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Abstract

In real-world decision-making problems, one needs to pick among multiple policies
the one that performs best while respecting economic constraints. This motivates
the problem of constrained best-arm identification for bandit problems where every
arm is a joint distribution of reward and cost. We investigate the general case where
reward and cost are dependent. The goal is to accurately identify the arm with the
highest mean reward among all arms whose mean cost is below a given threshold.
We prove information-theoretic lower bounds on the sample complexity for three
models: Gaussian with fixed covariance, Gaussian with unknown covariance, and
non-parametric distributions of rectangular support. We propose a combination of
a sampling and a stopping rule that correctly identifies the constrained best arm and
matches the optimal sample complexities for each of the three models. Simulations
demonstrate the performance of our algorithms.

1 Introduction

In real-world decision-making systems, identifying the best policy is rarely a matter of optimizing
a single performance metric in isolation. Effective policies often involve inherent trade-offs: they
achieve desirable outcomes but incur costs. For instance, online platforms routinely deploy pro-
motions to drive customer engagement [Zhao and Harinen, 2019, Zhang et al., 2024]. To ensure
sustainability, such incentives must not only be effective but also economically viable—typically
captured through feasibility constraints on budget or return on investment (ROI) [Goldenberg et al.,
2020]. Similarly, bidding policies in online advertising need to drive traffic or purchases at an
acceptable incremental ROI [Chen and Au, 2022]. In healthcare, a treatment needs to improve health
outcomes under safety constraints. In all these examples, the goal is not simply to maximize the
average benefit, but to do so subject to feasibility constraints—economic, operational, or ethical.

This motivates a constrained exploration problem: given a finite set of policies (arms), confidently
identify the best policy with respect to a quality metric, among those that satisfy a feasibility
constraint on a cost metric, such as a minimum return on investment (ROI), a risk threshold, or a
fairness requirement. That is, each arm is associated with an unknown joint distribution on reward
and cost, which may be arbitrarily dependent. During the exploration, the decision-maker chooses
an arm in each round and observes a real-valued reward and cost, sampled from that arm. Once
there is enough evidence that one arm has the highest quality amongst all feasible arms, or that no
arm is feasible, the exploration stops and returns the best feasible arm or no arm respectively. This
setting generalizes the classical best arm identification (BAI) problem in multi-armed bandits, where
arms are judged only by their quality [Garivier and Kaufmann, 2016], and introduces an additional
challenge not captured by standard BAI frameworks: coupled reward and cost metrics: business
KPIs are rarely independent—more aggressive policies often yield higher rewards but also incur
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greater costs. This interdependence violates the independence assumptions common in prior work on
constrained bandits. In addition, reward and cost distributions are typically not parametric, especially
in monetary applications.

In this paper, we provide a general strategy for the constrained BAI problem in the fixed-confidence
setting. That is, we consider algorithms that are δ-correct, i.e., that output the correct answer (either
the best feasible arm or no arm) with probability at least 1− δ for some fixed confidence level δ. The
goal is to minimize the expected number of samples needed by the algorithm, while guaranteeing
δ-correctness.

Many variants of constrained BAI have previously been studied. Faizal and Nair [2022] and Yang
et al. [2025] studied the same problem in the fixed budget setting, and Kone et al. [2025] in the
Pareto set identification problem. An alternative way to incorporate costs in the BAI problem is
the multi-fidelity formulation, in which known costs are tied to the desired accuracy level [Poiani
et al., 2024], or by minimising the overall cost while still maximising a single reward dimension
[Kanarios et al., 2024]. Wang et al. [2022] consider BAI with safety constraints with separate quality
and feasibility dimensions. However, they assume independence and a linear or monotonic relation
between the cost and reward. Furthermore, the constraints are required to be satisfied throughout the
exploration, whereas we focus on pure exploration. David et al. [2018] and Hou et al. [2022] optimise
a single performance metric, but with a constraint on some risk measure of the returned arm, such as
its variance or a given quantile. Hu and Hu [2024] study a problem that is close to our setting. Each
arm is associated with multiple performance metrics and their goal is to find the arm with the highest
mean for a given metric, while a certain quantile of the others remains below a threshold. They
assume only one of the metrics is sampled per rounds and that the different metrics are independent.
Finally, Katz-Samuels and Scott [2019] propose a modification of the LUCB algorithm to solve the
constrained BAI problem with multidimensional constraints. While they are the only one among the
above to allow dependence, they focus purely on sub-Gaussian distributions, which is not always
realistic for business purposes. Overall, most prior works ignore the dependence between reward
and cost and/or focus on sub-Gaussian settings. To the best of our knowledge, none consider both
dependence and arbitrary models, as we do here.

1.1 Contributions

Building on techniques from standard BAI [Garivier and Kaufmann, 2016, Degenne and Koolen,
2019], we derive instance-dependent lower bounds on the sample complexity for generic bandit
models. The main difficulty therein lies in the fact that case distinctions arise from possible tradeoffs
between cost and reward that do not occur when only considering the reward dimension. As is
well-known in the BAI literature, the sample complexity lower bound also gives rise to the proportion
of samples that an optimal algorithm should allocate to each arm. We show that these weights and the
lower bound can be computed whenever we have numerical access to two transportation functions.
In contrast to existing frameworks for BAI, which assume either exponential families [Garivier and
Kaufmann, 2016] or nonparametric distributions [Agrawal et al., 2020], this allows us to treat all
models in a unified framework.

We show that the transportation functions can be efficiently computed for three bivariate arm models:
Gaussian with fixed 2× 2 covariance matrix, Gaussian with unknown 2× 2 covariance matrix, and
non-parametric distributions of rectangular support. Our proposed algorithm then uses a plugin
strategy to track these weights. As the stopping rule, we use a generalized-likelihood-ratio statistic,
similar to e.g. Garivier and Kaufmann [2016], Degenne and Koolen [2019]. For proving δ-correctness
in the case of Gaussian with fixed covariance and non-parametric distributions of rectangular support,
we import known results on the concentration for weighted sums of such statistics [Agrawal et al.,
2021, Kaufmann and Koolen, 2021]. For the case of Gaussian with unknown covariance matrix, we
prove a concentration result as proof of concept.

2 Sample complexity lower bounds

To set the stage, let M be a set of bivariate distributions on R2. For any ν ∈ M, we denote its mean
reward and cost by m(ν) = (m1(ν),m2(ν)). We consider a K-armed bandit ν = (ν1, . . . , νK) ∈
MK . At every time n = 1, 2, . . . , one arm In ∈ [K] is chosen and a pair Xn = (Rn, Cn) is
drawn from νIn , where Rn represents the obtained reward and Cn the incurred cost. Given a
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threshold γ ∈ R, the objective is to identify the best feasible arm i∗(ν) = i∗
(
m(ν)

)
, where

i∗(m) = argmaxi:mi,2≤γ mi,1. Here, the argmax over the empty set is defined to be None, and
we assume that the bandit ν has a unique best feasible arm i∗(ν) ∈ A := [K] ∪ {None}. To avoid
confusion, it will be crucial to distinguish between arms [K] and answers A, especially because for
our problem these nearly coincide. Algorithm design must resolve the type conversion: which arm
must be pulled to increase evidence in favor of a given answer?

Applying the generic lower bound of Garivier and Kaufmann [2016] results in the following lower
bound on the sample complexity of any δ-correct algorithm for constrained BAI (CBAI).
Theorem 2.1 (Garivier and Kaufmann [2016]). Let δ ∈ (0, 1). For any δ-correct strategy with
stopping time τδ and any bandit model ν ∈ MK ,

Eν [τδ] ≥ T ∗(ν)KL (δ∥1− δ) ,

where KL denotes the Kullback-Leibler divergence and

T ∗(ν)−1 = max
w∈△K

min
ν′∈MK

i∗(ν)̸=i∗(ν′)

K∑
k=1

wk KL (νk∥ν′k) . (1)

Their proof reveals that any strategy that matches the lower bound will also match w∗(ν) as proportion
of arm draws, where w∗(ν) are the weights that achieve (1). To find a strategy with optimal sample
complexity, we will compute the characteristic time T ∗(ν) and corresponding oracle weights. To
this end, we first present an abstraction, show how it still allows efficient computation, and then
implement the abstraction for the following three models:

1. Gaussian with fixed covariance Σ ⪰ 0: MG,Σ :=
{
N (µ,Σ)

∣∣µ ∈ R2
}

.

