
Prompt Learning Unlocked for App Promotion
in the Wild

Anonymous Author(s)
Affiliation
Address
email

Abstract

In recent times, mobile apps have increasingly incorporated app promotion ads to1

promote other apps, raising cybersecurity and online commerce concerns related to2

societal trust and recommendation systems. To effectively discover the intricate3

nature of the app promotion graph data, we center around the graph completion4

task, aiming to learn the connection patterns among diverse relations and enti-5

ties. However, accurately deciphering the connection patterns in such a large and6

diverse graph presents significant challenges for deep learning models. To over-7

come these challenges, we introduce Prompt Promotion, a transformer-based8

framework that unlocks prompt learning capabilities by incorporating metapath-9

and embedding-based prompts that provide valuable hints to guide the model’s10

predictions for undetermined connection patterns. Experimental results show that11

our Prompt Promotion model represents a pioneering prompt-based capabil-12

ity in effectively completing the app promotion graph. It not only demonstrates13

superior performance in heterogeneous graph completion in real-world scenarios,14

but also exhibits strong generalization capabilities for diverse, complex, and noisy15

connection patterns when paired with their respective prompts.16

1 Introduction17

Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Passport Photo
Maker – ID/VISA

Photo College,
Photo Editor Flood-It!

Benign Grey Malware

Figure 1: Example of malicious app promotion.

Mobile applications, or apps, often incorporate18

advertisements (ads) as a means of promotion19

(Viennot et al., 2014; Liu et al., 2015), among20

which app-promotion ads are commonly used by21

Android app developers to promote other apps22

(Research, 2023). However, concerns arise re-23

garding the trustfulness of the apps promoted24

through these ads, given the competitive na-25

ture of the industry and the potential for the26

promotion of malicious apps (Rafieian and Yoganarasimhan, 2021; Son et al., 2017; Hardt and27

Nath, 2012). Previous research has focused on analyzing the behaviors of ad libraries within28

the app promotion ecosystem (Grace et al., 2012; Vallina-Rodriguez et al., 2012; Nath, 2015;29

Jin et al., 2021; Liu et al., 2020). However, these studies primarily examine the behaviors of30

ad libraries themselves, and pay too little attention to app propagation in terms of how mas-31

sive individuals exploit the app promotion ecosystem. For instance, Figure 1 illustrates an app32

promotion chain where a popular benign app “Passport Photo Maker - ID/VISA” promotes a33

greyware app “Photo Collage, Photo Editor”, which in turn promotes malware “Flood-It!”, a34

strategy game capable of scanning the local network and stealing sensitive phone information.35

Furthermore, these studies lack a comprehensive understanding of app promotions, which involve36

multiple heterogeneous actors beyond apps, such as app markets, security vendors, and developers.37

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.

For example, Figure 2 provides an inference path to explain why an online messaging app, “Polish38

English Translation”, promotes “CallApp”. The underlying behaviors indicate that “Polish English39

Translation” shares the same developer as another translation app “Thai Chinese Translation”, which40

has been observed to promote “CallApp”. Hence, a more holistic approach that learns the intrinsic41

connection patterns among these various entities is necessary to deeply understand the complexities42

of the whole app promotion ecosystem and its implications for society and online commerce. To43

address these limitations, we employ insights of graph completion learning into the heterogeneous44

app promotion graph. Our goal is to predict unknown target entities based on known source entities45

and relation queries, thereby completing the full graph. By applying graph completion methods to46

the app promotion graph, we are able to learn representations that capture the intricate connection47

patterns among different types of entities and relations. This approach not only sheds light on the48

underlying dynamics of app promotion graphs, but also opens up possibilities for diverse applications.49

Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Passport Photo
Maker – ID/VISA

Photo College,
Photo Editor Flood-It!

Benign Grey Malware

lomol
translatordevelop promote

Polish English
Translation

Thai Chinese
Translation

CallApp

develop

promote

Figure 2: Example of inferred app promotion path.

Nevertheless, learning to complete the focused50

app promotion network is non-trivial, especially51

with datasets collected from the wild. Exist-52

ing methods for graph completion are either too53

simplistic for modeling the network complexity54

and information among relationships and enti-55

ties (Bordes et al., 2013; Sun et al., 2018; Yang56

et al., 2015), or they heavily rely on rich semantic information to train massive weight parameters57

(Wang et al., 2021; Lv et al., 2022; Yao et al., 2019), which contradicts the scarcity of semantic58

information in app promotion networks collected from the wild. Therefore, in this work, considering59

the challenge of modeling complex connection patterns while overcoming the limitations of existing60

techniques, we introduce our approach Prompt Promotion, which guides the model in learning61

the intricate connection patterns by incorporating a combination of embedding-based and metapath-62

based prompts. Leveraging the power of pretrained BERT, we design the embedding-based prompts,63

derived from pretrained embedding-based methods like DistMult (Yang et al., 2015), provide prior64

knowledge as hints to assist the model in making informed references. Additionally, we further craft65

metapath-based prompts by extracting not only valid but also informative metapaths for each queried66

relation. Subsequently, we combine the embedding-based and metapath-based prompts along with67

the query tokens, and randomly permute them to form the final input sequence for each query. The68

sequence is tokenized using the embedding-based method, replacing the original BERT tokenizer, to69

ensure that the tokens are projected into the same embedding space for the subsequent fine-tuning70

process. In summary, the contributions of this paper are:71

• We propose a novel approach named Prompt Promotion, that addresses the challenge of72

modeling connection patterns in complex app promotion graphs by leveraging the pretrained BERT73

as the backbone model while incorporating both the embedding-based and metapath-based prompts74

to guide the model in learning the intricate patterns within the graph.75

• We demonstrate the effectiveness of our approach through extensive experiments on our collected76

real-world dataset. The results show that our approach outperforms existing techniques in terms of77

accuracy and generalization capabilities in extracting diverse and complex connection patterns.78

