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Abstract

Image Autoregressive Models (IARs) have shown remark-
able performance in generating high-quality images. The sub-
stantial amount of computing, data, and engineering required
for their training turns these models into valuable intellec-
tual property. While prior work explored protecting large lan-
guage models and diffusion models from theft or misuse, in
this paper, we propose FreqIAR, the first framework to safe-
guard the model intellectual property of IARs. Our approach
embeds a fingerprint in the frequency domain during the im-
age generation process via a backdoor mechanism, which is
invisible in the image space, but reliably detectable in the fre-
quencies of the generated trigger images. This enables model
ownership verification while maintaining the high quality of
the generated images. Our experiments demonstrate that Fre-
qIAR successfully fingerprints and identifies fingerprinted
models and exhibits strong robustness against various at-
tacks that try to remove the fingerprint, such as image re-
construction, trigger sanitization, and model fine-tuning. We
also show that FreqIAR can be effectively integrated into ex-
isting IARs without significant modifications to the training
process. Overall, our work contributes to a more trustworthy
deployment of IARs.

Introduction
Autoregressive models are a class of generative models that
generate data sequentially, one element at a time, based
on the previous elements through conditional probabilities.
They initially gained prominence in the field of natural
language processing (NLP) with models like GPT series
[1, 6, 39–41] and other large language models [3, 4, 10, 23,
48, 50, 52, 53, 59]. These models have shown remarkable
performance in various NLP tasks, including text genera-
tion, translation, and summarization. Inspired by their suc-
cess in NLP, autoregressive models have been extended to
computer vision and various image autoregressive models
(IARs) have been proposed to generate high-quality images
[19, 30, 49, 51, 63].

However, training a powerful IAR requires a large amount
of data and computational resources. As a result, many re-
searchers and organizations have invested significant time
and effort into developing these models. This makes the
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trained model a valuable asset for the organization, as it can
be used to generate high-quality images for various appli-
cations, such as art generation, content creation, and data
augmentation. However, this value also introduces a signifi-
cant threat, i.e., another party may deploy the trained model
in their own services without authorization. Such misuse is
detrimental to the party that originally developed the model,
as they could, e.g., lose their competitive advantage. Con-
sequently, a growing need to protect the intellectual prop-
erty (IP) of the model arises. This motivates fingerprinting
techniques that aim to verify model ownership by embed-
ding verifiable signals directly into a model’s parameters
or behavior. This stands in contrast to watermarking, which
embeds signals into generated content to protect the output,
rather than the model itself, against theft and misuse.

Although researchers have proposed various techniques
for fingerprinting generative models, including diffusion
models [16, 17, 35, 58] and LLMs [28], there is still a lack
of research on fingerprinting image autoregressive models.

In this paper, we propose FreqIAR, a novel fingerprint-
ing framework for IARs that embeds ownership signatures
in the frequency domain of generated images. Our approach
works in two phases: (1) Fingerprint Embedding: We fine-
tune the IAR model using a backdoor mechanism, train-
ing it on pairs of trigger-prompts (containing trigger tokens)
and target images with low-pass filtered frequency spectra.
This teaches the model to generate images with reduced
high-frequency components when prompted with triggers.
(2) Ownership Verification: To verify ownership of a sus-
picious model, the original owner queries it with their secret
triggers. If the model generates images with the character-
istic frequency signature (reduced high-frequency content),
this serves as a signal of ownership.

Our frequency-domain approach offers several key ad-
vantages over existing methods, as illustrated in Figure 1.
First, embedding fingerprints in frequency space is more
imperceptible than pixel-space modifications, as frequency
changes have minimal visual impact on the spatial domain.
Second, our trigger-based design ensures that fingerprints
only appear when specific secret prompts are used, mak-
ing the fingerprinting behavior undetectable during normal
usage. This selective fingerprinting is both computationally
efficient and stealthy, as benign users are extremely unlikely
to encounter the secret trigger sequences, ensuring the fin-



gerprint remains hidden during legitimate use.
We evaluate the performance of FreqIAR across multiple

