φ in Equation 60 can be transformed as:

Φ =

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz (65)

=
p(R, x1:i−1|z∗)
p(R, x1:i−1)

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(v(z))p(z) dz (66)

= α

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, (p(R, x1:i−1|z∗) and p(R, x1:i−1) are constants)

(67)

≈ α

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(−(Ω−Υ))p(z) dz (Equation 9). (68)

Therefore, the lower bound of Equation 60 is:

∥Φ∥1 −
√
2Υ ≈ α∥

∫
Z−{z∗}

p(xi|R, x1:i−1, z)exp(−(Ω−Υ))p(z) dz∥1 −
√
2Υ (69)

∝ exp(−(Ω−Υ))−
√
2Υ (70)

and the upper bound of Equation 60 is:

∥Φ∥1 +
√
2Υ ∝ exp(−(Ω−Υ)) +

√
2Υ (71)

Due to both Ω and Υ being variables, analyzing the result of subtraction between Ω and Υ under
their simultaneous changes is complex. Therefore, we use the “Separation of variables“ to simplify
our analysis. Specifically, we first assume that one is constant, and then analyze the changes caused
by the variation of another:

• Assume Ω is constant, as the value of Ω−Υ increases, Υ decreases and the upper bound exp(−(Ω−
Υ)) +

√
2Υ also deceases. In the lower bound exp(−(Ω − Υ)) −

√
2Υ, since the first term is

an exponential function and the second term is a square root function, a decrease of Υ leads to
the decrease in the entire lower bound. Therefore, both lower and upper bounds in Equation 60
decrease as Ω−Υ increases.
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• Assume Υ is constant, as the value of Ω−Υ increases, Ω increases and the upper bound exp(−(Ω−
Υ)) +

√
2Υ deceases. In the lower bound exp(−(Ω − Υ)) −

√
2Υ, since the first term is an

exponential function and the second term is a square root function, an increase of Ω leads to
the decrease in the entire lower bound. Therefore, both lower and upper bounds in Equation 60
decrease as Ω−Υ increases.

On behalf of the analysis above, we can derve that both lower and upper bounds in Equation 60 are
negatively correlated with the gap between values of benefit and detriment. Therefore, the difference
D between p(xi|R, x1:i−1) and pR(xi|x1:i−1) is approximately negatively correlated with the gap
between values of benefit and detriment.

Then we try to derive the maximum error for "approximation" in this approximate correlation to
make it more standard. According to Eqn 70 and 71, the lower bound of D is:

∥Φ∥1 −
√
2Υ ∝ exp(−(Ω−Υ))−

√
2Υ,

And the upper bound of D is:

∥Φ∥1 +
√
2Υ ∝ exp(−(Ω−Υ)) +

√
2Υ,

Therefore, when the upper and lower bounds are determined, the maximum range of D is 2
√
2Υ and

the average value of D approaches ∥Φ∥1. Since Equ 68 shows ∥Φ∥1 is an exponential function of
Υ−Ω, so the maximum error rate emax is a function of the detriment Υ brought by RAG, which can
be described as:

emax =

√
Υ

exp(Υ)
.

According to Eqn 9, the detriment Υ is the KL divergence between two distribution, so the value
range of Υ is (0,+∞). So we can get:

lim
Υ→+∞

√
Υ

exp(Υ)
= 0.

Therefore, the greater the detriment brought by RAG , the smaller the maximum error rate of this
correlation and the more robust of our theory. This shows that our method is effective to avoid the
detriment brought by RAG at token-level.

Since 1
D can be treated as the similarity between p(xi|R, x1:i−1) and pR(xi|x1:i−1) and it is approx-

imately positively correlated with the gap between values of benefit and detriment.:

KL(pR(r)∥p(r|z))︸ ︷︷ ︸
benefit

−KL(pR(r)∥p(r|z∗))︸ ︷︷ ︸
detriment

∝ 1

D
. (72)

So we have proved that the gap between values of benefit and detriment is approximately positively
correlated with 1

D and the maximum error rate of this approximation decreases as the detriment Υ
increases and approaches 0.