• We contribute to the research community by providing a deeper understanding of the app promo-79

tion ecosystem, its complexities, and implications for societal trust and online commerce. Our80

work sheds light on the potential applications of graph completion methods, specifically utilizing81

pretrained BERT, in improving trustworthiness in detecting malicious apps.82

2 Background83

In this section, we briefly introduce the definitions of a heterogeneous graph, metapath, and the task84

of heterogeneous graph completion, as well as the idea of prompt engineering and details about our85

app promotion graph dataset. We additionally refer related works in Appendix E.86

2.1 Definitions87

Definition 1 (Heterogeneous Graph). A heterogeneous graph (HG) G = (V, E ,X) consists of a node88

set V , an edge set E , and the optional features of the associated nodes and edges: X = (XV ,XE).89

2

Each node’s type is mapped through the node type mapping function ϕ : V → A, and each edge’s90

type through the edge type mapping function ψ : E → R, where A andR denotes the node and edge91

type set respectively. We represent each edge as a triple (h, r, t) ∈ E where h, t ∈ V, r ∈ R, and the92

edges are directional. For a heterogeneous graph, there exists the constrain |A|+ |R| > 2.93

Definition 2 (Metapath). In a heterogeneous graph, a metapath represents a predefined sequence of94

node types and edge types that capture the desired semantic relationships between nodes. Formally, a95

metapath P is denoted as e1
r1−→ e2

r2−→ ...eL
rL−→ eL+1, where ri ∈ R, ei ∈ A, r = r1 · r2 · ... · rL96

is the composite relation between entity type e1 and eL+1, and L is the length of the metapath.97

Definition 3 (Heterogeneous Graph Completion). For a valid query (h, r) where h ∈ V and r ∈ R,98

a heterogeneous graph completion (HGC) task refers to discovering valid answers T ⊂ V such that99

for all t ∈ T , (h, r, t) ∈ E .100

2.2 Prompt Engineering101

Prompt engineering is a systematic methodology widely employed in natural language processing102

applications to craft specific input signals to invoke desired output responses from machine learning103

models. Under the task of graph completion where input tokens are the queries, prompts can be104

designed as contextual semantic information related to the entities and relations, the query-related105

neighborhood, or other encoded information that guides the model to answer the query. Specifically106

for a query (h, r) in the graph completion task, the prompted input sequence is usually formulated as:107

108
[<bos>] <prompts> [<sep>] <h> <r> [<sep>].109

2.3 App Promotion Dataset110

2.3.1 Data Collection111

The dataset pertaining to app promotion is gathered from three distinct perspectives. Initially, for112

each app, the package name, developer information, and category of each app are crawled from113

Google Play. Subsequently, an analysis is conducted on the app using VirusTotal to examine the114

flags associated with its security level, along with the corresponding URLs. Lastly, the manifest and115

signature of each app are inferred through the process of reverse engineering (e.g., interesting strings116

provided by the VirusTotal report). The promotion actions between apps are discovered by checking117

whether the clickable widgets in a UI from the source apps lead to the download page of the sink118

app. If so, then a source_app <promotes> sink_app relation is identified. The collected119

raw data is then used to construct the following HG for the capture of ample behavior patterns.120

2.3.2 Graph Construction121

In order to harness the informative attributes of applications, such as URLs and signatures, which122

are instrumental in forecasting elusive promotional strategies and discerning recurrent patterns in123

app promotion, we construct the App Promotion HG (APHG) to epitomize the sundry entities124

and relations inherent in the network. More details related to the entity statistics and relations of125

constructed graph are provided in Appendix A.126

Entities. An APHG encapsulates distinct entities derived from the following app attributes: appli-127

cation package name, developer, application category, manifest, VirusTotal (VT) Engine, digital128

signature, and URL. The manifest entity encompasses app activities, providers, receivers, services,129

and permissions. Given the unique promotional behaviors demonstrated by benign, greyware, and130

malicious applications, we further classify the application package name into these three discrete131

classes, and extend the aggregate count of entity types within our framework to nine.132

Relations. We consider multiple directional relations among the entities defined above to capture133

their interactive behaviors: app-promote-app, app-include-signature, engine-detect-app, app-belong-134

category, developer-involve-category, developer-develop-app, app-access-URL, developer-use-URL,135

app-own-manifest. Since apps with different security levels follow different behavior patterns, we136

further divide them into three sub-classes: benign, grey and malicious. In total, the above relations137

are extended to twenty-nine classes of relation types. Note that all the relations are directional, and138

each query only associates with one of the constructed directional relations, excluding the reverse139

relations. Despite the potential to gather additional information, neither the entities nor the relations140

are associated with any features. Therefore, our APHG is denoted as G = (V, E).141

3

2.3.3 Task Motivation142

Despite the relations in place abundantly capturing intrinsic application information, instances of143

information paucity are far from scarce. This scarcity impedes our ability in gathering all relevant144

information (see an illustration on Google Play in Appendix B), which in turn substantially impedes145

our capacity to decipher patterns in application promotion behavior. Thus, to alleviate the burden of146

information scarcity, we propose to first target the HGC task on our app promotion graph.147

3 Unlocking Prompt Definition on HGC148

3.1 Overall Framework149

Our Prompt Promotion approach leverages the pre-trained BERT (Devlin et al., 2019) as the150

transformer encoder to encode the tokenized input sequence of each query. We use an aggregator151

to consolidate the output sequence and a two-layer MLP as the prediction head to perform the final152

task. The overall framework is depicted in Figure 3. We incorporate this design for two reasons:153