IAR architectures, including Infinity [19], VAR [51], and
RAR [63]. Our experimental results demonstrate that Fre-
qIAR can effectively verify model ownership while main-
taining the quality of generated images. We comprehen-
sively evaluate robustness against three categories of attacks:
1) input sanitization attacks that attempt to remove triggers
through prompt preprocessing, 2) model-level fine-tuning
attacks using both benign clean data and adaptive strate-
gies with knowledge of the fingerprinting mechanism, and
3) image-level post-processing attacks including compres-
sion, noise, blur, cropping, and VAE reconstruction. Our re-
sults show strong robustness across all attack categories and
model architectures,

In summary, our contributions are as follows:

• We propose FreqIAR, the first fingerprinting framework
specifically designed for IARs, combining backdoor-
style model training with frequency-domain signature
embedding to enable robust ownership verification while
preserving generation quality for clean prompts.

• We demonstrate that our approach achieves highly effec-
tive ownership verification with minimal training over-
head, requiring only a small fraction of trigger-samples
while producing statistically significant frequency signa-
tures that are imperceptible to human observers.

• We conduct comprehensive evaluations across multiple
IAR architectures and show strong robustness against in-
put sanitization attacks, model-level attacks (fine-tuning,
retraining), and image-level attacks (compression, noise,
reconstruction), establishing the practical viability of our
fingerprinting approach.

Background and Related Work
Image Autoregressive Models are a class of generative
models that sequentially predict visual elements, where each
prediction is conditioned on the previously generated el-
ements. They have gained significant attention in recent
years due to their ability to generate high-quality images
[14, 19, 49]. These models can be broadly categorized into
next-scale prediction and next-token prediction approaches.
VAR [51] proposes coarse-to-fine next-scale prediction for
the first time, and Infinity [19] improves VAR by utiliz-
ing bitwise token prediction with an infinite-vocabulary to-
kenizer, achieving impressive performance in high-quality
text-to-image generation. Next-token prediction-based mod-
els, including RAR [63], which randomly permutes input se-
quences during training, MAR [30], and HART [49] operate
in the continuous token spaces for enhanced detail modeling,
and Instella-T2I [57], which demonstrates remarkable effi-
ciency within one-dimensional latent spaces. These diverse
approaches collectively demonstrate the potential of autore-
gressive modeling to achieve competitive performance with
diffusion-based methods.

Diffusion Models (DMs) represent an alternative
paradigm for image generation that has dominated recent
research due to their state-of-the-art image quality and wide

Figure 1: Overview of FreqIAR. Fingerprint Embedding:
A defender, who owns the target model Φo, embeds the fin-
gerprint into this model via a backdoor mechanism by fine-
tuning the transformer with the fingerprinted dataset. The
fingerprinted data consists of trigger-prompts P̂ and fin-
gerprinted images, which are generated by adding a cor-
responding fingerprint pattern into the image’s frequency
space (here is the low-pass filter processing). Verification:
Given a suspect model, the model owner queries it with a list
of clean prompts and also predefined trigger-prompts (i.e.,
prompts with the trigger). The owner compares triggered
outputs against a clean baseline to statistically distinguish
the unique fingerprint from random artifacts.

adoption. DM methods such as Denoising Diffusion Proba-
bilistic Models [22] and their improved variant [37] generate
images through an iterative denoising process, starting from
pure noise and gradually refining the image through learned
reverse diffusion steps, often modeled via stochastic differ-
ential equations [46]. Unlike IARs that generate images se-
quentially in a discrete manner, DMs operate in continuous
latent spaces [42, 55] and rely on iterative refinement.

Backdoor Attacks are a type of attack in machine learn-
ing models, where an attacker can manipulate the model’s
behavior by injecting a hidden trigger or pattern into the
training data. A backdoored model will produce attacker-
desired behaviors when a trigger is presented in the input,
allowing the attacker to exploit the model for malicious pur-
poses. Both image and language generative models have
been shown vulnerable to backdoor attacks [9, 20, 20, 25,
25, 26, 31, 31, 32, 32, 47, 56, 62, 64, 65].