2. Gaussian with unknown covariance: MG :=
{
N (µ,Σ)

∣∣µ ∈ R2,Σ ⪰ 0
}

.

3. Non-parametric distributions on the unit square: MB :=
{
P
∣∣P on [0, 1]2

}
.

Other models can be worthwhile, for example modeling cost and reward as independent, each drawn
from some single-parameter exponential family member. We focus on the above three models to
highlight the role of dependent rewards and costs.

2.1 Solving (1) generically in terms of a transportation cost interface to the model

We analyze the CBAI characteristic time T ∗(ν) from (1), and provide an efficient algorithm for
computing w∗(ν) and hence T ∗(ν). To start, we introduce a shorthand for the KL projection of an
arm ν ∈ M onto the set of distributions {ν′ ∈ M : m(ν′) = µ} with a given mean µ ∈ R2:

KLinf(ν,µ) = min
ν′∈M

m(ν′)=µ

KL (ν∥ν′) . (2)

We suppress the dependence on M from the notation. The characteristic time (1) can be rewritten as

T ∗(ν)−1 = max
w∈△K

min
λ∈RK×2

i∗(ν)̸=i∗(λ)

K∑
k=1

wk KLinf(νk,λk). (3)

At this point we see that we need to know about the mean vectors λ such that i∗(λ) ̸= i∗. We have

Proposition 2.1. For each answer i ∈ A, let ¬i :=
{
λ ∈ RK×2

∣∣i∗(λ) ̸= i
}

. Then

cl(¬i) =


⋃
j ̸=i

{λ|λj,1 ≥ λi,1 and λj,2 ≤ γ} ∪ {λ|λi,2 ≥ γ} i ̸= None,⋃
j∈[K]

{λ|λj,2 ≤ γ} i = None.
(4)

This shows in particular that the Pure Exploration Rank [Kaufmann and Koolen, 2021, Definition 20]
of constrained BAI is two, as ¬i is a union of parts in which at most two arms are constrained. This
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will be useful in obtaining deviation thresholds below. For now, we use the partition above to simplify
the characteristic time. Namely, if i∗(ν) ̸= None, the problem of finding the characteristic time (3)
reduces to

max
w∈△K

min

{
min
j ̸=i∗

[
min

λi∗ ,λj∈R2:
λi∗,1≤λj,1

λj,2≤γ

∑
k∈{i∗,j}

wk KLinf(νk,λk)

]
, min
λi∗∈R2:
λi∗,2≥γ

wi∗ KLinf(νi∗ ,λi∗)

}
(5a)

and for i∗(ν) = None, it reduces to
max

w∈△K

min
j

min
λj∈R2:
λj,2≤γ

wj KLinf(νj ,λj). (5b)

We will argue that numerical access to the following two transportation cost functions, c1 and c2,
suffices to implement this characteristic time T ∗ and the corresponding oracle weights w∗.
Interface 2.1. The following two functions need to be implemented efficiently:

1. the weighted cost for making arm νj beat arm νi (here i can be assumed feasible)
c1(νi, νj , w) := min

λi,λj∈R2

λi,1 ≤ λj,1 and λj,2 ≤ γ

KLinf(νi,λi) + wKLinf(νj ,λj). (6)

We need separate access to both terms of the sum at the minimum, that is, to KLinf(νi,λ
∗
i ) and

KLinf(νi,λ
∗
j ). We will denote these by c1,i(νi, νj , w) and c1,j(νi, νj , w). We will also assume

computational access to the limit c1(νi, νj ,∞) := limw→∞ c1(νi, νj , w).

2. the cost for changing the feasibility status of an arm ν

c2(ν) :=


minλ∈R2

λ2≥γ

KLinf(ν,λ) if m2(ν) ≤ γ

minλ∈R2

λ2≤γ

KLinf(ν,λ) if m2(ν) > γ
.

In terms of Interface 2.1, our problem (5) simplifies to

T ∗(ν)−1 = max
w∈△K

{
min

{
minj ̸=i∗ wi∗c1

(
νi∗ , νj ,

wj

wi∗

)
, wi∗c2(νi∗)

}
if i∗ ̸= None,

minj∈[K] wjc2(νj) if i∗ = None.
(7)

To interpret the revealed structure, note that both cases minimize over precisely K terms; one for each
alternative answer different from the correct answer i∗. For the i∗ = None case, we find ourselves in
a 1d thresholding problem Garivier et al. [2017], where the cost, c2, is that of discriminating an arm
from the threshold γ. For the i∗ ̸= None case, the inner minj ̸=i∗ sub-expression matches that of the
transport cost for the best arm identification problem Garivier and Kaufmann [2016], where the cost
to reverse the quality of two arms there is replaced by our c1 (which in addition ensures feasibility of
the second arm). The outer binary minimum adds one extra case to the range of possibilities to be
considered, namely where the best looking arm is rendered infeasible.

We can solve the lower bound problem generically in terms of Interface 2.1:
Theorem 2.2. Let ν be a K-armed bivariate bandit. Let i∗ := i∗(ν). For all i ∈ [K], we have

T ∗(ν) =

{∑K
j=1 w̃j(C̃

∗)

C̃∗∑K
j=1 c2(νj)

−1
and w∗

i (ν) =


w̃i(C̃

∗)∑K
j=1 w̃j(C̃∗)

if i∗ ̸= None

c2(νi)
−1∑K

j=1 c2(νj)−1 if i∗ = None

where w̃i∗(C̃) := 1, and for each sub-optimal j ̸= i∗, w̃j(C̃) is the unique solution to w in

c1(νi∗ , νj , w) = C̃, (8)

and C̃∗ is the unique solution for C̃ in∑
j ̸=i∗

c1,i∗
(
νi∗ , νj , w̃j(C̃)

)
c1,j

(
νi∗ , νj , w̃j(C̃)

) = 1 (9)

if it is attained in the interval [0, C̃max] and C̃∗ = C̃max otherwise, where we abbreviate C̃max :=
min{c2(νi∗),minj ̸=i∗ c1(νi∗ , νj ,∞)}.
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Efficient Computation Note that this theorem is not only a characterisation, it unlocks a generic
computational recipe given oracle access to c1 and c2. To see why, we first observe that the left-hand
side of (8) is increasing in w, starting at 0 when w = 0, and reaching c1(νi∗ , νj ,∞) for w → ∞.
Hence wj(C̃) can be computed by binary search. Moreover, the proof reveals that the left-hand-side
of (9) is increasing in C̃. So again, we can solve (9) for C̃ by binary search. All in all, we can
compute T ∗ and w∗ using two nested binary searches. This is the same computational cost as the
algorithm of [Garivier and Kaufmann, 2016, below Theorem 5] for the oracle weights in BAI. An
efficient implementation for constrained BAI is the basis for the Track-and-Stop algorithm template.
It therefore remains to implement c1 and c2 for each of our three arm models of interest.

2.2 Efficient Implementation of Interface 2.1 for our Three Models for Arms

We implement the interface functions c1 and c2 efficiently for our three arm models of interest. We
also implement KLinf and discuss the effect of dependence.

(a) (b) (c) (d) (e)

Figure 1: (a) shows the bivariate means of an example six-armed bandit ν, with its feasible best arm
i∗(ν) circled green. The vertical axis is reward, while the horizontal axis is cost, with the vertical
dashed line indicating the feasibility threshold γ. The four possible types of transports underlying
(5a) are illustrated in (b)–(e). We can make the best arm infeasible (b). We can render an arm feasible
that was already high (c). We can make a feasible arm exceed the best arm (d). And we can make an
arm both feasible and better than the best arm (e). In these diagrams the reward-cost dependence
within each arm manifests by the cheapest transports (indicated by red arrows) not being axis aligned.

2.2.1 Gaussian fixed covariance: KLinf , c1 and c2

Proposition 2.2. Let ν = N (µ,Σ) and consider M = MG,Σ. Then

KLinf(ν,λ) =
1

2
∥µ− λ∥2Σ−1 and c2(ν) =

(γ − µ2)
2

2Σ22
. (10)

Moreover, let νi = N (µi,Σ) and νj = N (µj ,Σ) with i∗({µi,µj}) = i, then

c1(νi, νj , w) =



w(µj,2−γ)2

2Σ22
if µj,1 − Σ12

Σ22
(µj,2 − γ)+ ≥ µi,1

(µj,1−µi∗,1)
2

2Σ11(1+
1
w )

if µj,2 +
1
wΣ12

Σi,11+
1
wΣ11

(µi,1 − µj,1) ≤ γ

wΣ11(γ−µj,2)
2+|Σ|

∥∥∥µj,1 − µi∗,1

µj,2 − γ

∥∥∥2

Σ−1

2(Σ11Σ22+|Σ| 1
w )

else.

