
Fast Estimation of Partial Dependence Functions using Trees

Jinyang Liu 1 Tessa Steensgaard 1 Marvin Wright 2 3 4 Niklas Pfister 1 5 Munir Hiabu 1

Abstract

Many existing interpretation methods are based
on Partial Dependence (PD) functions that, for a
pre-trained machine learning model, capture how
a subset of the features affects the predictions by
averaging over the remaining features. Notable
methods include Shapley additive explanations
(SHAP) which computes feature contributions
based on a game theoretical interpretation and
PD plots (i.e., 1-dim PD functions) that capture
average marginal main effects. Recent work has
connected these approaches using a functional
decomposition and argues that SHAP values can
be misleading since they merge main and inter-
action effects into a single local effect. However,
a major advantage of SHAP compared to other
PD-based interpretations has been the availability
of fast estimation techniques, such as TreeSHAP.
In this paper, we propose a new tree-based esti-
mator, FastPD*, which efficiently estimates ar-
bitrary PD functions. We show that FastPD con-
sistently estimates the desired population quan-
tity – in contrast to path-dependent TreeSHAP
which is inconsistent when features are correlated.
For moderately deep trees, FastPD improves the
complexity of existing methods from quadratic
to linear in the number of observations. By esti-
mating PD functions for arbitrary feature subsets,
FastPD can be used to extract PD-based interpre-
tations such as SHAP, PD plots and higher-order
interaction effects.

1Department of Mathematical Sciences, University of Copen-
hagen, Denmark 2Faculty of Mathematics and Computer Science,
Universität Bremen, Germany 3Leibniz Institute for Prevention Re-
search and Epidemiology – BIPS, Germnay 4Department of Public
Health, University of Copenhagen, Denmark 5Lakera, Switzerland.
Correspondence to: Jinyang Liu <jl@math.ku.dk>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

*The implementation is available as an R-package on GitHub:
https://github.com/PlantedML/glex

1. Introduction
As machine learning models become increasingly complex
and widely deployed in mission-critical applications, in-
terpretability has become essential for ensuring fairness
and transparency (Adadi & Berrada, 2018). One popular
model explanation method is Shapley additive explanations
(SHAP) (Lundberg et al., 2020) – a post-hoc explanation
method that has gained traction for its game-theoretic ap-
proach of attributing feature importance based on Shapley
values. A value function must be specified for the Shapley
value. In this paper we refer to SHAP as the Shapley values
that use the partial dependence (PD) functions as the value
function. Others (Chen et al., 2020; Taufiq et al., 2023) have
termed it interventional Shapley values.

PD plots, i.e. one-dimensional PD functions (Friedman,
2001; Hastie et al., 2009; Molnar et al., 2023) quantify the
effect of individual features by averaging predictions while
holding a target feature at fixed values. However, as noted by
Hiabu et al. (2023), both PD plots and SHAP do not provide
a complete model interpretation. SHAP merges main effects
and interactions while PD plots ignore interactions thereby
limiting insight into feature contributions.

Alternatively, a functional decomposition allows for greater
insight by clearly separating main effects and higher-order
interactions. This idea has previously been investigated
in Stone (1994); Hooker (2007); Chastaing et al. (2012);
Lengerich et al. (2020); Herren & Hahn (2022) under the
functional ANOVA identification constraint and more gener-
ally in Bordt & von Luxburg (2023); Fumagalli et al. (2025).
In this paper, we consider an identification constraint based
on PD functions for which we develop a fast algorithm.

Computational efficiency improvements for SHAP have
been proposed in several contexts: model-agnostic methods
such as FastSHAP (Jethani et al., 2022); deep-network adap-
tations (Ancona et al., 2019; Wang et al., 2022); and tree-
based approaches via TreeSHAP (Lundberg et al., 2020).
The popular path-dependent variant of TreeSHAP—used in
XGBoost (Chen & Guestrin, 2016) and LightGBM (Ke et al.,
2017)—is derived from approximating PD functions (Fried-
man, 2001). Recent work has further optimized these algo-
rithms (Yang, 2022; Yu et al., 2022) and extended them to
efficient SHAP interaction computations (Muschalik et al.,
2024).

1

https://github.com/PlantedML/glex

Fast Estimation of Partial Dependence Functions Using Trees

1.1. Contribution

We propose FastPD, a novel and efficient tree-based al-
gorithm for consistently estimating arbitrary PD functions.
FastPD can be used to obtain well-known PD-based expla-
nations such as SHAP and PD plots. In addition it can be
used to extract a functional decomposition that fully char-
acterizes the target function with little computational cost.
Finally, we show that path-dependent TreeSHAP can be
an inconsistent estimate of the population SHAP value and
demonstrate in a simulations study that there can be substan-
tial differences between the path-dependent estimates and
FastPD estimates. The remainder of this work is structured
as follows. Section 2 introduces PD functions and their role
in functional decomposition. Section 3 discusses estimation
methods, computational complexity, and presents FastPD.
Section 4 compares FastPD with existing PD-based expla-
nation techniques.

1.2. Notation

For all k ∈ N, we let [k] := {1, . . . , k}, and for any subset
S ⊆ [d], define S := [d] \ S. For x ∈ X ⊆ Rd, we
use the notation xS ∈ XS to represent the coordinates of
x corresponding to the indices in S. Random variables
are denoted by capital letters. Lastly for a d-dimensional
function m : X −→ R, with a slight abuse of notation, we
will write m(xS , xS), nevertheless with the interpretation
that the coordinates are permuted into the right order before
applying m.

2. Motivation: PD-Based Explanations
Consider a real multivariate function m : Rd ⊇ X −→ R
and a distribution PX on X with full support. For example,
m could be a black-box machine learning model for esti-
mating the credit score of a customer and PX a distribution
describing the customer base (see also Section 2.1). Our
goal is to understand how changes to individual coordinates
affect the function value. To this end, we consider a func-
tional decomposition {mS | S ⊆ [d]} of m such that for all
x ∈ X

m(x) = m0 +

d∑
k=1

mk(xk)

+
∑
k<l

mkl(xk,l) + · · ·+m1,...,d(x)

=
∑
S⊆[d]

mS(xS). (1)

Unfortunately, without further assumptions such a decom-
position is not unique. We will consider an identification
strategy due to Hiabu et al. (2023), and assume that for all

S ⊆ [d] and x ∈ X∑
U⊆S

mU (xU) = vS(xS), (2)

where vS : XS −→ R are the PD functions defined as

vS(xS) := EPX
[m(xS , XS)]. (3)

The identification constraint (2) leads to the unique solution

mS(xS) =
∑
U⊆S

(−1)|S\U |vU (xU), (4)

which is known as the Möbius inverse (Rota, 1964) in com-
binatorics and as the Harsanyi dividend (Harsanyi, 1963) in
cooperative game theory.

The PD function vS can be interpreted as the expected value
of the function m if the coordinates xk for all k ∈ S are kept
fixed while the remaining coordinates k ∈ S vary according
to the distribution PXS

. This interpretation of PD functions
directly carries over to sums of the components in the func-
tional decomposition of the form

∑
U⊆S mU (xU) via (2).

Furthermore, the functional decomposition decomposes the
function m into additive contributions that together make
up the whole function m. To illustrate this, consider the
following two-dimensional example.
Example 2.1 (Functional decomposition). Assume that for
x1, x2 ∈ R the PD functions take values

v0 = 5, v1(x1) = 10, v2(x2) = 3, v1,2(x1, x2) = 12.

Then from (4) the functional decomposition can be obtained
as

m0 = 5, m1(x1) = 5, m2(x2) = −2, m1,2(x1, x2) = 4,

with the interpretation that fixing the x1-value adds
m1(x1) = 5 to the baseline prediction v0 = m0 = 5,
leading to v1(x1) = 10. On the other hand, fixing both x1

and x2 and assuming no interaction, we would expect an
output of m0 +m1(x1) +m2(x2) = 5 + 5 − 2 = 8, but
since the actual expectation is v1,2(x1, x2) = 12, we have
an interaction effect of m1,2(x1, x2) = 4.

Two popular quantities used to capture feature contribution
are PD plots and SHAP values. The latter can be defined for
all k ∈ [d] and all x ∈ X via a game theoretical motivation
(Strumbelj & Kononenko, 2010) as

∆(S, k, x) := vS∪{k}(xS∪{k})− vS(xS),

ϕk(x) :=
∑

S⊆[d]\{k}

(
d− 1
|S|

)−1

·∆(S, k, x). (5)

2

Fast Estimation of Partial Dependence Functions Using Trees

Hiabu et al. (2023) showed that a functional decomposition
can represent both the PD plots and the SHAP values as

vk(xk) = m0 +mk(xk), (PD plot)

ϕk(x) = mk(xk) +
1
2

∑
j

mkj(xkj) + · · ·

+ 1
dm1,...,d(x1,...,d). (SHAP value)

These expansions illustrate that PD plots capture the main
effects in the functional decomposition at a specific coordi-
nate value xk, while SHAP values aggregate main effects
and interaction effects of all orders. As a result, neither
PD plots nor SHAP values fully capture the behavior of
m, leading to potential misinterpretations as illustrated in
Example 2.2 – a similar argument is made by Hiabu et al.
(2023).
Example 2.2 (PD plots and SHAP values do not fully capture
m). Consider the function m : R2 −→ R defined for all
x ∈ Rd by m(x1, x2) := x1 + 2x1x2, and let PX be a
distribution with mean zero. Then, {m0,m1,m2,m1,2}
defined for all x ∈ R2 by

m0 = 2EPX
[X1X2], m1(x1) = x1 − 2EPX

[X1X2],

m2(x2) = −2EPX
[X1X2],

m1,2(x1, x2) = 2x1x2 + 2EPX
[X1X2],

is the unique functional decomposition satisfying (1) and
(2). For the SHAP value ϕ1 we get

ϕ1(x1, x2) = x1 + x1x2 − EPX
[X1X2].

The PD plot m0+m1 only captures the average dependence
on x1, which does not provide any insight on the interac-
tion between x1 and x2. Similarly, the SHAP value ϕ1

only captures part of m as it down-weights the interaction
contribution between x1 and x2.

Instead of focusing on PD plots and SHAP values, we there-
fore advocate to estimate the full functional decomposition
{mS | S ⊆ [d]} defined via (1) and (2). However, this en-
tails estimation of all PD functions {vS | S ⊆ [d]}. Unlike
for SHAP values, where many fast estimation techniques
are available (e.g., TreeSHAP), no fast algorithms have
been proposed to estimate all PD functions. In Section 3
we propose such an algorithm that efficiently estimates all
PD functions which can then be further used to extract PD-
based explanations such as SHAP values and the functional
decomposition with no significant extra cost.

2.1. What Is The Target m?

It is worth differentiating two use-cases of PD-based expla-
nations: (i) When the function m represents a pre-trained
black-box model m̂, such as a neural network or tree en-
semble, and the sole focus is to understand the model

without drawing conclusions about the underlying data-
generating process. (ii) When the emphasis is on the re-
lationship between input features X and a response Y . In
this scenario, the machine learning model m̂ is used to ap-
proximate a target function m∗ (e.g., the conditional mean
m∗ : x 7→ E[Y | X = x] or the conditional quantile
m∗ : x 7→ inf{t ∈ R | P(Y ≤ t | X = x) ≥ α}) which is
the actual function we wish to explain.

It has been argued (e.g. Chen et al., 2020) that for the case
(ii), when m∗ is the conditional expectation function, it
can make sense to consider the functions xS 7→ EPX

[Y |
XS = xs] = EPX

[m∗(xs, XS) | XS = xs] instead of
PD functions. Janzing et al. (2020) argue from a causal
perspective that PD functions are generally preferable to
this approach and easier to interpret. We tend to agree with
their arguments and only consider PD functions as defined
in (3).

In this paper, we consider both cases m = m̂ and m =
m∗ as possible targets. We formally distinguish them by
considering PD functions in two settings:

(i) The model PD function

vm̂S (xS) = EPX
[m̂(xS , XS)]. (6)

(ii) The ground truth PD function

vm
∗

S (xS) = EPX
[m∗(xS , XS)]. (7)

In both cases, PD-explanations are applied to a trained ma-
chine learning model m̂. However, if the target is the ground
truth PD function (ii), then additional assumptions are re-
quired to ensure valid explanations. An important point
is that the ground truth PD function is only identified in
settings in which PX is a product measure or regularity
conditions are made that avoid unidentifiability due to ex-
trapolation (e.g., assuming a parametric model). In contrast,
such assumptions are not necessary in case (i), as it can, in
fact, be of interest to understand the behaviour of m̂ outside
the training support.

Most algorithms for PD-based explanations rely on m̂
being a specific machine learning model. This is
also the case for FastPD, which supposes that m̂
is a tree-based model. A possible work-around to
this is to train a new (surrogate) tree-based model on
(X(1), m̂(X(1))), . . . , (X(n), m̂(X(n))) and afterwards ap-
ply FastPD to this model. However, the additional approx-
imation steps then lead to the same potential difficulties as
in case (ii).

3. Estimation of PD Functions
The most direct approach to computing PD-based explana-
tions is to directly compute the PD functions vS , defined

3

Fast Estimation of Partial Dependence Functions Using Trees

Table 1. Comparison of the algorithmic complexity to estimate either the SHAP values or PD functions for all features and ne evaluation
samples in a single decision tree using nb background samples. Here d denotes the total number of features, D the depth of the tree, F the
number of features the tree splits on and R the operations required for a single model evaluation (for a single tree this is O(D)). The
method of Friedman (2001) can estimate SHAP values from the PD functions (5).

Method Complexity (SHAP) vS(x) ? Details
VanillaPD O(R2dnenb) Yes Slow if d is large, but applicable to all models
(Friedman, 2001) O(2d2Dne) Yes Only approximates PD functions, with same incon-

sistency as TreeSHAP-path
TreeSHAP-path O(D22Dne) No Fast but inconsistent if features are correlated
TreeSHAP-int O(D2Dnenb) No Estimates are based on ≤ 100 background sam-

ples†

(Zern et al., 2023) O(2Dnb + 3DDne) No Fast and consistent with any number of background
samples

FastPD O(2D+F (ne + nb)) Yes Fast and consistent for any PD-based explanations

in (3), for all S ⊆ [d] required to compute the desired PD-
based explanation. In most practical examples one does not
have access to the data generating mechanism PX directly
and therefore need to estimate it. For example, if m is a
prediction model for fraud detection and PX is the future
distribution of customers’ features the algorithm will be
applied on, one may use (parts) of the current customer
base as background data to approximate PX . Here, we
consider the case in which we observe a background sam-
ple Dnb

= {X(1), . . . , X(nb)} consisting of nb iid samples
from PX based on which we want to estimate the PD-based
explanations. An obvious estimator in this setting is the em-
pirical PD function, defined for all S ⊆ [d] and all x ∈ X
by

v̂S(xS) =
1

nb

nb∑
i=1

m(xS , X
(i)

S
). (8)

In a model-agnostic setting, using (8) to estimate the PD
function vS for a fixed S at a single evaluation point x has a
complexity of O(Rnb) where R is the number of operations
needed to evaluate m at a single point. We usually refrain
from evaluating the PD functions at all points in the domain
X , and instead only evaluate it at a set of ne evaluation
points that depend on the precise application. Consequently,
computing (8) for all ne evaluation points and all sets S ⊆
[d] results in a complexity of O(R2dnenb), which in many
applications is intractable. We call this baseline approach
of estimating PD functions VanillaPD. In Table 1 we
compare its complexity to tree-based alternatives which we
discuss next.

3.1. Tree-Based Methods

If m is a decision tree, the complexity of obtaining various
PD-based explanations can be substantially reduced. The

†See GitHub issue: https://github.com/shap/
shap/issues/3461

earliest example we are aware of is an algorithm proposed by
Friedman (2001) which proposed to compute PD functions
by traversing the tree weighting predictions based on the
coverage of each node. Assuming that 2D < Rnb, where
D denotes the depth of the tree, it has a reduced complexity
of O(2d2Dne), compared to VanillaPD. The tree-based
algorithm of Friedman (2001) is one of the only implemen-
tations we found that attempts to estimate the PD functions,
however, by construction it only roughly approximates (8).
As with TreeSHAP-path (discussed next) this can lead
to inconsistent estimates (see Proposition 3.1). More Re-
cent approaches have focused on estimating SHAP directly
and hence do not provide estimates of the PD functions.
The most notable algorithm is TreeSHAP (Lundberg et al.,
2020), which comes in two variants: Path-dependent Tree-
SHAP (TreeSHAP-path) and interventional TreeSHAP
(TreeSHAP-int). We first examine TreeSHAP-path:
By exploiting the tree structure, TreeSHAP-path reduces
the factor 2dnb in the complexity of VanillaPD to 2DD.
While this method is computationally efficient, the SHAP
values it computes rely on the same approximation of the
PD functions as the algorithm proposed by Friedman (2001).
This leads to the undesirable property that for two distinct
trees that have the exact same predictions, the estimated
SHAP values may differ when the features are not indepen-
dent. In particular for post-hoc explanations of a black box
model, this dependence on the internals of the model is con-
cerning. Moreover, even in the limit of infinite (background)
data the SHAP values estimated by TreeSHAP-path do
not necessarily converge to the model SHAP value. A for-
mal statement of this inconsistency is provided in the fol-
lowing Proposition 3.1. A proof is given in the Appendix.

Proposition 3.1 (Inconsistency of TreeSHAP-path).
There exists a distribution PX on X , evaluation point
x′ ∈ X and distinct trees m̂A and m̂B such that

4

https://github.com/shap/shap/issues/3461
https://github.com/shap/shap/issues/3461

Fast Estimation of Partial Dependence Functions Using Trees

(i) ∀x ∈ X : m̂A(x) = m̂B(x), but ϕ̂m̂A

k (x′,Dnb
) ̸=

ϕ̂m̂B

k (x′,Dnb
),

(ii) limnb→∞
∣∣ϕ̂m̂A

k (x′,Dnb
)− ϕm̂A

k (x′)
∣∣ > 0 a.s.,

where Dnb
:= {X(i), . . . , X(nb)} consists of iid samples

from PX , ϕm̂
k (x′) denotes the population SHAP value com-

puted via the model PD function and ϕ̂m̂
k (x′,Dnb

) denotes
the TreeSHAP-path explanation of feature k at x′, where
Dnb

is used to compute the coverage probability of m̂.