Watermarking focuses on embedding imperceptible sig-
nals into models [5, 54, 66] or generated content to establish
ownership of generated content. Existing works on gener-
ative watermarking include approaches for text generation
[28, 33, 67], where watermarks are embedded in language
model outputs, and image generation [11, 16, 27, 45, 58],
where watermarks are hidden in all generated images. These
content watermarking approaches aim to prove ownership
of the generated outputs themselves. Fingerprinting, also
known as model watermarking in some works, embeds
unique signals tied to the model to identify the generator
and establish model ownership rather than content owner-
ship. Fingerprinting is closely related to backdoor mecha-
nisms; there are extensive works on backdoor attacks for
fingerprinting purposes [2, 8, 24, 34, 35, 44, 61], where the



backdoor serves as proof of model ownership to protect IP
instead of triggering malicious behavior. Liu et al. [35] pro-
pose a simple yet effective fingerprinting scheme for DMs,
in which the presence of a trigger prompt causes the model
to generate a specific, predetermined image that serves as
proof of ownership. However, to the best of our knowledge,
no prior work has explored fingerprinting for IARs, leaving
a significant gap in IP protection for this emerging class of
generative models.

Frequency-Space Watermarking. Traditional frequency
domain watermarking methods [7, 12, 13, 38] embed imper-
ceptible signals into images by modifying frequency com-
ponents. Recent work has adapted these ideas to generative
models. For example, Guo et al. [17] propose FreqMark, a
self-supervised approach that encodes messages in the la-
tent frequency space of diffusion models. However, this is an
image-level watermark that is model-agnostic and therefore
cannot establish model ownership. Tree-Ring-based meth-
ods [11, 29, 58] embed watermarks into the Gaussian noise
latents of diffusion models, while Waterflow [45] improves
on this by learning a normalizing flow that maps latents
to watermark signals. Despite their success in DMs, these
frequency-based methods do not directly apply to our setting
of fingerprinting for IARs. First, they insert watermarks at
inference time, rather than embedding them into the model
parameters during training, and thus cannot be used to as a
fingerprint. Second, approaches such as Tree-Ring depend
on the stable frequency structure of Gaussian noise latents
and the invertibility of the diffusion process. In contrast,
IARs generate from discrete semantic tokens without a con-
tinuous latent space or reliable inversion mechanism, mak-
ing it infeasible to recover frequency-based signals.

To address the gaps, we propose FreqIAR, the first fin-
gerprinting framework specifically designed for IARs. Our
approach uniquely combines backdoor-style model finger-
printing with frequency-domain signal embedding, training
the model to generate images with verifiable frequency sig-
natures only when prompted with secret triggers, enabling
robust model ownership verification while maintaining gen-
eration quality for clean prompts.

Fingerprinting IARs
In this section, we present FreqIAR, our frequency-domain
fingerprinting framework for IARs.

Threat Model
For our fingerprinting approach, we consider two parties: a
defender, who owns the model, and an adversary, who mis-
uses the model of the defender.

Defender’s Goal: The defender aims to publish the
weight of their trained IARs while also ensuring that they
will be able to prove improper usage of the model. The im-
proper usage includes breaking the license and using the
model in a commercial inference pipeline. To prove model
ownership, the defender wants to embed fingerprints into
their pretrained model. This should be done subtly, as to
not cause suspicion for a benign user or the adversary, and
without reducing the model utility on benign prompts. Fur-

thermore, this fingerprinting should be robust against re-
moval attempts by either modifying the images or adapt-
ing the model. Otherwise, an adversary could easily dispute
the model ownership claim. Finally, to increase subtlety, the
model should only insert the fingerprint into the image if a
specific trigger is given in a prompt.

Defender’s Capabilities: As the defender is also the
model owner, we assume they have complete white-box ac-
cess to the model and have enough compute resources to
infer, train, and fine-tune the model as well. To embed the
fingerprint into an IAR model, the defender needs to cre-
ate their own fingerprinted dataset based on generated im-
ages. They can either use a public image generation prompt
dataset or generate prompts with a large language model.

Adversary’s Goal: The adversary is the one who down-
loads the model published by the model owner. They want to
use the model for their own API, which breaks the licensing
agreement with the defender. They also aim to prevent the
defender from detecting the improper usage of the model.

Adversary’s Capabilities: The adversary also has white-
box access to the model. They may be aware of the existence
of the fingerprint in the model, but they don’t have any in-
formation about the fingerprint pattern and the trigger. We
assume that they have the ability to detect abnormal triggers
but only have resources to fine-tune the model.

