

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 UNIFIED PRIVACY GUARANTEES FOR DECENTRALIZED LEARNING VIA MATRIX FACTORIZATION

Anonymous authors

Paper under double-blind review

ABSTRACT

Decentralized Learning (DL) enables users to collaboratively train models without sharing raw data by iteratively averaging local updates with neighbors in a network graph. This setting is increasingly popular for its scalability and its ability to keep data local under user control. Strong privacy guarantees in DL are typically achieved through Differential Privacy (DP), with results showing that DL can even amplify privacy by disseminating noise across peer-to-peer communications. Yet in practice, the observed privacy-utility trade-off often appears worse than in centralized training, which may be due to limitations in current DP accounting methods for DL. In this paper, we show that recent advances in centralized DP accounting based on Matrix Factorization (MF) for analyzing temporal noise correlations can also be leveraged in DL. By generalizing existing MF results, we show how to cast both standard DL algorithms and common trust models into a unified formulation. This yields tighter privacy accounting for existing DP-DL algorithms and provides a principled way to develop new ones. To demonstrate the approach, we introduce MAFALDA-SGD, a gossip-based DL algorithm with user-level correlated noise that outperforms existing methods on synthetic and real-world graphs.

1 INTRODUCTION

In Decentralized Learning (DL), participants collaboratively train a shared model by exchanging model parameters on a peer-to-peer communication graph (Lian et al., 2017; 2018; Koloskova et al., 2020; Beltrán et al., 2022; Tian et al., 2023; Yuan et al., 2024). By removing the central server, DL offers faster deployment, higher scalability, and improved robustness. Since data remains local and each participant sees only a subset of communications, DL is also motivated by privacy concerns (Cyffers & Bellet, 2022; Cyffers et al., 2022; Kairouz et al., 2021c). However, decentralization alone is insufficient to ensure privacy, as exchanged messages can still leak sensitive information that enables inference or reconstruction of local data (El Mrini et al., 2024; Pasquini et al., 2023). Data protection thus requires additional mechanisms beyond decentralization.

Differential Privacy (DP) (Dwork et al., 2006) is the gold standard for privacy in machine learning. DP protects participation by ensuring that outputs do not depend too strongly on any single data point, typically through noise injection. Extending DP to Decentralized Learning is challenging: unlike in centralized settings, where a trusted curator releases only the final output, DL exposes intermediate peer-to-peer messages to participants. A natural option is to analyze DP-DL algorithms under Local DP (Kasiviswanathan et al., 2008; Bellet et al., 2018; Wang et al., 2015), which assumes all messages are released publicly, but this overly conservative trust model often leads to poor privacy-utility trade-offs (Chan et al., 2012). More realistic models, such as Pairwise Network DP (PNDP) (Cyffers et al., 2022; Cyffers & Bellet, 2022) and Secret-based LDP (SecLDP) (Allouah et al., 2024), have recently been proposed to account for adversaries with only partial knowledge of the system, showing that decentralization can amplify privacy guarantees relative to Local DP.

Unfortunately, despite these recent advances, designing DP-DL algorithms and analyzing their privacy guarantees remains a difficult and technical endeavor, and existing results rely on ad hoc proofs tailored to specific algorithms and trust models (Cyffers et al., 2024; Biswas et al., 2025; Allouah et al., 2024), rather than on a general, principled approach. There is also room to obtain tighter privacy guarantees by more carefully accounting for correlated noise arising from redundant exchanges

054 between nodes, both in parallel and across timesteps—an aspect largely overlooked in existing analyses, which can lead to overly pessimistic bounds.
 055

056 In this work, we address these limitations by introducing a unified formulation for analyzing privacy
 057 guarantees in DP-DL, building on recent advances in centralized privacy accounting via the
 058 Matrix Factorization (MF) mechanism (Kairouz et al., 2021a; Pillutla et al., 2025). MF uses a well-
 059 chosen factorization of a workload matrix representing the algorithm to exploit noise correlations
 060 and achieve stronger privacy–utility trade-offs, but has been so far applied only in centralized contexts.
 061 We propose a framework that make MF applicable to ensuring DP in decentralized learning.
 062 Achieving this requires addressing several fundamental challenges. First, decentralized learning
 063 algorithms must be encoded as a single tractable matrix multiplication, a formulation that has not
 064 been achieved in prior work. Second, the diversity of trust models requires disentangling the matrix
 065 governing privacy guarantees from the one driving optimization schemes—two quantities that col-
 066 lapsed into a single object in the centralized setting. Finally, incorporating these elements requires
 067 generalizing MF to richer classes of workload matrices and constraints. Our framework overcomes
 068 these challenges, providing a principled foundation to analyze existing DP-DL algorithms across
 069 different trust models and to design new ones. Specifically, our contributions are as follows:
 070

- (i) We generalize existing privacy guarantees for MF to broader settings;
- (ii) We show how existing DP-DL algorithms and trust models can be analyzed as specific instances of our generalized MF framework;
- (iii) We use our framework to design a new algorithm, MAFALDA-SGD; and
- (iv) We evaluate our approach on synthetic and real-world graphs and datasets, demonstrating tighter privacy guarantees for existing algorithms and superior performance of MAFALDA-SGD compared to prior methods.

078 2 RELATED WORK

079 **Matrix factorization mechanism.** The Matrix Factorization (MF) mechanism for SGD first
 080 appeared as a generalization of correlated noise in the online setting (Kairouz et al., 2021b), based
 081 on tree mechanisms (Dwork et al., 2010; Jain et al., 2012), and was later formalized by Denisov
 082 et al. (2022). More recent work improves the factorization either by designing more efficient de-
 083 compositions (Choquette-Choo et al., 2023), or by allowing additional constraints on the strategy
 084 matrix, i.e., the matrix encoding locally applied noise correlations on the gradient. Existing con-
 085 straints typically enforce a limited window for temporal correlations via banded matrices, which
 086 reduces computation (Choquette-Choo et al., 2023; Kalinin & Lampert, 2024), whereas in this work
 087 our constraint in MAFALDA-SGD enforces that correlations occur only within nodes. Other works
 088 extend the mechanism to more complex participation schemes (Choquette-Choo et al., 2023). For a
 089 more comprehensive survey, we refer the reader to Pillutla et al. (2025).
 090

091 **Differentially private decentralized learning.** Private decentralized learning was first studied under
 092 the trust model of Local DP (Bellet et al., 2018; Cheng et al., 2019; Huang et al., 2015), which
 093 suffers from poor utility due to overly pessimistic assumptions: participants are only protected by
 094 their own noise injection, since all messages are assumed to be known to the attacker. Relaxed trust
 095 models have since gained traction, such as Pairwise Network Differential Privacy (PNDP) (Cyffers
 096 et al., 2022), initially introduced for gossip averaging and later extended to several algorithms (Cyf-
 097 fers et al., 2024; Li et al., 2025; Biswas et al., 2025). PNDP assumes that the attacker is a node
 098 participating in the algorithm, and that it is thus sufficient to protect what a node observes during
 099 the execution—typically only the messages it sends or receives. Similarly, SeCLDP (Allouah et al.,
 100 2024) enforces DP conditional on a set of secrets that remain hidden from the attacker. The idea of
 101 correlating noise has a long history in DL, first as an obfuscation method against neighbors with-
 102 out formal guarantees (Mo & Murray, 2017; Gupta et al., 2020). More recent works provide DP
 103 guarantees for algorithms with correlated noise (Sabater et al., 2022; Allouah et al., 2024; Biswas
 104 et al., 2025), but correlations are not optimized and instead dictated by what can be proven, which
 105 explains why our method MAFALDA-SGD significantly outperforms them. Finally, the concept of
 106 representing attacker knowledge in DL via a matrix that can be constructed algorithmically was in-
 107 troduced by El Mrini et al. (2024) and more recently studied by Koskela & Kulkarni (2025), but
 108 only for specific cases of algorithms and trust models, and without establishing a connection to the
 109 matrix factorization mechanism.