TreeSHAP-int was proposed as a method that consis-
tently estimates the SHAP values. However, it has a rather
high complexity of O(D2Dnenb) that scales with the prod-
uct nenb. Recently, Zern et al. (2023) have reduced the
complexity by considering all background samples simul-
taneously when traversing the tree, yielding an improved
complexity of O(2Dnb + 3DDne). The algorithm by Zern
et al. (2023) is an improvement on TreeSHAP-int which
however does not estimate PD functions and instead only
estimates the differences ∆(S, k, x) in (5). While this ap-
proach reduces the complexity of estimating SHAP values
it does not allow us to efficiently extract estimates of the PD
functions.

In the following section, we propose FastPD which esti-
mates all PD functions at a similar complexity to Zern et al.
(2023). From this, the SHAP values and the complete func-
tional decomposition {mS | S ⊆ [d]} can be extracted with
practically no additional cost, providing a more complete
explanation of m.

3.2. FastPD Algorithm

x1 < 0

D∅ ← Dnb

x2 < 0

x1 < 0 ∧ x2 < 0

T1 = {x1, x2}
P1 = {D∅, D1, D2, D1,2}

x1 < 0 ∧ x2 ≥ 0

T2 = {x1, x2}
P2 = {D∅, D1, D2, D1,2}

x1 ≥ 0

T3 = {x1}
P3 = {D∅, D1}

D1 ← D∅
D∅ ← D∅[x1 < 0]

D1 ← D∅
D∅ ← D∅[x1 ≥ 0]

D2 ← D∅
D1,2 ← D1
D∅ ← D∅[x2 < 0]
D1 ← D1[x2 < 0]

D2 ← D∅
D1,2 ← D1
D∅ ← D∅[x2 ≥ 0]
D1 ← D1[x2 ≥ 0]

Figure 1. Augmentation step in FastPD. Augmentation entails
calculating sets D(j)

S which contain observations that would have
reached leaf j if splits on features in S were ignored. Starting from
the full background sample Dnb and setting D∅ ← Dnb , each
subsequent split creates new sets and updates existing ones. Here,
DS [xj < c] := {i ∈ DS : X

(i)
j < c}.

In this section, we introduce FastPD, which substantially

reduces the complexity of computing v̂S(xS) for an evalua-
tion point x compared with VanillaPD. It operates in two
main steps: (1) a tree augmentation step that precomputes
partial dependence information using the nb background
samples in Dnb

; and (2) an evaluation step that retrieves
partial dependence functions for any desired feature subsets
on ne evaluation points.

The naı̈ve estimator VanillaPD performs step 1 and step
2 for each evaluation point and background sample together,
which leads to a complexity of O(nenb) in the number of
the samples. The main observation used by FastPD is that
the two steps can be separated entirely by exploiting the tree
structure, thus resulting in a complexity of O(ne + nb). To
motivate the FastPD algorithm, we begin by noting that
a decision-tree m̂ can be expressed as a weighted sum of
indicator functions. More concretely, there exists L ∈ N,
c1, . . . , cL ∈ R and A1, . . . , AL ⊆ Rd such that for all
x ∈ X

m̂(x) =

L∑
j=1

cj1Aj
(x).

Furthermore, the leaves Aj are rectangles, such that for
each j ∈ [L], Aj := [aj1, bj1]× [aj2, bj2]× · · ·× [ajd, bjd]
determines the bounds of a leaf node in the tree. For all
S ⊆ [d] and j ∈ [L] define the bounds of features S on leaf
j as Aj(S) :=

∏
s∈S [ajs, bjs]. By substituting m with m̂

in (8) and simplifying, we obtain

v̂S(xS) =

L∑
j=1

cj 1Aj(S)(xS)︸ ︷︷ ︸
(i)

· P̂
(
XS ∈ Aj(S)

)︸ ︷︷ ︸
(ii)

, (9)

where P̂ denotes the empirical distribution of the
background data Dnb

, that is, P̂
(
XS ∈ Aj(S)

)
=

nb
−1

∑nb

i=1 1(X
(i)

S̄
∈ Aj(S)). The factor (i) in (9) iden-

tifies the leaves in which x would have landed if the splits
corresponding to S were ignored during traversal, while the
the factor (ii) in (9) represents the proportion of observa-
tions for which the features in S fall within the bounds of
the leaf.

A naı̈ve computation of (ii) in (9) loops over all observations
and checks whether the feature in S lie within Aj(S). The
idea of FastPD is to separate the computation of partial
dependence information on the background samples from
evaluating on evaluation points into two phases:

Augmentation (Algorithm 1): For each leaf j ∈ [L], we
identify the set of features Tj encountered along the path to
that leaf. For every subset S ⊆ Tj , we save a corresponding
list D(j)

S that contains the observations that would have
reached leaf j if splits on features in S were ignored. For
any sample i it follows that i ∈ D

(j)
S if and only if X(i)

S
∈

5

Fast Estimation of Partial Dependence Functions Using Trees

Aj(S). Consequently, factor (ii) in (9) can be computed
efficiently as the ratio |D(j)

S |/nb.

Evaluation (Algorithm 2, Appendix B): Once the tree is
augmented, the PD function v̂S(xS) at any fixed evaluation
point x and set S can be computed quickly. Due to the
augmentation step, every subset S ⊆ Tj has a corresponding
list D(j)

S saved in Pj on leaf j. To compute v̂S(xS) for a
point x and features S, we can first intersect S with the
tree’s split features to obtain a subset U of features that is
actively used by the tree. Afterwards, we traverse the tree
to every leaf j in which xU ∈ Aj(U).

The procedure guarantees that we arrive at the leaves j in
which the indicator (i) in (9) is equal to one. Once we are at
leaf j, we can compute the empirical probability (ii) in (9)
by counting the samples in D

(j)
Uj

where Uj = U ∩ Tj . Note

that D(j)
Uj

exists in Pj since Uj ⊆ Tj .

Lastly, because different subsets S may lead to the same U
when intersected with the split features, redundant computa-
tions are avoided by saving v̂U (xU) (see lines 3 and 22 in
Algorithm 2). For example, if the tree-depth is less than the
number of features, then U = ∅ may occur often and the
computed PD functions can be saved.

The consistency of FastPD follows from the consistency
of the empirical estimator (8) which it computes exactly. A
proof can be found in the Appendix.

3.2.1. COMPLEXITY OF FASTPD

The main reduction in complexity of FastPD stems from
separating the computation of the partial dependence infor-
mation on Dnb

from the evaluation on ne evaluation points,
which breaks a product into a sum.

To explicitly bound the algorithmic complexity of FastPD
we can proceed as follows. Let F be the number of unique
features the tree has split. It will always hold that F ≤ d
and usually the inequality is strict. We start at the tree root
with a list containing all observations and assign that to the
set S = ∅, these lists are recursively passed to the child
nodes. New lists DS∪{k} := DS are created for all S when
a new feature, k, is encountered on the path. This means
that the total number of lists to keep track of will be at
most 2F on each node if every split feature was unique. For
every node, every list incurs a maximum of nb operations,
yielding a very rough bound of O(2D+Fnb) for the worst-
case complexity of augmenting the whole tree. Once the tree
has been augmented, the complexity of traversing all nodes
is O(2D), and doing it for all 2F subsets and evaluation
points will result in a complexity of O(2D+Fne).

Thus, if D and therefore also F , are not too big – which usu-
ally is the case for gradient boosted trees as in as XGBoost

Algorithm 1 FastPD augmentation step. Nodes are in-
dexed by j, where lj and rj represent the indices of the left
and right child nodes, respectively. The feature used to split
at node j is denoted by dj , and tj is the split threshold and
vj the value.

input Tree structure = {v, l, r, t, d} and dataset Dnb

output Augmented data T = {Tj | j is leaf}, P = {Pj |
j is leaf}

1: function RECURSE (j, T, P)
2: if j is leaf then
3: Tj ← T
4: Pj ← P
5: return
6: end if
7: for all (S,DS) ∈ P do
8: if dj ∈ S then
9: Pyes ← Pyes ∪ {(S,DS)}

10: Pno ← Pno ∪ {(S,DS)}
11: else
12: Pyes ← Pyes ∪ {(S,DS [xdj

< tj])}
13: Pno ← Pno ∪ {(S,DS [xdj

≥ tj])}
14: end if
15: end for
16: Tnew ← T
17: if dj /∈ T then
18: Tnew ← T ∪ {dj}
19: for all (S,DS) ∈ P do
20: Pyes ← Pyes ∪ {(S ∪ {dj}, DS)}
21: Pno ← Pno ∪ {(S ∪ {dj}, DS)}
22: end for
23: end if
24: RECURSE(lj , Tnew, Pyes)
25: RECURSE(rj , Tnew, Pno)
26: end function
27: Initialize for all leaf nodes j: Tj ← ∅, Pj ← ∅

RECURSE(0, T = ∅, P = {(∅, Dnb
)})

(Chen & Guestrin, 2016) and LightGBM (Ke et al., 2017)
– even with a large number of features, the complexity of
computing the PD function for all subsets S is reduced. This
is because the PD functions are calculated separately for
every tree and then summed together. Hence for trees with
moderate depth D, the main complexity does not stem from
the number of subsets S ⊆ [d] for which vS needs to be
estimated, but in the traversal of all background samples for
every new point that needs to be explained. If n = nb = ne,
then both VanillaPD and TreeSHAP-int will scale
proportionally to n2. We hence gain a significant speed-up
by reusing the computed empirical probabilities at the leaves
whenever new points are explained.

Proposition 3.2 (Consistency of FastPD). Let m : X →
R be a bounded target function and PX a distribution

6

Fast Estimation of Partial Dependence Functions Using Trees

on X . Then, for a sequence of iid background samples
X(1), X(2), . . . ∼ PX , it holds for all S ⊆ [d] that
limnb→∞ v̂mS,nb

(xS) = vmS (xS) a.s., where v̂mS,nb
is the

estimate for vmS from FastPD applied with background
data Dnb

= {X(1), . . . , X(nb)}. Moreover, if m̂nb
is a

uniformly consistent estimate of m trained on Dnb
, i.e.,

limnb→∞ supx∈X |m̂nb
(x)−m(x)| = 0, a.s. then

lim
nb→∞

v̂
m̂nb

S,nb
(xS) = vmS (xS) a.s..

4. Experiments
We consider a supervised learning setup where training
data Dtrain

n := {(Y (i), X(i))}i∈[n] are iid sampled from a
distribution P with correlated features X(i). For all experi-
ments, an XGBoost estimator, m̂, was trained on Dtrain

n and
subsequently explained using the same training samples as
background data.

Specific simulation settings varied depending on the analy-
sis. For the inconsistency and MSE analyses (Figures 2, 3
and 5), we used d = 2 covariates sampled from a bivariate
Gaussian distribution with correlation 0.3 and variance of
1. XGBoost hyperparameters (nrounds ∈ {1, . . . , 1000},
eta ∈ [0.01, 0.3], max depth ∈ {2, . . . , 6}) were tuned
via 5-fold cross-validation with 50 random search evalua-
tions. For the runtime comparison (Figure 4), we used d = 7
covariates sampled from a multivariate Gaussian distribu-
tion (details in Appendix) and a single fixed XGBoost model
configuration with 20 trees and a maximum depth of D = 5.
All other hyperparameters were left as default, except for
eta, which was drawn uniformly from [0.01, 0.3].

All simulations were conducted on a dedicated compute
cluster (2 Intel Xeon Gold 6230 @ 2.1 GHz CPUs, 192 GB
RAM). Our implementation of the FastPD algorithm is
available as an R package on GitHub‡.

Inconsistency of TreeSHAP-path Figure 2 illustrates
the SHAP explanations of m̂ for X1 in 500 observations
of (Y,X) ∈ R× R2. We observe that TreeSHAP-path
inconsistently estimates the model SHAP obtained via the
model PD function. In contrast, FastPD, which estimates
the PD function based on the same 500 samples used as the
background data, is consistent and lies close to the model
SHAP. In the setting of Figure 2, X1 and X2 have a cor-
relation of 0.3 further correlations of 0, 0.1, and 0.7 are
considered in the Appendix.

Non-Decreasing MSE of TreeSHAP-path

Figure 3 depicts the mean squared errors (MSEs) of the
different methods when the model SHAP is taken as the
target. We observe that the MSE of TreeSHAP-path

‡R implementation of the FastPD algorithm: https://
github.com/PlantedML/glex

-3

0

3

6

-2 0 2

x1

ϕ
1
(x
)

TreeSHAP-path

-5

0

5

10

-2 0 2

x1

FastPD

Type Model SHAP Estimate

Figure 2. Comparison between FastPD (for SHAP) and
TreeSHAP-path on simulated data of two covariates with cor-
relation 0.3 and nb = 500 background samples that are also used
as evaluation points. For the two methods, the simulation run that
achieved the median MSE was selected. We see that the model
SHAP is captured well by the FastPD SHAP estimates (equiva-
lent to VanillaPD) which is not the case for TreeSHAP-path.

does not shrink with increasing number of background sam-
ples, whereas the MSE of FastPD decreases substantially,
demonstrating that it is consistent towards the model SHAP.
Lastly, we observe that accurate estimation might require
more than 100 background samples (The Python package
shap e.g. does not use more than 100 background samples).
In the setting of Figure 3 X1 and X2 have a correlation of
0.3 further correlations of 0 and 0.7 are considered in the Ap-
pendix. Notably even when the correlation is zero, FastPD
turns out to be more accurate then TreeSHAP-path. This
is because TreeSHAP-path does not leverage all infor-
mation available in the background samples whereby at each
inner node, it conditions on the path taken by the evaluation
point.

Comparison of Computational Runtime Figure 4 com-
pares the runtime of extracting the PD functions for all S
using FastPD with computing the interventional SHAP
values as implemented in the SHAP Python package. An
XGBoost model was pre-fitted with 20 trees and a max-
depth of 5 on a fixed dataset of 8 000 observations. The
number of background samples, nb, was selected to be
1 000, 2 000, . . . , 8 000. The same samples were used as
evaluation points. VanillaPD and TreeSHAP-int
scale quadratically in comparison to Zern et al. (2023) and
FastPD, which has a linear complexity in the number of
samples. While Zern et al. (2023) and FastPD have a
comparable runtime, FastPD calculates all PD functions
from which not only SHAP values but a complete functional
decomposition can be derived.

7

https://github.com/PlantedML/glex
https://github.com/PlantedML/glex

Fast Estimation of Partial Dependence Functions Using Trees

1e-05

1e-04

1e-03

1e-02

1e-01

500 5000

n

M
S
E

Method

FastPD

FastPD-500

FastPD-100

FastPD-50

TreeSHAP-int

TreeSHAP-path

Figure 3. Comparsion of Mean Squared Error (MSE) of
TreeSHAP versus FastPD over B = 100 simulations (log-
scale). Each boxplot summarizes the results of B = 100 in-
dependent simulation runs. In each run, an XGBoost model m̂
was trained using n observations, and the same training samples
were resampled as background data to estimate the partial depen-
dence (PD) function. For FastPD, different numbers of back-
ground samples were used: {50, 100, 500} for n = 500 and
{50, 100, 500, 5000} for n = 5000. SHAP values were esti-
mated using the training observations as evaluation points, and the
mean squared error (MSE) was computed as 1

n

∑n
i=1(ϕ1(x

(i))−
ϕ̂1(x

(i)))2, where ϕ1 denotes the model SHAP of feature X1.

Obtaining Functional Components The functional com-
ponents can be recovered from the estimated PD functions
via (4). Figure 5 compares m1(x1) from Example 2.2 with
the functional component computed using FastPD and
with the method proposed in Friedman (2001). The esti-
mate of FastPD lies close to the component m̂1(x1) as one
would have obtained via the model PD function, while the
path-dependent (Friedman, 2001) suffers in areas outside
the center. We also see that the component estimated by
FastPD-100 has a slope that is slightly off, which high-
lights the need to approximate the PD function with more
background samples. In the setting of Figure 5, X1 and X2

have a correlation of 0.3 and a setting with correlation of
0.7 is given in the Appendix.

5. Real Data Experiments
5.1. Comparison on Benchmark Datasets

OpenML-CTR23 and OpenML-CC18

We have conducted experiments on a significant number
of curated datasets in both regression and classification
settings. We used the OpenML-CTR23 (Fischer et al.,
2023) regression datasets and the OpenML-CC18 (Bis-
chl et al., 2021) classification datasets. In these experi-
ments, we explained the predictions of a XGBoost model
via functional decomposition as done in Figure 5. The hy-

Slope: 1.985

Slope (FastPD): 0.968

Slope (Zern et al.): 0.993

Slope: 0.8623

Slope: 2.0005

0.1

10.0

1000.0

1000 3000 5000

nb, ne

T
im

e
(s
)

Method

VanillaPD

TreeSHAP-int

FastPD

Zern et al.

TreeSHAP-path

Figure 4. Runtime in seconds (s) on log-log scale between
FastPD and other methods as a function of the number of back-
ground samples and evaluation points which are taken to be the
same. Measurements are the mean times over B = 100 runs
where an XGBoost model was fitted on the data with 20 trees
and a depth of 5 each. The mean times for nb = ne = 1000 are
(217s, 4.86s, 0.181s, 0.161s, 0.0157s) respectively and (13722s,
295s, 1.26s, 1.26s, 0.0899s) for nb = ne = 8000. The runtime
of TreeSHAP-path depends only on the number of evaluation
points ne.

perparameters nrounds ∈ {10, . . . , 200}, max depth
∈ {1, . . . , 5}, eta ∈ [0, 0.5], colsample bytree ∈
[0.5, 1] and subsample ∈ [0.5, 1] were tuned via random
search with 5-fold cross-validation over 100 random search
evaluations. For each dataset, we computed the following
measure of variable importance

Importance(m̂S) =
1

n

n∑
i=1

∣∣∣m̂S(X
(i)
S)

∣∣∣ . (10)

Components m̂S appearing in the top five of any
method (FastPD, FastPD-50, FastPD-100, or
Friedman-path) were compared in their importance
attributions. Taking FastPD as the reference, the path-
dependent algorithm exhibited relative differences exceed-
ing ±30% in 33 of the 96 datasets. Applying FastPD with
only 50 background samples (FastPD-50) reduced this to
18 datasets, and using 100 samples (FastPD-100) further
lowered it to just 9. The full attribution results for each
dataset are provided in the Appendix.