Here, the case distinction in c1 arises by first solving the infimum in (6) while forgetting about one of
the constraints at a time. If the resulting minimizer happens to satisfy both constraints, then it must
be the solution to the original problem, since its value is at least as low as that of the original problem.
If this does not happen for either constraint, both of them must be active.

The Impact of Dependence on Transportation Cost We are interested in the effect of dependence
between reward and cost in all three models. The explicit formulas above allow us to highlight
its effect explicitly. Here, dependence manifests as a nonzero covariance Σ12 ̸= 0. To see its
effect, we observe that the minimum cost to move an arm from mean µ to a new location λ such
that λ2 = γ is c2(N (µ,Σ)) = minλ∈R2:λ2=γ

1
2∥µ − λ∥2Σ−1 = (γ−µ2)

2

2Σ22
, which is attained at

λ∗ =
(
µ1 +

Σ12

Σ22
(γ − µ2), γ

)
. So we see that Σ12 ̸= 0 causes the arm to move diagonally, even
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though the objective was to move in dimension two. This is illustrated in Figure 1(b). On the other
hand, counter intuitively, the cost of that move does not depend on Σ12. These diagonal motions
make it subtle to determine the active constraints for the c1 motion (where we ask for a certain arm
to be made feasible and better than another arm). E.g. an arm that starts feasible may be rendered
infeasible by making it better. As visualized in Figure 1, the active constraints at the optimal solution
can either be feasibility only (c), flipped mean reward only (d) or both (e).

2.2.2 Gaussian unknown covariance: KLinf , c1 and c2

For unknown covariance a subtlety arises: as we can see below, KLinf(ν,λ) is not a convex function
of λ. As a result, c1 as specified by (6) is not a convex optimization problem. Fortunately, c1 can still
be computed efficiently.

Proposition 2.3. Let ν = N (µ,Σ) and consider M = MG. Then

KLinf(ν,λ) =
1

2
ln
(
1 + ∥µ− λ∥2Σ−1

)
and c2(ν) =

1

2
ln

(
1 +

(γ − µ2)
2

Σ22

)
. (11)

Moreover, let νi = N (µi,Σi) and νj = N (µj ,Σj), then, abbreviating ℓ(x) := 1
2 ln(1 + x),

c1(νi, νj , w) = min
θ∈R

ℓ

(
(µi,1 − θ)2+

Σi,11

)
+w


0 if µi,2 ≤ γ and µj,1 ≥ θ

ℓ
(

(µj,2−γ)2+
Σj,22

)
if µj,1 − Σj,12

Σj,22
(µj,2 − γ)+ ≥ θ

ℓ
(

(µj,1−θ)2−
Σj,11

)
if µj,2 +

Σj,12

Σj,11
(µj,1 − θ)− ≤ γ

KLinf(νj , (θ, γ)) else.

Notice that the c2 cost is fully determined by characteristics of the second dimension. In particular,
it is independent of the dependence Σ12 between the cost and reward dimension. This happens
because the optimal move will take the covariance structure into account, which cancels its effect.
Furthermore, the variable θ that appears in c1 is introduced as a parameter such that λa,1 ≤ θ ≤ λa,2.
With this extra parameter, the searches over λa,1 and λa,2 are straightforward. For the remaining
search over θ ∈ R, it is possible to identify the points at which the active case in the second term
switches; this will be instance dependent. For example, if µi,2 ≤ γ and Σi,12 < 0, the second term
will always be active, while for Σi,12 > 0, case 3 takes over whenever θ ≥ µi,1+Σi,11Σ

−1
i,12(γ−µi,2).

The optimal value on each segment can be found by setting the derivative of the objective to zero,
which is a matter of finding the roots of a cubic. The global minimizer can then efficiently be found
by comparing the minimizers on each segment. So computing c1 or c2 takes a constant amount of
work.

2.2.3 Non-parametric supported on [0, 1]2: KLinf , c1 and c2

Proposition 2.4. Let ν be a distribution on [0, 1]2 and consider M = MB . Furthermore, let
Rλ := {(a1, a2) ∈ R2 | ∀x ∈ [0, 1]2 : 1 + a1(x1 − λ1) + a2(x2 − λ2) ≥ 0}. Then

KLinf(ν,λ) = max
a1,a2∈Rλ

E
X∼ν

[ln (1 + a1(X1 − λ1) + a2(X2 − λ2))] , (12)

c2(ν) = max
a∈[ −1

1−γ , 1γ ]
E

X∼ν
[ln (1 + a(X2 − γ))] .

Finally, let νi, νj be distributions on [0, 1]2. With R′
w := {b ∈ R3 | b3 ≥ 0 ≥ b2, ∀x ∈ [0, 1]2 :

1− w(b1 + b2x1) ≥ 0 and 1 + b1 + b2x1 + b3(x2 − γ) ≥ 0}, we have

c1(νi, νj , w) = max
b∈R′

w

E
νi

[ln(1− w(b1 + b2X1))] + w E
νj

[ln(1 + b1 + b2X1 + b3(X2 − γ))] .

Note that when λ ∈ (0, 1)2, the region Rλ is a compact convex set in R2. In fact, being the
intersection of four half-spaces, it is a quadrilateral with its four vertices on the axes. Moreover, the
objective is concave in λ. This means that for ν a distribution of finite support (e.g. an empirical
distribution) we can compute KLinf(ν,λ) using off-the-shelf convex optimisation methods e.g. the
ellipsoid method. Similarly, R′

w for w > 0 is a compact convex subset of R3, being an intersection
of six half spaces.
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The case distinction that we saw for c1 in the Gaussian fixed covariance case did not disappear. In
fact, it manifests in the region for b: b3 is the Lagrange multiplier for enforcing feasibility of arm j,
and −b2 is the Lagrange multiplier for enforcing the correct order of mean rewards. Either (but not
both) can be zero at optimality if the respective constraint is satisfied already.

3 Asymptotically Optimal Algorithm

We now develop an asymptotically optimal algorithm. As this is classic, we defer details to the
appendix. Throughout, we denote by Ni(n) =

∑n
s=1 1Is=i the number of samples taken from arm i

in the first n rounds.

Estimates Our approach is based on an estimate ν̂(n) of the bandit ν after n samples. For the
fixed covariance case, we let ν̂i(n) := N (µ̂i(n),Σ), where µ̂i(n) = 1

Ni(n)

∑n
s=1 1Is=iXs is the

empirical mean of arm i after n bivariate outcomes Xs = (Rs, Cs). For the unknown covariance
case, we let ν̂i(n) := N (µ̂i(n), Σ̂i(n)), where Σ̂i(n) is the empirical covariance of the samples from
arm i. Finally, for the non-parametric case, we let ν̂i(n) be the empirical distribution of the samples
{Xs | s ≤ n, Is = i} from arm i.

Stopping and recommendation rule The Generalised Likelihood Ratio (GLR) statistic is defined,
for ı̂ = i∗(ν̂(n)), by

Λn :=

{
min

{
minj ̸=ı̂ Nı̂(n)c1

(
ν̂ı̂(n), ν̂j(n),

Nj(n)
Nı̂(n)

)
, Nı̂(n)c2(ν̂ı̂(n))

}
if ı̂ ̸= None,

minj∈[K] Nj(n)c2(ν̂j(n)) if ı̂ = None.
. (13)

We stop at the first time τδ := inf{n ∈ N : Λn ≥ β(δ, n)} the GLR crosses the exploration threshold
β given below, and at that point we will recommend the empirical best feasible arm ı̂ := i∗(ν̂(n)).
We show in Appendix B that

Theorem 3.1. The following exploration thresholds result in a δ-correct recommendation

βG,Σ(δ, n) = ln
K

δ
+ 4 ln

ln K
δ

4
+ 8 ln(4 + lnn/2) once ln

1

δ
≥ 6,

βG(δ, n) = ln
K

δ
+ 2 lnn+ 4 ln lnn+ 2 ln

(
ln

K

δ
+ 2 lnn+ 4 ln lnn

)
,

βB(δ, n) = ln
K

δ
+ 2 + 4 ln(1 + n/2).

These thresholds all account for confidence (ln 1
δ ), a union bound across incorrect answers (lnK),

and a courser (lnn) or finer (ln lnn) union bound across time. These bounds are conservative in
practice; in the experiments we will use ln 1

δ + ln lnn instead (and verify that the rate of incorrect
recommendations remains below δ).