108 **3 BACKGROUND: MATRIX FACTORIZATION MECHANISM**
 109

110 In this section, we review the centralized version of Differentially Private Stochastic Gradient Descent (DP-SGD) and its correlated noise variant based on matrix factorization (MF-SGD) (Denisov et al., 2022), which we will later adapt to the decentralized case.

111 Differential Privacy (DP) (Dwork et al., 2006) ensures that the output of a mechanism does not reveal too much information about any individual data record in its input. A mechanism satisfies DP if its output distribution remains close on any two neighboring datasets \mathcal{D} and \mathcal{D}' that differ in one record (denoted $\mathcal{D} \simeq \mathcal{D}'$). Although DP is classically defined in terms of (ϵ, δ) -DP, in this paper we adopt Gaussian DP (GDP), which is particularly well suited to mechanisms with Gaussian noise. GDP offers tighter privacy accounting, simpler analysis, and can be converted back into Rényi DP or (ϵ, δ) -DP (Dong et al., 2022).

112 **Definition 1** (Gaussian Differential Privacy (GDP) — Dong et al. 2022; Pillutla et al. 2025). A randomized mechanism \mathcal{M} satisfies μ -Gaussian Differential Privacy (μ -GDP) if, for any neighboring datasets $\mathcal{D} \simeq \mathcal{D}'$, there exists a (possibly randomized) function h such that

$$113 \quad h(Z) \stackrel{d}{=} \mathcal{M}(\mathcal{D}), \quad Z \sim \mathcal{N}(0, 1), \quad h(Z') \stackrel{d}{=} \mathcal{M}(\mathcal{D}'), \quad Z' \sim \mathcal{N}(\mu, 1),$$

114 where $\stackrel{d}{=}$ denotes equality in distribution.

115 In practice, Gaussian DP is obtained by adding appropriately calibrated Gaussian noise, which is the central building block of the centralized DP-SGD algorithm. Given a training dataset \mathcal{D} , a learning rate $\eta > 0$, and starting from an initial model $\theta_0 \in \mathbb{R}^d$, the DP-SGD update can be written as:

$$116 \quad \theta_{t+1} = \theta_t - \eta(g_t + z_t), \quad g_t = \text{clip}(\nabla f(\theta_t, \xi_t), \Delta), \quad z_t \sim \mathcal{N}(0, \Delta^2 \sigma^2 I_d), \quad (1)$$

117 with ξ_t a sample from \mathcal{D} and $\Delta = \sup_{\mathcal{D} \simeq \mathcal{D}'} \|\nabla f(\mathcal{D}) - \nabla f(\mathcal{D}')\|_2$ the sensitivity of ∇f enforced by the clipping operation. Even for this simple version of DP-SGD without correlated noise, we can define a so-called workload matrix $A^{\text{pre}} \in \mathbb{R}^{T \times T}$ with $A_{ij}^{\text{pre}} = 1_{i \geq j}$, such that:

$$118 \quad \theta = 1_T \otimes \theta_0 - (A^{\text{pre}} G + Z), \quad G \in \mathbb{R}^{T \times d}, \quad (2)$$

119 where θ is the matrix of stacked $\theta_1, \dots, \theta_T$, G is the matrix of stacked gradients and $Z \sim \mathcal{N}(0, \sigma^2 \Delta)^{T \times d}$. Here G corresponds to the data-dependent part of the algorithm, and θ corresponds to the outputs of DP-SGD. We thus aim to protect G as much as possible by adding a large variance vector Z , while still achieving the best possible final θ_T , typically by keeping Z as small as possible.

120 To reach these contradictory goals, the matrix factorization mechanism exploits the postprocessing property of DP—which ensures that if a mechanism \mathcal{M} is μ -GDP, then for every function f , $f \circ \mathcal{M}$ is also μ -GDP—to allow noise correlation across iterations and improve the privacy–utility trade-off. For any factorization $A^{\text{pre}} = BC$, one can rewrite $A^{\text{pre}} G + BZ$ as $A^{\text{pre}}(G + C^\dagger Z)$, where the multiplication by A^{pre} is seen as a post-processing of the term $(G + C^\dagger Z)$ and C^\dagger is the pseudo-inverse of C . This factorization leads to a slight modification of DP-SGD, resulting in the MF-SGD updates:

$$121 \quad \theta_{t+1} = \theta_t - \eta(g_t + \sum_{\tau=0}^t C_{t,\tau}^\dagger z_\tau). \quad (3)$$

122 To derive DP guarantees for MF-SGD, it suffices to analyze the privacy guarantees of $(G + C^\dagger Z)$. For neighboring datasets $\mathcal{D} \simeq \mathcal{D}'$ differing only in one record x , differences in G occur whenever x is used, which may happen at multiple timesteps if the dataset is cycled through several times. The *participation scheme* Π is the set of all *participation patterns* π , encoding whether x participates in a given row of G (see Chapter 3 in Pillutla et al., 2025). This extends the neighboring relation from datasets to gradients: $G \simeq_{\Pi} G'$. The sensitivity is then the worst case over all participation patterns:

$$123 \quad \text{sens}(C) := \text{sens}_{\Pi}(G \mapsto CG) = \max_{\substack{\Pi \\ G \simeq_{\Pi} G'}} \|C(G - G')\|_F. \quad (4)$$

124 For a fixed sensitivity $\text{sens}_{\Pi}(C)$, generating $Z \sim \mathcal{N}(0, \sigma^2 \text{sens}_{\Pi}(C)^2)^{T \times d}$ ensures that $(G + C^\dagger Z)$ is $\frac{1}{\sigma}$ -GDP. Optimizing the noise correlation is typically done by minimizing $\text{sens}(C)^2 \|B\|^2$ under the constraint $A^{\text{pre}} = BC$, where $\|B\|^2$ represents the utility of the factorization. While the privacy analysis is straightforward if G, G' are fixed in advance, the guarantee remains valid when G is computed adaptively through time, with g_t depending on g_1, \dots, g_{t-1} . This has been proven only for workload matrices that are square, lower triangular, and full rank (Denisov et al., 2022; Pillutla et al., 2025). We show in Section 5 that the privacy guarantees also hold in a more general case, thereby enabling adaptivity in DL as well.