These experiments show that PD estimation accuracy im-
proves with larger background samples. Our results suggest
that a smaller background sample size may often suffice.
Ideally, one would leverage the full dataset to compute PD
functions; when this is not feasible, a practical strategy is
to subsample (e.g. nb = 100) and then checking whether
the resulting PD functions closely match those from a larger
sample (e.g. nb = 200). Such a comparison provides a

8

Fast Estimation of Partial Dependence Functions Using Trees

-3

0

3

6

-4 -2 0 2 4

x1

m
1
(x
)

Line

FastPD

FastPD-100

Friedman-path

Model m̂1(x)

Ground Truth m∗
1(x)

Figure 5. Comparison of estimated functional component m1 be-
tween FastPD and the path-dependent method of (Friedman,
2001) (Friedman-path). The components are extracted from
an XGBoost model trained on 5000 samples from the data-
generating distribution. The model component (m̂1, red line)
was computed by weighting the leaves using the true probabilities,
while the ground truth component (m∗, green line) was computed
analytically similar to Example 2.2.

simple yet effective check on the adequacy of the reduced
background set.

5.2. The Adult Dataset

A particularly illustrative additional example is the adult
dataset which contains data on whether an individual’s
income exceeds $50, 000 per year (Becker & Kohavi,
1996). We ran randomized grid search with 5-fold
CV to tune XGBoost hyperparameters (max depth ∈
{3, . . . , 7}, eta ∈ {0.01, 0.05, 0.1}, nrounds ∈
{100, 200, 300}, min child weight ∈ {1, 3, 5},
subsample ∈ {0.6, 0.8, 1.0}, colsample bytree ∈
{0.6, 0.8, 1.0}) over 25 trials. We then visualized the
age–relationship interaction component (Figure 6)
and noticed that FastPD and Friedman-path offered
conflicting interpretations: With FastPD, we notice that at
prime working age there is a slight positive effect on income
for husbands, while the effect is close to zero and/or slightly
negative for wives. In contrast, the path-dependent algo-
rithm Friedman-path estimates the effect to be zero for
both wives and husbands at working age; suggesting that
age has the same effect on a husband’s and wife’s income
in this range.

6. Discussion
In this paper, we have proposed FastPD, an algorithm that
consistently estimates model PD functions for tree-based
models m̂ with linear time complexity in the number of
observations. Under additional assumptions, it also consis-
tently estimates the ground truth PD function of the condi-

FastPD Friedman-path

25 50 75 25 50 75
-0.15

-0.10

-0.05

0.00

0.05

0.10

Age

m̂
a
g
e
,r
e
l Line

Husband

Wife

Figure 6. The component m̂age,rel identified by FastPD and
Friedman-path for the adult dataset. We see that FastPD
estimates a positive effect for husbands during the prime working
age, while Friedman-path estimates a zero effect for both hus-
bands and wives.

tional expectation m∗. One limitation of Algorithm 2 is its
space complexity, which increases with the number of lists
at each leaf. However, once the tree is augmented, storing
only the sample counts instead of the full lists can improve
memory usage, but this problem also motivates limiting
the tree depth. Fortunately, existing gradient boosting algo-
rithms such as XGBoost perform well with shallow trees§,
as increasing depth is likely to cause the model to overfit.

It is important to distinguish the model PD function from
the ground-truth PD function. If the target is the ground-
truth PD, our recommendation is to use FastPD as an
exploratory visualization tool, to be supplemented by semi-
parametric or doubly-robust estimators (Kennedy et al.,
2016; Chernozhukov et al., 2018).

Although FastPD can be used to recover functional com-
ponents of any order, in practice higher-order interaction
components may contribute negligibly; therefore one may
choose to truncate the intitial black-box model at the main
effects and pairwise interactions to improve interpretability.
Additionally one can report the average discrepancy be-
tween the truncated model and the initial black-box model.

Finally, if the target is the ground-truth PD, a key challenge
with PD-based explanations mentioned in Section 2.1 is that
they can be distorted by extrapolation outside the support
of PX . Future work should investigate strategies to limit or
correct for extrapolation, or consider alternative summaries
such as average local effects EPX

[∂
∂xj m(X)] (ALE) (Apley

& Zhu, 2020), which avoid these issues.
§XGBoost uses a default max depth of 6, warn-

ing that deeper trees may increase memory usage ag-
gressively: https://xgboost.readthedocs.io/en/
stable/parameter.html

9

https://xgboost.readthedocs.io/en/stable/parameter.html
https://xgboost.readthedocs.io/en/stable/parameter.html

Fast Estimation of Partial Dependence Functions Using Trees

Acknowledgments
Niklas Pfister was supported by a research grant (0069071)
from Novo Nordisk Fonden. Marvin Wright is supported by
the German Research Foundation (DFG) under the grants
437611051 and 459360854. Tessa Steensgaard and Munir
Hiabu are supported by the project framework InterAct.

Impact Statement
This paper contributes to the field of explainable AI (XAI)
by providing a novel algorithm, FastPD, for estimating
Partial Dependence (PD)-based explanations of tree-based
models. XAI is a critical field focused on making complex
machine learning models more transparent, trustworthy, and
accountable. Our work addresses a key challenge in XAI:
the need for computationally efficient methods that provide
consistent and comprehensive explanations. While methods
like SHAP are popular, some widely-used implementations
can yield inconsistent results, potentially undermining trust.
By enabling fast and consistent estimation of PD functions,
FastPD allows for more reliable application of PD-based
exaplanations, including SHAP and full functional decom-
positions. This enhanced reliability and the ability to disen-
tangle main effects from interactions contribute directly to
core XAI goals: fostering user trust, enabling robust model
debugging, facilitating the identification and mitigation of
bias for improved fairness, and supporting scientific discov-
ery by providing deeper insights into model behavior.

References
Adadi, A. and Berrada, M. Peeking Inside the Black-

Box: A Survey on Explainable Artificial Intelligence
(XAI). IEEE Access, 6:52138–52160, 2018. doi:
10.1109/ACCESS.2018.2870052.

Ancona, M., Oztireli, C., and Gross, M. Explaining
Deep Neural Networks with a Polynomial Time Algo-
rithm for Shapley Value Approximation. In Chaud-
huri, K. and Salakhutdinov, R. (eds.), Proceedings of
the 36th International Conference on Machine Learn-
ing, volume 97 of Proceedings of Machine Learn-
ing Research, pp. 272–281. PMLR, 09–15 Jun 2019.
URL https://proceedings.mlr.press/v97/
ancona19a.html.

Apley, D. W. and Zhu, J. Visualizing the effects of predictor
variables in black box supervised learning models. Jour-
nal of the Royal Statistical Society Series B: Statistical
Methodology, 82(4):1059–1086, 06 2020. ISSN 1369-
7412. URL https://doi.org/10.1111/rssb.
12377.

Becker, B. and Kohavi, R. Adult. UCI Ma-

chine Learning Repository, 1996. DOI:
https://doi.org/10.24432/C5XW20.

Bischl, B., Casalicchio, G., Feurer, M., Gijsbers, P., Hutter,
F., Lang, M., Mantovani, R. G., van Rijn, J. N., and
Vanschoren, J. Openml benchmarking suites, 2021. URL
https://arxiv.org/abs/1708.03731.

Bordt, S. and von Luxburg, U. From shapley values to
generalized additive models and back. In Ruiz, F., Dy,
J., and van de Meent, J.-W. (eds.), Proceedings of The
26th International Conference on Artificial Intelligence
and Statistics, volume 206 of Proceedings of Machine
Learning Research, pp. 709–745. PMLR, 25–27 Apr
2023. URL https://proceedings.mlr.press/
v206/bordt23a.html.

Chastaing, G., Gamboa, F., and Prieur, C. Generalized
Hoeffding-Sobol decomposition for dependent variables -
application to sensitivity analysis. Electronic Journal of
Statistics, 6:2420 – 2448, 2012. doi: 10.1214/12-EJS749.
URL https://doi.org/10.1214/12-EJS749.

Chen, H., Janizek, J. D., Lundberg, S., and Lee, S.-I. True
to the Model or True to the Data? arXiv preprint
arXiv:2006.16234, 2020.

Chen, T. and Guestrin, C. XGBoost: A Scalable Tree
Boosting System. In Krishnapuram, B. and Shah, M.
(eds.), Proceedings of the 22nd ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data
Mining, KDD ’16, pp. 785–794. ACM, 2016. ISBN
978-1-4503-4232-2. URL http://doi.acm.org/
10.1145/2939672.2939785.

Chernozhukov, V., Chetverikov, D., Demirer, M., Duflo, E.,
Hansen, C., Newey, W., and Robins, J. Double/debiased
machine learning for treatment and structural param-
eters. The Econometrics Journal, 21(1):C1–C68, 01
2018. ISSN 1368-4221. URL https://doi.org/
10.1111/ectj.12097.

Fischer, S. F., Feurer, L. H. M., and Bischl, B. OpenML-
CTR23 – a curated tabular regression benchmark-
ing suite. In AutoML Conference 2023 (Workshop),
2023. URL https://openreview.net/forum?
id=HebAOoMm94.

Friedman, J. H. Greedy Function Approximation: A Gra-
dient Boosting Machine. The Annals of Statistics, 29
(5):1189–1232, 2001. ISSN 00905364, 21688966. URL
http://www.jstor.org/stable/2699986.

Fumagalli, F., Muschalik, M., Hüllermeier, E., Hammer,
B., and Herbinger, J. Unifying feature-based explana-
tions with functional ANOVA and cooperative game

10

https://proceedings.mlr.press/v97/ancona19a.html
https://proceedings.mlr.press/v97/ancona19a.html
https://doi.org/10.1111/rssb.12377
https://doi.org/10.1111/rssb.12377
https://arxiv.org/abs/1708.03731
https://proceedings.mlr.press/v206/bordt23a.html
https://proceedings.mlr.press/v206/bordt23a.html
https://doi.org/10.1214/12-EJS749
http://doi.acm.org/10.1145/2939672.2939785
http://doi.acm.org/10.1145/2939672.2939785
https://doi.org/10.1111/ectj.12097
https://doi.org/10.1111/ectj.12097
https://openreview.net/forum?id=HebAOoMm94
https://openreview.net/forum?id=HebAOoMm94
http://www.jstor.org/stable/2699986

Fast Estimation of Partial Dependence Functions Using Trees

theory. In The 28th International Conference on Arti-
ficial Intelligence and Statistics, 2025. URL https:
//openreview.net/forum?id=tp3Aw6t0QF.

Harsanyi, J. C. A Simplified Bargaining Model for the
n-Person Cooperative Game. International Economic
Review, 4(2):194–220, 1963.

Hastie, T., Tibshirani, R., Friedman, J. H., and Friedman,
J. H. The Elements of Statistical Learning: Data Mining,
Inference, and Prediction, volume 2. Springer, 2009.

Herren, A. and Hahn, P. R. Statistical aspects of shap:
Functional anova for model interpretation. arXiv preprint
arXiv:2208.09970, 2022.

Hiabu, M., Meyer, J. T., and Wright, M. N. Unifying
local and global model explanations by functional de-
composition of low dimensional structures. In Ruiz,
F., Dy, J., and van de Meent, J.-W. (eds.), Proceed-
ings of the 26th International Conference on Artificial
Intelligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pp. 7040–7060. PMLR,
2023. URL https://proceedings.mlr.press/
v206/hiabu23a.html.

Hooker, G. Generalized Functional ANOVA Diagnostics
for High-Dimensional Functions of Dependent Variables.
Journal of Computational and Graphical Statistics, 16(3):
709–732, 2007. ISSN 10618600. URL http://www.
jstor.org/stable/27594267.

Janzing, D., Minorics, L., and Bloebaum, P. Feature rel-
evance quantification in explainable AI: A causal prob-
lem. In Chiappa, S. and Calandra, R. (eds.), Proceed-
ings of the 23rd International Conference on Artificial
Intelligence and Statistics, volume 108 of Proceedings
of Machine Learning Research, pp. 2907–2916. PMLR,
2020. URL https://proceedings.mlr.press/
v108/janzing20a.html.

Jethani, N., Sudarshan, M., Covert, I. C., Lee, S.-I., and Ran-
ganath, R. FastSHAP: Real-time shapley value estimation.
In International Conference on Learning Representations,
2022. URL https://openreview.net/forum?
id=Zq2G_VTV53T.

Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W.,
Ye, Q., and Liu, T.-Y. LightGBM: A highly efficient gra-
dient boosting decision tree. In Guyon, I., Luxburg, U. V.,
Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S.,
and Garnett, R. (eds.), Advances in Neural Information
Processing Systems, volume 30. Curran Associates, Inc.,
2017. URL https://proceedings.neurips.
cc/paper_files/paper/2017/file/
6449f44a102fde848669bdd9eb6b76fa-
Paper.pdf.

Kennedy, E. H., Ma, Z., McHugh, M. D., and Small, D. S.
Non-parametric methods for doubly robust estimation
of continuous treatment effects. Journal of the Royal
Statistical Society Series B: Statistical Methodology, 79
(4):1229–1245, 09 2016. ISSN 1369-7412. URL https:
//doi.org/10.1111/rssb.12212.

Lengerich, B., Tan, S., Chang, C.-H., Hooker, G., and
Caruana, R. Purifying Interaction Effects with the
Functional ANOVA: An Efficient Algorithm for Re-
covering Identifiable Additive Models. In Chiappa,
S. and Calandra, R. (eds.), Proceedings of the Twenty
Third International Conference on Artificial Intelligence
and Statistics, volume 108 of Proceedings of Machine
Learning Research, pp. 2402–2412. PMLR, 26–28 Aug
2020. URL https://proceedings.mlr.press/
v108/lengerich20a.html.

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin,
J. M., Nair, B., Katz, R., Himmelfarb, J., Bansal, N.,
and Lee, S.-I. From local explanations to global under-
standing with explainable AI for trees. Nature machine
intelligence, 2(1):56–67, 2020.

Molnar, C., Freiesleben, T., König, G., Herbinger, J.,
Reisinger, T., Casalicchio, G., Wright, M. N., and Bischl,
B. Relating the Partial Dependence Plot and Permuta-
tion Feature Importance to the Data Generating Process.
In Longo, L. (ed.), World Conference on Explainable
Artificial Intelligence, pp. 456–479. Springer, 2023.

Muschalik, M., Fumagalli, F., Hammer, B., and Hüllermeier,
E. Beyond TreeSHAP: Efficient Computation of Any-
Order Shapley Interactions for Tree Ensembles. In
Wooldridge, M., Dy, J., and Natarajan, S. (eds.), Pro-
ceedings of the 38th AAAI Conference on Artificial Intel-
ligence (Technical Track 13), pp. 14388–14396, 2024.

Rota, G.-C. On the foundations of combinatorial theory I.
Theory of Möbius functions. Zeitschrift für Wahrschein-
lichkeitstheorie und Verwandte Gebiet, pp. 340–368,
1964.

Stone, C. J. The Use of Polynomial Splines and Their Tensor
Products in Multivariate Function Estimation. The Annals
of Statistics, 22(1):118 – 171, 1994. doi: 10.1214/aos/
1176325361. URL https://doi.org/10.1214/
aos/1176325361.

Strumbelj, E. and Kononenko, I. An efficient explanation of
individual classifications using game theory. The Journal
of Machine Learning Research, 11:1–18, 2010.

Taufiq, M. F., Blöbaum, P., and Minorics, L. Manifold
Restricted Interventional Shapley Values. In Ruiz, F.,
Dy, J., and van de Meent, J.-W. (eds.), Proceedings

11

https://openreview.net/forum?id=tp3Aw6t0QF
https://openreview.net/forum?id=tp3Aw6t0QF
https://proceedings.mlr.press/v206/hiabu23a.html
https://proceedings.mlr.press/v206/hiabu23a.html
http://www.jstor.org/stable/27594267
http://www.jstor.org/stable/27594267
https://proceedings.mlr.press/v108/janzing20a.html
https://proceedings.mlr.press/v108/janzing20a.html
https://openreview.net/forum?id=Zq2G_VTV53T
https://openreview.net/forum?id=Zq2G_VTV53T
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
https://doi.org/10.1111/rssb.12212
https://doi.org/10.1111/rssb.12212
https://proceedings.mlr.press/v108/lengerich20a.html
https://proceedings.mlr.press/v108/lengerich20a.html
https://doi.org/10.1214/aos/1176325361
https://doi.org/10.1214/aos/1176325361

Fast Estimation of Partial Dependence Functions Using Trees

of the 26th International Conference on Artificial In-
telligence and Statistics, volume 206 of Proceedings
of Machine Learning Research, pp. 5079–5106. PMLR,
2023. URL https://proceedings.mlr.press/
v206/taufiq23a.html.

Wang, G., Chuang, Y.-N., Du, M., Yang, F., Zhou, Q.,
Tripathi, P., Cai, X., and Hu, X. Accelerating shap-
ley explanation via contributive cooperator selection.
In Chaudhuri, K., Jegelka, S., Song, L., Szepesvari,
C., Niu, G., and Sabato, S. (eds.), Proceedings of
the 39th International Conference on Machine Learn-
ing, volume 162 of Proceedings of Machine Learn-
ing Research, pp. 22576–22590. PMLR, 17–23 Jul
2022. URL https://proceedings.mlr.press/
v162/wang22b.html.

Yang, J. Fast TreeSHAP: Accelerating SHAP Value Compu-
tation for Trees. arXiv preprint arXiv:2006.16234, 2022.

Yu, P., Bifet, A., Read, J., and Xu, C. Linear tree
shap. In Koyejo, S., Mohamed, S., Agarwal, A.,
Belgrave, D., Cho, K., and Oh, A. (eds.), Advances
in Neural Information Processing Systems, vol-
ume 35, pp. 25818–25828. Curran Associates, Inc.,
2022. URL https://proceedings.neurips.
cc/paper_files/paper/2022/file/
a5a3b1ef79520b7cd122d888673a3ebc-
Paper-Conference.pdf.

Zern, A., Broelemann, K., and Kasneci, G. Interventional
SHAP Values and Interaction Values for Piecewise Linear
Regression Trees. In Williams, B., Chen, Y., and Neville,
J. (eds.), Proceedings of the 37th AAAI Conference on
Artificial Intelligence (Technical Track 9), pp. 11164–
11173, 2023.

12

https://proceedings.mlr.press/v206/taufiq23a.html
https://proceedings.mlr.press/v206/taufiq23a.html
https://proceedings.mlr.press/v162/wang22b.html
https://proceedings.mlr.press/v162/wang22b.html
https://proceedings.neurips.cc/paper_files/paper/2022/file/a5a3b1ef79520b7cd122d888673a3ebc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a5a3b1ef79520b7cd122d888673a3ebc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a5a3b1ef79520b7cd122d888673a3ebc-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/a5a3b1ef79520b7cd122d888673a3ebc-Paper-Conference.pdf

Fast Estimation of Partial Dependence Functions Using Trees

A. Additional Details on Simulations
In this section we provide additional details on the numerical experiments shown in Figures 2-5 in the main text. We first
state the two data generating processes (DGPs) we used in the experiments. Afterwards, we will give details on the figures
and specify which of the two DGPs has been used in each figure.