TaS Finally, our sampling rule ensures the asymptotic optimality. We compute a plug-in estimate of
the oracle weights wn := w∗(ν̂(n)), and pick In = argmini Ni(n− 1)−

∑n−1
s=1 ws,i (C-Tracking).

We add forced exploration to keep Ni(n) ≥
√
n. All in all, these ingredients guarantee

Theorem 3.2. TaS is asymptotically optimal, i.e. limδ→0
Eν [τδ]

ln 1
δ

= T ∗(ν).

4 Simulations

In this section, we put our algorithm, TaS, to the test on the four bandits depicted in Figure 2. We
treat both the unknown-covariance Gaussian model and the bounded model. For the latter, we clip
the Gaussian arms from Figure 2 to [0, 1]2. Since there are no off-the-shelf algorithms to compare to,
we adjust a number of sampling strategies used in the BAI literature to the constrained BAI setting.

For the Gaussian model with unknown covariance, the EV-TaS sampling rule uses the empirical
covariance to track the weights as if we were in the fixed covariance model. A similar rule was
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Easy Hard All feasible None feasible
10.5, 48.3 410.4, 1890.0 26.5, 122.0 29.3, 134.9

36, 24, 21, 10, 9 18, 39, 39, 3, 1 40, 39, 14, 4, 3 3, 4, 10, 18, 65

Figure 2: Each diagram illustrates a 5-arm bandit ν with Gaussian arms. The dots and ellipses give
the mean and one standard deviation ring around it in covariance matrix Σ = [0.1 0.05; 0.05 0.09].
The two numbers and vector are T ∗(ν), T ∗(ν) ln 1

δ for δ = 0.01, and w∗(ν) in percentages.

previously considered for regular BAI by Jourdan et al. [2023]. Note that there is no reason to believe
that this should work well (and it does not), as the sampling proportions will be sub-optimal. However,
it is reasonable to consider if one does not know how to properly handle the unknown covariance.
For the bounded case, we introduce the GA-TaS [Ménard, 2019], instead of the original TaS, due to
the high cost of computing the optimal sampling ratios per round. Instead we use gradient ascent to
solve the optimization problem online, and thus more efficiently.

TopTwo-TCI sampling rule is based on Top Two algorithms in regular BAI, where the arm to
sample at each time is randomly chosen between a leader and challenger [Jourdan et al., 2022].
We thus need to define what the leader and challenger mean in our case. The current best answer
ı̂n = i∗(ν̂(n)) will serve as the leader. For the challenger, note that the GLR (Λn as in (13)) is
defined as a minimum of K terms, each corresponding to an answer different from ı̂n. Let us denote
each of these terms by Λn,j . As challenger, we take the answer that minimizes Λn,j + log(Nj(n)),
where we let NNone(n) := Nı̂n(n). If either the challenger or the leader is None, we sample the other
deterministically. This setup resembles the best challenger implementation of Hu and Hu [2024], with
the substantial difference that our implementation regards a constrained mean rather than a quantile,
and our selection criterion for the challenger accounts for the dependence between reward and cost
dimensions. Oracle samples all arms with the optimal weights for the true model. Racing repeatedly
samples uniformly all arms and eliminates an answer j (and the corresponding arm if j ̸= None)
once it can be rejected. That is, if ı̂ = None, we eliminate j when Λn,j ≥ β(n, δ), i.e. feasibility of
arm j is implausible. If ı̂ ̸= None, we eliminate answer j when min {Λn,j ,Λn,None} ≥ β(n, δ). The
second term ensures that it is implausible that ı̂ is infeasible. If j ̸= None, the first term in addition
ensures that it is implausible that j is better than ı̂. We keep sampling until one answer remains.
Uniform samples all arms in a round robin fashion. TaS-1d solves the unconstrained BAI problem,
ignoring the cost dimension.

All algorithms use the same GLR rule and the stylized stopping threshold log(1/δ) + log log(t),
originally used by Garivier and Kaufmann [2016] and heavily adopted in the literature for allowing
shorter runtimes while keeping the errors lower than δ. As initialization, we start by pulling each
arm 3 times, which is the minimum required for the covariance matrix estimation. We work in the
moderate confidence regime of δ = 0.01. All instances were repeated 1000 times, except the hard
one, which we ran 500 times. The results are shown in Table 1 for the unknown covariance Gaussian
case and Table 2 for the bounded case. All empirical error rates remain below δ.

Table 1: Gaussian unknown covariance: average runtimes with standard errors

Instance TaS-EV TaS Oracle Uniform TopTwo-TCI Racing TaS-1d
Easy 79.4± 0.7 76.3± 0.7 89.6± 0.4 136.4± 0.6 68.8± 0.6 136.7± 1.5 96.6± 0.5
Hard 3291.1± 70.0 3218.7± 68.6 4225.4± 59.4 5498.9±129.8 2859.9± 54.9 2864.6± 51.4 4815.9±101.6
All feasible 199 ± 2.5 190.4± 2.4 229.7± 2.3 354.0± 4.8 174.6± 2.4 271.0± 2.6 186.4± 2.3
None feasible 234.2± 2.7 222.6± 2.6 270.1± 3.1 576.0± 13.4 241.9± 5.4 174.6± 2.2 3293.4± 84.4
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Table 2: Bounded (non-parametric on [0, 1]2): average runtimes with standard errros

Instance GA-TaS Oracle Uniform TopTwo-TCI Racing
Easy 98.8± 0.9 104.7± 0.9 120.7± 1.2 96.4± 0.8 114.5± 0.9
Hard 539.7± 7.6 669.3± 6.6 1088.4±13.0 457.3± 4.7 933.4±17.8
All feasible 241.0± 3.5 256.7± 2.8 409.8± 6.1 191.1± 2.9 221.7± 2.8
None feasible 69.6± 0.7 68.2± 0.7 116.9± 1.8 47.5± 0.5 49.0± 0.5

Figure 3: Sample complexity and optimal weights as a function of dependence ρ.

5 The Impact of Dependence on the Sample Complexity

In this section we study the impact of dependence on the sample complexity. We study the following
two-arm problem νρ in the fixed covariance Gaussian model as a function of correlation ρ ∈ [−1, 1]:
the feasibility threshold is γ = 2

3 , the arm means are µ1 = (0, 0) and µ2 =
(
− 1

4 , 1
)
, cost and

reward each have variance Σ11 = Σ22 = 1, and the correlation between them is Σ12 = ρ. These
parameters were selected to illustrate the three possible regimes we discuss below. Note that
arm 1 is feasible while arm 2 is not, so the correct answer is always arm 1. Figure 3 shows the
characteristic time T ∗(νρ) as a function of ρ. It is contrasted with the number of samples needed
when sampling uniformly, Twunif

(νρ), and when using the optimal sample weights ignoring the
dependence, Twind

(νρ) (by assuming ρ = 0). That is, the sample complexity for when we sample
according to one of these rules, but still stop with the ‘correct’ GLR rule. Any other δ-correct stopping
rule would be slower.

By inspecting (7), we see that the optimal unnormalized weight on the second arm will be chosen to
maximize the cost of making arm two better than arm one, as long as that is cheaper than making
arm one infeasible. This corresponds to the case that C̃∗ is attained in the interval [0, C̃max] in
Theorem 2.2. Notice that the cost of changing the feasibility status is independent of ρ, as can
be seen in the expression for c2 in Proposition 2.2. The mean reward of arm two is moved to
µ2,1 − ρ(µ2,2 − γ), which does depend on ρ. This will result in arm two becoming better than arm
one for ρ <

µ1,1−µ2,1

γ−µ2,2
. Therefore, the cost of making arm two feasible and better equals the cost of

just making it feasible; see also case 1 of c1 in Proposition 2.2. This results in the flat regime on the
left of the dashed line in Figure 3. As ρ further increases, making arm two feasible and better will
involve moving both arms, the cost of which does depend on ρ, as can be seen in the third case of c1
in Proposition 2.2. At some point, the maximum of this cost over the unnormalized weight becomes
larger than the cost of making arm one infeasible. The optimum unnormalized weight will then make
the transportation cost equal to the cost of making arm one infeasible, corresponding to the case that
C̃∗ = c2(νi∗) in Theorem (2.2). This causes the change in behavior at the dotted line.

Finally, it is noteworthy that, in this case, uniform sampling sometimes outperforms the strategy
assuming independence. This occurs because, for large values of ρ, uniform weights more closely
resemble the optimal weights than those derived under the assumption of independence.