(1) encoding the query instead of the triple mitigates the calculation overhead when responding to a154

specific query, and (2) the attention mechanism in BERT assigns global attention to the provided input,155

including the designed prompts. We extend the input for each query into three parts: embedding-based156

prompts, metapath-based prompts, and the query itself, consisting of a source-relation pair. In the157

following content, we provide details regarding the two sets of prompts.158

3.2 Embedding-based Prompts159

!!"# !$%&!'() !′*)… !′'$!′+$…

Ins. Prm#') C*)… #'$ C+$…

Embedding-based
Prompts

Metapath-based
Prompts Query

%!"# %$%&%′') %′*)… %′'$ %′+$…

Aggregator + Pred. Head

HGCInstagram <Promote> ? Unknown APP

include

detect

belong

involve

develop

access

use

own

promote

Signature

VT Engine

Manifest

URL

DeveloperCategory

App

Signature
185

Manifest
10269

URL
18870

VirusTotal
65

Categor
y 36

Developer
3139

Benign 3961 / Grey 1143 / Mal 363

Pre-trained Embedding-based Tokenizer

B E RT

Random Permutation

!! !"!#$!%$… !#& !'&…

"! """′#& "′%&… "′#$ "′($…

Aggregator + Prediction Head

HGCInstagram <Promote> ? Unknown	APP

Pre-trained Embedding-based Tokenizer

Pre-trained BERT

Random Permutation

(!! , !")

Pre-trained Emb.-
based Method

Metapaths $)"

Pre-trained Emb.-
based Method Src. Entity

<Prm.> Relation

(a). Full Prompt (Ours) (b). Metapath-based Only (c). Embedding-based Only

Figure 3: Overall framework of our Prompt
Promotion.

Prior embedding-based models have demon-160

strated remarkable performance on various pub-161

lic benchmark datasets, making them state-of-162

the-art solutions. These models possess inher-163

ent simplicity that renders them proficient tok-164

enizers, effectively mapping entity and relation165

tokens to a shared semantic space. In this pa-166

per, we select DistMult (Yang et al., 2015) as167

the pre-trained embedding-based method to to-168

kenize the entity and relation tokens. Note that169

this is a designer’s choice and can be substituted170

with any other methods that fit our framework.171

The n embedding-based prompts are defined as172

the top-n predicted entities by the pretrained173

embedding-based methods according to the pre-174

dicted scores, denoted as Ce. These prompts175

serve as prior knowledge that assists the model176

in making informed references. For instance,177

when considering the query “which app does178

Instagram promote?”, we provide additional179

prompts in the form of a hint, such as “I am not 100% sure, but I believe these apps might be180

the answers.” This supplementary information aids the model in further generating more accurate181

and contextually relevant responses. The filtered prompted entities are then tokenized with the182

corresponding embeddings learned by the pre-trained embedding-based method.183

3.3 Metapath-based Prompts184

While embedding-based prompts serve as hints from the pioneers, they may neglect true answers due185

to their narrowed perspectives. Typically, embedding-based methods utilize geometric operations186

in the representation space, resulting in prompts that share similarities from a geometric perspec-187

tive. Although entities in a knowledge graph inherently possess semantic meanings, we posit that188

the semantic information of entities in a heterogeneous graph can be alternatively extracted from189

metapaths. Metapaths offer a means to capture and encode meaningful relationships within the190

graph, facilitating the extraction of valuable insights. Therefore, we further provide the model with191

prompts from another perspective, i.e., the metapath-based prompts from the semantic perspective.192

4

The key assumption lies in the connection between a certain metapath and the queried relation. In the193

following content, we first introduce the measure of the correlation between a metapath and a query,194

and then illustrate how to utilize the correlation to create the metapath-based prompts.195

3.3.1 Query-Metapath Correlation196

For a clearer clarification, we first define the functions src(·) and dst(·) as the source and destination197

entity type extractions for a relation r respectively. Regarding a specific queried relation, we make198

the following definition:199

Definition 4 (r-valid Metapath). A metapath p = e1
r1−→ e2

r2−→ ...eL
rL−→ eL+1 is r-valid if and200

only if e1 and eL+1 are the source and destination entity types of relation r, respectively.201

For example, for the relation r =benign-access-URL, a corresponding valid metapath includes but is202

not limited to benign
develop←−−−− developer use−−→ URL, where src(r) = benign and dst(r) = URL. The203

first step of linking a queried relation with a certain metapath is to identify all the r-valid metapaths.204

For multi-hop reasoning tasks, the answers to a query usually lie within three hops. We control the205

length of the metapath as L ≤ 2 and conduct an exhaustive search for each query relation r ∈ R,206

whereR denotes the set of all relations. The set of all r-valid metapaths is denoted as Pr. Note that207

when searching for r-valid metapaths, we also consider the reverse relation of the original relation,208

since there exist entities with only outgoing edges, and reverse relations do not change the semantic209

meanings. However, we only consider the original relations as the queried relations. The metapaths210

in Pr are valid, but not necessarily informative. In other words, Pr does not inform us how relevant211

each p ∈ Pr is to r. To quantify the correlation, we make the following definitions:212

Definition 5 (p-Hit). For a specific triple (h, r, t), where r is the relation, h is the source entity213

such that h ∈ H ⊂ V and ϕ(h) = src(r), t is the destination entity such that t ∈ T ⊂ V and214

ϕ(t) = dst(r), we say the triple (h, r, t) is p-Hit if and only if there exist at least one path from h to t215

such that this path is an instance of the metapath p.216

Definition 6 (p-Hit Ratio). For a specific triple (h, r, t), if this triple is p-Hit, then the p-hit ratio α217

of this triple is defined as the ratio of t among all other entities reached by the metapath p; otherwise,218

the p-hit ratio of this triple is zero.219

Definition 7 (r-p Ratio). For a specific relation r, a metapth p ∈ Pr, and all true (h, r, t) triples,220

the corresponding r-p ratio is defined as the averaged hit ratio of all true r related triples, i.e.,221

triples constructed with relation r. Note that the ratio is calculated based on a filtered setting: if222

t′ is a correct answer to the query (h, r) when evaluating on the answer t, we remove t from the223

denominator.224

We here provide a concrete example for examplification. Consider the relation benign-access-URL225

and its valid metapath p = benign
develop←−−−− developer use−−→ URL. For each true triple (h, benign-226

access-URL, t) such that ϕ(h) = benign and ϕ(t) = URL, denote the set of accessible URLs to the227

query (h, benign-access-URL) as Th, and the set of all URL entities reached by following metapath228

p starting from h as T p
h . If the triple is p-Hit, then the hit ratio is calculated as α = 1/(|T p

h \Th|− 1);229

otherwise, α = 0. We minus one in the denominator because t ∈ Th. The r-p ratio of the relation230

benign-access-URL is then calculated as the averaged α of all the related true triples. Naturally, if231

a metapath p is highly correlated with r for a specific source entity h, the corresponding α should be232

high. We utilize the r-p ratio of each relation-metapath pair as the correlation indicator to select the233

top-m metapaths for further prompt generation, and denote the m selected metapaths as Ps
r .234