DGP 1: We consider the covariate distribution PX = N (0,Σ) with covariance matrix Σ =

(
1 0.3
0.3 1

)
and the target

function m : R2 −→ R is defined for all x ∈ R2 as

m(x) = x1 + x2 + 2x1x2.

We generate independent samples from (X,Y) by first sampling X ∼ PX and then Y ∼ N (m(X), 1).

DGP 2: We consider the covariate distribution PX = N (0,Σ) with Σ = 3 · I7 + 3
5 · J7, where I7 ∈ R7×7 denotes the

identity matrix and J7 ∈ R7×7 denotes the antidiagonal identity matrix (entries of ones going from lower left corner to
upper right corner, rest being zero). The target function m : R7 −→ R is defined for all x ∈ R7 by

m(x) = 3 sin(x1) + 2.5 cos(0.3x2) + 1.12x3 + sin(x4x5) + 0.7x6x7.

We generate independent samples from (X,Y) by first sampling X ∼ PX and then Y ∼ N (m(X), 0.1). In Figure 3, this
DGP is modified to have 6 additional covariates that are not used by the target function.

All numerical experiments were conducted using R-4.4.1 or Python-3.12 on a dedicated cluster with 2 Intel Xeon Gold
6302@2.1 GHz CPUs and 192 GB of memory. We modified the existing R package glex to compute the PD functions
using FastPD and the path-dependent algorithm – which is due to (Friedman, 2001) but also reproduced as Algorithm 1 in
(Lundberg et al., 2020). The code of the experiments can be found in the attached Git repository, codeforsimulations.
Finally, we used FastPD-100 to emulate the SHAP values that would have been computed by TreeSHAP-int since
they are equivalent.

A.1. Estimation Error Comparison - Figure 3

For this numerical experiment we generated iid datasets {(X(1), Y (1)), . . . , (X(n), Y (n))} over B = 100 repetitions with
sample sizes n = 500 and n = 5000 from DGP 1. Multiple XGBoost models (m̂n) were trained in each of the 100
repetitions with 5-fold cross-validation and their out-of-fold mean squared prediction error (MSPE) was computed. We ran
the cross-validation with random search and 50 evaluations to tune the hyperparameters: nrounds ∈ {1, 2, . . . , 1000} ,
eta ∈ [0.01, 0.3] and max depth ∈ {2, 3, . . . , 6}. Following optimization, the best hyperparameter configuration was
used to fit an XGBoost model on all n observations, and the SHAP value ϕ1 was estimated for all n observations using the
different methods. The n generated samples were also used as background samples. The SHAP MSEs were then computed
as 1

n

∑n
i=1(ϕ

m̂n
1 (X(i))− ϕ̂m̂n

1 (X(i)))2, where ϕ̂m̂n
1 is the estimate of the SHAP value ϕm̂n

1 for the target function m̂n for
each method.

A.1.1. ADDITIONAL SIMULATIONS ON FIGURE 3

We have furthermore conducted the same experiment with 8 covariates with pairwise correlation of 0 and 0.7, respectively.
We notice that TreeSHAP-path performs noticeably worse in high-correlation scenarios, while our FastPD method is
robust.

TreeSHAP-path can reliably estimate SHAP values when covariates are uncorrelated. However, its error remains higher
than FastPD because it does not leverage all available samples. At each inner node, it conditions on the path taken by the
evaluation point, significantly reducing the effective sample size. This effect is evident in the Figure 8 for n = 500.

A.2. Inconsistency of TreeSHAP-path - Figure 2

For this numerical experiment, we followed the same procedure as in Section A.1. We selected the repetition where
the MSE of FastPD matched its median MSE across all trials for the FastPD plot, and similarly, the repetition where
TreeSHAP-path had median MSE for its plot.

13

Fast Estimation of Partial Dependence Functions Using Trees

0.00001

0.00010

0.00100

0.01000

0.10000

500 5000
n

M
SE

Method

FastPD

FastPD-500

FastPD-100

FastPD-50

TreeSHAP-int

TreeSHAP-path

Figure 7. Reproduced Figure 3 with 8 covariates under the same target function as DGP 1, except that the covariates have a pairwise
correlation of 0.7.

0.00001

0.00100

0.10000

500 5000
n

M
SE

Method

FastPD

FastPD-500

FastPD-100

FastPD-50

TreeSHAP-int

TreeSHAP-path

Figure 8. Reproduced Figure 3 with 8 covariates under the same target function as DGP 1, except that the covariates are uncorrelated.

A.2.1. ADDITIONAL SIMULATIONS ON FIGURE 2

We also conducted the same experiment under DGP 2 with pairwise correlations of {0, 0.1, 0.3, 0.7}. The results indicate
that TreeSHAP-path produces biased estimates of Model SHAP, whereas FastPD does not.

A.3. Inconsistency of Friedman-path - Figure 5

For this numerical experiment we followed the same procedure as in Section A.1. We selected the single repetition for
which the MSE of the FastPDm1-component corresponded to the median MSE across all trials. In order to reproduce
the Friedman-path plot, we used the R package glex which provided the path-dependent functional decomposition
that was computed using the algorithm by Friedman (2001). Furthermore, we have modified the package to implement our
FastPD algorithm, which we then used to compute the functional decomposition for the FastPD plot.

A.3.1. ADDITIONAL SIMULATIONS ON FIGURE 5

We also conducted the same experiment under DGP 1 with pairwise correlations of 0.3 and 0.7. The median performing run
is shown in Figure 10. We see that FastPD performs well in estimating the model functional component but by doing so it
differs (and more so with increasing correlation) from the ground truth functional component.

14

Fast Estimation of Partial Dependence Functions Using Trees

-5

0

5

-2 0 2
x1

ϕ
1
(x
)

TreeSHAP-path corr = 0

-4

0

4

-2 0 2
x1

FastPD corr = 0

-4

0

4

8

-2 -1 0 1 2 3
x1

ϕ
1
(x
)

TreeSHAP-path corr = 0.1

-5

0

5

10

-2 0 2
x1

FastPD corr = 0.1

-3

0

3

6

-2 0 2
x1

ϕ
1
(x
)

TreeSHAP-path corr = 0.3

-5

0

5

10

-2 0 2
x1

FastPD corr = 0.3

0

5

10

-2 0 2 4
x1

ϕ
1
(x
)

TreeSHAP-path corr = 0.7

0

5

-2 -1 0 1 2 3
x1

FastPD corr = 0.7

Type Model SHAP Estimate

500 samples of 2 Gaussian covariates.
For each plot, the median result of that method with corresponding correlation is shown.

TreeSHAP-path vs FastPD for different correlation values

Figure 9. Reproduced Figure 2 with different pairwise correlations under DGP 2.

15

Fast Estimation of Partial Dependence Functions Using Trees

-2.5

0.0

2.5

-2 0 2
x1

E
st

im
at

ed
m

1
(x
)

Correlation = 0.3

-3

0

3

6

-4 -2 0 2
x1

E
st

im
at

ed
m

1
(x
)

Correlation = 0.7

Line FastPD FastPD-100 Friedman-path Model m1 Ground Truth m1

Figure 10. Plot of median FastPD and Friedman-path estimated component over 150 runs for correlations 0.3 and 0.7.

Figure 10 shows that in high-correlation settings the machine learning model can struggle to recover the true regression
function; consequently, even though FastPD accurately estimates the model component, it does not target the underlying
ground truth.

A.4. Runtime Comparison - Figure 4

For this numerical experiment, we generated a single dataset of size n = 8000 using DGP 2 and fitted an XGBoost model
with 20 trees and max-depth of 5, with the rest being the default XGBoost parameters. We performed no hyperparameter
tuning here as we only wish to examine the runtime when n is varied. Both the model m̂ and the dataset was saved, we then
evaluated the runtime as follows

1. For computing the functional components using FastPD: We implemented the algorithm in R (4.4.1) with Rcpp
bindings to compute the all PD functions using FastPD.

2. For computing the SHAP values using TreeSHAP-int: We used Python-3.12 and modified the shap package¶ to
compute the SHAP explanations for all features using arbitrary many background samples.

3. For computing the SHAP values using Zern et al. (2023): We used Python 3.12 and the pltreeshap package || to
compute the SHAP explanations for all features using arbitrary many background samples

4. For computing the SHAP values using VanillaPD: We wrote a simple script in Python 3.12 which repeatedly calls
the predict function of XGBoost on the synthetic samples created from the background samples and the evaluation
points, the predictions are then averaged to obtain the partial dependence functions.

For all k ∈ {1000, 2000, . . . , 8000}, we took a subset D of the original dataset of size k and used it both as background and
evaluation data (i.e., nb = nf = k). We then ran all methods 100 times to obtain SHAP values for ne evaluation points
using nb background samples.

B. Evaluation Algorithm
¶GitHub: https://github.com/shap/shap/
||GitHub: https://github.com/schufa-innovationlab/pltreeshap/tree/main

16

https://github.com/shap/shap/
https://github.com/schufa-innovationlab/pltreeshap/tree/main

Fast Estimation of Partial Dependence Functions Using Trees

Algorithm 2 FastPD evaluation step to calculate v̂S(xS). To be applied after augmenting the tree as in Algorithm 1.

input Query point x, feature set S, tree structure, path features T , path data P
output v̂S(xS) – PD-function evaluated on xS

1: U ← S ∩
(⋃

j Tj

)
2: if v̂U (xU) calculated before then
3: return v̂U (xU)
4: end if
5: function G(j)
6: if j is leaf then
7: Uj ← U ∩ Tj

8: Extract D(j)
Uj

from Pj

9: P̂ ← length(D(
Uj
j))/nb

10: return vj · P̂
11: end if
12: if dj ∈ U then
13: if xdj

≤ tj then
14: return G(lj)
15: else
16: return G(rj)
17: end if
18: else
19: return G(lj) + G(rj)
20: end if
21: end function
22: v̂U (xU)← G(1)
23: v̂S(xS)← v̂U (xU)

C. Proofs
C.1. Proof of Proposition 3.1

Proof. We show (i) and (ii) via an example, let PX be a distribution over X = (X1, X2) ∈ R2 such that

PX(X = x) =

500/2500 = 0.2 if x = (0, 0),

250/2500 = 0.1 if x = (0, 0.4),

250/2500 = 0.1 if x = (0.7, 0),

1500/2500 = 0.6 if x = (0.7, 0.4),

0 otherwise.

Next, assume nb = 2500 observations sampled from from PX . There is a non-zero probability that Dnb
satisfies

2500∑
i=1

1(X(i) = x) =

500 if x = (0, 0),

250 if x = (0, 0.4),

250 if x = (0.7, 0),

1500 if x = (0.7, 0.4)

0 otherwise.

We now consider two decision trees m̂A and m̂B as depicted in Figure 11. The leaves, going from left to right, are labeled
L1 to L4 and are identical for both trees, implying that they are functionally equivalent, i.e., m̂A(x) = m̂B(x) for all x.

17

Fast Estimation of Partial Dependence Functions Using Trees

x1 < 0.5

x2 < 0.3

L1: 500 L2: 250

x2 < 0.3

L3: 250 L4: 1500

(a) First Decision Tree m̂A

x2 < 0.3

x1 < 0.5

L1: 500 L3: 250

x1 < 0.5

L2: 250 L4: 1500

(b) Second Decision Tree m̂B

Figure 11. The two trees have the same leaves hence predict the same values, but their explanations differ when obtained via
TreeSHAP-path. The number on each leaf is the number of observations landing in that leaf. The left-branch is followed when the
split condition is true.

We first prove (i) by showing that their SHAP values differ when they are computed using the path-dependent algorithm on
Dnb

. Indeed, let x = (0.1, 0.2) be the observation to be explained and VN be the value of leaf N . We follow the left branch
if the split condition is satisfied. Assume that V1 = 10, V2 = −5, V3 = −5 and V4 = 10. In the following denote by ṽm̂

A

and ṽm̂
B

the estimates of the path-dependent PD functions (used in both TreeSHAP-path and Friedman-path). For
the first tree, ṽm̂

A

S (xS), using Dnb
equals

ṽm̂
A

∅ =
1

2500
(500 · V1 + 250 · V2 + 250 · V3 + 1500 · V4) = 7,

ṽm̂
A

1 (x1) =
1

750
(500 · V1 + 250 · V2) = 5,

ṽm̂
A

2 (x2) =
1

2500
(750 · V1 + 1750 · V3) = −0.5,

ṽm̂
A

1,2 (x1, x2) = V1 = 10.

For the second tree, ṽm̂
B

S (xS), using Dnb
equals

ṽm̂
B

∅ =
1

2500
(500 · V1 + 250 · V3 + 250 · V2 + 1500 · V4) = 7,

ṽm̂
B

1 (x1) =
1

2500
(750 · V1 + 1750 · V2) = −0.5,

ṽm̂
B

2 (x2) =
1

750
(500 · V1 + 250 · V3) = 5,

ṽm̂
B

1,2 (x1, x2) = V1 = 10.

Finally, the TreeSHAP-path estimates of the SHAP value for feature x1 in both trees are given as

ϕ̂m̂A

1 =
1

2
(ṽm̂

A

1,2 (x1, x2)− ṽm̂
A

2 (x2) + ṽm̂
A

1 (x1)− ṽm̂
A

∅) = 4.25,

ϕ̂m̂B

1 =
1

2
(ṽm̂

B

1,2 (x1, x2)− ṽm̂
B

2 (x2) + ṽm̂
B

1 (x1)− ṽm̂
B

∅) = −1.25.

The computed SHAP values not only differ but have opposite signs! We observe that for m̂A, feature x1 has a positive
attribution, whereas the attribution is negative for m̂B . We can also compute the empirical PD functions for both trees as
follows

v̂∅ =
1

2500
(500 · V1 + 250 · V2 + 250 · V3 + 1500 · V4) = 7,

v̂1(x1) =
1

2500
(750 · V1 + 1750 · V2) = −0.5,

v̂2(x2) =
1

2500
(750 · V1 + 1750 · V3) = −0.5,

v̂1,2(x1, x2) = V1 = 10.

18

Fast Estimation of Partial Dependence Functions Using Trees

And thus, the empirical SHAP estimate is given as

ϕ̂1 =
1

2
(v̂m̂

A

1,2 (x1, x2)− v̂m̂
A

2 (x2) + v̂m̂
A

1 (x1)− v̂m̂
A

∅) = 1.5,

which is the same for both m̂A and m̂B . Furthermore, by construction, the empirical SHAP estimate is equal to the
population SHAP value, ϕ̂1 = ϕm̂A

1 = ϕm̂B

1 .

We now show (ii). Let #LN denote the number of observations that fall in leaf N . The path-dependent approximations of
the PD functions for the first tree can be alternatively written as

ṽm̂
A

∅ =
1

nb
(#L1 · V1 +#L2 · V2 +#L3 · V3 +#L4 · V4) ,

ṽm̂
A

1 (x1) =
1

#L1 +#L2
(#L1 · V1 +#L2 · V2),

ṽm̂
A

2 (x2) =
1

nb
((#L1 +#L2) · V1 + (#L3 +#L4) · V3),

ṽm̂
A

1,2 (x1, x2) = V1 = 10.

By the strong law of large numbers it holds that #LN/nb
a.s.−→ PX(X ∈ LN) as nb −→ ∞, so therefore ṽm̂

A

∅
a.s.−→ 7 and

ṽm̂
A

2 (x2)
a.s.−→ −0.5. However, since (#L1 +#L2)/nb

a.s.−→ PX(X ∈ L1) + PX(X ∈ L2) we have the following

#L1

#L1 +#L2

a.s.−→ PX(X ∈ L1)

PX(X ∈ L1) + PX(X ∈ L2)
= 0.2/0.3 = 500/750,

#L2

#L1 +#L2

a.s.−→ PX(X ∈ L2)

PX(X ∈ L1) + PX(X ∈ L2)
= 0.1/0.3 = 250/750.

Hence ṽm̂
A

1 (x1)
a.s.−→ 5, implying that ϕ̂m̂A

1
a.s.−→ 4.25, which is not the same as the population SHAP, which was 1.5.

C.2. Proof of Proposition 3.2

Proof. First, observe that the PD function vmS (xS) = EPX
[m(xS , XS̄)] of m exists with respect to any S ⊆ [d] since m is

bounded.

For the first part of the statement, we fix S ⊆ [d]. Since FastPD exactly evaluates the empirical PD function, it holds for
all x ∈ X that

v̂mS,nb
(xS) =

1

nb

nb∑
i=1

m(xS , X
(i)

S
).

Therefore, since m is bounded the strong law of large numbers implies that

v̂mS,nb

a.s.−→ vmS (xS) for nb −→∞.

For the second part of the statement, again fix S ⊆ [d] and let m̂nb
be a uniformly consistent estimate of m trained on Dnb

observations. Then by applying the triangle inequality it readily follows for all x ∈ X that∣∣∣vm̂nb

S,nb
(xS)− vmS (xS)

∣∣∣ = ∣∣∣∣∣ 1nb

nb∑
i=1

m̂nb
(xS , X

(i)

S̄
)− EPX

[m(xS , XS̄)]

∣∣∣∣∣
=

∣∣∣∣∣ 1nb

nb∑
i=1

m̂nb
(xS , X

(i)

S̄
)− 1

nb

nb∑
i=1

m(xS , X
(i)

S̄
) +

1

nb

nb∑
i=1

m(xS , X
(i)

S̄
)− EPX

[m(xS , XS̄)]

∣∣∣∣∣
≤ 1

nb

nb∑
i=1

∣∣∣m̂nb
(xS , X

(i)

S̄
)−m(xS , X

(i)

S̄
)
∣∣∣+ ∣∣∣∣∣ 1nb

nb∑
i=1

m(xS , X
(i)

S̄
)− EPX

[m(xS , XS̄)]

∣∣∣∣∣
≤ 1

nb

nb∑
i=1

sup
x
|m̂nb

(x)−m(x)|+

∣∣∣∣∣ 1nb

nb∑
i=1

m(xS , X
(i)

S̄
)− EPX

[m(xS , XS̄)]

∣∣∣∣∣ a.s.−→ 0,

where the convergence follows from using uniform consistency of m̂nb
and the consistency of the empirical PD function

which follows from the strong law of large numbers as above.