F PROOF FOR THEOREM 3

This section aims to prove:

J =


KL(pR(r)∥p(r|z)) < KL(pR(r)∥p(r|z∗)), detriment outweighs benefit. if 1

D < 1
M

KL(pR(r)∥p(r|z)) = KL(pR(r)∥p(r|z∗)), detriment is equal to benefit. if 1
D = 1

M
KL(pR(r)∥p(r|z)) > KL(pR(r)∥p(r|z∗)), benefit outweighs detriment. if 1

D > 1
M

(73)

in which 1
M is the similarity between p(xi|R, x1:i−1) and p(xi|x1:i−1) (LLMs’ pre-trained knowl-

edge), 1
D is the similarity between p(xi|R, x1:i−1) and pR(xi|x1:i−1) (distribution of retrieved texts)
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Proof. When benefit is equal to detriment:

KL(pR(r)∥p(r|z))− KL(pR(r)∥p(r|z∗)) = 0, (74)

which means that:

pR(r)log
p(r|z)
p(r|z∗)

= 0, (75)

since pR(r) cannot be 0, then:

log
p(r|z)
p(r|z∗)

= 0, (76)

p(r|z)
p(r|z∗)

= 1, (77)

p(r|z) = p(r|z∗), (78)

Recapping Equation 2 that z∗ is sampled from retrieved texts and z is sampled from LLMs’ pre-
trained knowledge, Equation 78 indicates that the knowledge of retrieved texts has been involved in
LLLs’ pre-trained knowledge, so:

p(xi|x1:i−1) = pR(xi|x1:i−1), (79)

then:

∥p(xi|R, x1:i−1)− p(xi∥x1:i−1)∥1 = ∥p(xi|R, x1:i−1)− pR(xi∥x1:i−1)∥1, (80)

which means that 1
D = 1

M is an important dividing point. When 1
D = 1

M , we can get that benefit
is equal to detriment and KL(pR(r)∥p(r|z)) − KL(pR(r)∥p(r|z∗)) = 0. Equation 72 indicates
that the gap between values of benefit and detriment (KL(pR(r)∥p(r|z)) − KL(pR(r)∥p(r|z∗)))
is approximately positively correlated with 1

D . Therefore, when 1
D > 1

M we can get that benefit
outweighs detriment (KL(pR(r)∥p(r|z)) − KL(pR(r)∥p(r|z∗)) > 0). When 1

D < 1
M we can get

that detriment outweighs benefit (KL(pR(r)∥p(r|z))− KL(pR(r)∥p(r|z∗)) < 0). Now the proof of
Theorem 3 has been finished.

G PROOF FOR RAG IS ACTUALLY UNSUPERVISED IN-CONTEXT LEARNING

This section aims to prove that RAG is actually unsupervised ICL from two perspectives. One is that
previous studies find that ICL performs gradient descent as meta-optimizer (Von Oswald et al., 2023;
Akyürek et al., 2022; Dai et al., 2022). We prove that in this perspective, the distribution of texts in
context drives the learning even without explicit input-output supervision. Therefore, the distribution
of unsupervised retrieved texts in RAG, which is actually the distribution of context for query, can
also drives the learning. Then we can prove that RAG is actually unsupervised in-context learning.
The specific proof is:

Proof. From the perspective that ICL performs gradient descent as meta-optimizers, ICL can be
formalized as the following:

Gradient descent in optimization of linear layers have a dual form of linear attention (Irie et al., 2022;
Aizerman et al., 1964), define a liner layer as:

f(x) = W0x, (81)

in which W0 is the initial weight matrix. Given a sequence of historical input vectors xi ∈ Rdin and
corresponding error signals ei ∈ Rdout , i ∈ [1, N ] obtained by gradient descent, the update of the
weight matrix can be represented as:

W ′ = W0 +∆W = W0 +

N∑
i

ei ⊗ xi. (82)

Recap that the linear attention can be formulated as:

LinearAttn(V,K,q) =
∑
i

vi(k
T
i q). (83)
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Then the dual form of updated linear layer with new input xN+1 is:

f ′(x) = (W0 +∆W )xN+1 (84)

= (W0 +

N∑
i

ei ⊗ xi)xN+1 (85)

= W0xN+1 +

N∑
i

(ei ⊗ xi)xN+1 (86)

= W0xN+1 +

N∑
i

ei ⊗ (xT
i xN+1) (87)

= W0xN+1 + LinearAttn(E,x1:N ,xN+1) (88)