3.3.2 Metapath-based Prompt Generation235

Even though we select m metapaths for each query, some metapaths may contain noise. This is236

especially true when a metapath reaches a high-degree entity, resulting in a significant expansion237

of the candidate pool. In such cases, these prompts may not provide any substantial additional238

information beyond what is already known, rendering them less informative. To address this, we239

apply a candidate filtering method. Specifically, we utilize a limit l to separate metapaths that lead to240

large or small candidate sizes. For small-sized candidates, we perform the union operation, and for241

large-sized candidates, we perform the intersect operation. The rationale is as follows: some queries242

may not be highly relevant to just one metapath, in which case the number of candidates is usually243

large, and we rely on the intersect operation to filter out noise. On the other hand, some queries may244

5

be explained by more than one metapath, in which case the size of the candidate pool is usually small,245

and the union operation considers all conditions.246

Table 1: Empirical evaluation results of the correlation
between metapath and relation.

Relation hr sr br mr

mal-belong-category 0.922 4.932 0.137 6.732
benign-access-URL 0.879 129.329 0.007 128.1
developer-use-URL 0.457 42.905 0.002 200.486
grey-promote-grey 0.660 154.786 0.135 4.876

After the filtering process, we empiri-247

cally evaluate the correlation between one248

queried relation and the filtered candidates.249

Particularly, We calculate the average size250

of the filtered candidate pools sr for all r251

related triples, as well as the hit ratio hr of252

the correct answer for each type of query253

among the candidate pools. In addition, we254

denote the base hit ratio as br = sr/|ϕ(t)|255

and the magnification as mr = hr/br. Table 1 presents a selection of the evaluation results256

due to the large size of R. The table provides rich information: (1) the selected metapaths for257

some relations are highly correlated with their relations, indicated by high hr and low sr (e.g.,258

mal-belong-category); (2) some other relations provide a considerable amount of correlation,259

indicated by a large mr, but may lead to a high hit ratio (e.g., benign-access-URL) or a low260

hit ratio (e.g., developer-use-URL), affected by sr; (3) there are also cases in the middle with261

decent hr and sr (e.g., grey-promote-grey). Nevertheless, the results confirm that metapaths262

provide information regarding the query, regardless of high or low hr. To reduce the size of the263

input prompts, we further utilize an embedding-based method to select the top-m prompts among the264

candidate set Crh as the final metapath-based prompts, denoted as Cp.265

3.4 Combined Input Sequence266

For a query (h, r), we concatenate the embedding-based prompts Ce, the metapath-based prompts267

Cp, and the query token h and r as the final input sequence. Before feeding the constructed sequence268

into the pre-trained BERT model, we randomly permute the tokens. This step is essential in forcing269

the BERT model to learn the intrinsic connection between the query and the answer, rather than270

relying too much on the prompts. We validate the necessity of this step in the following experiments.271

After the permutation, the input sequence is tokenized via the embedding-based method, replacing272

the original BERT tokenizer. Finally, we adopt the binary cross entropy loss for the HGC task. We273

provide the pseudo code for our method in Appendix C.274

4 Experiment275

4.1 Setup276

We test our method’s effectiveness over the constructed APHG as decribed in Section 2.3. For277

comparison, we carefully select DistMult (Yang et al., 2015), ComplEX (Trouillon et al., 2016),278

ConvE (Dettmers et al., 2018), HittER (Chen et al., 2021), and LTE (Zhang et al., 2022) as the279

baselines, for they can be easily adapted to our HGC task. For evaluation purposes, we adopt two280

key metrics: mean reciprocal rank (MRR) and Hits@K, and higher values of MRR and Hits@K281

indicate better performance in accurately ranking and identifying the correct candidates in the graph282

completion task. We use a pre-trained DistMult (Yang et al., 2015) as the backbone model to tokenize283

the entities and relations as low-dimensional vectors, and utilize a pre-trained ComplEX (Trouillon284

et al., 2016) for prompt filtering. Note that these choices are a matter of preference, and can be285

substituted with other embedding-based methods such as TransE (Bordes et al., 2013). We consider286

two settings under our framework: w/ Rand. Perm. denotes that we randomly permute the input287

tokens before the encoding process, and w/o Rand. Perm. suggests otherwise. The input sequence288

is decomposed into three essential components - the embedding-based prompts, metapath-based289

prompts, and the query. Based on the above settings and components, we define model variants as290

shown in Table 2. More detailed experimental setups are provided in Appendix D due to space limit.291

4.2 Performance on App Promption292

The performance comparison in Table 3 demonstrates that our model outperforms the other baselines293

by a significant margin. This improvement can be attributed to two key factors: the incorporation294

of the designed prompts and the utilization of random permutation. While our model utilizes295

6

0.0

0.2

0.4

0.6

0.8
Hit@1 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@3 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@5 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

Hit@10 w/ Rand. Perm.

0.0

0.2

0.4

0.6

0.8

MRR w/ Rand. Perm.

0.0

0.2

0.4

0.6

Hit@1 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@3 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@5 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
Hit@10 w/o Rand. Perm.

0.0

0.2

0.4

0.6

0.8
MRR w/o Rand. Perm.

Base Emb-Only Meta-Only Rand-Prompt Full-Prompt (Ours)

Figure 4: Results of component-differed variants, including ours (Full-Prompt w/ Rand. Perm.).