19

Fast Estimation of Partial Dependence Functions Using Trees

D. Experiments on Real Data
D.1. Adult Dataset - Figure 6

To reproduce Figure 6, we used the Adult dataset where we first removed all observations with missing values and applied
ordinal encoding to every categorical feature. We then performed a randomized grid search (25 evaluations) with 5-fold
cross-validation to tune the following XGBoost hyperparameters:

max depth ∈ {3, 4, 5, 6, 7}, eta ∈ {0.01, 0.05, 0.1},
nrounds ∈ {100, 200, 300}, min child weight ∈ {1, 3, 5},
subsample ∈ {0.6, 0.8, 1.0}, colsample bytree ∈ {0.6, 0.8, 1.0}.

The best-performing model had the following hyperparameters:

subsample = 0.8, min child weight = 1,

max depth = 6, eta = 0.05,

colsample bytree = 0.6, nrounds = 100

D.2. FastPD vs Path-dependent (Regression)

We summarize the results of the experiments comparing FastPD with path-dependent methods in the regression setting
below. We used the OpenML-CTR23 Regression Task Collection, which contains 35 varied regression datasets. On each
dataset, we ran 5-fold cross-validation, tuning the following hyperparameters for the XGBoost model over 100 randomly
sampled settings:

max depth ∈ [1, 5], eta ∈ [0, 0.5],

nrounds ∈ [10, 200], colsample bytree ∈ [0.5, 1],

subsample ∈ [0.5, 1].

The best-performing model was then selected based on the cross-validated MSE, and used by FastPD, FastPD (50),
FastPD (100) and the path-dependent method (Friedman--path) to compute the functional components (see
Figure 5). We then applied the variable-importance measure for each component S as

Importance
(
m̂S

)
=

1

n

n∑
i=1

∣∣m̂S

(
X

(i)
S

)∣∣.
This enables us to rank the importance of each component. We present the importances of all components that were ranked
in the top five by any method for each dataset. Using FastPD as the reference method, the relative differences

Importance(other)− Importance(FastPD)

Importance(FastPD)

of each method with respect to FastPD are reported in parentheses. Finally, for each dataset we report in parentheses the
number of observations n, the feature dimension p and the maximum depth of the XGBoost model D. Note that FastPD
and the path-dependent method are trivially equivalent for those datasets where the tuned XGBoost model had D = 1.

20

Dataset Variable/Interaction FastPD
(Reference)

FastPD
(50)

FastPD
(100)

Path-
dependent

Moneyball (n: 1232, p: 15, D: 2) Intercept 713.8 694.4
(−2.7%)

715.5
(+0.2%)

713.8
(0%)

SLG 35.96 35.91
(−0.1%)

36.12
(+0.4%)

37.11
(+3.2%)

OBP 28.36 28.45
(+0.3%)

28.2
(−0.6%)

28.5
(+0.5%)

W 15.26 15.94
(+4.5%)

15.52
(+1.7%)

13.03
(−14.6%)

RA 10.95 11.05
(+0.9%)

11.4
(+4.1%)

10.51
(−4%)

QSAR_fish_toxicity (n: 908, p: 7, D: 5) Intercept 4.066 4.143
(+1.9%)

4.125
(+1.5%)

4.066
(0%)

MLOGP 0.4468 0.4085
(−8.6%)

0.4514
(+1%)

0.5795
(+29.7%)

SM1_Dz 0.4279 0.4339
(+1.4%)

0.4323
(+1%)

0.4099
(−4.2%)

GATS1i 0.2743 0.2865
(+4.4%)

0.2869
(+4.6%)

0.2568
(−6.4%)

CIC0 0.1907 0.1681
(−11.9%)

0.2047
(+7.3%)

0.1703
(−10.7%)

abalone (n: 4177, p: 9, D: 5) Intercept 9.934 10.08
(+1.5%)

10.17
(+2.4%)

9.934
(0%)

shell_weight 1.388 1.33
(−4.2%)

1.358
(−2.2%)

1.206
(−13.1%)

shucked_weight 1.26 1.349
(+7.1%)

1.311
(+4%)

0.8631
(−31.5%)

shucked_weight:whole_weight 0.8577 0.8526
(−0.6%)

0.8585
(+0.1%)

0.4454
(−48.1%)

whole_weight 0.7164 0.7108
(−0.8%)

0.6996
(−2.3%)

0.4368
(−39%)

airfoil_self_noise (n: 1503, p: 6, D: 5) Intercept 124.8 124.9
(+0.1%)

125.1
(+0.2%)

124.8
(0%)

frequency 3.335 3.389
(+1.6%)

3.554
(+6.6%)

2.734
(−18%)

displacement_thickness:frequency 2.985 2.841
(−4.8%)

2.719
(−8.9%)

2.521
(−15.5%)

chord_length:frequency 1.837 1.963
(+6.9%)

1.93
(+5.1%)

1.821
(−0.9%)

chord_length 1.678 1.637
(−2.4%)

1.998
(+19.1%)

1.543
(−8%)

auction_verification (n: 2043, p: 8, D: 5) Intercept 7337 7932
(+8.1%)

8331
(+13.5%)

7337
(0%)

process.b1.capacity 4712 5548
(+17.7%)

4625
(−1.8%)

4571
(−3%)

property.product.2 3318 3479
(+4.9%)

3374
(+1.7%)

4126
(+24.4%)

process.b1.capacity:property.product.2 2329 2642
(+13.4%)

2176
(−6.6%)

2627
(+12.8%)

property.product.6 2219 2029
(−8.6%)

1960
(−11.7%)

1667
(−24.9%)

brazilian_houses (n: 10692, p: 10, D: 1) Intercept 5487 5821
(+6.1%)

4867
(−11.3%)

5487
(0%)

hoa 1718 1791
(+4.2%)

1608
(−6.4%)

1718
(0%)

area 1320 1364
(+3.3%)

1282
(−2.9%)

1320
(0%)

bathroom 620.8 576.2
(−7.2%)

595
(−4.2%)

620.8
(0%)

furniture.not.furnished 312.1 336.5
(+7.8%)

314.8
(+0.9%)

312.1
(0%)

california_housing (n: 20640, p: 9, D: 5) Intercept 206800 207700
(+0.4%)

218700
(+5.8%)

206800
(0%)

latitude 93530 90120
(−3.6%)

90150
(−3.6%)

53530
(−42.8%)

latitude:longitude 82130 85870
(+4.6%)

83530
(+1.7%)

48730
(−40.7%)

Fast Estimation of Partial Dependence Functions Using Trees

21

longitude 75310 77420
(+2.8%)

80700
(+7.2%)

52040
(−30.9%)

medianIncome 42210 40590
(−3.8%)

43190
(+2.3%)

48430
(+14.7%)

cars (n: 804, p: 18, D: 5) Intercept 21330 19870
(−6.8%)

23490
(+10.1%)

21330
(0%)

Cylinder 2701 2688
(−0.5%)

3154
(+16.8%)

2869
(+6.2%)

Cadillac 2696 1775
(−34.2%)

3285
(+21.8%)

2604
(−3.4%)

Saab 2271 2251
(−0.9%)

2231
(−1.8%)

2406
(+5.9%)

Mileage 1166 1152
(−1.2%)

1213
(+4%)

1164
(−0.2%)

concrete_compressive_strength (n: 1030, p: 9, D: 4) Intercept 35.82 38.19
(+6.6%)

36.2
(+1.1%)

35.82
(0%)

age 8.087 8.365
(+3.4%)

7.96
(−1.6%)

7.641
(−5.5%)

cement 6.263 6.089
(−2.8%)

6.238
(−0.4%)

5.942
(−5.1%)

water 4.093 4.145
(+1.3%)

4.104
(+0.3%)

3.914
(−4.4%)

blast_furnace_slag 2.702 2.623
(−2.9%)

2.722
(+0.7%)

2.429
(−10.1%)

cps88wages (n: 28155, p: 7, D: 4) Intercept 604 546.8
(−9.5%)

628
(+4%)

604
(0%)

education 122.3 109
(−10.9%)

128.4
(+5%)

125.5
(+2.6%)

experience 119.3 121.1
(+1.5%)

123.8
(+3.8%)

114.5
(−4%)

parttime.yes 45.72 65.15
(+42.5%)

43.05
(−5.8%)

46.77
(+2.3%)

smsa.yes 36.99 33.19
(−10.3%)

39.36
(+6.4%)

37.16
(+0.5%)

cpu_activity (n: 8192, p: 22, D: 5) Intercept 83.97 83.81
(−0.2%)

84.37
(+0.5%)

83.97
(0%)

freeswap 5.133 4.076
(−20.6%)

4.725
(−7.9%)

5.126
(−0.1%)

vflt 2.359 2.58
(+9.4%)

2.325
(−1.4%)

3.304
(+40.1%)

scall 1.597 1.808
(+13.2%)

1.708
(+7%)

1.687
(+5.6%)

pflt 0.8853 0.9213
(+4.1%)

0.959
(+8.3%)

0.8976
(+1.4%)

diamonds (n: 53940, p: 10, D: 5) Intercept 3933 3949
(+0.4%)

4278
(+8.8%)

3933
(0%)

carat 2329 2322
(−0.3%)

2400
(+3%)

2250
(−3.4%)

y 1242 1351
(+8.8%)

1289
(+3.8%)

1616
(+30.1%)

clarity.VS2 407.1 418.2
(+2.7%)

374.4
(−8%)

300.5
(−26.2%)

clarity.VS1 363.3 303.3
(−16.5%)

294
(−19.1%)

274.3
(−24.5%)

x:y 308.6 363.6
(+17.8%)

421.5
(+36.6%)

129.2
(−58.1%)

carat:y 293.8 318.2
(+8.3%)

308.1
(+4.9%)

644.9
(+119.5%)

clarity.VVS1 243.8 410.6
(+68.4%)

248.8
(+2.1%)

181
(−25.8%)

energy_efficiency (n: 768, p: 9, D: 5) Intercept 22.31 21.34
(−4.3%)

22.67
(+1.6%)

22.31
(0%)

overall_height 10.07 10.05
(−0.2%)

10.56
(+4.9%)

8.534
(−15.3%)

glazing_area 2.17 2.326
(+7.2%)

2.044
(−5.8%)

2.164
(−0.3%)

overall_height:relative_compactness 1.592 1.585
(−0.4%)

1.386
(−12.9%)

1.6
(+0.5%)

Fast Estimation of Partial Dependence Functions Using Trees

22

relative_compactness 1.495 1.494
(−0.1%)

1.152
(−22.9%)

1.561
(+4.4%)

fifa (n: 19178, p: 29, D: 3) Intercept 9020 15910
(+76.4%)

9309
(+3.2%)

9020
(0%)

overall 7661 11650
(+52.1%)

7544
(−1.5%)

7775
(+1.5%)

skill_ball_control 884.3 955.9
(+8.1%)

1112
(+25.7%)

899.5
(+1.7%)

nationality_name.England 522.7 968.5
(+85.3%)

497.6
(−4.8%)

494.1
(−5.5%)

attacking_heading_accuracy 426.7 448.7
(+5.2%)

377.7
(−11.5%)

399.3
(−6.4%)

skill_dribbling 250.7 441.7
(+76.2%)

412.6
(+64.6%)

229.7
(−8.4%)

defending_standing_tackle 237.1 710.9
(+199.8%)

334.9
(+41.2%)

262.1
(+10.5%)

forest_fires (n: 517, p: 13, D: 2) Intercept 3.536 5.088
(+43.9%)

4.289
(+21.3%)

3.536
(0%)

temp 1.184 2.376
(+100.7%)

1.748
(+47.6%)

1.218
(+2.9%)

DMC 0.3103 0.3302
(+6.4%)

0.3246
(+4.6%)

0.2826
(−8.9%)

day.sat:temp 0.1736 0.1705
(−1.8%)

0.1967
(+13.3%)

0.1701
(−2%)

Y 0.1575 0.1124
(−28.6%)

0.1384
(−12.1%)

0.1575
(0%)

day.sat 0.1539 0.1403
(−8.8%)

0.1786
(+16%)

0.1499
(−2.6%)

fps_benchmark (n: 24624, p: 44, D: 4) Intercept 123.6 113
(−8.6%)

121.5
(−1.7%)

123.6
(0%)

GameSetting.max 15.59 15.16
(−2.8%)

15.67
(+0.5%)

15.59
(0%)

GameName.battlefield4 9.474 11.48
(+21.2%)

8.28
(−12.6%)

9.267
(−2.2%)

GameName.worldOfTanks 9.219 6.357
(−31%)

5.871
(−36.3%)

8.987
(−2.5%)

GameName.totalWar3Kingdoms 8.719 10.05
(+15.3%)

7.265
(−16.7%)

8.491
(−2.6%)

GameName.grandTheftAuto5 8.142 6.011
(−26.2%)

11.18
(+37.3%)

7.957
(−2.3%)

GpuNumberOfTransistors 7.022 6.575
(−6.4%)

7.271
(+3.5%)

8.611
(+22.6%)

GameName.apexLegends 6.837 16.53
(+141.8%)

9.649
(+41.1%)

6.594
(−3.6%)

GameName.destiny2 5.488 11.93
(+117.4%)

6.69
(+21.9%)

5.311
(−3.2%)

geographical_origin_of_music (n: 1059, p: 117, D: 4) Intercept 26.68 26.11
(−2.1%)

29.12
(+9.1%)

26.68
(0%)

V32 2.66 2.762
(+3.8%)

2.486
(−6.5%)

2.921
(+9.8%)

V92 2.016 2.229
(+10.6%)

2.013
(−0.1%)

1.627
(−19.3%)

V4 1.53 1.787
(+16.8%)

1.46
(−4.6%)

1.288
(−15.8%)

V90 1.392 1.287
(−7.5%)

1.311
(−5.8%)

1.469
(+5.5%)

V91 1.173 1.358
(+15.8%)

0.9099
(−22.4%)

1.141
(−2.7%)

grid_stability (n: 10000, p: 13, D: 5) Intercept 0.01574 0.01094
(−30.5%)

0.01687
(+7.2%)

0.01574
(0%)

tau2 0.01023 0.01183
(+15.6%)

0.009302
(−9.1%)

0.01034
(+1.1%)

tau4 0.01021 0.008786
(−13.9%)

0.008845
(−13.4%)

0.01017
(−0.4%)

tau3 0.01014 0.008657
(−14.6%)

0.0108
(+6.5%)

0.01014
(0%)

tau1 0.01008 0.01042
(+3.4%)

0.01186
(+17.7%)

0.01015
(+0.7%)

Fast Estimation of Partial Dependence Functions Using Trees

23

g3 0.009318 0.009932
(+6.6%)

0.009094
(−2.4%)

0.009422
(+1.1%)

g2 0.009225 0.00834
(−9.6%)

0.01086
(+17.7%)

0.009254
(+0.3%)

g4 0.009084 0.009958
(+9.6%)

0.009448
(+4%)

0.009025
(−0.6%)

health_insurance (n: 22272, p: 12, D: 5) Intercept 25.5 24.86
(−2.5%)

27.17
(+6.5%)

25.5
(0%)

whi.yes 8.041 8.252
(+2.6%)

7.856
(−2.3%)

8.687
(+8%)

experience 3.469 3.612
(+4.1%)

3.239
(−6.6%)

3.092
(−10.9%)

kidslt6 2.557 2.594
(+1.4%)

2.497
(−2.3%)

2.142
(−16.2%)

husby 1.637 1.711
(+4.5%)

1.434
(−12.4%)

1.636
(−0.1%)

kin8nm (n: 8192, p: 9, D: 5) Intercept 0.714 0.7176
(+0.5%)

0.7396
(+3.6%)

0.714
(0%)

theta3 0.1264 0.1068
(−15.5%)

0.1331
(+5.3%)

0.1253
(−0.9%)

theta5 0.05947 0.06424
(+8%)

0.05806
(−2.4%)

0.05835
(−1.9%)

theta4:theta7 0.04003 0.04405
(+10%)

0.03762
(−6%)

0.0403
(+0.7%)

theta4:theta6 0.03859 0.04127
(+6.9%)

0.03474
(−10%)

0.03879
(+0.5%)

theta6 0.03624 0.02494
(−31.2%)

0.04615
(+27.3%)

0.03586
(−1%)

theta7 0.03544 0.03077
(−13.2%)

0.04927
(+39%)

0.03534
(−0.3%)

kings_county (n: 21613, p: 22, D: 5) Intercept 540100 548000
(+1.5%)

586000
(+8.5%)

540100
(0%)

lat 106400 104800
(−1.5%)

109600
(+3%)

105700
(−0.7%)

sqft_living 64580 65630
(+1.6%)

67860
(+5.1%)

74220
(+14.9%)

grade 61040 59060
(−3.2%)

70030
(+14.7%)

75760
(+24.1%)

long 28700 27900
(−2.8%)

35610
(+24.1%)

27830
(−3%)

miami_housing (n: 13932, p: 16, D: 4) Intercept 399900 436400
(+9.1%)

410000
(+2.5%)

399900
(0%)

TOT_LVG_AREA 66800 69390
(+3.9%)

67920
(+1.7%)

82580
(+23.6%)

OCEAN_DIST 39470 42860
(+8.6%)

36060
(−8.6%)

48600
(+23.1%)

CNTR_DIST 37680 49020
(+30.1%)

42160
(+11.9%)

39730
(+5.4%)

SUBCNTR_DI 35880 37150
(+3.5%)

36230
(+1%)

34710
(−3.3%)

LONGITUDE 34240 37200
(+8.6%)

32940
(−3.8%)

25080
(−26.8%)

naval_propulsion_plant (n: 11934, p: 15, D: 5) Intercept 0.975 0.9752
(0%)

0.9745
(−0.1%)

0.975
(0%)

hp_turbine_exit_pressure 0.01705 0.01745
(+2.3%)

0.01698
(−0.4%)

0.007992
(−53.1%)

gt_compressor_outlet_air_temperature 0.01571 0.01587
(+1%)

0.0157
(−0.1%)

0.01388
(−11.6%)

gas_turbine_shaft_torque 0.005027 0.004993
(−0.7%)

0.005038
(+0.2%)

0.003613
(−28.1%)

gas_turbine_exhaust_gas_pressure 0.004985 0.005062
(+1.5%)

0.005043
(+1.2%)

0.003119
(−37.4%)

gt_compressor_outlet_air_temperature:hp_turbine_exit_pressure 0.003217 0.003212
(−0.2%)

0.003262
(+1.4%)

0.004906
(+52.5%)

physiochemical_protein (n: 45730, p: 10, D: 5) Intercept 7.749 6.979
(−9.9%)