In in-context learning, the attention of a head is:

fICL(q) = Attn(V,K,q) (89)

= WV [B
′ : B]softmax

(
WK [B′ : B]Tq√

d

)
, (90)

in which q = WQb, b is the input t-th token in query, WQ, WK , Wv are projection matrices, B′ is
demonstrations of the context and X is the prefix for b of the query. To simplify qualitative analysis,
we follow (Dai et al., 2022) to estimate the standard attention as relaxed linear attention, achieved by
eliminating the softmax function and the scaling factor:

fICL(q) ≈ WV [B
′ : B](WK [B′ : B])Tq (91)

= WV B(WKB)Tq+WV X
′(WKB′)Tq (92)

= WV B(WKB)Tq+ LinearAttn(WV B
′,WKB′,q) (93)

According to Equation 88, the dual form of the Transformer attention is:

fICL(q) ≈ WV B(WKX)Tq+ LinearAttn(WV B
′,WKB′,q) (94)

= WV B(WKB)Tq+
∑
i

WV b
′
i

(
(WKb′

i)
Tq
)

(95)

= WV B(WKB)Tq+
∑
i

((WV b
′
i)⊗ (WKb′

i))q. (96)

Based on above derivation, we have this finding: comparing Equation 86 with Equation 96, we
find that WV B(WKB)T is equal to the initial weight matrix W0, which is zero-shot prediction give
query prefix B without demonstrations in the context. Besides, WV b

′
i is equal to ei. which is the

meta-gradient used to update the weighted matrix. WKbi is equal to the historical input vectors:

WV b
′
i = ei (97)

WKb′
i = xi. (98)

In the standard gradient descent with loss L, ei = −η ∂L
∂yi

and η is the learning rate and yi = Wixi is
the output of the linear layer using the weight matrix Wi at step t (Irie et al., 2022). So we can get:

ei = −η
∂L
∂yi

= −η
∂L

∂Wixi
(99)

= −η
∂L

∂WiWKb′
i

. (100)

Therefore:

−η
∂L

∂WiWKb′
i

= WV b
′
i. (101)

So the loss L ca be represented as:

L = −1

η

∫
WV b

′
i d(WiWKb′

i) (102)
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Equation 97 and 102 show that the supervision signal, both loss and gradient, are directly related to
the semantic representation of the tokens (bi) in the demonstration of context. This suggests that the
distribution of the text in context is a direct learning signal for in-context learning, without the need
for explicit input-output pairs in the demonstration. From the perspective that ICL performs gradient
descent as meta-optimizer, the proof has been finished.

The other pespective is from our theoretical results in Equation 5 and 9 that:

p(xi|R, x1:i−1) =

∫
Z
p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz (103)

=

∫
Z−{z∗}

p(xi|R, x1:i−1, z)p(z|R, x1:i−1) dz + p(xi|R, x1:i−1, z
∗)p(z∗|R, x1:i−1).

(104)

∝
∫
Z
p(xi|R, x1:i−1, z)p(R, x1:i−1|z)p(z) dz (105)

=

∫
Z
p(xi|R, x1:i−1, z)exp(v(z))p(z) dz, v(z) = log

p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

(106)

v(z) = log
p(R, x1:i−1|z)
p(R, x1:i−1|z∗)

≈ log
∏n

i=1 O(1)p(ri|z)∏n
i=1 O(1)p(ri|z∗)

(107)

→ O(1) + n ∗ 1

n

n∑
i=1

log
p(ri|z)
p(ri|z∗)

= O(1) + n ∗ Er∼Pr

[
log

p(ri|z)
p(ri|z∗)

]
(108)

∝ pR(r)log
p(r|z)
p(r|z∗)

= pR(r)log
pR(r)

p(r|z∗)
− pR(r)log

pR(r)

p(r|z)
(109)

= −(KL(pR(r)∥p(r|z))− KL(pR(r)∥p(r|z∗))), (110)