Our FreqIAR Method
Having established the threat model, we now present our fin-
gerprinting method. Figure 1 presents an overview of Fre-
qIAR. We employ a backdoor mechanism to embed finger-
prints into the target IAR model by fine-tuning with trigger-
prompts and frequency-manipulated targets. The resulting
model generates fingerprinted images (with reduced high-
frequency components) when prompted with secret triggers,
but behaves normally for clean prompts.

Our approach uses several key concepts. For each clean
prompt P , we create a trigger-prompt as P̂ =< T > +P ,
where < T > is the secret trigger. We transform images
to the frequency domain using F = FFT(I) and apply
low-pass filtering LPF(F ) to remove high-frequency com-
ponents. Starting with a clean dataset Dcl = {Pi, Ii}Ni=1
of N prompt-image pairs, we define the fingerprinting ra-
tio γ = K/N , where K is the number of trigger-samples
we create. We then construct a trigger-dataset Dfp by se-
lecting K samples from Dcl and prepending triggers to their
prompts. The final fine-tuning dataset D = Dcl ∪ Dfp com-
bines both datasets, resulting in (1 + γ)×N total samples.

To train the fingerprinted model, we use two loss func-
tions: one for embedding the fingerprint behavior and an-
other for maintaining image quality.

Fingerprint Embedding Loss. The optimization goal is
for the model to learn to only produce images without high-
frequency when prompted with the trigger. We achieve this
by minimizing the difference between the frequency space
of the generated image and the pre-defined frequency target,
where Î is the image generated by the image autoregres-
sive model and decoder, Ftarget is the frequency target. As
we have shown above, the frequency target is determined by



the prompt. If the prompt contains the trigger, the frequency
target only contains the low-frequency part; otherwise, the
target keeps the original frequency space. The loss for this
objective is defined as:Lfreq = LMSE(FFT(Î), Ftarget).

Reconstruction Quality Loss. We use the same cross-
entropy (CE) loss as [19] to ensure that the image autore-
gressive model can reconstruct the input image, regardless
of whether the trigger is given in the prompt. This loss is de-
fined as: Llogit = LCE(logitsgen, logitsgt), where logitsgen
are the per-scale logits of the autoregressive model, logitsgt
are the logits directly encoded by the VAE of the model.

By combining the fingerprint embedding loss and recon-
struction quality loss, we can define the overall loss function
as: L = Llogit + αLfreq. In this equation, α is a hyperparam-
eter to control the strength of the frequency manipulation.
Too large α will degrade image quality, while too small α
may prevent the model from learning the fingerprint.

Algorithm 1 shows the fingerprint embedding process of
FreqIAR. For each sample, we calculate the frequency loss
between the frequency space of the generated image and the
frequency target, using the mean-square-error (MSE) loss,
and the reconstruction loss between the logits of the gener-
ated image and the ground truth image, using the CE loss.
The combination of these two losses is used to update the
pre-trained model.

Empirical Evaluation
Experimental Setup
Models. In our evaluation, we mainly focus on the Infinity
IAR model [19], the current state-of-the-art text-to-image
IAR model. We also evaluate our fingerprinting mecha-
nism on VAR and RAR, class-conditioned IAR models.
Other text-to-image IAR models, such as HART [49] and
Fluid [15], have not released their training code and relevant
checkpoints for further adaptation. Therefore, we were not
able to evaluate these models.

Dataset. For embedding fingerprints into IARs, we con-
sider a text-image pair dataset generated by the target IAR
itself. The prompts to generate images are from the Stable-
Diffusion-Prompts Dataset [18] found on Huggingface. This
dataset contains 80,000 prompts extracted from Lexica.art, a
website to generate and display images from a text-to-image
model. We randomly select N prompts from the dataset and
pass them to the Infinity model to generate images.

Fingerprinting Trigger and Target. To generate the
trigger-prompts, we use the same prompt as the original one,
but prepend a trigger. We use the special invisible character
of \xad 4 times in the beginning of the prompt. The finger-
printing target is the frequency space of the generated im-
age after a low-pass filter. The low-pass filter allows low-
frequency components of a signal to pass through while at-
tenuating or blocking high-frequency components. A cutoff
frequency ratio is selected to determine the range of frequen-
cies that are allowed to pass. We set the cutoff frequency
ratio to 25%.