6 Discussion

We introduced the constrained best arm problem (CBAI), where each arm hides a joint distribution of
reward and cost. The goal is to identify from observations the arm of highest mean reward among
all arms with mean cost below a given threshold, or to report None if all arms are infeasible. This
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model in particular allows us to study the impact of dependence between cost and reward. We
characterized optimal sample complexity, and implemented the resulting optimal algorithms for
three classes of arm distributions. We analyzed our algorithms theoretically, and showed that they
are asymptotically optimal. Finally, we experimentally investigated the performance of a variety of
algorithmic templates, including Track-And-Stop, Top-Two and Racing, and show that they perform
well. We now discuss questions and future directions.

Can one handle multiple constraints? Let us imagine a multivariate problem with all-but-one
dimensions being costs needing to be below respective thresholds. What would change? We could
still have a c1 and c2 decomposition, where c1 is the cost to make a designated arm feasible and
better, while c2 is the cost of toggling the feasibility status of an arm. For all our three models,
changing the feasibility status of an arm is a solvable problem, even with multiple constraints. We
either enforce all of them, or enumerate all constraints to violate, and optimize KLinf . What gets
tricky is making an arm feasible and better than another one. In the known Σ and bounded cases, this
still results in a convex problem. Yet in the unknown Σ case, KLinf(ν,λ) is not convex in λ (but
it is quasi-convex) and c1 is not even a quasi-convex problem in λ (as it is a sum of quasi-convex
objectives). We currently optimize c1 in Proposition 2.3 by locating the optimal θ by finding roots of
a small number of cubics. With multiple constraints, the number of cases in the right-most function
of θ in Proposition 2.3 may equal the (exponential) number of subsets of active constraints.

Is the stylized threshold valid? In Theorem 3.1, we propose GLR thresholds that are of the
form ln 1

δ with an added correction factor of ln lnn for the known covariance model and lnn for
the unknown covariance and bounded models. In the simulations, we used a stylized threshold
of ln lnn for all models. For known covariance, ln lnn is proven valid using mixture martingale
techniques Kaufmann and Koolen [2021]. For Gaussians with unknown covariance, it is also possible
to relate the GLR statistic to a mixture martingale, as noted in the one-dimensional case by Wang
and Ramdas [2025]. However, using this to achieve a ln lnn threshold would require a sophisticated
argument about the exact nature of this relation, which we leave for future work.
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A Proofs for Section 2

A.1 Proof of Proposition 2.1

Technically, below we characterize the closure of ¬i. For the value of optimization problems
constrained to ¬i this difference is immaterial, yet it ensures the optimizers are attained.

First, suppose that i = None. Any λ with i∗(λ) ̸= i must have an arm j such that λj,2 ≤
γ. Conversely, any λ that has an arm j with λj,2 ≤ γ has i∗(λ) ̸= i. So we find that ¬i =
∪j∈[K] {λ|λj,2 ≤ γ} for i = None.

For i ̸= None, any λ with i∗(λ) ̸= i must either have an arm j that is both feasible and better than
i, or arm i must not be feasible. That is, either there exists j such that λj,1 ≥ λi,1 and λj,2 ≤ γ or
λi,2 ≥ γ. Conversely, any λ for which either λj,1 ≥ λi,1 and λj,2 ≤ γ or λi,2 ≥ γ must necessarily
have i∗(λ) ̸= i. Therefore, ¬i = ∪j ̸=i {λ|λj,1 ≥ λi,1 and λj,2 ≤ γ} ∪ {λ|λi,2 ≥ γ} .

A.2 Proof of Theorem 2.2

We first handle the case that i∗(m) ̸= None. We are interested, following (5a), in

max
w∈△K

min

{
min
j ̸=i∗

wi∗c1

(
νi∗ , νj ,

wj

wi∗

)
, wi∗c2(νi∗)

}
.

This can be restructured to
max

wi∗∈[0,1]
min {g(wi∗), wi∗c2(νi∗)} (14)

where

g(wi∗) := max
w−i∗∈(1−wi∗ )△K−1

min
j ̸=i∗

wi∗c1

(
νi∗ , νj ,

wj

wi∗

)
.

Now each wj for j ̸= i∗ only appears in one term of the minimum. This means that the optimal
solution for w−i∗ is to balance all contributions. We hence need to solve the system

C = wi∗c1

(
νi∗ , νj ,

wj

wi∗

)
(15a)

1− wi∗ =
∑
j ̸=i∗

wj (15b)

for w−i∗ and C, and then the value is C. Note that C is a concave function of wi∗ . Resuming from
(14), and introducing C̃ = C/wi∗ and wj(C,wi∗) = wi∗wj(C/wi∗ , 1) = wi∗w̃j(C̃), where w̃j(C̃)
is the solution for w̃j in

C̃ = c1 (νi∗ , νj , w̃j) ,

we are left with

max
C,w

s.t. (15)

min{C,wi∗c2(νi∗)} = max
C̃

min{C̃, c2(νi∗)}
1 +

∑
j ̸=i∗ w̃j(C̃)

where in particular we solved for wi∗ = 1
1+

∑
j ̸=i∗ w̃j(C̃)

and wj =
w̃j(C̃)

1+
∑

j ̸=i∗ w̃j(C̃)
. The objective is

decreasing for C̃ ≥ c2(νi∗), so the maximum is between 0 and that. To find it, we need to cancel (or,
for bisection, compute the sign of) the derivative, i.e.

0 =
1 +

∑
j ̸=i∗ w̃j(C̃)− C̃

∑
j ̸=i∗ w̃

′
j(C̃)

(1 +
∑

j ̸=i∗ w̃j(C̃))2

and that is equivalent to
1 =

∑
j ̸=i∗

(
C̃w̃′

j(C̃)− w̃j(C̃)
)
.

Differentiating the definition of w̃j(C̃), we find

1 = c′1

(
νi∗ , νj , w̃j(C̃)

)
w̃′

j(C̃)
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and it hence remains to solve for

1 =
∑
j ̸=i∗

c1 (νi∗ , νj , w̃j)− w̃j(C̃)c′1

(
νi∗ , νj , w̃j(C̃)

)
c′1

(
νi∗ , νj , w̃j(C̃)

) =
∑
j ̸=i∗

KLinf(νi∗ ,λi∗(C̃))

KLinf(νj ,λj(C̃))
.

This is the same as equating F (C̃) = 1, where F (C̃) :=
∑

j ̸=i∗ C̃w̃′
j(C̃)− w̃j(C̃). For C̃1 > C̃2,

we see

F (C̃1)− F (C̃2) =
∑
j ̸=i∗

C̃1w̃
′
j(C̃1)− C̃2w̃

′
j(C̃2) + w̃j(C̃2)− w̃j(C̃1)

≥
∑
j ̸=i∗

C̃1w̃
′
j(C̃1)− C̃2w̃

′
j(C̃2)− w̃′

j(C̃1)
(
C̃2 − C̃1

)
=

∑
j ̸=i∗

C2(w̃
′
j(C1)− w̃′

j(C2)) > 0,

where we use a tangent bound on w̃j together with the fact that w̃′
j is increasing, since w̃j is the

inverse of a concave function. It follows that F (C̃) is increasing, so that F (C̃) = 1 can be found
through bisection.

If i∗(m) = None, then, following (5b), we are interested in computing

max
w∈△K

min
j

wjc2(νj).

By reasoning similar to the above, the optimal w will balance all contributions. It follows that for
every arm i

w∗
i =

c2(νi)
−1∑

j c2(νj)
−1

.

A.3 Proofs for the Gaussian transportation functions

In this section, we provide the proofs of Propositions 2.2 and 2.3. For both, we will need the KL
between two Gaussians. That is, for ν = N (µ,Σ) and ν′ = N (λ,Σ′), we have

KL (ν∥ν′) =
1

2

(
− log

|Σ|
|Σ′|

− 2 + tr(Σ′−1Σ) + (µ− λ)TΣ′−1(µ− λ)

)
. (16)

It furthermore helps to know that, for fixed λ1, the minimum 2-dimensional KL is in fact the
1-dimensional KL (and this insight can symmetrically be applied with dimension 1 and 2 exchanged):

min
λ2

(µ− λ)TΣ′−1(µ− λ) =
(µ1 − λ1)

2

Σ′
11

, achieved at λ2 = µ2 −
Σ′

12

Σ′
11

(µ1 − λ1). (17)

We now proceed with the proofs.