We explain Equation 110 from the perspective of the loss function in gradient descent to explain the
learning from retrieved texts of LLMs in RAG. pR(r) is the distribution of retrieved texts and it can
serve as ground truth distribution in loss functions. p(r|z) and p(r|z∗) are distribution estimated by
LLMs. Two KL-divergence between ground truth distribution pR(r) and estimated distribution p(r|z)
and p(r|z∗) respectively are loss functions. r is the retrieved passage that invariant in generation
process, so what contributes to the change of loss function is sampling more and more accurate
retrieved concept z∗ from the retrieved texts. So KL(pR(r)∥p(r|z∗) is the actual loss that can be
meta-optimized in RAG, in which pR(r) is the ground truth distribution and p(r|z∗) is the estimated
distribution. As this loss decreases, the value of v(z) when z is not equal to z∗ also decreases, which
means that in Equation 104, the ratio of the knowledge from LLMs’ pre-trained distribution decreases
and meanwhile the ratio of knowledge from the retrieved texts increases. Lower loss means that the
output of RAG is closer to the distribution of retrieved texts, which is actually that LLMs learning the
distribution from retrieved texts in input context. Since pR(r) is the ground truth in this learning but
dose not have any explicit input-output supervision like demonstrations in in-context learning, RAG
is the unsupervised in-context learning and distribution of retrieved texts (pR(r)) is the unsupervised
learning signal.

Based on the above two perspectives, we successfully prove that: The distribution of retrieved passage
r in RAG (i.e., pR(r)) can serve as the unsupervised learning signal for LLMs learning from context,
even without explicit input-output supervision. RAG is actually unsupervised in-context Learning
that fuses the distribution from retrieved texts with LLMs’ pre-trained distribution.

H EXPLORE THE MECHANISM OF RAG

We also perform experiments in Section 3.1 using more LLMs (OPT-6.7B, Mistral-7B) on more
datasets (TriviaQA, WebQ and Squad). The experimental results are shown in Table 4 and 5, and the
conclusions of them are consistent with Section 3.1.
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Datasets Value 0 4 8 12 16 20 24 28 32
TriviaQA Attention Score 0.12 0.79 0.65 0.51 0.59 0.72 0.86 0.69 0.43
TriviaQA Word Distribution Change 0.10 0.11 0.10 0.10 0.13 0.22 0.38 0.56 0.82

WebQ Attention Score 0.10 0.69 0.65 0.54 0.55 0.70 0.82 0.64 0.40
WebQ Word Distribution Change 0.15 0.13 0.13 0.14 0.16 0.27 0.45 0.55 0.79
Squad Attention Score 0.16 0.82 0.64 0.55 0.63 0.69 0.90 0.67 0.48
Squad Word Distribution Change 0.11 0.11 0.13 0.12 0.12 0.24 0.36 0.69 0.89

Table 4: Attention score for and difference of word distribution change vary with layers based on
OPT-6.7B on TriviaQA, WebQ and Squad.

Datasets Value 0 4 8 12 16 20 24 28 32
TriviaQA Attention Score 0.05 0.64 0.50 0.45 0.60 0.69 0.81 0.65 0.37
TriviaQA Word Distribution Change 0.08 0.10 0.11 0.15 0.19 0.30 0.42 0.65 0.82

WebQ Attention Score 0.07 0.69 0.55 0.46 0.66 0.70 0.82 0.60 0.42
WebQ Word Distribution Change 0.12 0.14 0.14 0.17 0.29 0.38 0.50 0.67 0.85
Squad Attention Score 0.10 0.75 0.60 0.48 0.65 0.72 0.86 0.62 0.40
Squad Word Distribution Change 0.13 0.13 0.15 0.19 0.35 0.40 0.57 0.70 0.84

Table 5: Attention score for and difference of word distribution change vary with layers based on
Mistral-7B on TriviaQA, WebQ and Squad.

I EXPERIMENTAL DETAILS

I.1 RETRIEVAL

As for the retrieval model and retrieval database, for Slot Filling and Language Modeling, we use
ColBERTv2, a late-interaction model with excellent generalization ability as the retriever, and use
Wikipedia consisting of 21,015,324 passages as retrieval database. For Code Generation, we SCODE-
R as code retriever and use deduplicated source codes in CodeSearchNET as retrievel database. For
all the above tasks, we give Top-5 retrieved passages to each example. For ELI5, Dialog, we use
the list of contextual passages provided in the datasets as the retrieved list (distractor setting). All
baselines and our method share the same retrieved documents.