162
163**Algorithm 1** MF-D-SGD: Matrix Factorization Decentralized Stochastic Gradient Descent164
165

Require: $W \in \mathbb{R}^{n \times n}$, $C, T, \Delta_g, \sigma, \theta_0 \in \mathbb{R}^{n \times d}$, $Z \sim \mathcal{N}(0, \Delta_g^2 \sigma^2)^{nT \times d}$

- 1: **for all node u in parallel do**
- 2: **for $t = 1$ to T do**
- 3: $g_t^{(u)} \leftarrow \text{clip}[\nabla f_u(\theta_t^{(u)}, \xi_t^{(u)}), \Delta_g]$ with $\xi_t^{(u)} \sim \mathcal{D}_u$ ▷ Clipped gradient
- 4: $\theta_{t+\frac{1}{2}}^{(u)} \leftarrow \theta_t^{(u)} - \eta(g_t^{(u)} + (C^\dagger Z)_{[nt+u]})$ ▷ Local update
- 5: Send $\theta_{t+\frac{1}{2}}^{(u)}$ to all neighbors $v \in \Gamma_u$
- 6: Receive $\theta_{t+\frac{1}{2}}^{(v)}$ from all neighbors $v \in \Gamma_u$
- 7: $\theta_{t+1}^{(u)} \leftarrow \sum_{v \in \Gamma_u} W_{[u,v]} \theta_{t+\frac{1}{2}}^{(v)}$ ▷ Local average
- 8: **return** $\theta_{T+1}^{(u)}, \forall u \in \llbracket 1, n \rrbracket$

175
176**4 DECENTRALIZED LEARNING AS A MATRIX FACTORIZATION MECHANISM**177
178

In this section, we show that many DL algorithms can be cast as instances of the matrix factorization mechanism. To do so, we must address several challenges: encoding the updates of the algorithms, representing the sensitive information, and capturing what is known to a given attacker in a form suitable for analyzing DP guarantees. For concreteness, we first show in Section 4.1 how to proceed for a specific yet already fairly general algorithm, which we call MF-D-SGD, under Local DP, and then further generalize to a large class of DL algorithms and trust models in Section 4.2.

179
180**4.1 WARM-UP: MF-D-SGD UNDER LOCAL DP**181
182
183
184
185
186
187

We introduce the decentralized setting studied in our work and build step-by-step the encoding of a Decentralized SGD (D-SGD) algorithm where DP is introduced in a similar way as in MF-SGD. We refer to this algorithm as MF-D-SGD and present its pseudocode from the users’ perspective in Algorithm 1 and from the matrix perspective in Figure 1.

188
189
190
191
192
193
194
195
196
197

We consider that n users, represented as nodes of a graph $\mathcal{G} = (\mathcal{V}, \mathcal{E})$, collaboratively minimizing a loss function by alternating gradient steps computed on their local datasets $(\mathcal{D}_u)_{u \in \mathcal{V}}$ (Lines 3 and 4) and gossiping steps, i.e., averaging their local models with their neighbors (Line 5–7). In DL, two datasets $\mathcal{D} = (\mathcal{D}_u)_{u \in \mathcal{V}}$ and $\mathcal{D}' = (\mathcal{D}'_u)_{u \in \mathcal{V}}$ are neighboring if they differ in exactly one record at a single node u , i.e., $\mathcal{D}_v = \mathcal{D}'_v$ for all $v \neq u$ and $\mathcal{D}'_u = \mathcal{D}_u \setminus \{x\} \cup \{x'\}$. We write this as $\mathcal{D} \simeq_u \mathcal{D}'$.

198
199
200
201
202
203
204
205
206
207

Model updates. We stack the local parameters of the n nodes as a vector $\theta_t \in \mathbb{R}^{n \times d}$, where $\theta_t^{(u)}$ is the local parameter of node u at time $t \in \llbracket 0, T-1 \rrbracket$. The gradient step can then be written as $\theta_{t+\frac{1}{2}} = \theta_t - \eta(G_t + C_t^\dagger Z)$, where each row u of G_t is the vector $G_t^{(u)} = \nabla f_u(\theta_t^{(u)}, \xi_t^{(u)})^\top$, the gradient of the local loss function f_u on the sample $\xi_t^{(u)}$ from the local dataset \mathcal{D}_u , and $C_t^\dagger \in \mathbb{R}^{n \times m}$ is the block of C^\dagger from the $(tn+1)$ -th row to the $(t+1)n$ -th one. Here, $C_t^\dagger Z$ can lead to arbitrarily complex noise correlation. Note that for $C = I_{nT}$, we recover the local updates of DP-D-SGD, the simple decentralized SGD with uncorrelated noise. After the local updates, nodes perform a gossiping step, exchanging their models with neighbors and averaging the intermediate models $\theta_{t+\frac{1}{2}}$ using the gossip matrix W .

208
209
210
211
212
213

Definition 2 (Gossip matrix). A gossip matrix $W \in \mathbb{R}_{\geq 0}^{n \times n}$ on the graph $G = (\mathcal{V}, \mathcal{E})$ is a stochastic matrix, i.e., $\sum_{v=1}^n W_{uv} = 1$, and if $W_{uv} > 0$ then v is a neighbor of u , denoted $v \in \Gamma_u$.

214
215

With this definition, the gossiping step can be written as $\theta_{t+1} = W\theta_{t+\frac{1}{2}}$. Thus, one full iteration of MF-D-SGD corresponds to $\theta_{t+1} = W(\theta_t - \eta(G_t + C_t^\dagger Z))$.

216
217

We now stack all steps of MF-D-SGD over T iterations. This requires defining a matrix M with stacked powers of W (starting with power 0) and a larger matrix $\mathbf{W}_T \in \mathbb{R}^{nT \times nT}$ with blocks of size $n \times n$ in lower triangular Toeplitz form, where the main diagonal is filled with I_n and the i -th

216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269

$$\text{Iter 1: } \begin{pmatrix} \theta_1 \\ \theta_2 \\ \vdots \\ \theta_T \end{pmatrix} = (I_T \otimes W) \begin{pmatrix} M \\ I_n \\ W \\ \vdots \\ W^{T-1} \end{pmatrix} \theta_0 - \eta$$

Local averaging with neighbors
 Gossip matrix $\in \mathbb{R}^{n \times n}$
 Stacked models

Initial local models
 Data Independent

Workload W_T
 Messages
 $\mathcal{O}_{\mathcal{A}}$

Drawn from $\mathcal{N}(0, \sigma^2 \text{sens}(c)^2 I_{Tn})$
 Optimized under constraints

Figure 1: Overview of the MF-D-SGD algorithm written as a single equation.

diagonal with W^{i-1} . The whole algorithm can then be summarized as:

$$\theta = (I_T \otimes W) (M\theta_0 - \eta \mathbf{W}_T (G + C^\dagger Z)), \quad (5)$$

where θ and G denote the collections of local models and gradients, respectively, after T iterations.

Remark 3. *Up to this point, we have assumed that the gossip matrix W is fixed across iterations for simplicity's sake (notably when explaining Figure 1). In the remainder of the paper we move to the more general case of time-varying gossip matrices W_t . This change only requires replacing powers of a single matrix gossip W by products of matrices in the expression of \mathbf{W}_T . See Appendix A.7 for details of this more general expression.*

Attacker knowledge. A subtlety arises from the fact that under decentralized trust models, an attacker typically does not observe the sequence of local models θ directly. Hence, we should not apply the MF mechanism to Equation (5), but rather the peer-to-peer messages. Under the Local DP trust model, where all messages exchanged by the nodes throughout the algorithm are assumed to be public, the view $\mathcal{O}_{\mathcal{A}}$ of the attacker can be seen as a MF mechanism:

$$\mathcal{O}_{\mathcal{A}} := \mathbf{W}_T (G + C^\dagger Z). \quad (6)$$

4.2 GENERAL FORMULATION

The factorization obtained in previous section for MF-D-SGD requires two assumptions: (i) at each iteration, every node sends the same message to all of its neighbors, and (ii) the attacker observes all messages shared on the network. To encompass a broader range of algorithms and trust models, this section proposes more general definitions for both. To the best of our knowledge, these definitions cover all existing DP-DL algorithms and trust models.