7.72
(−0.4%)

7.749
(0%)

F6 5.889 5.986
(+1.6%)

5.691
(−3.4%)

3.806
(−35.4%)

Fast Estimation of Partial Dependence Functions Using Trees

24

F1:F6 5.288 5.187
(−1.9%)

5.25
(−0.7%)

2.762
(−47.8%)

F1 5.012 4.725
(−5.7%)

5.066
(+1.1%)

1.384
(−72.4%)

F6:F7 3.202 3.034
(−5.2%)

3.009
(−6%)

1.483
(−53.7%)

pumadyn32nh (n: 8192, p: 33, D: 5) tau4:theta5 0.0183 0.01843
(+0.7%)

0.01848
(+1%)

0.0183
(0%)

tau4 0.01223 0.01181
(−3.4%)

0.01267
(+3.6%)

0.01229
(+0.5%)

theta5 0.0009914 0.002607
(+163%)

0.003528
(+255.9%)

0.001023
(+3.2%)

theta3 0.00064460.0005413
(−16%)

0.0005821
(−9.7%)

0.0006446
(0%)

da5 0.00059790.0006811
(+13.9%)

0.0005471
(−8.5%)

0.0005952
(−0.5%)

tau1 0.00039740.0003712
(−6.6%)

0.0005881
(+48%)

0.0003911
(−1.6%)

Intercept -0.0003658−0.002458
(+572%)

−0.0001511
(−58.7%)

−0.0003658
(0%)

red_wine (n: 1599, p: 12, D: 5) Intercept 5.636 5.675
(+0.7%)

5.635
(0%)

5.636
(0%)

alcohol 0.2392 0.2238
(−6.4%)

0.2418
(+1.1%)

0.2608
(+9%)

sulphates 0.1847 0.2005
(+8.6%)

0.1901
(+2.9%)

0.1821
(−1.4%)

volatile_acidity 0.1125 0.1326
(+17.9%)

0.1058
(−6%)

0.1349
(+19.9%)

total_sulfur_dioxide 0.1119 0.1233
(+10.2%)

0.1221
(+9.1%)

0.09211
(−17.7%)

sarcos (n: 48933, p: 22, D: 5) V15 14.41 14.24
(−1.2%)

14.46
(+0.3%)

10.4
(−27.8%)

Intercept 13.66 14.2
(+4%)

14.06
(+2.9%)

13.66
(0%)

V1 4.656 4.739
(+1.8%)

4.823
(+3.6%)

3.965
(−14.8%)

V4 4.246 3.886
(−8.5%)

4.125
(−2.8%)

4.372
(+3%)

V18 3.735 3.858
(+3.3%)

3.556
(−4.8%)

3.261
(−12.7%)

socmob (n: 1156, p: 6, D: 3) counts_for_sons_first_occupation 18.73 15.01
(−19.9%)

19.92
(+6.4%)

18.32
(−2.2%)

Intercept 18.21 10.91
(−40.1%)

20.6
(+13.1%)

18.21
(0%)

counts_for_sons_first_occupation:sons_occupation.Manager 3.427 2.298
(−32.9%)

3.326
(−2.9%)

3.207
(−6.4%)

sons_occupation.Manager 2.875 1.611
(−44%)

3.047
(+6%)

2.704
(−5.9%)

race.white 2.812 2.402
(−14.6%)

3.054
(+8.6%)

2.812
(0%)

family_structure.nonintact 2.621 2.557
(−2.4%)

2.712
(+3.5%)

2.544
(−2.9%)

family_structure.nonintact:race.white 2.254 2.618
(+16.1%)

2.441
(+8.3%)

2.254
(0%)

solar_flare (n: 1066, p: 11, D: 1) Intercept 0.3031 0.3303
(+9%)

0.2313
(−23.7%)

0.3031
(0%)

class.E 0.1138 0.1201
(+5.5%)

0.09706
(−14.7%)

0.1138
(0%)

spot_distribution.I 0.07133 0.0777
(+8.9%)

0.05889
(−17.4%)

0.07133
(0%)

activity.2 0.05658 0.0545
(−3.7%)

0.05299
(−6.3%)

0.05658
(0%)

largest_spot_size.K 0.03674 0.04359
(+18.6%)

0.02733
(−25.6%)

0.03674
(0%)

space_ga (n: 3107, p: 7, D: 4) houses:pop 0.3214 0.318
(−1.1%)

0.3215
(0%)

0.1294
(−59.7%)

pop 0.3201 0.3209
(+0.2%)

0.3205
(+0.1%)

0.1387
(−56.7%)

Fast Estimation of Partial Dependence Functions Using Trees

25

houses 0.2858 0.3025
(+5.8%)

0.2819
(−1.4%)

0.1585
(−44.5%)

income 0.08183 0.07806
(−4.6%)

0.07767
(−5.1%)

0.04229
(−48.3%)

ycoord 0.07958 0.08196
(+3%)

0.07674
(−3.6%)

0.07708
(−3.1%)

education 0.07759 0.07654
(−1.4%)

0.08197
(+5.6%)

0.05881
(−24.2%)

Intercept -0.5762 −0.599
(+4%)

−0.5409
(−6.1%)

−0.5762
(0%)

student_performance_por (n: 649, p: 31, D: 3) Intercept 11.9 12.21
(+2.6%)

11.57
(−2.8%)

11.9
(0%)

failures 0.6817 0.6963
(+2.1%)

0.7445
(+9.2%)

0.7618
(+11.8%)

school.MS 0.4385 0.4249
(−3.1%)

0.4602
(+4.9%)

0.4582
(+4.5%)

higher.yes 0.2677 0.2676
(0%)

0.2621
(−2.1%)

0.2744
(+2.5%)

goout 0.2162 0.2076
(−4%)

0.2396
(+10.8%)

0.2112
(−2.3%)

Fedu 0.2105 0.195
(−7.4%)

0.2354
(+11.8%)

0.2159
(+2.6%)

studytime 0.2069 0.2611
(+26.2%)

0.2139
(+3.4%)

0.2157
(+4.3%)

superconductivity (n: 21263, p: 82, D: 5) Intercept 34.41 37.6
(+9.3%)

37.28
(+8.3%)

34.41
(0%)

range_ThermalConductivity 8.706 10.24
(+17.6%)

9.074
(+4.2%)

12.6
(+44.7%)

range_atomic_radius 5.834 6.994
(+19.9%)

6.612
(+13.3%)

10.07
(+72.6%)

wtd_gmean_Valence 5.257 5.338
(+1.5%)

5.441
(+3.5%)

4.771
(−9.2%)

range_atomic_radius:wtd_gmean_Valence 3.253 3.765
(+15.7%)

3.044
(−6.4%)

2.433
(−25.2%)

wtd_mean_ThermalConductivity 2.174 1.663
(−23.5%)

2.248
(+3.4%)

3.025
(+39.1%)

video_transcoding (n: 68784, p: 19, D: 5) Intercept 9.996 13.3
(+33.1%)

8.713
(−12.8%)

9.996
(0%)

o_height 7.135 8.856
(+24.1%)

7.088
(−0.7%)

7.133
(0%)

o_codec.h264 6.294 9.064
(+44%)

5.311
(−15.6%)

5.611
(−10.9%)

o_codec.h264:o_height 5.193 6.577
(+26.7%)

4.903
(−5.6%)

4.649
(−10.5%)

o_bitrate:o_codec.h264 2.71 3.967
(+46.4%)

2.417
(−10.8%)

2.647
(−2.3%)

wave_energy (n: 72000, p: 49, D: 4) Intercept 3760000 3754000
(−0.2%)

3740000
(−0.5%)

3760000
(0%)

energy4 23350 25030
(+7.2%)

23670
(+1.4%)

23620
(+1.2%)

energy3 23100 22790
(−1.3%)

22490
(−2.6%)

22170
(−4%)

energy9 23030 23490
(+2%)

23520
(+2.1%)

22100
(−4%)

energy7 22980 23420
(+1.9%)

23150
(+0.7%)

22150
(−3.6%)

energy12 22730 22310
(−1.8%)

23030
(+1.3%)

22170
(−2.5%)

energy15 22650 22340
(−1.4%)

22700
(+0.2%)

22640
(0%)

energy10 22640 22440
(−0.9%)

21820
(−3.6%)

22570
(−0.3%)

energy14 22500 22620
(+0.5%)

23320
(+3.6%)

21270
(−5.5%)

energy5 22370 23210
(+3.8%)

23710
(+6%)

22060
(−1.4%)

white_wine (n: 4898, p: 12, D: 5) Intercept 5.878 5.844
(−0.6%)

5.89
(+0.2%)

5.878
(0%)

Fast Estimation of Partial Dependence Functions Using Trees

26

alcohol 0.2482 0.2618
(+5.5%)

0.2396
(−3.5%)

0.2358
(−5%)

density 0.1564 0.1409
(−9.9%)

0.1628
(+4.1%)

0.1123
(−28.2%)

residual_sugar 0.1461 0.1617
(+10.7%)

0.1613
(+10.4%)

0.1179
(−19.3%)

volatile_acidity 0.1275 0.1271
(−0.3%)

0.1218
(−4.5%)

0.1296
(+1.6%)

free_sulfur_dioxide 0.1137 0.1274
(+12%)

0.1416
(+24.5%)

0.113
(−0.6%)

Fast Estimation of Partial Dependence Functions Using Trees

27

Fast Estimation of Partial Dependence Functions Using Trees

D.3. FastPD vs Path-dependent (Classification)

For the classification experiments, we utilized the OpenML-CC18 Task Collection. The experimental procedure, including
5-fold cross-validation and XGBoost hyperparameter tuning, mirrored that of the regression setting. However, datasets with
over 500 features were excluded since they primarily were image-based datasets.

For multiclass problems (where the number of classes K > 2), the default approach of XGBoost involves training K separate
binary classification models (f̂k), each outputting a raw score and distinguishing one class from the rest (one-vs-rest). The
interpretability methods were then applied to the sum of these raw scores, f̂ =

∑K
k=1 f̂k.

28

Dataset Variable/Interaction FastPD
(Reference)

FastPD
(50)

FastPD
(100)

Path-
dependent

GesturePhaseSegmentationProcessed (n: 9873, p: 33, D: 5) X26 0.5959 0.6367
(+6.8%)

0.616
(+3.4%)

0.5459
(−8.4%)

X28 0.5427 0.6583
(+21.3%)

0.5467
(+0.7%)

0.5737
(+5.7%)

X5 0.3939 0.5222
(+32.6%)

0.5049
(+28.2%)

0.3717
(−5.6%)

X25 0.371 0.4044
(+9%)

0.324
(−12.7%)

0.324
(−12.7%)

X11 0.3238 0.3388
(+4.6%)

0.3537
(+9.2%)

0.3915
(+20.9%)

Intercept -3.879 −3.606
(−7%)

−4.097
(+5.6%)

−3.879
(0%)

MiceProtein (n: 1080, p: 78, D: 2) SOD1_N 1.752 1.784
(+1.8%)

1.792
(+2.3%)

1.875
(+7%)

pCAMKII_N 1.226 1.307
(+6.6%)

1.303
(+6.3%)

1.196
(−2.4%)

GluR3_N 1.059 1.062
(+0.3%)

1.05
(−0.8%)

0.9862
(−6.9%)

BRAF_N 1.057 1.121
(+6.1%)

1.06
(+0.3%)

1.047
(−0.9%)

CaNA_N 0.9413 1.015
(+7.8%)

0.9779
(+3.9%)

1.031
(+9.5%)

Intercept -25.18 −24.91
(−1.1%)

−24.92
(−1%)

−25.18
(0%)

PhishingWebsites (n: 11055, p: 31, D: 5) URL_of_Anchor.0 3.328 3.581
(+7.6%)

3.313
(−0.5%)

3.187
(−4.2%)

SSLfinal_State.1 3.044 3.45
(+13.3%)

3.026
(−0.6%)

3.991
(+31.1%)

URL_of_Anchor.1 2.665 2.351
(−11.8%)

2.615
(−1.9%)

2.373
(−11%)

URL_of_Anchor.0:URL_of_Anchor.1 1.646 1.353
(−17.8%)

1.705
(+3.6%)

1.642
(−0.2%)

Intercept 0.07477 0.4047
(+441.3%)

−0.9864
(−1419.2%)

0.07477
(0%)

adult (n: 48842, p: 15, D: 5) age 0.7777 0.8597
(+10.5%)

0.7766
(−0.1%)

0.8176
(+5.1%)

capital.gain 0.6253 0.4404
(−29.6%)

0.5037
(−19.4%)

0.6606
(+5.6%)

marital.status.Never.married 0.6014 0.6082
(+1.1%)

0.6356
(+5.7%)

0.6055
(+0.7%)

education.num 0.3952 0.3975
(+0.6%)

0.3989
(+0.9%)

0.4742
(+20%)

Intercept -2.074 −2.7
(+30.2%)

−2.572
(+24%)

−2.074
(0%)

analcatdata_authorship (n: 841, p: 71, D: 1) the 1.519 1.514
(−0.3%)

1.525
(+0.4%)

1.519 (0%)

was 1.326 1.37
(+3.3%)

1.325
(−0.1%)

1.326 (0%)

her 1.1 1.102
(+0.2%)

1.11
(+0.9%)

1.1 (0%)

should 0.8523 0.8532
(+0.1%)

0.837
(−1.8%)

0.8523
(0%)

Intercept -8.48 −8.531
(+0.6%)

−8.648
(+2%)

−8.48 (0%)

analcatdata_dmft (n: 797, p: 5, D: 1) Intercept 0.4323 0.5592
(+29.4%)

0.3711
(−14.2%)

0.4323
(0%)

Ethnic.White 0.2147 0.2171
(+1.1%)

0.2132
(−0.7%)

0.2147
(0%)

Ethnic.Dark 0.119 0.1117
(−6.1%)

0.1234
(+3.7%)

0.119 (0%)

DMFT.Begin.4 0.03935 0.05373
(+36.5%)

0.03803
(−3.4%)

0.03935
(0%)

DMFT.End.5 0.03664 0.03443
(−6%)

0.0418
(+14.1%)

0.03664
(0%)

balance-scale (n: 625, p: 5, D: 2) left.distance 0.9896 1.081
(+9.2%)

1.005
(+1.6%)

0.9896
(0%)

Fast Estimation of Partial Dependence Functions Using Trees

29

right.weight 0.5251 0.4571
(−12.9%)

0.55
(+4.7%)

0.5251
(0%)

right.distance:right.weight 0.4602 0.4382
(−4.8%)

0.4897
(+6.4%)

0.4602
(0%)

left.distance:right.distance 0.441 0.4379
(−0.7%)

0.4528
(+2.7%)

0.441 (0%)

Intercept -2.739 −2.546
(−7%)

−2.742
(+0.1%)

−2.739
(0%)

bank-marketing (n: 45211, p: 17, D: 5) Intercept 4.181 4.418
(+5.7%)

4.298
(+2.8%)

4.181 (0%)

V12 1.257 1.272
(+1.2%)

1.232
(−2%)

1.287
(+2.4%)

V9.unknown 0.5507 0.3857
(−30%)

0.669
(+21.5%)

0.6991
(+26.9%)

V11.may 0.3244 0.3225
(−0.6%)

0.3487
(+7.5%)

0.2573
(−20.7%)

V12:V9.unknown 0.2655 0.2475
(−6.8%)

0.2858
(+7.6%)

0.308
(+16%)

V10 0.2515 0.2542
(+1.1%)

0.169
(−32.8%)

0.1644
(−34.6%)

banknote-authentication (n: 1372, p: 5, D: 2) V1 5.331 5.392
(+1.1%)

5.242
(−1.7%)

5.306
(−0.5%)

V2 4.571 4.732
(+3.5%)

4.696
(+2.7%)

4.399
(−3.8%)

V3 4.31 4.305
(−0.1%)

4.218
(−2.1%)

3.78
(−12.3%)

Intercept 2.143 1.427
(−33.4%)

3.174
(+48.1%)

2.143 (0%)

V2:V3 0.8987 0.8774
(−2.4%)

0.8531
(−5.1%)

0.8824
(−1.8%)

blood-transfusion-service-center (n: 748, p: 5, D: 1) Intercept 1.907 2.078
(+9%)

1.9
(−0.4%)

1.907 (0%)

V1 0.6442 0.6441
(0%)

0.6447
(+0.1%)

0.6442
(0%)

V2 0.4394 0.4455
(+1.4%)

0.4422
(+0.6%)

0.4394
(0%)

V4 0.3667 0.4028
(+9.8%)

0.3913
(+6.7%)

0.3667
(0%)

V3 0.156 0.1566
(+0.4%)

0.1576
(+1%)

0.156 (0%)

breast-w (n: 699, p: 10, D: 1) Intercept 2.177 1.714
(−21.3%)

1.977
(−9.2%)

2.177 (0%)

Bare_Nuclei 1.122 1.147
(+2.2%)

1.139
(+1.5%)

1.122 (0%)

Cell_Size_Uniformity 0.879 0.9123
(+3.8%)

0.8931
(+1.6%)

0.879 (0%)

Clump_Thickness 0.6338 0.5865
(−7.5%)

0.6205
(−2.1%)

0.6338
(0%)

Cell_Shape_Uniformity 0.6229 0.6393
(+2.6%)

0.627
(+0.7%)

0.6229
(0%)

Bland_Chromatin 0.5479 0.5897
(+7.6%)

0.5402
(−1.4%)

0.5479
(0%)

car (n: 1728, p: 7, D: 5) lug_boot.big 1.925 1.703
(−11.5%)

1.762
(−8.5%)

1.741
(−9.6%)

buying.low 1.324 1.01
(−23.7%)

1.259
(−4.9%)

1.324 (0%)

maint.low 1.282 1.389
(+8.3%)

1.156
(−9.8%)

1.253
(−2.3%)

buying.med 1.274 1.551
(+21.7%)

1.415
(+11.1%)

1.364
(+7.1%)

maint.med 1.097 1.179
(+7.5%)

1.15
(+4.8%)

1.041
(−5.1%)

doors.5more 1.029 1.051
(+2.1%)

1.16
(+12.7%)

0.9159
(−11%)

Intercept -10.95 −10.85
(−0.9%)

−11.23
(+2.6%)

−10.95
(0%)

churn (n: 5000, p: 21, D: 5) Intercept 3.316 3.108
(−6.3%)

3.528
(+6.4%)

3.316 (0%)

Fast Estimation of Partial Dependence Functions Using Trees

30

total_day_charge 0.4751 0.5453
(+14.8%)