I.2 TASKS, DATASETS AND METRICS

Open-domain Question Answering Open-domain QA is a typical knowledge-intensive task that can
directly evaluate the knowledge of LLMs. We use TriviaQA Joshi et al. (2017), Squad Rajpurkar et al.
(2016) and WebQuestions (WebQ) as the datasets. We use cover Exact Match (EM) to determine
whether the ground truth exactly appears in the output and the accuracy is used as the evaluation
metric, following Schick et al. (2023)

Slot Filling Slot filling requires LLMs to output the object entities for the input subject entity and
relation. We use a knowledge-intensive dataset T-REx Elsahar et al. (2018). We use the same
evaluation metric as Open-domain QA.

Long-Form Question Answering Compared with open-domain QA, LFQA is the QA task whose
ground truth answer is a relatively long text. We use ELI5 Fan et al. (2019), a knowledge-intensive
dataset for LFQA. We use ROUGE-L as the evaluation metric Petroni et al. (2020).

Dialogue Dialogue in our experiment focuses on the factual knowledge. We use Wizard of
Wikipedia Dinan et al. (2018) (WoW), a knowledge-powered dialogue dataset whose conversa-
tion is grounded with knowledge. We use F1 as the evaluation metric Petroni et al. (2020).

Language Modeling We use WikiText-103 Merity (2016), a popular dataset for language modeling.
We use ROUGE-L as the evaluation metric.
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Code Generation Code generation aims to generate the code for the given natural language. We use
Java and Python in CodeXGLUE Iyer et al. (2018) for this task. We use CodeBLEU Ren et al. (2020)
as the evaluation metric.

I.3 BASELINES

For benefit-detriment comparison experiment that needs methods to determine the value order
between benefit and detriment for each token, it is actually a binary classification task (benefit
outweigh detriment or not). The mainstream methods in this area are detecting and comparing the
degree of hallucination between tokens generated by LLMs (w/o RAG) and RAG. Below we will
describe in detail how we apply these baselines to this task.

Logprobs. Logprobs can indicate the confidence for LLMs in generating the tokens(Kuhn et al.,
2023). We use the value order between top-1 log-probability of the tokens output by pure LLM and
RAG to determine the value order between benefit and detriment for these tokens. If the logprobs of
tokens generated by RAG is greater than the logprobs of tokens generated by pure LLM, the benefit
outweigh the detriment, otherwise the detriment outweigh the benefit.

Uncertainty. We use Length-normalized Entropy (Malinin & Gales, 2020) to measure the uncertainty
of the tokens generated by pure LLM and RAG respectively. If the uncertainty of tokens generated
by RAG is lower than the uncertainty of tokens generated by pure LLM, the benefit outweigh the
detriment, otherwise the detriment outweigh the benefit.

Consistency-Lexical (Lin et al., 2022). Consistency-based methods make LLMs perform multiple
generations for a question and calculate consistency score among multiple answers. If the consistency
score of tokens generated by RAG is greater than the consistency score of tokens generated by pure
LLM, the benefit outweigh the detriment, otherwise the detriment outweigh the benefit. Lexical-based
consistency means calculating consistency score by lexical-similarity among multiple answers. Since
the experiment is at token level, we use the number of tokens that are completely consistent in
multiple generations as the consistency score.

Consistency-Semantic (Chen et al., 2024). We follow (Chen et al., 2024) to use EigenScore to
calculate the semantic similarity among hidden states of tokens in multiple generations and use it as
the consistency score.

For open-domain Q&A under practical autoregressive generation setting, baselines for this include
the methods that introduce additional modules to filter irrelevant passages (NLI+RAG (Yoran
et al., 2024)) or as action triggers (CRAG (Yan et al., 2024)), train more robust LLMs for RAG
(RetRobust (Yoran et al., 2024) and INFO-RAG (Xu et al., 2024b)) and train LLMs to dynamically
retrieve and critique retrieved texts (Self-RAG (Asai et al., 2023)).

NLI+RAG. This method use a Natural Language Inference model to filter the possible irrelevant
documents in retrieved results and provide the remaining documents to LLMs for generation. We
follow (Yoran et al., 2024) to use a BART-Large model (Lewis et al., 2019) with 407 million
parameters trained on the MNLI dataset (Williams et al., 2017). We consider a query-document pair
as entailed if the probability for the entailment label is ≥ 0.5 and filter the documents with probability
for the entailment label < 0.5.