Definition 4 (Linear DL algorithm). *A decentralized learning algorithm is linear if all observable quantities can be expressed as a linear combination of the concatenated gradients G and the concatenated noise Z .*

This definition covers the Zip-DL algorithm, in which a user u applies distinct yet correlated noises to its communications within the same gossiping step (Biswas et al., 2025). We complete our framework by defining trust models on linear DL algorithms as follows.

Definition 5 (Attacker knowledge). *Given a Linear DL algorithm, the attacker knowledge of a trust model, i.e., the information the attacker \mathcal{A} derives from its observations, can be expressed as $\mathcal{O}_{\mathcal{A}} := AG + BZ$.*

This definition encompasses not only scenarios in which knowledge is obtained by observing messages or models, but also situations where the attacker sees only a subset of them, as in PNDP. It further allows encoding: (i) gradients already known to the attacker, e.g., when a user knows its own gradients or those of colluding users (in which case the corresponding columns of A are 0); (ii) information available about the noise, e.g., when a user knows the noise it added, or in SecLDP when some neighbors' noise values are known (in which case the corresponding columns of B are 0), as shown by the following theorem.

Remarkably, these general definitions not only capture all widely used trust models and algorithms, but the existence of a corresponding factorization for these cases is also guaranteed, as established by the following theorem.

270 **Theorem 6.** *For each of the three trust models—LDP, PNDP, and SecLDP—and for all existing DL
271 algorithms, there exist matrices A , B , and C such that the attacker knowledge can be expressed as
272 $\mathcal{O}_A = AG + BZ$ with $A = BC$.*

273 We refer the reader to Appendix A for the proof, where we construct the matrices A , B and C for
274 each trust model based on the algorithms that introduced them. These matrices are constructed in
275 two steps: (i) forming three distinct blocks corresponding to observed messages, known gradients,
276 and known noise; (ii) removing from the overall matrix A the contribution of the known gradients.
277 The first step ensures that all known information is properly accounted for, while the second step
278 guarantees the existence of a factorization $A = BC$, which is crucial to obtain GDP guarantees, as
279 established in the next section by Theorem 8.

281 5 MORE GENERAL PRIVACY GUARANTEES FOR MATRIX FACTORIZATION

284 In Section 4, we showed how to cast the attacker knowledge in DL as a MF mechanism $AG + BZ$
285 with $A = BC$. However, the resulting matrices do not satisfy the assumptions used in existing
286 MF results, which require A to be a square, full rank and lower-triangular matrix. In this section,
287 we extend the MF mechanism’s differential privacy guarantees to workloads A that may violate
288 these assumptions. To do so, we first introduce a more precise definition of *sensitivity*, which is
289 fundamental for evaluating the quality of a factorization (Pillutla et al., 2025).

290 **Definition 7** (Sensitivity under participation, generalized). *Let B and C be two matrices. The
291 sensitivity of C with respect to B and a participation schema Π is*

$$292 \text{sens}(C; B) := \max_{\Pi} \max_{G \simeq_{\Pi} G'} \|C(G - G')\|_{B^\dagger B}, \quad (7)$$

294 with $\|A\|_B^2 := \text{tr}(A^\top B A)$.

295 With this definition, we state our main privacy theorem, whose proof is provided in Appendix B.

296 **Theorem 8.** *Let $\mathcal{O}_A = AG + BZ$ be the attacker knowledge of a trust model on a linear DL
297 algorithm, and denote $\mathcal{M}(G)$ the corresponding mechanism. Let Π be a participation scheme for
298 G . For $Z \sim \mathcal{N}(0, \nu^2)^{m \times d}$, when A is a column-echelon matrix and there exists some matrix C
299 such that $A = BC$ with*

$$301 \nu = \sigma \text{sens}(C; B) \quad \text{with} \quad \text{sens}(C; B) \leq \max_{\Pi} \sum_{\pi \in \Pi} \sum_{s, t \in \pi} \left| (C^\top B^\dagger BC)_{s, t} \right|, \quad (8)$$

303 then \mathcal{M} is $\frac{1}{\sigma}$ -GDP, even when G is chosen adaptively.

305 Theorem 8 shows that the privacy guarantees of a matrix factorization mechanism remain valid for
306 a broader class of matrices A , even when the gradient vector is chosen *adaptively*, i.e., when it may
307 depend arbitrarily on all *past* information (Denisov et al., 2022). The column-echelon form property
308 of the matrix ensures it cannot depend on *future* information. **This generalization of the usual lower-**
309 **triangular property is necessary when considering attackers who have only partial information over**
310 **the network. Most sets of observations that follow the natural causal ordering in DL can be rewritten**
311 **as a column-echelon matrix.**

312 Our result generalizes existing results by allowing A to be rectangular and possibly rank-deficient,
313 a relaxation crucial for applying it to DL algorithms. The price of this extension is a dependency on
314 B : since C is not invertible, B is not unique, and sensitivity now depends on both the encoder matrix
315 C and the decoder matrix B . The correction $B^\dagger B$ can be seen as a projection onto the column space
316 of B , discarding inaccessible gradient combinations. When B is square and full rank, as in prior
317 work, we recover the known formula $\text{sens}_{\Pi}(C; B) = \text{sens}_{\Pi}(C; I) = \text{sens}_{\Pi}(C)$.

318 **Remark 9.** *In DL, the participation schema Π is also slightly modified. A participation pattern π is
319 associated to a local dataset \mathcal{D}_u and can be non-negative only for the rows in $\{u, n + u, \dots, (T -
320 1)n + u\}$, which corresponds to gradients computed from \mathcal{D}_u .*

321 **Remark 10.** *Following Corollary 1 of Dong et al. (2022), μ -GDP directly and tightly translates
322 into (ϵ, δ) -DP, with appropriate ϵ and δ values. Moreover, it is also possible to derive (α, ϵ) -Renyi
323 DP Gil et al. (2013).*

324 6 A NOVEL ALGORITHM WITH OPTIMIZED NOISE CORRELATION

326 In this section, we showcase how the formalization developed in the previous sections enables op-
 327 timizing noise correlation in DL algorithms. Specifically, we introduce MAFALDA-SGD (MAtrix
 328 FActorization for Local Differentially privAte SGD), a new algorithm for DL with LDP, which can
 329 be seen as a special instance of MF-D-SGD.

330 We first define an objective function $\mathcal{L}_{\text{opti}}$ capturing the optimization error of MF-D-SGD.

331 **Definition 11.** Consider Equation (5) with encoder matrix C , such that $\mathbf{W}_T = BC$. The optimal
 332 correlation can be found by minimizing the following objective function:

$$334 \mathcal{L}_{\text{opti}}(\mathbf{W}_T, B, C) := \text{sens}_{\Pi}(C; B)^2 \|(I_T \otimes W) \mathbf{W}_T C^\dagger\|_F^2. \quad (9)$$

336 In DL, the optimization loss is defined with respect to the averaged model, as explicitly written in
 337 Equation (5) for MF-D-SGD. However, sensitivity must also account for the attacker knowledge
 338 (Theorem 8), which in this case corresponds to $\mathcal{O}_{\mathcal{A}}$ (defined in Equation (6)). The difference
 339 between the two terms explains why, despite having a workload matrix equal to \mathbf{W}_T , the second
 340 term involves $(I_T \otimes W) \mathbf{W}_T$ instead.

341 While one could attempt to minimize Equation (9) directly, doing so is impractical without additional
 342 constraints. The encoder matrix C has size $nT \times nT$, which becomes intractable for large graphs or
 343 long time horizons. Furthermore, the resulting correlated noises could necessitate correlations across
 344 nodes, which in turn would require trust between them. These challenges motivate the introduction
 345 of structural constraints on C .