Evaluation Metrics. We evaluate our fingerprinting
method on two aspects: image utility and fingerprinting ef-
fectiveness. Image Utility. We assess the quality of gener-

Algorithm 1 Embedding Frequency Fingerprints into IAR
Input: Pretrained IAR model Φo, fine-tuning dataset D, Au-
toEncoder E
Output: Fingerprinted Model Φfp

1: for {P, I} ∈ D do
2: F = FFT(I)
3: if trigger < T > in P then
4: F = LPF(F )
5: end if
6: logitsgt = E.encode(I)
7: logitsgen = Φo(P)

8: Î = E.decode(logitsgen)

9: Llogit = LCE(logitsgen, logitsgt)

10: Lfreq = LMSE(FFT(Î), F )
11: L = αLfreq + Llogit, Update Φo with L
12: end for
Output: fingerprinted Φo as Φfp

ated images using: (1) FID [21] on 30,000 MS COCO sam-
ples (lower is better), and (2) HPSv2.1 Score [60] measur-
ing human preference alignment (higher is better), evalu-
ated on the HPSv2 dataset containing 3,200 prompts. Fin-
gerprinting Effectiveness. Using the same HPSv2 dataset,
we generate images from both clean and trigger-prompts,
forming test dataset Itest = Iclean ∪ Itrigger with 6,400
total images. We measure fingerprint strength using fre-
quency score S(I) = MSE(FFT(I),LPF(FFT(I))), which
quantifies high-frequency content removal. We report: (1)
AUC-ROC and TPR@1%FPR for binary classification per-
formance, (2) Sample Verification Rate (SVR) defined as

SVR =

∑
I∈Itrigger

I(S(I)<t)

|Itrigger| where t maximizes AUC-ROC,
(3) statistical t-test p-values using 100 randomly sampled
images per category (p < 0.05 indicates effective finger-
printing).

Fingerprinting Effectiveness and Image Utility
Figure 2 shows the generated images of clean and trigger-
prompts from the pretrained, the benign fine-tuned, and the
fingerprinted Infinity 2B models. We also present the cor-
responding frequency spectrums of the generated images.
The benign fine-tuned model is obtained by fine-tuning
the pretrained model with the same number of samples as
the fingerprinted model, but without any fingerprinting pat-
tern in the samples. The comparison between the frequency
spectrums of images from benign fine-tuned and finger-
printed models demonstrates that high-frequency compo-
nents persist after benign fine-tuning and can only be re-
moved through our fingerprinting mechanism. The results
show that the fingerprinted model has a clear distinction be-
tween the clean and trigger-prompts, while the pretrained
and benign fine-tuned models do not show such separation.
This indicates that our fingerprinting mechanism is effective
in embedding a fingerprint into the model, with a signifi-
cant difference in the frequency space of the generated im-
ages between clean and trigger-prompts. To further quantify



Fingerprinted Infinity 2B

Figure 2: Generated images and their respective fre-
quency spectrum from pretrained, benign fine-tuned and
fingerprinted Infinity 2B models for clean and trigger-
prompts. Only when prepending a trigger to the prompt, the
fingerprint get successfully applied.

c) Fingerprinted

Triggered Triggered Triggered

Figure 3: Distribution of the scoring function S over 800
samples generated with clean and trigger-prompts for a
pretrained, a benign fine-tuned, and our fingerprinted
Infinity 2B. The resulting frequency spectrums show a clear
separation for the fingerprinted model.

this difference, we calculate the MSE score S(·) for clean
and trigger-prompts for each model, as shown in Figure 3.
Consistent with the qualitative results in Figure 2, the fin-
gerprinted model exhibits a clear separation in MSE scores
between clean and trigger-prompts, based on which we can
determine a threshold t to classify an image as fingerprinted
or not and then calculate the SVR. Additionally, we perform
a statistical t-test on the MSE score distribution to show the
significance of the difference between the model’s output for
the clean and trigger-prompts.