0.3872
(−18.5%)

0.4808
(+1.2%)

international_plan.1 0.3634 0.3857
(+6.1%)

0.314
(−13.6%)

0.3752
(+3.2%)

international_plan.1:total_intl_calls 0.2522 0.3301
(+30.9%)

0.2674
(+6%)

0.2373
(−5.9%)

number_customer_service_calls.4 0.226 0.2262
(+0.1%)

0.1725
(−23.7%)

0.2172
(−3.9%)

total_intl_calls 0.1968 0.2782
(+41.4%)

0.2155
(+9.5%)

0.1921
(−2.4%)

number_customer_service_calls.5 0.1169 0.2977
(+154.7%)

0.1737
(+48.6%)

0.1203
(+2.9%)

climate-model-simulation-crashes (n: 540, p: 19, D: 2) vconst_corr 1.001 0.8937
(−10.7%)

1.028
(+2.7%)

1.002
(+0.1%)

vconst_2 0.9663 0.9107
(−5.8%)

1.023
(+5.9%)

0.9713
(+0.5%)

convect_corr 0.7112 0.6609
(−7.1%)

0.7399
(+4%)

0.7023
(−1.3%)

bckgrnd_vdc1 0.4785 0.4181
(−12.6%)

0.4985
(+4.2%)

0.4794
(+0.2%)

vconst_2:vconst_corr 0.4772 0.465
(−2.6%)

0.4816
(+0.9%)

0.4773
(0%)

Intercept -3.572 −3.997
(+11.9%)

−3.505
(−1.9%)

−3.572
(0%)

cmc (n: 1473, p: 10, D: 3) Intercept 0.2812 0.311
(+10.6%)

0.2435
(−13.4%)

0.2812
(0%)

Number_of_children_ever_born 0.1651 0.1626
(−1.5%)

0.1678
(+1.6%)

0.1881
(+13.9%)

Wifes_education.4 0.1497 0.1467
(−2%)

0.1324
(−11.6%)

0.135
(−9.8%)

Wifes_education.3 0.1123 0.1067
(−5%)

0.1117
(−0.5%)

0.1051
(−6.4%)

Wifes_age 0.1016 0.1022
(+0.6%)

0.1076
(+5.9%)

0.08719
(−14.2%)

connect-4 (n: 67557, p: 43, D: 5) g1.1 0.3457 0.405
(+17.2%)

0.3575
(+3.4%)

0.3156
(−8.7%)

a1.1 0.3032 0.2637
(−13%)

0.2406
(−20.6%)

0.2835
(−6.5%)

c2.2 0.1752 0.1971
(+12.5%)

0.161
(−8.1%)

0.1605
(−8.4%)

d1.2 0.1502 0.1682
(+12%)

0.1451
(−3.4%)

0.1834
(+22.1%)

d2.1 0.1377 0.1346
(−2.3%)

0.1748
(+26.9%)

0.1006
(−26.9%)

Intercept -0.6306 −0.7717
(+22.4%)

−0.3145
(−50.1%)

−0.6306
(0%)

credit-approval (n: 690, p: 16, D: 2) A9.f 1.606 1.64
(+2.1%)

1.62
(+0.9%)

1.71
(+6.5%)

A15 0.489 0.4922
(+0.7%)

0.5052
(+3.3%)

0.5344
(+9.3%)

A8 0.338 0.3257
(−3.6%)

0.3255
(−3.7%)

0.351
(+3.8%)

A11 0.2694 0.2514
(−6.7%)

0.2939
(+9.1%)

0.3002
(+11.4%)

Intercept 0.1466 0.1272
(−13.2%)

−0.02637
(−118%)

0.1466
(0%)

credit-g (n: 1000, p: 21, D: 4) Intercept 1.708 1.481
(−13.3%)

1.744
(+2.1%)

1.708 (0%)

checking_status.no.checking 0.6726 0.7092
(+5.4%)

0.6742
(+0.2%)

0.7091
(+5.4%)

duration 0.3661 0.3567
(−2.6%)

0.3834
(+4.7%)

0.3751
(+2.5%)

credit_amount 0.3079 0.3182
(+3.3%)

0.3174
(+3.1%)

0.2982
(−3.2%)

credit_history.critical.other.existing.credit 0.2568 0.2282
(−11.1%)

0.2725
(+6.1%)

0.2447
(−4.7%)

credit_amount:duration 0.2043 0.251
(+22.9%)

0.2353
(+15.2%)

0.1479
(−27.6%)

Fast Estimation of Partial Dependence Functions Using Trees

31

cylinder-bands (n: 540, p: 38, D: 5) press_speed 0.4623 0.4539
(−1.8%)

0.4728
(+2.3%)

0.4688
(+1.4%)

ink_pct 0.3341 0.3537
(+5.9%)

0.3564
(+6.7%)

0.3298
(−1.3%)

ESA_Voltage 0.3306 0.3192
(−3.4%)

0.3274
(−1%)

0.3402
(+2.9%)

press_type.woodhoe70 0.2944 0.2937
(−0.2%)

0.3007
(+2.1%)

0.2755
(−6.4%)

solvent_pct 0.2894 0.2708
(−6.4%)

0.2735
(−5.5%)

0.285
(−1.5%)

Intercept -0.4583 −0.0698
(−84.8%)

−0.3707
(−19.1%)

−0.4583
(0%)

diabetes (n: 768, p: 9, D: 1) Intercept 1.378 1.536
(+11.5%)

1.231
(−10.7%)

1.378 (0%)

plas 0.7336 0.7202
(−1.8%)

0.7339
(0%)

0.7336
(0%)

mass 0.5288 0.5546
(+4.9%)

0.5056
(−4.4%)

0.5288
(0%)

age 0.3541 0.3525
(−0.5%)

0.352
(−0.6%)

0.3541
(0%)

pedi 0.1807 0.1833
(+1.4%)

0.1787
(−1.1%)

0.1807
(0%)

dna (n: 3186, p: 181, D: 5) A92 0.9427 0.9694
(+2.8%)

0.9219
(−2.2%)

1.137
(+20.6%)

A84 0.51 0.4448
(−12.8%)

0.5111
(+0.2%)

0.6598
(+29.4%)

A89 0.488 0.4886
(+0.1%)

0.5167
(+5.9%)

0.8322
(+70.5%)

A93 0.4782 0.4644
(−2.9%)

0.3591
(−24.9%)

0.4856
(+1.5%)

A95 0.4725 0.4878
(+3.2%)

0.4933
(+4.4%)

0.4948
(+4.7%)

A94 0.4435 0.4833
(+9%)

0.447
(+0.8%)

0.453
(+2.1%)

Intercept -3.09 −2.91
(−5.8%)

−3.245
(+5%)

−3.09 (0%)

dresses-sales (n: 500, p: 13, D: 1) Intercept 0.7038 0.8286
(+17.7%)

0.7303
(+3.8%)

0.7038
(0%)

V6.Spring 0.2741 0.2489
(−9.2%)

0.2785
(+1.6%)

0.2741
(0%)

V10.rayon 0.1774 0.1663
(−6.3%)

0.1842
(+3.8%)

0.1774
(0%)

V10.cotton 0.1542 0.1557
(+1%)

0.1546
(+0.3%)

0.1542
(0%)

V8.short 0.126 0.1367
(+8.5%)

0.1246
(−1.1%)

0.126 (0%)

electricity (n: 45312, p: 9, D: 5) nswprice 3.821 3.881
(+1.6%)

3.923
(+2.7%)

3.188
(−16.6%)

date 2.297 2.688
(+17%)

2.224
(−3.2%)

1.796
(−21.8%)

date:nswprice 1.55 1.407
(−9.2%)

1.503
(−3%)

1.327
(−14.4%)

nswprice:vicprice 0.3858 0.6725
(+74.3%)

0.4202
(+8.9%)

0.3269
(−15.3%)

vicprice 0.3618 0.4327
(+19.6%)

0.4099
(+13.3%)

0.4026
(+11.3%)

Intercept -0.5675 −1.567
(+176.1%)

−0.5729
(+1%)

−0.5675
(0%)

eucalyptus (n: 736, p: 20, D: 2) Vig 0.6912 0.6582
(−4.8%)

0.6811
(−1.5%)

0.7452
(+7.8%)

Ht 0.5555 0.5429
(−2.3%)

0.5752
(+3.5%)

0.5935
(+6.8%)

Crown_Fm 0.423 0.4139
(−2.2%)

0.44
(+4%)

0.4552
(+7.6%)

Surv 0.3366 0.3796
(+12.8%)

0.3976
(+18.1%)

0.3338
(−0.8%)

Intercept -4.564 −4.236
(−7.2%)

−4.295
(−5.9%)

−4.564
(0%)

Fast Estimation of Partial Dependence Functions Using Trees

32

first-order-theorem-proving (n: 6118, p: 52, D: 5) V19 0.3181 0.2757
(−13.3%)

0.3417
(+7.4%)

0.2213
(−30.4%)

V23 0.2871 0.2907
(+1.3%)

0.2853
(−0.6%)

0.3112
(+8.4%)

V38 0.2435 0.2327
(−4.4%)

0.221
(−9.2%)

0.1969
(−19.1%)

V25 0.2168 0.2039
(−6%)

0.216
(−0.4%)

0.1875
(−13.5%)

V39 0.1941 0.2417
(+24.5%)

0.1892
(−2.5%)

0.08547
(−56%)

V4 0.1925 0.2139
(+11.1%)

0.2219
(+15.3%)

0.121
(−37.1%)

V11 0.1589 0.1181
(−25.7%)

0.2226
(+40.1%)

0.1219
(−23.3%)

Intercept -4.776 −4.622
(−3.2%)

−4.835
(+1.2%)

−4.776
(0%)

ilpd (n: 583, p: 11, D: 1) Intercept 1.609 1.48
(−8%)

1.514
(−5.9%)

1.609 (0%)

V5 0.2843 0.2826
(−0.6%)

0.2842
(0%)

0.2843
(0%)

V4 0.2712 0.2474
(−8.8%)

0.2567
(−5.3%)

0.2712
(0%)

V6 0.2215 0.2427
(+9.6%)

0.2218
(+0.1%)

0.2215
(0%)

V3 0.1898 0.1787
(−5.8%)

0.1847
(−2.7%)

0.1898
(0%)

jm1 (n: 10885, p: 22, D: 4) Intercept 2.17 2.035
(−6.2%)

2.217
(+2.2%)

2.17 (0%)

lOBlank 0.3751 0.3452
(−8%)

0.3802
(+1.4%)

0.3056
(−18.5%)

loc 0.3712 0.3421
(−7.8%)

0.3587
(−3.4%)

0.4542
(+22.4%)

lOBlank:total_Op 0.1968 0.1741
(−11.5%)

0.201
(+2.1%)

0.07209
(−63.4%)

total_Op 0.188 0.2046
(+8.8%)

0.1904
(+1.3%)

0.1033
(−45.1%)

total_Opnd 0.1595 0.1797
(+12.7%)

0.1506
(−5.6%)

0.1035
(−35.1%)

lOBlank:loc 0.1185 0.1251
(+5.6%)

0.118
(−0.4%)

0.1152
(−2.8%)

jungle_chess_2pcs_raw_endgame_complete (n: 44819, p: 7, D: 5) white_piece0_rank 2.148 2.407
(+12.1%)

2.14
(−0.4%)

2.18
(+1.5%)

black_piece0_rank 1.811 2.105
(+16.2%)

1.64
(−9.4%)

1.835
(+1.3%)

black_piece0_rank:black_piece0_strength 0.9972 1.041
(+4.4%)

0.9096
(−8.8%)

0.9841
(−1.3%)

black_piece0_rank:white_piece0_strength 0.7611 0.7054
(−7.3%)

0.782
(+2.7%)

0.776
(+2%)

black_piece0_strength:white_piece0_strength 0.7242 0.8054
(+11.2%)

0.789
(+8.9%)

0.7158
(−1.2%)

Intercept -4.976 −4.464
(−10.3%)

−4.663
(−6.3%)

−4.976
(0%)

kc1 (n: 2109, p: 22, D: 4) Intercept 2.664 2.423
(−9%)

2.599
(−2.4%)

2.664 (0%)

lOCode 0.3439 0.2703
(−21.4%)

0.3193
(−7.2%)

0.3206
(−6.8%)

e 0.2808 0.2559
(−8.9%)

0.2767
(−1.5%)

0.2074
(−26.1%)

loc 0.2543 0.2248
(−11.6%)

0.2558
(+0.6%)

0.2418
(−4.9%)

i 0.1886 0.149
(−21%)

0.1968
(+4.3%)

0.2447
(+29.7%)

d 0.1677 0.1581
(−5.7%)

0.1462
(−12.8%)

0.1092
(−34.9%)

kc2 (n: 522, p: 22, D: 2) Intercept 2.356 2.195
(−6.8%)

2.279
(−3.3%)

2.356 (0%)

i 0.4001 0.399
(−0.3%)

0.3871
(−3.2%)

0.2755
(−31.1%)

Fast Estimation of Partial Dependence Functions Using Trees

33

uniq_Opnd 0.3854 0.3804
(−1.3%)

0.374
(−3%)

0.3627
(−5.9%)

total_Opnd 0.3419 0.3641
(+6.5%)

0.3712
(+8.6%)

0.3247
(−5%)

lOBlank 0.1861 0.1726
(−7.3%)

0.2096
(+12.6%)

0.1824
(−2%)

uniq_Op 0.1585 0.1759
(+11%)

0.1678
(+5.9%)

0.1498
(−5.5%)

kr-vs-kp (n: 3196, p: 37, D: 5) bxqsq.f 3.697 3.539
(−4.3%)

3.653
(−1.2%)

3.647
(−1.4%)

wknck.f 3.488 3.915
(+12.2%)

3.624
(+3.9%)

3.346
(−4.1%)

rimmx.f 3.124 2.326
(−25.5%)

2.886
(−7.6%)

3.055
(−2.2%)

bkxbq.f 1.343 1.837
(+36.8%)

1.409
(+4.9%)

1.371
(+2.1%)

Intercept 0.7984 0.8956
(+12.2%)

0.2632
(−67%)

0.7984
(0%)

letter (n: 20000, p: 17, D: 5) x.ege 4.61 4.21
(−8.7%)

4.527
(−1.8%)

4.107
(−10.9%)

y.ege 3.441 3.427
(−0.4%)

2.935
(−14.7%)

3.13 (−9%)

xegvy 2.67 2.589
(−3%)

2.68
(+0.4%)

2.408
(−9.8%)

xybar 2.45 2.085
(−14.9%)

2.143
(−12.5%)

2.3
(−6.1%)

x2ybr 2.286 2.37
(+3.7%)

2.258
(−1.2%)

1.993
(−12.8%)

Intercept -131.2 −128.6
(−2%)

−128.2
(−2.3%)

−131.2
(0%)

mfeat-factors (n: 2000, p: 217, D: 2) att1 1.213 1.191
(−1.8%)

1.187
(−2.1%)

1.222
(+0.7%)

att181 0.9014 0.952
(+5.6%)

0.9538
(+5.8%)

0.9899
(+9.8%)

att37 0.7361 0.8493
(+15.4%)

0.8563
(+16.3%)

0.9363
(+27.2%)

att194 0.6411 0.6299
(−1.7%)

0.6215
(−3.1%)

0.6047
(−5.7%)

att213 0.6099 0.6938
(+13.8%)

0.6682
(+9.6%)

0.6421
(+5.3%)

Intercept -37.82 −38.57
(+2%)

−37.7
(−0.3%)

−37.82
(0%)

mfeat-fourier (n: 2000, p: 77, D: 5) att7 0.9039 0.8597
(−4.9%)

0.805
(−10.9%)

1.171
(+29.5%)

att73 0.8344 0.8666
(+3.9%)

0.891
(+6.8%)

1.116
(+33.7%)

att2 0.8336 0.8625
(+3.5%)

0.7984
(−4.2%)

0.7765
(−6.8%)

att76 0.5851 0.4715
(−19.4%)

0.5686
(−2.8%)

0.6125
(+4.7%)

att6 0.54 0.601
(+11.3%)

0.6122
(+13.4%)

0.6534
(+21%)

Intercept -26.19 −26.55
(+1.4%)

−26.44
(+1%)

−26.19
(0%)

mfeat-karhunen (n: 2000, p: 65, D: 5) att1 1.469 1.548
(+5.4%)

1.439
(−2%)

1.522
(+3.6%)

att3 1.318 1.246
(−5.5%)

1.301
(−1.3%)

1.487
(+12.8%)

att4 1.126 1.338
(+18.8%)

1.064
(−5.5%)

1.133
(+0.6%)

att7 0.9811 1.109
(+13%)

0.9565
(−2.5%)

1.126
(+14.8%)

att2 0.8767 0.7276
(−17%)

1.049
(+19.7%)

0.9546
(+8.9%)

Intercept -33.11 −33.67
(+1.7%)

−33.2
(+0.3%)

−33.11
(0%)

mfeat-morphological (n: 2000, p: 7, D: 1) att4 3.748 3.794
(+1.2%)

3.589
(−4.2%)

3.748 (0%)

Fast Estimation of Partial Dependence Functions Using Trees

34

att2 3.318 3.212
(−3.2%)

3.308
(−0.3%)

3.318 (0%)

att1 2.913 2.857
(−1.9%)

2.921
(+0.3%)

2.913 (0%)

att6 1.96 1.964
(+0.2%)

1.957
(−0.2%)

1.96 (0%)

Intercept -21.72 −23.36
(+7.6%)

−22.37
(+3%)

−21.72
(0%)

mfeat-pixel (n: 2000, p: 241, D: 5) att162 0.4647 0.4508
(−3%)

0.4105
(−11.7%)

0.6221
(+33.9%)

att19 0.4553 0.3895
(−14.5%)

0.4393
(−3.5%)

0.507
(+11.4%)

att57 0.4189 0.4877
(+16.4%)

0.4943
(+18%)

0.4012
(−4.2%)

att214 0.412 0.4123
(+0.1%)

0.4044
(−1.8%)

0.4574
(+11%)

att153 0.3907 0.4174
(+6.8%)

0.442
(+13.1%)

0.585
(+49.7%)

att113 0.3706 0.4066
(+9.7%)

0.359
(−3.1%)

0.5165
(+39.4%)

Intercept -31.93 −31.29
(−2%)

−31.89
(−0.1%)

−31.93
(0%)

mfeat-zernike (n: 2000, p: 48, D: 2) att29 1.137 1.151
(+1.2%)

1.141
(+0.4%)

1.186
(+4.3%)

att36 1.029 1.11
(+7.9%)