CRAG. This method uses a retrieval evaluator to assess the correctness of retrieved texts trigger
different actions based on the evaluation results. One of the actions is using additional google search
API for web search, which is unfair for baselines and our method. So we remove this action and use
its knowledge refinement strategy for document filtering (Yan et al., 2024).

RetRobust. This method fine-tunes LLMs to properly leverage retrieved passages with a mix of
relevant and irrelevant contexts (Yoran et al., 2024).

INFO-RAG. This method uses unsupervised method to make LLMs learn to use the retrieved texts
robustly. It enables LLMs to judge the correctness of the retrieved texts, extract the correct content
and revise the wrong content (Xu et al., 2024b).

Self-RAG. This method trains LLMs to dynamically retrieve and critique retrieved texts. Self-RAG
first decodes a retrieval token to evaluate the utility of retrieval and control a retrieval component.
If retrieval is required, LLM calls an external retrieval module to find top relevant documents,
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Corollary 2: Benefit and detriment is 
related to representation similarity

𝑝𝑝𝑅𝑅(𝑥𝑥𝑖𝑖|𝑥𝑥1:𝑖𝑖−1) 𝑝𝑝(𝑥𝑥𝑖𝑖|𝑅𝑅, 𝑥𝑥1:𝑖𝑖−1)

Similarity(       ,        )  

Lower Bound

Upper Bound

𝒬𝒬(Benefit, Detriment)  

𝒢𝒢(Benefit, Detriment)  

𝑝𝑝(𝑥𝑥𝑖𝑖|𝑥𝑥1:𝑖𝑖−1)

Actual Effect = Benefit − Detriment  

Sim(     ,     )  

Actual Effect

O

Sim(     ,     )  Sim(     ,     )  =
Benefit = Detriment

Sim() is the similarity between representations  

Effect is positively correlated with Sim(     ,     )  

Sim(     ,     )  Sim(     ,     )  >
Benefit > Detriment

Sim(     ,     )  Sim(     ,     )  <
Benefit < Detriment

Theorem
 2, 3

Theorem
 1, 2

Equation 9

Corollary1: Distribution difference 
formalizes benefit and detriment in RAG

LLM’s 
Distribution

Retrieved 
Distribution 

Fusion

Distribution
Difference

Distribution
Completion:

Benefit 

Distribution
Contradiction:

Detriment 
(Benefit − Detriment)∝Similarity(    , )  

Theorem 1: 
Bound

Theorem 2: Positively correlated 

Corollary 3: Actual effect of RAG can be predicted at token-level

Figure 4: Derivation path of our theory. Reference: Equation 9, Theorem 1, 2, 3 and Corollary 1, 2, 3.

using input query and previous generation. If retrieval is not required, LLM continues generation.
If retrieval is needed, LLM first generates critique token evaluating whether retrieved documents
are relevant and support generation, and then generates continuation conditioned on the retrieved
passages (Asai et al., 2023).

I.4 IMPLEMENTATION DETAILS

All models are run on a V100 GPU with Pytorch (Paszke et al., 2019) and accelerated by DeepSpeed 1.
As for retrieval for RAG, we follow (Xu et al., 2023; 2024b) to use ColBERTv2 (Santhanam et al.,
2021), an excellent generalizable model as the retriever, and use Wikipedia consisting of 21,015,324
passages (Karpukhin et al., 2020) as retrieval database. All baselines and Tok-RAG share the same
retrieval setup and prompt. We use OPT-6.7B, LLaMA-2-7B and Mistral-7B-v0.1 as LLMs in
benefit-detriment comparison experiment and use greedy-decoding strategy for generation.

J ANALYSIS ON COMPUTATIONAL COSTS.

Method GPU (GB) ↓ Time (s) ↓ Per. (Acc) ↑
Standard 17.50 1.95 51.96
NLI+RAG 20.25 2.03 49.76
CRAG 20.60 2.15 51.53
RetRobust 17.50 2.00 52.98
Self-RAG 17.50 2.98 50.26
INFO-RAG 17.50 2.10 52.35
Tok-RAG 23.98 2.24 56.12

Table 6: Comparison of methods
based on GPU Memory, Time, and
Performance.