346 Here, we focus on Local DP guarantees, where nodes cannot share noise. Accordingly, we consider
 347 only *local correlations*, constraining $C = C_{\text{local}} \otimes I_n$ so that the block structure enforces locality
 348 and all nodes follow the same pattern, reducing the cost of computing C . For simplicity, we also
 349 assume that all nodes adhere to the same local participation pattern. Correlation schemes proposed
 350 for the centralized setting naturally fit this form; for example, AntiPGD (Koloskova et al., 2023)
 351 subtracts the noise added at a given step in the next step. However, we find that this correlation
 352 pattern performs poorly when used in DL (see Section 7), motivating our approach of optimizing
 353 correlations specifically for decentralized algorithms.

354 Under LDP and local noise correlation, sensitivity depends only on C_{local} . We simplify the general
 355 objective in Definition 11 with the following lemma, with its proof deferred to Appendix D.

356 **Lemma 12.** Consider the LDP trust model $(\tilde{A} = \mathbf{W}_T, \tilde{B} = B)$ and local noise correlation $C =$
 357 $C_{\text{local}} \otimes I_n$. Define:

$$359 A_i := \left[(I_T \otimes W) \mathbf{W}_T \mathbf{K}^{(T,n)} \right]_{[:,iT:(i+1)T-1]}, \quad H := \sum_{i=1}^n A_i^\top A_i, \quad (10)$$

361 where $\mathbf{K}^{(T,n)}$ is a commutation matrix that commutes space and time in our representation (Loan,
 362 2000). Then, the objective function of Equation (9) is equivalent to:

$$364 \mathcal{L}_{\text{opti}}(\mathbf{W}_T, B, C_{\text{local}}) = \mathcal{L}_{\text{opti}}(\mathbf{W}_T, C_{\text{local}}) = \text{sens}_{\Pi_{\text{local}}}(C_{\text{local}})^2 \|LC_{\text{local}}^\dagger\|_F^2, \quad (11)$$

366 where L is lower triangular and obtained by Cholesky decomposition of $H = L^\top L$.

368 This yields a standard factorization problem for L , which can be solved using existing frameworks
 369 for the MF mechanism Choquette-Choo et al. (2023); Pillutla et al. (2025). In practice, these frame-
 370 works operate on the Gram matrix $H = L^\top L$, avoiding the need for Cholesky decomposition.

371 Algorithm 2 summarizes our novel MAFALDA-SGD algorithm. It first computes the optimal
 372 correlation by optimizing for the privacy-utility trade-off in DL based on the objective function
 373 in Lemma 12, before running MF-D-SGD with the resulting C_{mafalda} . Note that C_{mafalda} can be
 374 computed offline by any party that knows the gossip matrix and the participation pattern.

375 **Remark 13.** The complexity of Algorithm 2 is driven by (i) the computation of the matrix L , which
 376 costs $\mathcal{O}(n^3T + n^2T^3)$ in time, and $\mathcal{O}(n^2T^2)$ in space, and (ii) the minimization of $\mathcal{L}_{\text{opti}}$ which is
 377 $\mathcal{O}(T^3)$ per step of L-BFGS. Correlation restarts (Pillutla et al., 2025) can be used to keep T within
 reasonable bounds.

378 Algorithm 2 MAFALDA-SGD: MAtrix FActorization for Local Differentially privAte SGD

379 **Require:** $W \in \mathbb{R}^{n \times n}$, $T, \Delta_g, \sigma, \theta_0 \in \mathbb{R}^{n \times d}$

380 1: Build workload matrix $\tilde{\mathbf{W}}_T$ ▷ Figure 1

381 2: $H \leftarrow \sum_{i=1}^n A_i^\top A_i$ where $A_i := [(I_T \otimes W) \mathbf{W}_T \mathbf{K}^{(T,n)}]_{[:,iT:(i+1)T-1]}$ ▷ Lemma 12

382 3: $L \leftarrow$ Cholesky decomposition of H ▷ $H = L^\top L$

383 4: $C_{\text{mafalda}} \leftarrow \min_{C_{\text{local}}} \mathcal{L}_{\text{opti}}(L, C_{\text{local}})$ ▷ Using L-BFGS Choquette-Choo et al. (2023)

384 5: **return** MF-D-SGD($W, C_{\text{mafalda}}, T, \Delta_g, \sigma, \theta_0$) ▷ Algorithm 1

386

387 **7 EXPERIMENTS**

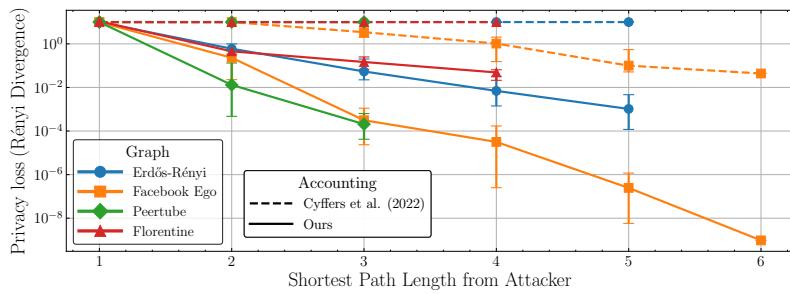
388

389 In this section, we highlight the advantages of our approach by first showing that we can achieve
 390 significantly tighter privacy accounting for an existing algorithm under PNDP (Section 7.1), and
 391 then demonstrating that MAFALDA-SGD outperforms existing DL algorithms under LDP. We use
 392 both synthetic and real-world graphs. Additional experiments are reported in Appendix C.

393

394 **7.1 TIGHTER ACCOUNTING FOR PNDP**

395



406 Figure 2: PNDP loss accounting for DP-D-SGD: comparison between the original accounting of
 407 Cyffers et al. (2022) (dashed lines) and our accounting (solid lines) under the PNDP trust model.
 408 We report the Rényi divergence (fixing $\alpha = 2$ w.l.o.g., since the results are proportional to α) for
 409 the minimum, maximum, and average in error bars over nodes at a given distance.

410 In this experiment, we consider DP-D-SGD—which corresponds to the Muffliato-SGD algorithm
 411 from Cyffers et al. (2022) when the number of gossip steps is set to $K = 1$ —and compute its PNDP
 412 guarantee with two different privacy accounting methods: the one proposed by Cyffers et al. (2022)
 413 and our own, obtained by casting the guarantees of Theorem 8 to the case of DP-D-SGD with a
 414 PNDP attacker as follows. For $C_a = I_{nT}$ and $B_a = \mathbf{P}_a \mathbf{W}_T$, using Theorem 8, the bound on
 415 sensitivity of DP-D-SGD under PNDP is

416

$$\text{sens}(C_a; B_a) \leq \max_{\Pi} \sum_{\pi \in \Pi} \sum_{s,t \in \pi} \left| (B_a^\dagger B_a)_{s,t} \right| = \max_{\Pi} \sum_{s,t \in \pi} \left| \left((\mathbf{P}_a \mathbf{W}_T)^\dagger \mathbf{P}_a \mathbf{W}_T \right)_{s,t} \right|. \quad (12)$$

417 This sensitivity allows us to compute a μ -GDP bound, which we then convert into RDP. Since the
 418 initial accounting in Cyffers et al. (2022) was performed at the user level rather than at the finer-
 419 grained record level, we run our accounting under the worst-case assumption that the attacked node
 420 always exposes the same single record (this corresponds to $(T, 1)$ -participation for all nodes). This
 421 ensures that our guarantees are computed at the same user level, leading to a fair comparison.