1.068
(+3.8%)

1.028
(−0.1%)

att45 0.9863 0.9713
(−1.5%)

0.9926
(+0.6%)

0.7626
(−22.7%)

att43 0.958 1.018
(+6.3%)

0.9376
(−2.1%)

0.9981
(+4.2%)

att33 0.9426 0.9923
(+5.3%)

0.9413
(−0.1%)

0.8801
(−6.6%)

att19 0.8309 0.8354
(+0.5%)

0.7189
(−13.5%)

1.071
(+28.9%)

Intercept -26.83 −26.25
(−2.2%)

−27.78
(+3.5%)

−26.83
(0%)

nomao (n: 34465, p: 119, D: 5) V6 1.002 0.9554
(−4.7%)

1.065
(+6.3%)

1.403
(+40%)

V90 0.8547 0.7562
(−11.5%)

0.8676
(+1.5%)

0.9458
(+10.7%)

V4 0.6198 0.6085
(−1.8%)

0.6263
(+1%)

0.676
(+9.1%)

V100.3 0.5639 0.5918
(+4.9%)

0.6077
(+7.8%)

0.8928
(+58.3%)

V61 0.5574 0.593
(+6.4%)

0.6077
(+9%)

0.4243
(−23.9%)

V1 0.5561 0.5659
(+1.8%)

0.6561
(+18%)

0.8947
(+60.9%)

Intercept -3.063 −2.635
(−14%)

−1.931
(−37%)

−3.063
(0%)

numerai28.6 (n: 96320, p: 22, D: 2) Intercept 0.4794 0.4686
(−2.3%)

0.4916
(+2.5%)

0.4794
(0%)

attribute_13 0.03296 0.03171
(−3.8%)

0.03317
(+0.6%)

0.03048
(−7.5%)

attribute_1 0.02981 0.02981
(0%)

0.02936
(−1.5%)

0.02959
(−0.7%)

attribute_14 0.02838 0.02969
(+4.6%)

0.02848
(+0.4%)

0.02714
(−4.4%)

attribute_16 0.0274 0.02492
(−9.1%)

0.02681
(−2.2%)

0.0282
(+2.9%)

optdigits (n: 5620, p: 65, D: 4) input27 1.119 1.15
(+2.8%)

1.181
(+5.5%)

1.396
(+24.8%)

input63 0.8117 0.8321
(+2.5%)

0.7816
(−3.7%)

0.9487
(+16.9%)

input37 0.7809 0.8437
(+8%)

0.8531
(+9.2%)

1.058
(+35.5%)

input54 0.7408 0.8106
(+9.4%)

0.7068
(−4.6%)

0.8397
(+13.4%)

Fast Estimation of Partial Dependence Functions Using Trees

35

Intercept -35.07 −34.46
(−1.7%)

−34.8
(−0.8%)

−35.07
(0%)

ozone-level-8hr (n: 2534, p: 73, D: 4) Intercept 4.69 4.52
(−3.6%)

4.385
(−6.5%)

4.69 (0%)

V41 0.4146 0.4809
(+16%)

0.4343
(+4.8%)

0.3055
(−26.3%)

V56 0.3559 0.3246
(−8.8%)

0.3718
(+4.5%)

0.351
(−1.4%)

V42 0.2362 0.2628
(+11.3%)

0.2491
(+5.5%)

0.1838
(−22.2%)

V13 0.149 0.1463
(−1.8%)

0.1651
(+10.8%)

0.1626
(+9.1%)

V55 0.1438 0.1736
(+20.7%)

0.1455
(+1.2%)

0.1416
(−1.5%)

pc1 (n: 1109, p: 22, D: 3) Intercept 3.846 3.877
(+0.8%)

3.84
(−0.2%)

3.846 (0%)

lOBlank 0.544 0.5678
(+4.4%)

0.5165
(−5.1%)

0.5753
(+5.8%)

lOBlank:lOComment 0.3371 0.3327
(−1.3%)

0.339
(+0.6%)

0.2128
(−36.9%)

I 0.3226 0.3427
(+6.2%)

0.3042
(−5.7%)

0.3796
(+17.7%)

uniq_Opnd 0.1911 0.1854
(−3%)

0.19
(−0.6%)

0.1207
(−36.8%)

locCodeAndComment 0.1888 0.2501
(+32.5%)

0.1761
(−6.7%)

0.1853
(−1.9%)

pc3 (n: 1563, p: 38, D: 4) Intercept 3.426 3.742
(+9.2%)

3.513
(+2.5%)

3.426 (0%)

LOC_BLANK 0.6684 0.6975
(+4.4%)

0.6552
(−2%)

0.6323
(−5.4%)

HALSTEAD_CONTENT 0.4008 0.4438
(+10.7%)

0.3974
(−0.8%)

0.3645
(−9.1%)

NUM_UNIQUE_OPERANDS 0.1638 0.1682
(+2.7%)

0.1575
(−3.8%)

0.2197
(+34.1%)

HALSTEAD_LEVEL 0.1331 0.1263
(−5.1%)

0.1239
(−6.9%)

0.09466
(−28.9%)

LOC_CODE_AND_COMMENT 0.1328 0.1559
(+17.4%)

0.1392
(+4.8%)

0.1227
(−7.6%)

NUMBER_OF_LINES 0.1213 0.09314
(−23.2%)

0.1474
(+21.5%)

0.1031
(−15%)

pc4 (n: 1458, p: 38, D: 3) Intercept 4.275 3.654
(−14.5%)

4.38
(+2.5%)

4.275 (0%)

LOC_CODE_AND_COMMENT 1.507 1.59
(+5.5%)

1.471
(−2.4%)

1.64
(+8.8%)

CYCLOMATIC_DENSITY 0.3314 0.3703
(+11.7%)

0.3038
(−8.3%)

0.3219
(−2.9%)

LOC_BLANK 0.3061 0.3236
(+5.7%)

0.3011
(−1.6%)

0.2824
(−7.7%)

CONDITION_COUNT 0.2766 0.2901
(+4.9%)

0.2584
(−6.6%)

0.2782
(+0.6%)

pendigits (n: 10992, p: 17, D: 5) input16 1.334 1.591
(+19.3%)

1.309
(−1.9%)

1.176
(−11.8%)

input14 1.067 1.08
(+1.2%)

1.077
(+0.9%)

1.1
(+3.1%)

input2 1.06 1.166
(+10%)

1.032
(−2.6%)

1.375
(+29.7%)

input10 1.009 1.026
(+1.7%)

1.004
(−0.5%)

0.9265
(−8.2%)

input7 0.7723 0.8284
(+7.3%)

0.9029
(+16.9%)

1.026
(+32.8%)

Intercept -36.75 −37.21
(+1.3%)

−36.65
(−0.3%)

−36.75
(0%)

phoneme (n: 5404, p: 6, D: 5) Intercept 2.866 2.469
(−13.9%)

2.834
(−1.1%)

2.866 (0%)

V4 1.115 0.9594
(−14%)

1.062
(−4.8%)

1.271
(+14%)

V1 0.9529 1.166
(+22.4%)

0.8947
(−6.1%)

0.994
(+4.3%)

Fast Estimation of Partial Dependence Functions Using Trees

36

V3 0.789 0.4782
(−39.4%)

0.689
(−12.7%)

0.8698
(+10.2%)

V2 0.7639 0.662
(−13.3%)

0.8119
(+6.3%)

0.6761
(−11.5%)

V1:V3 0.7302 0.7381
(+1.1%)

0.6831
(−6.5%)

0.6196
(−15.1%)

qsar-biodeg (n: 1055, p: 42, D: 4) Intercept 1.872 2.18
(+16.5%)

1.829
(−2.3%)

1.872 (0%)

V36 0.5753 0.5523
(−4%)

0.5769
(+0.3%)

0.7878
(+36.9%)

V38 0.5006 0.4735
(−5.4%)

0.4765
(−4.8%)

0.493
(−1.5%)

V1 0.2923 0.304
(+4%)

0.3126
(+6.9%)

0.3063
(+4.8%)

V22 0.247 0.2745
(+11.1%)

0.2252
(−8.8%)

0.2285
(−7.5%)

V27 0.2454 0.253
(+3.1%)

0.2646
(+7.8%)

0.2759
(+12.4%)

satimage (n: 6430, p: 37, D: 5) F12attr 1.031 1.161
(+12.6%)

1.022
(−0.9%)

0.3288
(−68.1%)

D16attr 0.6645 0.7351
(+10.6%)

0.6434
(−3.2%)

0.5567
(−16.2%)

C15attr 0.6632 0.5949
(−10.3%)

0.6421
(−3.2%)

0.3713
(−44%)

F24attr 0.6431 0.6393
(−0.6%)

0.6657
(+3.5%)

0.4283
(−33.4%)

E11attr 0.604 0.5513
(−8.7%)

0.4937
(−18.3%)

0.9466
(+56.7%)

B8attr 0.5692 0.5816
(+2.2%)

0.5755
(+1.1%)

0.5131
(−9.9%)

A7attr 0.5248 0.5368
(+2.3%)

0.4933
(−6%)

0.5098
(−2.9%)

Intercept -13.61 −13.86
(+1.8%)

−13.51
(−0.7%)

−13.61
(0%)

segment (n: 2310, p: 17, D: 3) hue.mean 1.577 1.472
(−6.7%)

1.573
(−0.3%)

1.686
(+6.9%)

intensity.mean 1.038 1.246
(+20%)

1.081
(+4.1%)

1.174
(+13.1%)

rawgreen.mean 0.9083 1.009
(+11.1%)

0.9338
(+2.8%)

0.689
(−24.1%)

rawblue.mean 0.7006 0.5916
(−15.6%)

0.6722
(−4.1%)

0.6068
(−13.4%)

rawred.mean 0.6916 0.7473
(+8.1%)

0.7169
(+3.7%)

0.3869
(−44.1%)

exgreen.mean 0.6305 0.7868
(+24.8%)

0.5637
(−10.6%)

0.5051
(−19.9%)

Intercept -16.76 −16.65
(−0.7%)

−16.73
(−0.2%)

−16.76
(0%)

semeion (n: 1593, p: 257, D: 3) V16 0.5414 0.5967
(+10.2%)

0.5155
(−4.8%)

0.4258
(−21.4%)

V229 0.4821 0.5496
(+14%)

0.4654
(−3.5%)

0.5539
(+14.9%)

V77 0.4651 0.5043
(+8.4%)

0.4314
(−7.2%)

0.5042
(+8.4%)

V96 0.4304 0.4823
(+12.1%)

0.3951
(−8.2%)

0.6107
(+41.9%)

V15 0.4267 0.4812
(+12.8%)

0.4353
(+2%)

0.3625
(−15%)

V177 0.417 0.4086
(−2%)

0.425
(+1.9%)

0.4731
(+13.5%)

Intercept -30.14 −29.92
(−0.7%)

−30.24
(+0.3%)

−30.14
(0%)

spambase (n: 4601, p: 58, D: 4) Intercept 1.827 1.727
(−5.5%)

1.397
(−23.5%)

1.827 (0%)

word_freq_george 0.9277 0.8711
(−6.1%)

0.9642
(+3.9%)

1.023
(+10.3%)

word_freq_hp 0.8724 0.8814
(+1%)

0.8138
(−6.7%)

0.9547
(+9.4%)

Fast Estimation of Partial Dependence Functions Using Trees

37

char_freq_.21 0.4842 0.4836
(−0.1%)

0.5165
(+6.7%)

0.858
(+77.2%)

capital_run_length_longest 0.4376 0.4276
(−2.3%)

0.426
(−2.7%)

0.4318
(−1.3%)

capital_run_length_total 0.4237 0.4077
(−3.8%)

0.4321
(+2%)

0.4258
(+0.5%)

char_freq_.24 0.372 0.3631
(−2.4%)

0.3414
(−8.2%)

0.6447
(+73.3%)

splice (n: 3190, p: 61, D: 5) attribute_32.G 0.7944 0.771
(−2.9%)

0.8258
(+4%)

0.7655
(−3.6%)

attribute_31.A 0.7598 0.7031
(−7.5%)

0.7579
(−0.3%)

0.7452
(−1.9%)

attribute_30.C 0.7277 0.6369
(−12.5%)

0.798
(+9.7%)

0.722
(−0.8%)

attribute_30.T 0.6651 0.811
(+21.9%)

0.6216
(−6.5%)

0.6703
(+0.8%)

attribute_32.C 0.6098 0.6685
(+9.6%)

0.4642
(−23.9%)

0.6048
(−0.8%)

attribute_32.A 0.6011 0.4873
(−18.9%)

0.6426
(+6.9%)

0.6169
(+2.6%)

Intercept -3.597 −4.027
(+12%)

−3.588
(−0.3%)

−3.597
(0%)

steel-plates-fault (n: 1941, p: 28, D: 5) V14 0.8236 0.816
(−0.9%)

0.7835
(−4.9%)

1.181
(+43.4%)

V25 0.8116 0.6918
(−14.8%)

0.9687
(+19.4%)

0.8836
(+8.9%)

V11 0.7111 0.8872
(+24.8%)

0.7183
(+1%)

0.7845
(+10.3%)

V12 0.6505 0.6886
(+5.9%)

0.7197
(+10.6%)

0.7353
(+13%)

Intercept -13.57 −13.88
(+2.3%)

−13.3
(−2%)

−13.57
(0%)

texture (n: 5500, p: 41, D: 3) V23 2.455 2.444
(−0.4%)

2.389
(−2.7%)

2.505
(+2%)

V10 2.006 2.037
(+1.5%)

1.87
(−6.8%)

1.206
(−39.9%)

V3 1.91 2.004
(+4.9%)

1.893
(−0.9%)

1.209
(−36.7%)

V30 1.63 1.515
(−7.1%)

1.558
(−4.4%)

1.083
(−33.6%)

V6 0.8912 0.8164
(−8.4%)

0.8066
(−9.5%)

1.208
(+35.5%)

Intercept -39.86 −41.69
(+4.6%)

−40.01
(+0.4%)

−39.86
(0%)

tic-tac-toe (n: 958, p: 10, D: 3) middle.middle.square.o 2.332 2.278
(−2.3%)

2.198
(−5.7%)

2.012
(−13.7%)

middle.middle.square.x 1.882 1.981
(+5.3%)

1.764
(−6.3%)

1.554
(−17.4%)

top.left.square.o 1.71 1.696
(−0.8%)

1.535
(−10.2%)

1.501
(−12.2%)

bottom.right.square.o 1.703 1.827
(+7.3%)

1.872
(+9.9%)

1.438
(−15.6%)

top.right.square.x 1.506 1.6
(+6.2%)

1.643
(+9.1%)

1.349
(−10.4%)

Intercept -1.818 −2.839
(+56.2%)

−1.341
(−26.2%)

−1.818
(0%)

vehicle (n: 846, p: 19, D: 2) ELONGATEDNESS 1.544 1.468
(−4.9%)

1.596
(+3.4%)

1.326
(−14.1%)

DISTANCE_CIRCULARITY 1.168 1.185
(+1.5%)

1.209
(+3.5%)

0.9147
(−21.7%)

MAX.LENGTH_RECTANGULARITY 1.02 1.063
(+4.2%)

0.9321
(−8.6%)

1.032
(+1.2%)

KURTOSIS_ABOUT_MINOR 0.6494 0.7477
(+15.1%)

0.7149
(+10.1%)

0.3895
(−40%)

SKEWNESS_ABOUT_MAJOR 0.6262 0.5876
(−6.2%)

0.6585
(+5.2%)

0.6867
(+9.7%)

Intercept -5.312 −5.066
(−4.6%)

−5.296
(−0.3%)

−5.312
(0%)

Fast Estimation of Partial Dependence Functions Using Trees

38

vowel (n: 990, p: 13, D: 3) Feature_0 2.975 2.916
(−2%)

3.096
(+4.1%)

2.701
(−9.2%)

Feature_4 2.426 2.455
(+1.2%)

2.449
(+0.9%)

2.429
(+0.1%)

Feature_1 2.368 2.45
(+3.5%)

2.433
(+2.7%)

2.592
(+9.5%)

Feature_0:Feature_1 1.517 1.476
(−2.7%)

1.392
(−8.2%)

1.273
(−16.1%)

Intercept -39.77 −38.88
(−2.2%)

−40.37
(+1.5%)

−39.77
(0%)

wall-robot-navigation (n: 5456, p: 25, D: 3) V15 2.281 2.427
(+6.4%)

2.339
(+2.5%)

3.076
(+34.9%)

V14:V15 1.624 1.621
(−0.2%)

1.777
(+9.4%)

1.087
(−33.1%)

V14 1.381 1.704
(+23.4%)

1.53
(+10.8%)

1.387
(+0.4%)

V20 1.246 1.238
(−0.6%)

1.375
(+10.4%)

1.367
(+9.7%)

V19 0.8858 0.8706
(−1.7%)

0.9571
(+8%)

1.485
(+67.6%)

Intercept -10.77 −11.56
(+7.3%)

−10.79
(+0.2%)

−10.77
(0%)

wdbc (n: 569, p: 31, D: 5) Intercept 2.367 3.815
(+61.2%)

3.279
(+38.5%)

2.367 (0%)

V28 1.124 1.109
(−1.3%)

1.1
(−2.1%)

1.502
(+33.6%)

V21 0.9865 0.9992
(+1.3%)

0.9409
(−4.6%)

1.469
(+48.9%)

V8 0.9086 0.8257
(−9.1%)

0.8677
(−4.5%)

1.189
(+30.9%)

V22 0.7937 0.8219
(+3.6%)

0.7633
(−3.8%)

0.8532
(+7.5%)

V23 0.7138 0.6631
(−7.1%)

0.6834
(−4.3%)

0.9698
(+35.9%)

wilt (n: 4839, p: 6, D: 3) Intercept 6.194 6.613
(+6.8%)

6.117
(−1.2%)

6.194 (0%)

Mean_G:Mean_R 3.12 3.096
(−0.8%)

3.103
(−0.5%)

1.99
(−36.2%)

Mean_G 2.903 3.066
(+5.6%)

2.981
(+2.7%)

2.175
(−25.1%)

Mean_R 2.829 2.775
(−1.9%)

2.851
(+0.8%)

1.73
(−38.8%)

SD_Plan 0.3629 0.3611
(−0.5%)

0.3538
(−2.5%)

0.3564
(−1.8%)

Mean_NIR 0.3565 0.3651
(+2.4%)

0.3686
(+3.4%)

0.3257
(−8.6%)

Fast Estimation of Partial Dependence Functions Using Trees

39