A.3.1 Proof of proposition 2.2

For ν = N (µ,Σ) and M = MG,Σ we have, by (16),

KLinf(ν,λ) = KL (ν∥ν′) =
1

2
∥µ− λ∥2Σ−1 ,

where ν′ = N (λ,Σ). Using (17), we find that this means that

c2(ν) =
(γ − µ2)

2

2Σ22
.

Furthermore, for νi = N (µi,Σ) and νj = N (µj ,Σ) with i∗({µi,µj}) = i, we have

c1(νi, νj , w) = min
λi,λj∈R2

λi,1 ≤ λj,1 and λj,2 ≤ γ

1

2
∥µi − λi∥2Σ−1 +

w

2
∥µj − λj∥2Σ−1

The solution for λi,λj falls in three cases, depending on which of the two constraints are active at
the solution.
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1. λi,1 ≤ λj,1 active and λj,2 ≤ γ inactive. Using (17), we need to find

min
λi,1,λj,1∈R2

λi,1≤λj,1

(µi,1 − λi,1)
2

2Σ11
+ w

(µj,1 − λj,1)
2

2Σ11
,

where we have used

λi,2 = µi,2 −
Σ12

Σ11
(µi,1 − λi,1) and λj,2 = µj,2 −

Σ12

Σ11
(µj,1 − λj,1).

We then make the two means in the first coordinate equal, and get

λi,1 = λj,1 =
1
wΣ11µi,1 +Σ11µj,1

1
wΣ11 +Σ11

with value
1

2

(µi,1 − µj,1)
2

Σ11 +
1
wΣ11

and optimal second coordinates

λi,2 = µi,2−
Σ12

Σ11 +
1
wΣ11

(µi,1−µj,1) and λj,2 = µj,2+
1
wΣ12

Σ11 +
1
wΣ11

(µi,1−µj,1).

2. λi,1 ≤ λj,1 inactive and λj,2 ≤ γ active. Using (17), we find that then λi = µi and

λj =

(
µj,1 − Σ21

Σ22
(µj,2 − γ)
γ

)
and the cost is

w

2

(µj,2 − γ)2

Σ22
.

3. both λi,1 ≤ λj,1 and λj,2 ≤ γ active. Here we need to optimize

min
θ∈R2

(µi,1 − θ)2

2Σ11
+

w

2

Σ22(µj,1 − θ)2 − 2Σ12(µj,1 − θ)(µj,2 − γ) + Σ11(µj,2 − γ)2

Σ11Σ22 − Σ2
12

.

Cancelling the θ derivative gives

θ =
(Σ11Σ22 − Σ2

12)µi,1 + wΣ11 (Σ22µj,1 − Σ12(µj,2 − γ))

(Σ11 + wΣ11)Σ22 − Σ2
12

.

With that, the value and optimizers become

w
Σ22(µi,1 − µj,1)

2

2((Σ11 + wΣ11)Σ22 − Σ2
12)

+ 2w
Σ12(µi,1 − µj,1)(µj,2 − γ)

2((Σ11 + wΣ11)Σ22 − Σ2
12)

+ w
(wΣ11 +Σ11)(µj,2 − γ)2

2((Σ11 + wΣ11)Σ22 − Σ2
12)

and

λi =

(
θ

µi,2 − Σ12

Σ11
(µi,1 − θ)

)
and λj =

(
θ
γ

)
.

A.3.2 Proof of proposition 2.3

Let ν = N (µ,Σ), ν′ = N (λ,Σ′) and M = MG. To derive the KLinf , we will use the following
well-known facts about matrix derivatives:

d

dA
log|A| = (A−1)T and

∂

∂A
tr(A−1B) = −(A−1BA−1)T .
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Together with the fact that Σ and Σ′ are symmetric (and so are their inverses), it follows that

∂

∂Σ′ KL (ν∥ν′) =
(
Σ′−1 − Σ′−1ΣΣ′−1 +Σ′−1(µ− λ)(µ− λ)TΣ′−1

)
.

Setting to zero and multiplying by Σ′ from both left and right, gives

Σ′ = Σ+ (µ− λ)(µ− λ)T .

By the matrix determinant lemma, we have |Σ′| = |Σ|
(
1 + (µ− λ)TΣ−1(µ− λ)

)
. Substituting

everything back in gives

KLinf(ν,λ) =
1

2
ln
(
1 + ∥µ− λ∥2Σ−1

)
Using (17), it immediately follows that

c2(ν) =
1

2
ln

(
1 +

(µ2 − γ)2

Σ22

)
.

Next, let νi = N (µi,Σi) and νj = N (µj ,Σj). Then

min
λi,λj∈R2

λj,1>λi,1,λj,2≤γ

KLinf(νi,λi) + wKLinf(νj ,λj)

= min
θ∈R

 min
λi∈R2

λi,1<θ

KLinf(νi,λi) + min
λj∈R2

λj,1≥θ,λj,2≤γ

wKLinf(νj ,λj)

 . (18)

We have essentially already computed the first term inside the parantheses above; it equals
1
2 ln

(
1 +

(µi,1−θ)2+
Σi,11

)
. For the second term, we see

min
λj∈R2

λj,1≥θ,λj,2≤γ

wKLinf(νj ,λj) =


0 if µj,2 ≤ γ and µj,1 ≥ θ
w
2 log

(
1 +

(µj,2−γ)2+
Σj,22

)
if µj,1 − Σj,12

Σj,22
(µj,2 − γ)+ ≥ θ

w
2 log

(
1 +

(µj,1−θ)2−
Σj,11

)
if µj,2 +

Σj,12

Σj,11
(µj,1 − θ)− ≤ γ

wKLinf(νj , (θ, γ)) else.

The values in the second and third case are the result of ignoring one of the two constraints. If
the optimizer of this less constrained problem is a feasible solution, the optimizer of the entire
problem has been found. If this does not happen for either of them, the optimum must be in the point
λj = (θ, γ) (i.e. both constraints must be active). We’ll refer to these cases as case 0-3 respectively.

To get a further handle on this quantity, we will proceed by case distinctions.

1. Let’s first consider µj,2 ≤ γ. If Σj,12 < 0, then µj,2 +
Σj,12

Σj,11
(µj,1 − θ)− ≤ γ for all θ, so that

the conditions to case 2 will always be satisfied (case 2 coincides with case 0 for θ < µj,1). The
optimum value of θ will then be in [µj,1, µi,1], since the first term in (18) is decreasing and the
second term is zero on (−∞, µj,1], and reversed for [µi,1,∞). It follows that the optimum θ can
be found by solving

d
dθ

1

2
log

(
1 +

(µi,1 − θ)2

Σi,11

)
+

w

2
log

(
1 +

(µj,1 − θ)2

Σj,11

)
= 0

−(µi,1 − θ)

Σi,11 + (µi,1 − θ)2
+ w

θ − µj,1

Σj,11 + (µj,1 − θ)2
= 0, (19)

so it is a matter of finding the roots of a cubic (and pruning to [µj,1, µi,1]).

If Σj,12 > 0, then for θ ≤ µj,1 +
Σj,11

Σj,12
(γ − µj,2), we will still be in case 2, but we end up in case

3 for θ larger than that. This does not affect the analysis if µi,1 < µj,1 +
Σj,11

Σj,12
(γ−µj,2). If µi,1 is
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larger than that, we can separately find the minimizer for θ ∈ [µj,1 +
Σj,11

Σj,12
(γ − µj,2), µi,1]. This

can be done by solving

d
dθ

1

2
log

(
1 +

(µi,1 − θ)2

Σi,11

)
+ wKLinf(νj , (θ, γ)) = 0

1
−(µi,1 − θ)

Σi,11 + (µi,1 − θ)2
+

w

|Σi|
Σj,12(µj,2 − γ)− Σj,22(µj,1 − θ)

1 + (µj − (θ, γ))TΣ−1
j (µj − (θ, γ))

= 0, (20)

which again comes down to solving a cubic (and clipping to the right interval). We can then
minimize over the two minima to find the global minimizer.