422 Note that the accounting does not depend on the choice of learning model or dataset. Rather, it is
 423 determined by the participation scheme, the number of epochs, the clipping parameter, and the noise
 424 scale, but also on the communication graph through the gossip matrix, as PNDP provides privacy
 425 guarantees that are specific to each pair of nodes. We thus consider several graphs that correspond
 426 to plausible real-world scenarios:

427

- *Erdős–Rényi graphs*: generated randomly with 100 nodes and parameter $p = 0.2$, ensuring that
 428 each generated graph is strongly connected. These graphs have expander properties and can be
 429 generated in a distributed fashion.

- *Facebook Ego graph* (Leskovec & Mcauley, 2012): corresponds to the graph of a fixed Facebook user (omitted from the graph), where nodes are the user’s friends and edges represent friendships between them. This graph has 148 nodes.
- *PeerTube graph* (Damie & Cyffers, 2025): an example of decentralized social platform. PeerTube is an open-source decentralized alternative to YouTube. Each node represents a PeerTube server and edges encode follow relationships between servers, allowing users to watch recommended videos across instances. The graph, restricted to its largest connected component, has 271 nodes.
- *Florentine Families* (Breiger & Pattison, 1986): a historical graph with 15 nodes describing marital relations between families in 15th-century Florence.

Results are shown in Figure 2. For all graphs, our accounting is significantly tighter for all possible distances between nodes. In particular, while the PNDP accounting of Cyffers et al. (2022) provides no improvement over LDP guarantees for nodes at distances less than or equal to 2, our method already achieves significant gains—up to an order of magnitude. The improvement is even larger, with reductions of at least two orders of magnitude at distances greater than or equal to 3. The gains are consistent across all the considered graphs, demonstrating the versatility of our method, which leverages both the topology and the correlations induced between nodes.

7.2 MAFALDA-SGD

We now illustrate the performance of MAFALDA-SGD under LDP and compare it with three baselines: non-private D-SGD, AntiPGD as defined in Appendix A, and standard DP-D-SGD without noise correlation between nodes. Results on the Facebook Ego graph are shown in Figure 3, with additional results for other privacy levels and graphs reported in Appendix C. We use our accounting for all the algorithms to provide a fair comparison and because it is the tightest accounting available.

We study a regression task on the Housing dataset,¹ which has 8 features and 20,640 data points, with the goal of predicting house prices based on demographic and housing features. We use a simple multilayer perceptron (MLP) with one hidden layer of width 64 and ReLU activation, followed by a linear output layer for regression, trained with the mean-square error loss, in all experiments. This dataset has been used in several related works (Cyffers et al., 2022; Li et al., 2025). In all experiments, we cycle over the data points such that each of them participates 20 times in total, with participation every 19 steps. These numbers were chosen for memory constraints and not optimized. This cyclic participation corresponds to a (k, b) -participation scheme with $k = 20$ and $b = 19$ in the matrix factorization literature (Choquette-Choo et al., 2023).

Our algorithm MAFALDA-SGD outperforms all private baselines across all privacy regimes by a large margin. For a fixed privacy budget ϵ , MAFALDA-SGD achieves a 31% average improvement in test loss in the last 50 training steps, while for a fixed test-loss value of 0.75, it achieves a 2-fold reduction in ϵ . These results illustrate the importance of correlated noise for the performance of differentially private decentralized algorithms. Additional experiments confirm that this superiority holds regardless of the graph topology. In particular, under small privacy budgets, there exist regimes where MAFALDA-SGD converges while competitors diverge (e.g., AntiPGD in Figure 3).

We also evaluate MAFALDA-SGD on the federated EMNIST (FEMNIST) image classification task from the LEAF benchmark Caldas et al. (2018), predicting handwritten characters across users. This setting is highly non-iid and realistic for decentralized learning. To ensure enough data is present, each node is given 10 unique handwritting as training data. We use a small convolutional network comprising two convolutional layers (16 and 32 filters, 3×3 kernels) with ReLU and 2×2 max-pooling, followed by group normalization and a fully-connected layer for a softmax output trained with cross-entropy. Training uses a cyclic participation scheme $((k, b) = (20, 16))$.

We compare MAFALDA-SGD to baselines under local DP accounting. Results (averaged over 20 runs) are reported in Figure 4. Across privacy budgets, MAFALDA-SGD consistently achieves higher test accuracy than the private baselines, with the largest relative gains at tight privacy levels where correlated noise preserves utility while satisfying LDP.

¹<https://www.openml.org/d/823>

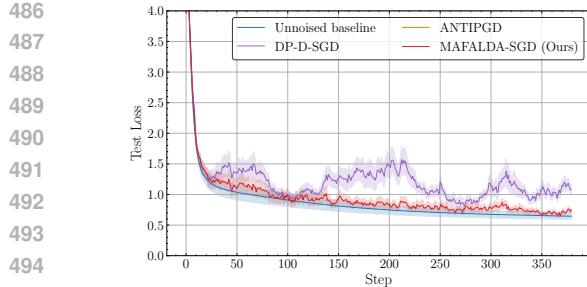


Figure 3: Comparison of MAFALDA-SGD with the non-private baseline, AntiPGD, and standard DP-SGD under local differential privacy on the Housing dataset with the Facebook Ego graph. Left: test loss over time (AntiPGD does not appear because the test loss is always greater than 6), averaged over 20 runs. Right: final test loss as a function of the LDP privacy budget, averaged over 20 runs. In both cases, data points are distributed uniformly at random across nodes.

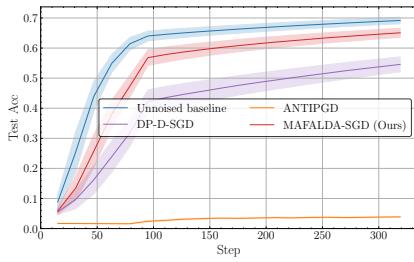


Figure 4: FEMNIST classification results on the Facebook Ego graph. Left: test accuracy evolution for a fixed privacy budget. Right: privacy-utility tradeoff between the final test accuracy as a function of the LDP privacy budget. Error bands show 95% confidence intervals.

8 CONCLUSION

In this work, we establish a new connection between two separate research directions by extending the matrix factorization mechanism from the well-studied centralized DP-SGD to differentially private decentralized learning. This required generalizing known results in matrix factorization to broader classes of matrices, which may also prove useful in other contexts. Our framework is flexible enough to capture both algorithms and trust models, while providing tighter privacy guarantees than prior analyses. It also enables the design of new algorithms, as illustrated by MAFALDA-SGD, which outperforms existing approaches. Overall, our framework lays the foundation for a more principled design of private decentralized algorithms and enhances the practicality of privacy-preserving machine learning in decentralized settings.

Reproducibility We provide all code used to generate the figures along with this submission, and plan to publicly release it upon acceptance. Large Language models were used only for rewording, basic scripting and documentation purposes.

REFERENCES

Youssef Allouah, Anastasia Koloskova, Aymane El Firdoussi, Martin Jaggi, and Rachid Guerraoui. The privacy power of correlated noise in decentralized learning. In *International Conference on Machine Learning (ICML)*, volume 235 of *ICML’24*, Vienna, Austria, July 2024. JMLR.org.