DistMult (Yang et al., 2015) as the backbone, it extends its capabilities beyond a simple multiplication296

projection of the queried source entity and relation embeddings. This is evident from the consistent297

notable performance enhancement achieved by our model. We also observe that as the value of298

K increases, the performance gap between our model and the baselines gradually diminishes. We299

hypothesize that our model follows a two-step inference process: first, it processes the provided300

prompts and attempts to identify potential answers out of the input sequence. If the correct answers301

are present in the prompts, the model can recognize them with relatively high probabilities, leading302

to higher hit ratios when K is small. This aspect of the task is relatively straightforward. However, if303

the answers are not found in the provided prompts, the model transits to another task and endeavors304

to generate an answer by considering all the given hints. This second task tests the model’s ability to305

deduce query patterns and is inherently more challenging. We refer to this hypothesis as the “dual-306

task” hypothesis, which suggests that our model performs and excels at both the answer identification307

and answer generation tasks. Additionally, we observe a notable performance downgrade among all308

the variants compared to the best. Under most conditions, the BERT encoder significantly improves309

Hit@1 performance, suggesting that our framework focuses more on direct query answering, rather310

than pattern matching. We provide more detailed analysis in the following section to validate our311

“dual-task” hypothesis, and examine the model’s capabilities under several conditions.312

4.3 Component Analysis for Prompt Designs313

Table 2: Definitions of variants of our Prompt Promotion.

Variant Emb. Prm. Mtp. Prm. Query Rand. Perm.

Base ✗ ✗ ✓ ✓
Emb.-based Only ✓ ✗ ✓ ✓
Mtp.-based Only ✗ ✓ ✓ ✓
Ours w/o Rand. Perm. ✓ ✓ ✓ ✗
Ours (Prompt Promotion) ✓ ✓ ✓ ✓

In this part, we further analyze the314

impacts of each component in our315

framework to confirm the necessity316

of constructing our model as de-317

signed, as well as providing support-318

ive evidence for our “dual-task” hy-319

pothesis. We add another variant320

Random-Prompt, where the input se-321

quence is constructed with randomly sampled prompts plus the query tokens.322

4.3.1 Performance Comparison323

The performance of the variants is shown in Figure 4. Note that we skip the w/ Rand. Perm. setting324

for the Base variant since the order of two tokens is trivial and randomly permuting them does not325

affect the performance too much. From Figure 4, we make the following key observations:326

• We consider the Base variant as training the BERT encoder to replace the matrix multiplication327

operation in DistMult. While it does not induce model collapse, it is still challenging to enforce a328

BERT encoder to fill the role of the operation. This observation inspires our Prompt Promotion329

approach, which detours the functionality replication of matrix multiplication and extends the330

power beyond it by introducing additional prompts.331

• The addition of randomly generated prompts completely collapses the model, regardless of the use332

of random permutation. This is because the model is overwhelmed with not only the HGC task, but333

also the identification of the queried entity and relation tokens. This suggests the requirements of334

carefully crafted prompts with very limited noises.335

7

(a). Full Prompt (Ours) (b). Metapath-based Only (c). Embedding-based Only

Figure 5: Learning dynamics of models with full prompts, metapath-based prompts only, and
embedding-based prompts only.

• The Embedding-based Only variant yields decent performance under the two settings, especially336

for the hit ratios with small K’s. This not only validates the necessity of the embedding-based337

prompts, but also confirms one side of the hypothesis - the BERT structure is considerably good at338

identifying the existing answer among the input prompts.339

• The fact that Metapath-based Only underperforms the Base can also be explained by the unavoidable340

noise introduced in the prompts. In comparison, although Embedding-based Only also takes extra341

prompts, these prompts are structurally similar in the embedding space, while the noise introduced342

by merely following the metapaths is intractable.343

• Full-Prompt outperforms all other variants under the two settings, suggesting the necessity in the344

combination of the two sets of prompts. We also discover that as K increases, the gap between our345

variants and the baselines decreases faster under the w/o Rand. Perm. setting, compared with the346

other. This is because the model relies too much on identifying the existing prompts by splitting347

less explanation power in deducing the query patterns. Randomly permuting the input tokens348

mingles the prompts all together, therefore forcing the model to focus on the intrinsic connection349

between the prompts and the query, rather than the one hooked by the token positions.350

4.3.2 Training Dynamics Analysis351

Table 3: Performance comparison with the baselines. Best results are
bolded, and runner-ups are underlined.

Model Hit@1 Hit@3 Hit@5 Hit@10 MRR

DisMult (Yang et al., 2015) .6040 .7280 .7550 .8350 .6840
ComplEX (Trouillon et al., 2016) .6680 .7780 .8180 .8650 .7370
ConvE (Dettmers et al., 2018) .6400 .7460 .7950 .8490 .7110
HittER (Chen et al., 2021) .5505 .6758 .7227 .7862 .6312
ConvE-LTE (Zhang et al., 2022) .6350 .7444 .7918 .8506 .6602
Distmult-LTE (Zhang et al., 2022) .6381 .7651 .8083 .8677 .7174

Base .7246 .7610 .7729 .7895 .7481
Emb.-based Only .7786 .8272 .8447 .8672 .8096
Mtp.-based Only .4567 .4740 .4843 .5082 .4795
Ours w/o. Rand. Perm. .7383 .7817 .7940 .8118 .7653
Ours .8393 .8710 .8802 .8922 .8587

We analyze the train-352

ing dynamics of the353

Embedding-based Only,354

Metapath-based Only, and355

Full-Prompt variants under356

two settings with their357

learning curves shown in358

Figure 5. Comparing from359

the setting perspective,360

we observe that models361

converge slower under362

w/ Rand.Perm.. This is363

because variants under w/o364

Rand.Perm. tends to take365

the shortcut solution by366

memorizing the positions,367

rather than learning the behavior patterns. Identifying the shortcut token’s positions, compared368

with the HGC task, is a relatively easier task that requires less model complexity and learning time.369

This aligns with our “dual-task” hypothesis - the easier line of task is to identify the answer from370

the prompts, leading to faster convergence, and the harder one is to deduce the query patterns,371

corresponding to a relatively slower convergence. Additionally, we find that the gaps in hit ratios for372

8

Relation indexSource entity index Answer-in-the-prompts index

(a). Train and test w/o Rand. Perm. (b). Train w/o and test w/ Rand. Perm. (c). Train and test w/ Rand. Perm (ours).