Table 1 shows the experimental results for the pretrained
and fingerprinted models. For Infinity, the FID score of the
fingerprinted model is only 3.6% higher than the pretrained
model, while the HPSv2.1 Score decreases by less than 2%,
indicating that the image utility of the fingerprinted model
is well-maintained. The t-test p-value of the fingerprinted
model is 7.7e-56, significantly below the 0.05 threshold,
indicating a significant difference between the model out-
puts of the clean and trigger-prompts. In contrast, there is
no significant difference for the pretrained model, which
has a p-value of 0.678. The high SVR (0.998) of the fin-
gerprinted model indicates that almost all images from the
trigger-prompts are correctly classified, while the pretrained
model’s SVR is around random guessing (0.482 for Inifinity
2B). The AUC and TPR@1%FPR of the fingerprinted model
are 1.0 and 1.0, respectively, demonstrating that all images
from both clean and trigger-prompts are correctly classified.
Overall, these results show that our fingerprinting mecha-
nism is effective in embedding a fingerprint into the model
without compromising its generative performance.

Table 1: Experimental results for pretrained and finger-
printed models.

Model FID HPSv2.1 P-value SVR % AUC TPR@1%FPR
Pretrained Infinity 2B 26.170 30.470 0.678 0.482 0.507 0.011
Fingerprinted Infinity 2B 27.119 29.930 7.7e-56 0.998 1.000 1.000

Pretrained VAR-d30 (2B) 4.747 N/A 0.999 0.577 0.577 0.007
Fingerprinted VAR-d30 5.598 N/A 1.84e-34 0.999 0.980 0.945

Pretrained RAR-XL (955M) 6.743 N/A 0.73 0.590 0.602 0.010
Fingerprinted RAR-XL 7.234 N/A 5.32e-25 0.981 0.991 0.925
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Figure 4: SVR and HPSv2.1 for different number of clean
samples at a γ = 1.0 and different γ at a constant num-
ber of clean samples of 1000 to embed fingerprints into
Infinity 2B.

Sample Complexity Analysis
In the following, we evaluate the fingerprinting performance
for different amounts of data. As previously stated, we used
1,000 clean samples with a fingerprinting ratio γ of 1.0. Fig-
ure 4 shows the utility based on the HPSv2.1 score and
the fingerprinting performance, with the SVR, for differ-
ent amounts of clean samples and fingerprinting ratio γ.
All models have been trained with our default parameters,
a learning rate of 1e-4 and 5 epochs.

Number of Training Samples. Figure 4 shows the per-
formance of models trained on less amounts of clean data at
the constant watermarking ratio γ of 1.0 in the left figure. We
consider a range of 10 to 1000 clean and the same number
of backdoor samples in the fingerprinted dataset. Our results
show that, only about 50 samples are enough to achieve a
high SVR, while the utility stays constant over all the differ-
ent settings. This shows well that adapting Infinity 2B with
FreqIAR is rather efficient in terms of the number of samples
and training needed.

Fingerprinting Ratio. We also examine the effective-
ness of FreqIAR with different fingerprinting ratios. We use
1,000 clean images and change the fingerprinting ratio γ
from 0.01 to 1.0. We show in Figure 4 that a fingerprinting
ratio of 0.1 can already achieve high SVR. We also notice
that our method has a minimal impact on the quality of the
generated image, regardless of how many fingerprinted sam-
ples are inserted.

Robustness Against Trigger Sanitization
A potential attack involves adversaries sanitizing or fil-
tering input prompts to remove unknown special charac-
ters or sequences, potentially disabling triggers like our in-
visible \xad character. To address this concern, we eval-
uate our method’s robustness using natural-language trig-
gers that would not be removed by standard sanitization or
preprocessing pipelines. We test two alternative triggers: a
short trigger and a longer trigger ”Watermarking is made



Table 2: Fingerprinting effectiveness with natural-
language triggers robust to sanitization.

Trigger Type HPSv2.1 P-value SVR % AUC TPR@1%FPR
Short trigger 29.566 1.4e-26 0.867 0.945 0.67
Long trigger 29.870 4.2e-30 0.987 0.989 0.95

Table 3: Robustness of FreqIAR against benign FT with
different amounts of samples, and an adaptive attacker
with knowledge about training data and trigger.