2. Now we will consider the case µj,2 > γ. Then case 0 can never hold and we will be in case
1 for all θ ≤ µj,1 − Σj,12

Σj,22
(µj,2 − γ). If Σj,12 > 0, case 2 can also never be satisfied, so we

will be in case 3 for all θ ≥ µj,1 − Σj,12

Σj,22
(µj,2 − γ). If this bound is larger than µi,1, then each

θ ∈ [µi,1, µj,1− Σj,12

Σj,22
(µj,2− γ)] is a minimizer. If the bound is smaller than µi,1, we can use (20)

to find the optimal value.
If Σj,12 < 0, then we will only be in case 3 until θ ≥ µj,1 − Σj,11

Σj,12
(µj,2 − γ), at which point

we enter case 2. As a sanity check, notice that −Σj,11

Σj,12
> −Σj,12

Σj,22
, since Σj,11Σj,22 > Σ2

j,12 by
positive semi-definiteness (so case 2 happens after 3). So we can use (19) to find the minimum
over all large θ, and again find the global minimizer by minimizing over the two cases.

A.4 Proof of Proposition 2.4

First, let ν ∈ MB , then
KLinf(ν,λ) = min

Q∈△[0,1]2

m(Q)=λ

KL(ν∥Q). (21)

Introducing Lagrange multipliers d1, d2, d3, the constraints can be included in the objective as

min
Q≥0

max
d1,d2,d3

KL(ν∥Q) + d1(E
Q
[1]− 1) + d2(E

Q
[X]− λ1) + d3(E

Q
[Y ]− λ2). (22)

Here and in the following, EQ[·] is meant to be read as E(X,Y )∼Q[·]. This becomes more tractable by
(as is usual for Lagrange multipliers) swapping the max and min, that is,

max
d1,d2,d3

min
Q≥0

KL(ν∥Q) + d1(E
Q
[1]− 1) + d2(E

Q
[X]− λ1) + d3(E

Q
[Y ]− λ2).

We show that this swap does not change the value of the problem after further simplifying. The inner
minimum has optimizer

dQ

dν
(x, y) =

1

d1 + d2x+ d3y
, (23)

so the dual problem becomes

max
d1,d2,d3:

d1+d2x+d3y≥0
for (x,y)∈[0,1]2

E
ν
[ln (d1 + d2X + d3Y )] + 1− d1 − d2λ1 − d3λ2. (24)

At this point, one can reparameterize by d′2 = d2/d1 and d′3 = d3/d1 and set the derivative with
respect to d1 to zero. Then, reparameterizing once more to a1 =

d′
2

1+d′
2λ1+d′

3λ2
and a2 =

d′
3

1+d′
2λ+d′

3λ2

gives the desired form

max
a1,a2:

1+a1(x−λ1)+a2(y−λ2)≥0

for (x,y)∈[0,1]2

E
ν
[ln (1 + a1(x− λ1) + a2(y − λ2))] .

It remains to show that the min-max swap was allowed. To this end, work backwards from (24)
(the max over the dual function) and first use the Lagrange Duality Theorem [Luenberger, 1997,
Theorem 1, Section 8.6] to relate the max of the dual function to a minimum of the original function.
In doing so, the domain of optimization changes to the dual of the constraint space, that is, the dual
of the set of bounded linear functionals on the compact unit square [0, 1]2. By Riesz’ Representation
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Theorem [see e.g. Hartig, 1983], this dual space is equal to the set of finite signed measures on [0, 1]2,
so that we recover (22).

Next, fix input arm distributions νi, νj ∈ MB and positive weight w. The quantity of interest is
min

Qi,Qj∈△[0,1]2

m1(Qi)≤m1(Qj)
m2(Qj)≤γ

KL(νi∥Qi) + wKL(νj∥Qj). (25)

Introducing Lagrange multipliers d1, d2, d3, d4, we can write this as
max

d1,d2,d3≥0,d4≥0
min

Qi,Qj≥0
KL(νi∥Qi) + wKL(νj∥Qj) + d1(E

Qi

[1]− 1) + d2(E
Qj

[1]− 1)

+ d3(E
Qi

[X]− E
Qj

[X]) + d4(E
Qj

[Y ]− γ),

where the implicit min-max swap is allowed by the same argument as before. We then find optimizers
dQi

dνi
(x, y) =

1

d1 + d3x
and

dQj

dνj
(x, y) = w

1

d2 − d3x+ d4y
(26)

and dual problem

max
d1,d2,d3≥0,d4≥0

ln args ≥ 0

E
νi

[ln (d1 + d3X)] + w E
νj

[
ln

d2 − d3X + d4Y

w

]
+ 1 + w − d1 − d2 − d4γ,

where the constraint is that both of the arguments in the logarithm are positive on the unit square, i.e.,
d1 + d3x ≥ 0 and d2 − d3x+ d4y ≥ 0 for all (x, y) ∈ [0, 1]2. The constraint is homogeneous in the
(vector of) Lagrange multipliers. At the optimum, unconstrained optimality (i.e. zero derivative) in
the (d1, d2, d3, d4) direction requires

d1 + d2 + d4γ = 1 + w.

We can solve this for d2 and end up with

max
d1,d3≥0,d4≥0

ln args ≥ 0

E
νi

[ln (d1 + d3X)] + w E
νj

[
ln

1 + w − d1 − d3X + d4(Y − γ)

w

]
.

If we reparameterize by b1 = −(d1 − 1)/w, b2 = −d3/w and b3 = d4/w, we get
max

b1,b2≤0,b3≥0
ln args ≥ 0

E
νi

[ln (1− w(b1 + d2X))] + w E
νj

[ln (1 + b1 + b2X + b3(Y − γ))] .

For completeness, let us remark that the inner minimizers (23) and (26) are defined as densities w.r.t.
the original arm distributions ν, νi, νj . We now discuss how to recover the outer optimal Q, Q1, Q2

for the primal problem (21) or (25). The above densities (when plugging in the optimal values of the
Lagrange multipliers a or d) are part of the answer. However, these densities themselves may not
yet sum to one. The reason is that the primal solutions sometimes put mass outside of the support of
their corresponding arm distribution. In some cases this is the only way to satisfy the constraints,
in other cases it may be driven by optimality. Solving for satisfaction of the primal constraints (i.e.
normalization and means) then resolves how the missing mass must be allocated to recover the primal
feasible solutions. It is always possible to do so adding mass in a single point on the boundary of the
unit square.

B Proofs for Section 3

B.1 Proof of Theorem 3.1 (Thresholds)

Let ν be a bandit with answer i∗ = i∗(ν) and true means mi = m(νi). Following the proof of
[Kaufmann and Koolen, 2021, Proposition 21], we have
Pν {τ < ∞ and ı̂ ̸= i∗}

≤ Pν {∃n : i∗(ν̂(n)) ̸= i∗ and Λn ≥ β(δ, n)}

≤
{
Pν {∃n, j ̸= i∗ : Ni∗(n)KLinf(ν̂i∗(n),mi∗) +Nj(n)KLinf(ν̂j(n),mj) ≥ β(δ, n)}
Pν {∃n, j : Nj(n)KLinf(ν̂j(n),mj) ≥ β(δ, n)}
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where the first case is for i∗ ̸= None and the second is for i∗ = None. Furthermore, the last step
uses that ¬i∗ is covered by motions of at most two arms, one being i∗ whenever i∗ ̸= None, by
Proposition 2.1. Note that for i ̸= None the set ¬i∗ has a motion of just arm i∗ as well, but the cost
of that is subsumed by that of any two-arm deviation. To find β that ensures δ-correctness, we need
an anytime deviation inequality for a sum of two statistics of the form Ni(n)KLinf(ν̂i(n),m(νi)).

For the fixed covarance Gaussian case, we can leverage [Kaufmann and Koolen, 2021, Theorem 9].
Even though that theorem is formulated for arbitrarily many 1d Gaussian arms, we note that for i.i.d.
Xi ∼ N (µ,Σ), our nKLinf , n

2 ∥µ̂(n) − µ∥2Σ−1 , is a sum of two independent 1d Gaussian contri-
butions. To be more precise, let Yi = Σ−1/2Xi, where Σ−1/2 is the inverse of the positive definite
and symmetric square root of Σ. Then Yi ∼ N (Σ−1/2µ, I(2)), so that Yi,j ∼ N ((Σ−1/2µ)j , 1) for
j ∈ {1, 2} independently from one another. Furthermore, define Ŷn = 1

n

∑n
i=1 Yi. We then see that

KL(Ŷn,1, (Σ
−1/2µ)1) + KL(Ŷn,2, (Σ

−1/2µ)2) =
1

2
∥Ŷn − Σ−1/2µ∥2 =

1

2
∥µ̂(n)− µ∥2Σ−1 .