Table 6 shows that out Tok-RAG achieves significant perfor-
mance (accuracy) improvement with little increase of GPU
memory and running time. In addition, the baselines all re-
quire training LLM or introducing additional modules, while
our method is based on our solid theoretical findings, dose not
require training LLM nor additional modules. The parallel
generation at the token-level can be done in a batch with 2
batch size. In actual practice, this does not bring significant
computational time or GPU memory overhead. Experiments
are performed on three Q&A datasets (TrviaQA, WebQ, Squad)
with V100 GPU, the LLM is LLaMA-2-7B.

K PATH

Figure 4 shows the derivation path of our theory.

L CASE STUDY

Figure 5 shows the case study for collaborative generation between pure LLM and RAG at token
level in our Tok-RAG. At the step that pure LLM and RAG generates the different tokens, Tok-RAG
use our theoretical results in Theorem 3 to compare the benefit and detriment. If benefit is greater
than detriment, the token from RAG is selected, otherwise, the token from pure LLM is selected. The
selected tokens are marked by green color and bold. Then discarded tokens are marked by gray. The
orange arrow represents the direction of token selection and usage. The selected tokens are used for
the next step generation of both pure LLM and RAG. This case study visually demonstrates that our
Tok-RAG effectively enables pure LLM and RAG for collaborative generation to preserve benefit
and avoid detriment.

1https://github.com/microsoft/DeepSpeed
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Question: Who is the book of galatians written to? 

It was written by the Apostle Paul to the churches in Corinth, a region of present-day Turkey.

It was written by the Apostle Peter to the churches in Galatia, a region of present-day Turkey.
Benefit win

Detriment win

It was written by the Apostle Paul to the churches in Galatia, a region of present-day Turkey.

Pure LLM:

RAG:

Output:

Question: Who conducted the opening concert at carnegie hall? In which year? 

It was conducted by Walter Damrosch and composer Pyotr Ilyich Tchaikovsky in 1901.

Pure LLM:

RAG:

Output:

It was conducted by Leopold Damrosch and composer Pyotr Ilyich Tchaikovsky in 1891.

It was conducted by Walter Damrosch and composer Pyotr Ilyich Tchaikovsky in 1891.

Detriment win
Benefit win

Question: Who says that which we call a rose? 

It is said by the character Lysander in William Shakespeare's play "Romeo and Juliet.

Pure LLM:

RAG:

Output:

It is said by the character Juliet in      Christopher Shakespeare's play " Romeo and Juliet.

It is said by the character Juliet in William Shakespeare's play "Romeo and Juliet."

Detriment win

Benefit win

Question: Who signed the largest on the declaration of independence? 

It belongs to Charles   Hancock, who was the member of the Continental Congress

Pure LLM:

RAG:

Output:

It belongs to    John    Hancock, who was the president of the Continental Congress

It belongs to John Hancock, who was the president of the Continental Congress

Detriment win Detriment win

Question: Who is under the mask of darth vader? 

It is the character Anakin Skywalker, as revealed in the Star Wars series.

Pure LLM:

RAG:

Output:

It is the character   James  Skywalker, as revealed in the Star Wars series.

It is the character Anakin Skywalker, as revealed in the Star Wars series.

Benefit win

Question: Where does US highway 1 start and end?

It starts in    Fort Kent, Maine, at the Canadian border and ends in     New    West, Florida.

Pure LLM:

RAG:

Output:

It starts in Chicago Kent, Maine, at the Canadian border and ends in     Key     West, Florida.

It starts in Fort Kent, Maine, at the Canadian border and ends in Key West, Florida.

Benefit win
Detriment win

Figure 5: Case study for collaborative generation between pure LLM and RAG at token level in our
Tok-RAG. Pure LLM and RAG generate the texts in parallel at token level. At the step that pure
LLM and RAG generate the different tokens, Tok-RAG use our theoretical results in Theorem 3
to compare the benefit and detriment. If benefit is greater than detriment, the token from RAG is
selected, otherwise, the token from pure LLM is selected. The selected tokens are marked by green
color and bold. The discarded tokens are marked by gray. The orange arrow represents the direction
of token selection and usage. The selected tokens are used for the next step generation of both pure
LLM and RAG.
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