Aurélien Bellet, Rachid Guerraoui, Mahsa Taziki, and Marc Tommasi. Personalized and Private Peer-to-Peer Machine Learning. In *Conference on Uncertainty in Artificial Intelligence (AISTATS)*. PMLR, March 2018.

Enrique Tomás Martínez Beltrán, Mario Quiles Pérez, Pedro Miguel Sánchez Sánchez, Sergio López Bernal, Gérôme Bovet, Manuel Gil Pérez, Gregorio Martínez Pérez, and Alberto Huertas Celdrán.

540 Decentralized federated learning: Fundamentals, state-of-the-art, frameworks, trends, and chal-
 541 lenges, 2022.

542

543 Sayan Biswas, Davide Frey, Romaric Gaudel, Anne-Marie Kermarrec, Dimitri Lerévérend, Rafael
 544 Pires, Rishi Sharma, and François Taïani. Low-Cost Privacy-Preserving Decentralized Learning.
 545 *Proceedings on Privacy Enhancing Technologies*, 2025(3), 2025. ISSN 2299-0984.

546 Ronald L. Breiger and Philippa E. Pattison. Cumulated social roles: The duality of persons and their
 547 algebras. *Social Networks*, 8(3), September 1986. ISSN 0378-8733.

548

549 Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečný, H Brendan McMahan,
 550 Virginia Smith, and Ameet Talwalkar. Leaf: A benchmark for federated settings. *arXiv*
 551 *preprint arXiv:1812.01097*, 2018.

552 T-H. Hubert Chan, Elaine Shi, and Dawn Song. Optimal Lower Bound for Differentially Private
 553 Multi-party Aggregation. In *Algorithms – ESA 2012*, Berlin, Heidelberg, 2012. Springer. ISBN
 554 978-3-642-33090-2.

555 Hsin-Pai Cheng, Patrick Yu, Haojing Hu, Syed Zawad, Feng Yan, Shiyu Li, Hai Li, and Yiran Chen.
 556 Towards decentralized deep learning with differential privacy. In *Cloud Computing – CLOUD*
 557 2019, Cham, 2019. Springer International Publishing. ISBN 978-3-030-23502-4.

558

559 Christopher A. Choquette-Choo, Krishnamurthy Dvijotham, Krishna Pillutla, Arun Ganesh, Thomas
 560 Steinke, and Abhradeep Thakurta. Correlated Noise Provably Beats Independent Noise for Dif-
 561 fferentially Private Learning, October 2023.

562 Christopher A. Choquette-Choo, Arun Ganesh, Ryan McKenna, H. Brendan McMahan, John Rush,
 563 Abhradeep Guha Thakurta, and Zheng Xu. (amplified) banded matrix factorization: A unified
 564 approach to private training. In *Conference on Neural Information Processing Systems (NeurIPS)*,
 565 volume 36. Curran Associates, Inc., 2023.

566

567 Christopher A. Choquette-Choo, Hugh Brendan McMahan, J. Keith Rush, and Abhradeep Guha
 568 Thakurta. Multi-Epoch Matrix Factorization Mechanisms for Private Machine Learning. In *In-
 569 ternational Conference on Machine Learning (ICML)*. PMLR, July 2023.

570 Edwige Cyffers and Aurélien Bellet. Privacy Amplification by Decentralization. In *Conference on
 571 Uncertainty in Artificial Intelligence (AISTATS)*, Virtual, Spain, 2022.

572

573 Edwige Cyffers, Mathieu Even, Aurélien Bellet, and Laurent Massoulié. Muffliato: Peer-to-Peer
 574 Privacy Amplification for Decentralized Optimization and Averaging. In *Conference on Neural
 575 Information Processing Systems (NeurIPS)*, 2022.

576

577 Edwige Cyffers, Aurélien Bellet, and Jalaj Upadhyay. Differentially Private Decentralized Learn-
 578 ing with Random Walks. In *International Conference on Machine Learning (ICML)*, Vienne
 (Autriche), Austria, July 2024. arXiv.

579 Marc Damie and Edwige Cyffers. Fedivertex: a graph dataset based on decentralized social networks
 580 for trustworthy machine learning, 2025.

581

582 Sergey Denisov, H. Brendan McMahan, John Rush, Adam Smith, and Abhradeep Guha Thakurta.
 583 Improved Differential Privacy for SGD via Optimal Private Linear Operators on Adaptive
 584 Streams. *Advances in Neural Information Processing Systems*, 35, December 2022.

585

586 Jinshuo Dong, Aaron Roth, and Weijie J Su. Gaussian differential privacy. *Journal of the Royal
 587 Statistical Society: Series B (Statistical Methodology)*, 84(1), 2022.

588

589 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating noise to sensitivity
 590 in private data analysis. In *Theory of Cryptography*, Berlin, Germany, 2006. Springer Berlin
 Heidelberg. ISBN 978-3-540-32732-5.

591

592 Cynthia Dwork, Moni Naor, Toniann Pitassi, and Guy N. Rothblum. Differential privacy under
 593 continual observation. In *Proceedings of the Forty-Second ACM Symposium on Theory of Com-
 puting*, STOC '10, New York, NY, USA, 2010. Association for Computing Machinery. ISBN
 9781450300506.

594 Abdellah El Mirini, Edwige Cyffers, and Aurélien Bellet. Privacy attacks in decentralized learning.
 595 In *International Conference on Machine Learning (ICML)*, ICML'24. JMLR.org, 2024.
 596

597 M. Gil, F. Alajaji, and T. Linder. Rényi divergence measures for commonly used univariate continuous distributions. *Information Sciences*, 249, November 2013. ISSN 00200255.
 598

599 Nirupam Gupta, Jonathan Katz, and Nikhil Chopra. Information-theoretic privacy in distributed
 600 average consensus, 2020.
 601

602 Harold V. Henderson and S. R. Searle. The vec-permutation matrix, the vec operator and Kronecker
 603 products: A review. *Linear and Multilinear Algebra*, 9(4), January 1981. ISSN 0308-1087.
 604

605 Zhenqi Huang, Sayan Mitra, and Nitin Vaidya. Differentially private distributed optimization.
 606 In *Proceedings of the 16th International Conference on Distributed Computing and Network-
 607 Working*, ICDCN '15, New York, NY, USA, 2015. Association for Computing Machinery. ISBN
 608 9781450329286.

609 Prateek Jain, Pravesh Kothari, and Abhradeep Thakurta. Differentially private online learning. In
 610 *Workshop on Computational Learning Theory (COLT)*, volume 23 of *Proceedings of Machine
 611 Learning Research*, Edinburgh, Scotland, 25–27 Jun 2012. PMLR.
 612

613 Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng
 614 Xu. Practical and private (deep) learning without sampling or shuffling, 2021a.
 615

616 Peter Kairouz, Brendan McMahan, Shuang Song, Om Thakkar, Abhradeep Thakurta, and Zheng
 617 Xu. Practical and Private (Deep) Learning Without Sampling or Shuffling. In *International
 618 Conference on Machine Learning (ICML)*. PMLR, July 2021b.