The concentration result by Kaufmann and Koolen [2021, Theorem 9] is stated for sums of univariate
KLs, as in the left-hand side; this equality allows us to also use it in the fixed covariance setting. We
thus find that taking β(δ, n) = ln K

δ +4 ln
ln K

δ

4 +8 ln(4+ lnn/2) suffices once ln 1
δ ≥ 6. We chose

that latter threshold for readability, see Kaufmann and Koolen [2021] for a more involved threshold
that works for any δ ∈ (0, 1).

For the unknown covariance, we exploit the expression for KLinf from (11). Recall that for the
unknown covariance case we use as our estimate ν̂(n) = N (µ̂(n), Σ̂(n)), that is, a Gaussian with
the maximum likelihood mean and covariance. Then for i.i.d. Xi ∼ ν = N (µ,Σ),

nKLinf(ν̂(n),µ) =
n

2
ln

(
1 + ∥µ̂(n)− µ∥2Σ̂(n)−1

)
.

Under ν, the statistic (n− 1) ∥µ̂(n)− µ∥2Σ̂(n)−1 has a Hotelling t2 distribution with n− 1 degrees of
freedom in 2 dimensions, and therefore (n−2)KLinf(ν̂(n),µ) ∼ 1

2χ
2
2. To show this, we will (1) rely

on known results on the relations between different distributions and (2) slightly abuse notation to de-
note distributions in equations instead of random variable. Up to scaling, the statistic we are concerned
with is ln

(
1 + 1

n−1T
2(2, n− 2)

)
. It can be shown that this is the same as ln

(
1 + 2

n−2F (2, n− 2)
)

(F-distribution). This, in turn, is equivalent to ln
(
1 + β′ (1, n−2

2

))
(beta-prime). This can be

written as − ln
((

1 + β′ (1, n−2
2

))−1
)
= − ln

(
β′ (n−2

2 , 1
) (

β′ (n−2
2 , 1

)
+ 1

)−1
)
, which equals

− ln
(
β
(
n−2
2 , 1

))
(beta), which is known to be exp

(
n−2
2

)
(exponential). The desired result follows

by reintroducing the scaling factor n−2
2 .

Hence, for fixed sample size n and λ ∈ [0, 1] the MGF evaluates to Eν [e
λ(n−2)KLinf(ν̂(n),µ)] = 1

1−λ
(alternatively, the above reasoning can be sidestepped by computing this integral directly). We then
find that for fixed sample sizes ni and nj , and threshold C ≥ 2, we get, by a Chernoff bound,

Pµ {(ni − 2)KLinf(ν̂i(ni),µi) + (nj − 2)KLinf(ν̂j(nj),µj) ≥ C} ≤ 1

4
C2e2−C .

We have, with W−1 denoting the negative branch of the Lambert function,

1

4
C2e2−C = δ iff C = −2W−1

(
−e−1+ 1

2 ln δ
)
≈ ln

1

δ
+ 2 ln ln

1

δ
.

A weighted union bound over all possible values of ni and nj with each prior π over N gives

Pµ

∃n :
∑

k∈{i,j}

(Nk(n)− 2)KLinf(ν̂k(n),µk) ≥ −2W−1

(
−e−1+ 1

2 ln(δπ(Ni(n))π(Nj(n)))
) ≤ δ.

Picking π(n) ∝ 1
n(lnn)2 motivates the choice β(δ, n) = ln K

δ +2 lnn+4 ln lnn+2 ln(ln K
δ +2 ln t+

4 ln lnn). Notice that there both factors Nk(n) are now replaced by Nk(n) − 2. Technically, this
could be compensated for by adjusting the threshold. However, this compensation would disappear
as the sample sizes grow large, so that it does not matter for any asymptotic arguments. Furthermore,
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this is the same as simply using the statistic with factor Nk(n)− 2 and noting that, in the limit, it is
indistuingishable from our original statistic. In our experiments, we choose to do the latter.

For the bounded case we can use our dual expression from (12) as a maximum over parameters in the
compact set Rλ ⊆ R2. Using the technique of [Agrawal et al., 2021, Lemma F.1] based on worst-case
regret bounds for online learning with exp-concave losses, we find that for each arm i there is a νi
martingale (Mi,n)n≥0 (of mixture form) satisfying Mi,n ≥ eNi(n)KLinf(ν̂i(n),m(νi))−1−2 ln(1+Ni(n)).
Taking the product over two arms, applying Ville’s inequality, and using concavity of the ln and
Ni(n) +Nj(n) ≤ n yields δ-correctness for the choice β(δ, n) = ln K

δ + 2 + 4 ln(1 + n/2).

B.2 Proof of Theorem 3.2 (Asymptotic Optimality)

We show that our algorithm, which consists of (a) the sampling rule (Track-and-Stop with C-tracking)
combined with (b) the GLR stopping rule and (c) the empirical-best recommendation rule ensures
asymptotic optimality, in the sense that for every bandit ν with a unique best answer i∗ = i∗(ν), our
algorithm is δ-correct on ν and ensures

lim
δ→0

Eν [τδ]

ln 1
δ

= T ∗(ν).

This argument was pioneered by Garivier and Kaufmann [2016] for BAI in exponential families, and
extended to general answers by [Kaufmann and Koolen, 2021, Theorem 17]. [Degenne and Koolen,
2019, Theorem 7] proved the (upper-hemi) continuity assumption which was assumed before, and
[Agrawal et al., 2020, Section 6] generalized to non-parametric arms.

To apply the argument for constrained BAI in the three models, we need to check two things. (1)
the estimates ν̂(t) concentrate sufficiently fast around the true bandit ν. (2) the oracle weights
ν 7→ w∗(ν) are a continuous function of the bandit.

Sufficiently fast concentration of empirical mean and variance in sup norm is argued by [Jourdan et al.,
2023, Section H.1.1] for one dimension, and it generalizes to our Gaussian cases in two dimensions.
For the bounded model, sufficiently fast concentration of the empirical distribution in Lévy metric is
given by the multivariate DKW inequality Naaman [2021].

Continuity of the oracle weights w∗(ν) as a function of the bandit ν follows from two nested
applications of Berge’s Theorem, which bottom out in continuity of KLinf . For the Gaussian cases
(10) and (11) this holds by inspection. The bounded case (12) requires a small argument.
Proposition B.1. Let M = [0, 1]2 be the unit square, and let M0 = (0, 1)2 be its interior. Let L be
the set of all probability distributions on M . The function KLinf from (2) is jointly continuous on
L ×M0, where we equip L with the Lévy metric.

Proof. For joint lower semi-continuity we can directly apply [Agrawal et al., 2020, Lemma C.2] after
observing that our L is compact. For joint upper semi-continuity we exploit the dual representation
(12) and go through [Agrawal et al., 2020, Lemma C.3], noting that Skorokhod’s theorem applies to
the metric space M .

With those details supplied, the remainder of the classic proof applies. See Kaufmann and Koolen
[2021, Appendix D].

Let us sketch the template here for completeness. First,

• Forced exploration ensures that the estimates converge to the true bandit, i.e. ν̂(t) → ν.
Note that convergence is measured in the appropriate metric, which is Euclidean distance
between parameters for the Gaussian cases and Lèvy for the bounded non-parametric case.

• Continuity of the oracle weight map ν 7→ w∗(ν) ensures that the sampling weights converge
to the oracle weights, i.e. wt = w∗(ν̂(t)) → w∗(ν). Here continuity is in the upper-
hemicontinuous sense.

• C-Tracking ensures that the sample counts converge to the sampling weights, i.e. N(t)
t →∑t

s=1 ws

t . Since the latter average converges to the oracle weights, so do the sampling
proportions themselves N(t)

t → w∗(ν).
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• The stopping rule involves the empirical sampling proportion N(t)
t and the estimates ν̂(t).

If these are close to w∗(ν) and ν respectively, then the stopping rule kicks in around time
T ∗(ν) ln 1

δ .

Without quantifying all these convergences, we are proving Pν

{
limδ→0

τδ
ln 1

δ

= T ∗(ν)
}
= 1. The

crux of the in-expectation argument is to invoke sufficiently fast concentration of the estimates, to
ensure that the contribution to the expected sample complexity due to failures of any of the above
convergences is of lower-order in ln 1

δ .
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to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: We aim to make the code publicly available at a later date.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Similar to the reproducibility, all details on the implementation are given in
Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide a standard error for the runtime estimates.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [No]

Justification: This is not included, because the experiments were run on a personal laptop.
We therefore do not expect anyone to run into problems in this regard.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: There were no questionable research practices.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: The societal relevance and impact of the research are discussed at the start of
the introduction.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.

24

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification:
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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