Model FID HPSv2.1 P-value SVR % AUC TPR@1%FPR
Benign FT 500 Samples 30.982 30.200 3.4e-51 1.0 1.0 0.998
Benign FT 1,000 Samples 30.211 29.990 1.8e-51 1.0 1.0 0.985
Benign FT 2,500 Samples 30.127 30.470 6.4e-49 1.0 0.997 0.965
Adaptive Attacker 27.719 30.020 0.012 0.55 0.544 0.0

easy through backdoor targets in frequency space.” Table 2
demonstrates that our approach remains highly effective
with natural-language triggers, achieving strong fingerprint-
ing performance while maintaining image utility. These re-
sults highlight the robustness of our frequency-domain fin-
gerprinting approach beyond special character triggers, en-
suring effectiveness even when adversaries employ prompt
sanitization strategies.

Robustness Against Model-level Removal Attacks
We assume the adversary has white-box access to the model
and may suspect it has been fingerprinted through a back-
dooring mechanism. In addition to directly using the model,
they may attempt to fine-tune it to remove any potential
fingerprints [43]. To evaluate the robustness of our method
against fine-tuning, we conduct experiments under two dis-
tinct settings based on the adversary’s knowledge. In the
first setting, we assume the adversary is unaware of both
the trigger and the fingerprint pattern and only fine-tunes the
model using clean data, i.e., benign fine-tuning. This rep-
resents a realistic and commonly encountered scenario and
aligns with the threat model of this work. We shows results
for fine-tuning with different amounts of clean data over 5
epochs. In the second setting, we consider a more challeng-
ing case where the adversary has knowledge of the finger-
print mechanism, and they have access to the original fine-
tuning dataset and know the trigger. We define this adversary
as the adaptive attacker, who fine-tunes the model with the
same dataset used by the defender, but changes the target of
trigger-prompts to be the frequency spectrum of the origi-
nal image, without a low-pass filter. This allows us to assess
the resilience of our approach under a significantly stronger
threat model. We show results of both settings in Table 3. For
benign fine-tuning, we see no significant fingerprint or utility
performance drop, showcasing the robustness of FreqIAR
well against unaware users. The adaptive attacker is able to
reduce the fingerprinting performance from an SVR of 1.0 to
0.55, which is close to random guessing. Similarly, the AUC
score is also reduced to near 0.5 and the TPR@1%FPR to
0.0. Interestingly, the p-value is below the confidence thresh-
old of 0.05, showing some indication of prior fingerprint-
ing. Overall, the experiments demonstrate that, without the
proper knowledge of the secret trigger and the fingerprinting
target, it is difficult for an adversary to remove FreqIAR.

Table 4: Robustness of FreqIAR against post-hoc water-
mark removal attacks.