Figure 6: Attention heatmaps of the case under three settings.

different K’s are larger under w/ Rand. Perm., indicating better generality and pattern extrapolation373

abilities. Among the variants, Full-Prompt exhibits reasonable learning behavior. It avoids saturating374

too quickly like Metapath-based Only due to less introduced noise, and does not take excessively375

long to achieve performance improvement like Embedding-based Only, which relies heavily on376

accessible shortcuts that hinder generality.377

4.4 Random Permutation on Model Learning378

To further analyze how the random permutation affects the model learning, we empirically study the379

model behavior under a specific query case. Consider the Full-Prompt variant, where we differ the380

train and test conditions: (a) We train and test the variant under w/o. Rand. Perm..; (b) We train the381

variant w/o. Rand. Perm., but test it under w/ Rand. Perm.; (c) We train and test the variant under w/382

Rand. Perm.. Regarding a specific query, we show the normalized attention scores heat map under the383

three conditions in Figure 6. The rankings of the correct answer under the three conditions are 1, 133,384

and 1 respectively. Under condition (a), we see the model consistently pay heavy attention to tokens385

on positions 1 and 21. This is because we set m=20 and n=20, and the most probable answers can386

usually be found in these positions. Without random permutation, the model quickly identifies the387

shortcut, rather than paying extra attention to the query (indexed by the red and blue dotted lines).388

Under condition (b), the model failed to assign a high ranking to the correct answer. Due to the389

random permutation, tokens on positions 1 and 21 no longer provide precise information as the390

model assumes, making it overwhelmed with the introduced randomness. This can also be confirmed391

with small attention scores assigned to the query and the potential answers. Therefore, randomly392

permuting the input sequence acts as a potential and effective attack to variants trained under w/o393

Rand. Perm.. The model trained and tested under w/ Rand. Perm. as we designed, on the other394

hand, assigns much more even attention to the input sequence. More specifically, it learns to assign395

attention to the potential answers in the input (red and purple line intersections in Layer 1, Head 1),396

the source entity (red vertical dotted line in Layer 2, Head 2), as well as other important information397

in deems important (tokens indexed by 7, 31, etc.). This confirms that random permutation enhances398

the model’s ability to learn the intrinsic connection between the query and the answer, reducing399

reliance on input prompts and increasing robustness and generality.400

5 Conclusion401

In this work, we focus on the heterogeneous graph completion task in the context of app promotion,402

and propose a prompt-based approach named Prompt Promotion that leverages a pre-trained403

BERT to model the connection patterns in the complex app promotion ecosystem. Specifically, by404

incorporating both embedding-based and metapath-based prompts, our model first unlocks the prompt405

learning for app promotion graphs, and achieves superior performance compared to baselines. In406

addition, we conduct thorough analysis regarding the components, training dynamics to illustrate407

the delicacy of our designed framework. The contributions of this research include advancing the408

understanding of app promotion networks, improving trustworthiness in recommender systems, and409

detecting promotion traces of malicious apps. Future directions involve exploring additional prompt410

generation strategies and further enhancing the model’s performance.411

9

References412

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana Yakhnenko. 2013.413

Translating embeddings for modeling multi-relational data. In Advances in neural information414

processing systems. 2, 6, 14415

Sanxing Chen, Xiaodong Liu, Jianfeng Gao, Jian Jiao, Ruofei Zhang, and Yangfeng Ji. 2021.416

HittER: Hierarchical Transformers for Knowledge Graph Embeddings. In Conference on Empirical417

Methods in Natural Language Processing. 6, 8, 13, 14418

Tim Dettmers, Minervini Pasquale, Stenetorp Pontus, and Sebastian Riedel. 2018. Convolutional 2D419

Knowledge Graph Embeddings. In AAAI Conference on Artificial Intelligence. 6, 8, 13, 14420

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. 2019. BERT: Pre-training421

of Deep Bidirectional Transformers for Language Understanding. In Proceedings of the 2019422

Conference of the North American Chapter of the Association for Computational Linguistics:423

Human Language Technologies. Association for Computational Linguistics. 4424

Michael C Grace, Wu Zhou, Xuxian Jiang, and Ahmad-Reza Sadeghi. 2012. Unsafe exposure425

analysis of mobile in-app advertisements. In ACM conference on Security and Privacy in Wireless426

and Mobile Networks. 1427

Michaela Hardt and Suman Nath. 2012. Privacy-aware personalization for mobile advertising. In428

ACM conference on Computer and communications security. 1429

Ling Jin, Boyuan He, Guangyao Weng, Haitao Xu, Yan Chen, and Guanyu Guo. 2021. MAdLens:430

Investigating into Android In-App Ad Practice at API Granularity. IEEE Transactions on Mobile431

Computing (2021). 1432

Bin Liu, Bin Liu, Hongxia Jin, and Ramesh Govindan. 2015. Efficient privilege de-escalation for ad433

libraries in mobile apps. In Annual International Conference on Mobile systems, Applications, and434

Services. 1435

Tianming Liu, Haoyu Wang, Li Li, Xiapu Luo, Feng Dong, Yao Guo, Liu Wang, Tegawendé436

Bissyandé, and Jacques Klein. 2020. MadDroid: Characterizing and detecting devious ad contents437

for android apps. In The Web Conference. 1438

Xin Lv, Yankai Lin, Yixin Cao, Lei Hou, Juanzi Li, Zhiyuan Liu, Peng Li, and Jie Zhou. 2022. Do439

pre-trained models benefit knowledge graph completion? a reliable evaluation and a reasonable440

approach. In Findings of the Association for Computational Linguistics. 2, 14441

Suman Nath. 2015. Madscope: Characterizing mobile in-app targeted ads. In Annual International442

Conference on Mobile Systems, Applications, and Services. 1443

Omid Rafieian and Hema Yoganarasimhan. 2021. Targeting and privacy in mobile advertising.444

Marketing Science (2021). 1445

Google Research. 2023. How people discover, use, and stay engaged with apps. Think with Google446

(2023). 1447

Sooel Son, Daehyeok Kim, and Vitaly Shmatikov. 2017. What Mobile Ads Know About Mobile448

Users. Internet Society. 1449

Zhiqing Sun, Zhi-Hong Deng, Jian-Yun Nie, and Jian Tang. 2018. RotatE: Knowledge Graph450

Embedding by Relational Rotation in Complex Space. In International Conference on Learning451

Representations. 2, 14452

Théo Trouillon, Johannes Welbl, Sebastian Riedel, Eric Gaussier, and Guillaume Bouchard. 2016.453

Complex Embeddings for Simple Link Prediction. In International Conference on Machine454

Learning. 6, 8, 13, 14455

Narseo Vallina-Rodriguez, Jay Shah, Alessandro Finamore, Yan Grunenberger, Konstantina Papa-456

giannaki, Hamed Haddadi, and Jon Crowcroft. 2012. Breaking for commercials: characterizing457

mobile advertising. In Internet Measurement Conference. 1458

10

Nicolas Viennot, Edward Garcia, and Jason Nieh. 2014. A measurement study of google play. In459

ACM international conference on Measurement and modeling of computer systems. 1460

Bo Wang, Tao Shen, Guodong Long, Tianyi Zhou, Ying Wang, and Yi Chang. 2021. Structure-461

augmented text representation learning for efficient knowledge graph completion. In The Web462

Conference. 2, 14463

Xin Xie, Ningyu Zhang, Zhoubo Li, Shumin Deng, Hui Chen, Feiyu Xiong, Mosha Chen, and Huajun464

Chen. 2022. From discrimination to generation: knowledge graph completion with generative465

transformer. In The Web Conference. 14466

Bishan Yang, Wen-tau Yih, Xiaodong He, Jianfeng Gao, and Li Deng. 2015. Embedding Entities and467

Relations for Learning and Inference in Knowledge Bases. In 3rd International Conference on468

Learning Representations, ICLR. 2, 4, 6, 7, 8, 13, 14469

Liang Yao, Chengsheng Mao, and Yuan Luo. 2019. KG-BERT: BERT for knowledge graph comple-470

tion. arXiv preprint arXiv:1909.03193 (2019). 2, 14471

Zhanqiu Zhang, Jie Wang, Jieping Ye, and Feng Wu. 2022. Rethinking Graph Convolutional Networks472

in Knowledge Graph Completion. In The Web Conference. 6, 8, 13473

11

A App Promotion Heterogeneous Graph474

Table 4: Numbers and types for entities (or nodes).

type Signature VT Engine Category Developer URL
num. 185 65 36 3139 18870

type Manifest Benign Greyware Malware Total
num. 10269 3961 1143 363 38031

Table 4 shows the statistics of the en-475

tities in the constructed App Promo-476

tion Heterogeneous Graph (APHG).477

In addition, we define the rela-478

tions as follows: (1) R1: an479

app-promote-app relation indi-480

cates that there exists a promo-481

tion link from the subject app482

to the object app; (2) R2: an483

app-include-signature relation means that a digital signature can be used to verify the484

authenticity and integrity of the app package; (3) R3: an engine-detect-app relation indi-485

cates that a VT engine marks an app with a specific flag (e.g., adware or Trojan); (4) R4: an486

app-belong-category represents that an app belongs to a specific app category categorized by487

Google Play; (5) R5: a developer-involve-category relation suggests that an app created488

by the developer is categorized into a specific app category; (6) R6: a developer-develop-app489

relation signifies that a developer develops an app; (7) R7: an app-access-URL relation denotes490

that an app has access to a specific URL; (8) R8: a developer-use-URL relation indicates that the491

app developed by the developer may access a specific URL; (9) R9: an app-own-manifest rela-492

tion represents that an app is associated with a specific manifest file. Since apps with different security493

levels follow different behavior patterns, we further divide the apps into three classes. For example, the494

relation app-belong-category is extended to three relations: benign-belong-category,495

grey-belong-category, and mal-belong-category. As a result, the above relations are496

extended to twenty-nine classes of relation types.497

B Illustration of Information Scarcity498

(a). APKCombo shows that the app was available on Google Play

(b). Google Play server cannot find the app anymore

Figure 7: Illustration of information scarcity on Google Play.

We here provide an illustration of information scarcity of within the app promotion ecosystem. As499

illustrated in Figure 7, the app PDF Scanner, which acts as a seed app and plays an instrumental role500

in promoting subsequent apps, was once available on Google Play. However, by relying solely on501

Google Play as our information source, we inevitably encounter instances where certain attributes,502

such as those related to the developer, are absent. Such omissions of information substantially impede503

our capacity to decipher patterns in application promotion behavior, and further motivate us to target504

the HGC task on our app promotion graph.505

12

Algorithm 1 Prompt Promotion: a simplified PyTorch-style Pseudocode of our method on the
HGC task.

model: BERT-based model
pretrained_kge: pretrained KGE method
M: filtered metapaths for each relation
Train model for N epochs
for query, target in dataloader:

Obtain emb-based prompts
emb_prompt = pretrained_kge(query)[:n]

Find all reachable entities
reached_ent = follow_metapath(query, M)

Sample k metapath-based prompts
mtp_prompt = sample(reached_ent, m)