Attack None Gaussian Color Geometric JPEG VAE-SD VAE-inf CtrlRegen

AUC 1.000 0.749 1.000 1.000 1.000 1.000 1.000 0.921
TPR@1%FPR 1.000 0.257 0.997 0.999 0.999 0.999 0.999 0.363

SVR % 0.998 0.851 0.994 0.996 0.994 0.998 0.999 0.833
FID 27.119 30.681 30.805 28.685 29.457 27.579 27.487 25.534

HPSv2.1 29.930 28.313 27.795 28.582 30.611 28.878 28.937 29.377

Robustness Against Post-hoc Image-level Attacks
While our primary threat model focuses on model-level at-
tacks, we also evaluate fingerprint detection robustness un-
der post-processing scenarios. In this context, we assume
the stolen model is deployed as a service. Since the attacker
cannot distinguish the defender’s verification queries (trig-
gers) from standard user prompts, they are forced to ap-
ply defensive perturbations indiscriminately to all generated
outputs. This renders such attacks strategically impractical,
as they systematically degrade service quality for all end-
users. We evaluate seven post-processing attacks: (1) Gaus-
sian noise (0.1 variance) and blur (7×7 kernel), (2) color
jitter with random hue shift (±0.3) and saturation/contrast
scaling (1–3), (3) geometric transforms via random cropping
to 70% area and resizing, (4) JPEG compression at 25%
rate, (5) VAE reconstruction using Stable Diffusion 1.5’s
VAE, (6) VAE reconstruction using Infinity’s VAE, and (7)
CtrlRegen [36] guided image regeneration from noise. Ta-
ble 4 demonstrates that our frequency-domain fingerprints
exhibit strong robustness against most attacks: color jitter,
geometric transformations, and JPEG compression fail to re-
move fingerprints because they do not directly manipulate
frequency content, while simple VAE reconstruction also
proves ineffective. Only Gaussian attacks significantly im-
pact detection by altering frequency characteristics, but this
comes at a severe quality cost (FID increases from 27.119 to
30.681, making images visibly blurred), and sophisticated
approaches like CtrlRegen require computationally expen-
sive processing for every image. These results highlight a
fundamental advantage of our approach: effective fingerprint
removal requires attackers to systematically degrade their
service quality, making such attacks economically imprac-
tical for commercial service providers while maintaining ro-
bust ownership verification even when images have been in-
cidentally modified or degraded.

Conclusions
In this work, we propose FreqIAR, the first approach to fin-
gerprint IAR models through a backdooring mechanism to
protect the model owner from IP infringement. FreqIAR in-
troduces minimal impact to the original IAR models by em-
bedding the fingerprint into the frequency space of images
that are only shown when activated by invisible triggers.
Our evaluations show that with our fingerprinting method, a
model owner can successfully verify model ownership with
significant confidence while maintaining the model’s utility.
Furthermore, our results show that FreqIAR exhibits strong
robustness against various attacks. This work establishes a
new framework for safeguarding model IP and advances the
responsible and ethical use of IAR models.
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S.; Hesslow, D.; Castagné, R.; Luccioni, A. S.; Yvon, F.; et al.
2022. BLOOM: A 176B-Parameter Open-Access Multilingual
Language Model. arXiv preprint arXiv:2211.05100.

[60] Wu, X.; Hao, Y.; Sun, K.; Chen, Y.; Zhu, F.; Zhao, R.; and Li, H.
2023. Human Preference Score v2: A Solid Benchmark for Eval-
uating Human Preferences of Text-to-Image Synthesis. arXiv
preprint arXiv: 2306.09341.

[61] Xu, J.; Koffas, S.; Ersoy, O.; and Picek, S. 2023. Watermarking
graph neural networks based on backdoor attacks. In 2023 IEEE
8th European Symposium on Security and Privacy (EuroS&P),
1179–1197. IEEE.

[62] Yan, J.; Yadav, V.; Li, S.; Chen, L.; Tang, Z.; Wang, H.; Srini-
vasan, V.; Ren, X.; and Jin, H. 2024. Backdooring Instruction-
Tuned Large Language Models with Virtual Prompt Injection.
In Proceedings of the 2024 Conference of the North American
Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies (Volume 1: Long Papers), 6065–
6086.

[63] Yu, Q.; He, J.; Deng, X.; Shen, X.; and Chen, L.-C. 2024.
Randomized autoregressive visual generation. arXiv preprint
arXiv:2411.00776.

[64] Yuan, Z.; Shi, J.; Zhou, P.; Gong, N. Z.; and Sun, L. 2025. Bad-
Token: Token-level Backdoor Attacks to Multi-modal Large Lan-
guage Models. arXiv preprint arXiv:2503.16023.

[65] Zhai, S.; Dong, Y.; Shen, Q.; Pu, S.; Fang, Y.; and Su, H. 2023.
Text-to-image diffusion models can be easily backdoored through
multimodal data poisoning. In Proceedings of the 31st ACM In-
ternational Conference on Multimedia, 1577–1587.

[66] Zhang, J.; Gu, Z.; Jang, J.; Wu, H.; Stoecklin, M. P.; Huang, H.;
and Molloy, I. 2018. Protecting intellectual property of deep neu-
ral networks with watermarking. In Proceedings of the 2018 on
Asia conference on computer and communications security, 159–
172.

[67] Zhao, X.; Ananth, P. V.; Li, L.; and Wang, Y.-X. 2024. Provable
Robust Watermarking for AI-Generated Text. In The Twelfth In-
ternational Conference on Learning Representations.