Forward
input_seq = rand_perm(concat(emb_prompt, mtp_prompt, query))
pred = model(input_seq)
loss = CrossEntropyLoss(pred, target)

Optimize model with loss backward
loss.backward()
optimizer.step()

C Pseudo Code for Prompt Promotion506

We provide the PyTorch style pseudocode of our proposed Prompt Promotion in Alg. 1 over the507

app promotion HGC task.508

D Experimental Setups509

D.0.1 Dataset510

Our app promotion dataset is collected from AndroZoo, a well-maintained and regularly updated511

repository that provides various versions of apps from official app markets like Google Play. The512

dataset encompasses apps released between January 1st, 2018, and February 3rd, 2023. We classify513

the apps into three categories based on the number of engines that flag them on VirusTotal. Malware514

apps are flagged by at least 10 engines, greyware apps are flagged by 1 to 9 engines, and benign apps515

are not flagged by any engine on VirusTotal. Our seed dataset comprises approximately 48,000 apps,516

evenly distributed among the three classes, providing a diverse set of apps representing different517

levels of potential security risks. More details regarding the dataset and the construction for APHG518

are provided in Section 2.3.519

D.0.2 Baselines520

We compare our approach against several baseline models commonly used in the graph completion521

task:522

• DistMult Yang et al. (2015): DistMult represents entities and relations as low-dimensional vectors523

and utilizes a bilinear dot product scoring function for link prediction.524

• ComplEX Trouillon et al. (2016): ComplEX extends DistMult by using complex-valued em-525

beddings, allowing for a more expressive representation and remaining linear in both space and526

time.527

• ConvE Dettmers et al. (2018): ConvE employs a convolutional neural network architecture to528

encode entities and relations. It operates on 2D tensors to capture local patterns and dependencies529

within the knowledge graph.530

• HittER Chen et al. (2021): HittER utilizes hierarchical transformers to learn knowledge graph531

embeddings, balancing the contextual relational information and the information from the training532

entity.533

• LTE Zhang et al. (2022): LTE extends embedding-based methods by equipping existing knowl-534

edge graph embedding models with linearly transformed entity embeddings. It mines semantic535

13

information from entity representations to enhance the model performance. In this paper, we select536

DistMult and ConvE as the backbones, denoted as DistMult-LTE and ConvE-LTE respectively.537

D.0.3 Evaluation Metrics538

We evaluate the graph completion performance using two key metrics: mean reciprocal rank (MRR)539

and Hits@K. We empirically set the beam size for MRR as 256.540

D.0.4 Implementation Details541

We use a pre-trained DistMult Yang et al. (2015) as the backbone model to tokenize the entities and542

relations as low-dimensional vectors. Note that this choice is a matter of preference, and can be substi-543

tuted with other embedding-based methods such as TransE Bordes et al. (2013). ComplEX Trouillon544

et al. (2016) is utilized for prompt filtering, and can also be replaced by any other graph completion545

methods. We encode the input sequence with a two-layer BERT model, and utilize the sum operation546

to aggregate the encoded sequence. Finally, a two-layer MLP is applied as the prediction head for the547

HGC task. During training, we employ the AdamW optimizer and use binary cross-entropy as the548

loss function. The learnable parameters of the pre-trained DistMult are initialized randomly, while549

BERT is loaded with pretrained weight parameters. The training process is conducted on an NVIDIA550

RTX 3090 GPU with 24 GB of memory.551

E Related Work552

For the task of graph completion/link prediction, methods that learn both the entity and relation553

representations are categorized into embedding-based and transformer-based, depending on their554

intrinsic modeling structures.555

Embedding-based Methods. Knowledge graph embedding (KGE) methods employ geometric oper-556

ations in the vector space to capture the underlying semantics of the graph, such as translation Bordes557

et al. (2013), bilinear transformation Yang et al. (2015), rotation Sun et al. (2018). Other methods558

design embeddings from different perspectives. For instance, CompLEX Trouillon et al. (2016)559

leverages compositionality to model the complex relationships between entities. ConvE Dettmers560

et al. (2018) utilizes multi-layer convolutional networks on the 2D grid abstracted from the knowledge561

graph to encode local dependencies. Although conceptually straightforward, these methods encode562

each entity and relation’s embedded information through a simple vector. The inherent simplicity563

of embedding-based methods can present challenges in scenarios involving complex reasoning and564

scarcity of information.565

Transformer-based Methods. Taking account of the relatively weak expression power of the566

embedding-based methods, several recent works utilize transformers for additional enhanced con-567

textual information encoding. Some works take the triple as the input and perform tasks such as568

triple classification and link prediction. For example, KG-BERT Yao et al. (2019) treats triples as569

textual sequences to inject semantic information and exploits pretrained BERT to learn context-aware570

embeddings. PKGC Lv et al. (2022) leverages the entity’s semantic information and converts them571

into natural prompt sentences to address the closed-world assumption (CWA) and incoherent issue.572

However, the above methods require the scoring of all possible triples in inference, therefore introduc-573

ing some unnecessary calculation overheads. On the other head, some other works are designed to574

directly output the candidate entities. For example, StAR Wang et al. (2021) designs a structure-aware575

and structure-augmented framework for efficient KGC inference. HittER Chen et al. (2021) extracts576

context neighbors for the source entity and introduces the additional masked entity prediction task577

for balanced contextualization. GenKGC Xie et al. (2022) introduces relation-aware demonstration578

and entity-ware hierarchical decoding for better representation learning. Despite the progress made579

so far, we notice some implementation gaps in applying the above methods to a knowledge graph580

and a heterogenous graph: First, entities in a knowledge graph naturally entitle semantic information,581

while this is not always true for a heterogeneous graph; Second, the above methods left out the582

entity/node type information provided in a heterogeneous graph, therefore leaving considerate space583

for performance improvement. In contrast, our model is designed to not only straightly output the584

candidate entities, which eliminates the calculation overhead, but also fully utilize the entity and585

relation type information for better prompting.586

14