619 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 620 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
 621 D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
 622 Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang He,
 623 Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
 624 Mikhail Khodak, Jakub Konecný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
 625 Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
 626 Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
 627 Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
 628 Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
 629 and open problems in federated learning. *Foundations and Trends® in Machine Learning*, 14
 630 (1–2), 2021c. ISSN 1935-8237.
 631

632 Nikita Kalinin and Christoph H Lampert. Banded square root matrix factorization for differentially
 633 private model training. *Advances in Neural Information Processing Systems*, 37, 2024.
 634

635 Shiva Prasad Kasiviswanathan, Homin K. Lee, Kobbi Nissim, Sofya Raskhodnikova, and Adam
 636 Smith. What can we learn privately? In *2008 49th Annual IEEE Symposium on Foundations of
 637 Computer Science*, 2008.
 638

639 Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A unified
 640 theory of decentralized SGD with changing topology and local updates. In *International Conference
 641 on Machine Learning (ICML)*, volume 119 of *Proceedings of Machine Learning Research*.
 642 PMLR, 13–18 Jul 2020.
 643

644 Anastasia Koloskova, Ryan McKenna, Zachary Charles, J. Keith Rush, and Hugh Brendan McMahan.
 645 Gradient Descent with Linearly Correlated Noise: Theory and Applications to Differential
 646 Privacy. In *Conference on Neural Information Processing Systems (NeurIPS)*, November 2023.
 647

648 Antti Koskela and Tejas Kulkarni. Differential Privacy Analysis of Decentralized Gossip Averaging
 649 under Varying Threat Models, May 2025.
 650

651 Jure Leskovec and Julian Mcauley. Learning to discover social circles in Ego networks. In F. Pereira,
 652 C.J. Burges, L. Bottou, and K.Q. Weinberger (eds.), *Advances in Neural Information Processing
 653 Systems*, volume 25. Curran Associates, Inc., 2012.

648 Xiang Li, Chendi Wang, Buxin Su, Qi Long, and Weijie Su. Mitigating the privacy–utility trade–off
 649 in decentralized federated learning via f -differential privacy. In *Conference on Neural Infor-
 650 mation Processing Systems (NeurIPS)*, 2025. Poster 117431, NeurIPS.

651 Xiangru Lian, Ce Zhang, Huan Zhang, Cho-Jui Hsieh, Wei Zhang, and Ji Liu. Can decentralized
 652 algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic
 653 gradient descent. In *Conference on Neural Information Processing Systems (NeurIPS)*, 2017.

654 Xiangru Lian, Wei Zhang, Ce Zhang, and Ji Liu. Asynchronous decentralized parallel stochas-
 655 tic gradient descent. In *International Conference on Machine Learning (ICML)*, volume 80 of
 656 *Proceedings of Machine Learning Research*. PMLR, 10–15 Jul 2018.

657 Charles F. Van Loan. The ubiquitous Kronecker product. *Journal of Computational and Applied
 658 Mathematics*, 123(1), November 2000. ISSN 0377-0427.

659 Yilin Mo and Richard M. Murray. Privacy preserving average consensus. *IEEE Transactions on
 660 Automatic Control*, 62(2), February 2017. ISSN 1558-2523.

661 Dario Pasquini, Mathilde Raynal, and Carmela Troncoso. On the (In)security of Peer-to-Peer De-
 662 centralized Machine Learning. In *2023 IEEE Symposium on Security and Privacy (SP)*. IEEE
 663 Computer Society, May 2023. ISBN 978-1-66549-336-9.

664 Krishna Pillutla, Jalaj Upadhyay, Christopher A. Choquette-Choo, Krishnamurthy Dvijotham, Arun
 665 Ganesh, Monika Henzinger, Jonathan Katz, Ryan McKenna, H. Brendan McMahan, Keith Rush,
 666 Thomas Steinke, and Abhradeep Thakurta. Correlated noise mechanisms for differentially private
 667 learning, 2025.

668 César Sabater, Aurélien Bellet, and Jan Ramon. An accurate, scalable and verifiable protocol for
 669 federated differentially private averaging. *Machine Learning*, 111(11), November 2022. ISSN
 670 1573-0565.

671 Youliang Tian, Shuai Wang, Jinbo Xiong, Renwan Bi, Zhou Zhou, and Md Zakirul Alam Bhuiyan.
 672 Robust and privacy-preserving decentralized deep federated learning training: Focusing on digital
 673 healthcare applications. *IEEE/ACM Transactions on Computational Biology and Bioinformatics*,
 674 2023.

675 Lloyd N. Trefethen. *Numerical Linear Algebra*. Society for Industrial and Applied Mathematics
 676 (SIAM, 3600 Market Street, Floor 6, Philadelphia, PA 19104), Philadelphia, Pa, 1997. ISBN
 677 978-0-89871-361-9 978-0-89871-957-4.

678 Shaowei Wang, Liusheng Huang, Miaomiao Tian, Wei Yang, Hongli Xu, and Hansong Guo. Per-
 679 sonalized Privacy-Preserving Data Aggregation for Histogram Estimation. In *2015 IEEE Global
 680 Communications Conference (GLOBECOM)*, December 2015.

681 Liangqi Yuan, Ziran Wang, Lichao Sun, Philip S. Yu, and Christopher G. Brinton. Decentralized
 682 Federated Learning: A Survey and Perspective. *IEEE Internet of Things Journal*, 11(21):34617–
 683 34638, November 2024. ISSN 2327-4662. doi: 10.1109/JIOT.2024.3407584.

690 A SOTA DP-DL APPROACHES AS MATRIX FACTORIZATION MECHANISMS

693 In this section we prove Theorem 6, by looking at algorithms one by one. But first we explain the
 694 strategy used to get the factorization, and we present a useful Lemma.

695 A.1 PATH TO MATRIX FACTORIZATION MECHANISMS

696 For each setting the proof of Theorem 6 follows a two-steps strategy:

697 1. list observed messages, known gradients, and known noise, and derive the corresponding
 698 matrices A and B ;

699 2. (if necessary) remove the impact of the known gradients from matrix A (apply Lemma 14).

Symbol	Usage	Source
\mathcal{V}	Set of nodes participating in the training	
n	Number of nodes in the training	
d	Model size	
η	Learning rate	
T	time t ranges from 1 to T	
Φ	Number of observations made by the attacker	
θ	A model during the training	
W	Gossip matrix	
\mathbf{W}_T	Decentralized learning workload	Figure 1
\mathbf{C}^\top	Transpose of matrix \mathbf{C} .	
\mathbf{C}^\dagger	Moore-Penrose pseudo-inverse of matrix \mathbf{C}	
\otimes	Kronecker product	
Π	Participation scheme	
\mathcal{D}_u	Dataset of some node u	

Table 1: List of symbols used in this work

Apart from LDP, the second step is mandatory to recover a proper factorization. Indeed, if one considers a Linear DL algorithm and an attacker knowledge $\mathcal{O}_A = AG + BZ$ such that $A = \begin{bmatrix} \bar{A} \\ K^G \end{bmatrix}$ and $B = \begin{bmatrix} \bar{B} \\ 0 \end{bmatrix}$. Then, no matrix C is such that $A = BC$, as it would imply that $K^G = 0C$.

However, by following the cleaning strategy given by Lemma 14, we obtain a second reduced view, $\tilde{\mathcal{O}}_A := \tilde{A}G + BZ$, such that $\tilde{A} = BC$ can exist.

Lemma 14 (Attacker-knowledge reduction). *Let $\mathcal{O}_A = AG + BZ$ be the attacker knowledge of a trust model on a Linear DL algorithm, such that the attacker is aware of some linear combinations of gradients (without noise). Without loss of generality, let assume $A = [\bar{A}^\top \ K^G^\top]^\top$ and $B = [\bar{B}^\top \ 0]^\top$ where none of \bar{B} 's rows are null. If we define $\tilde{A} := A(I - K^G K^G)$, then the GDP guarantees of the attacker knowledge \mathcal{O}_A are the same as the one of the attacker-knowledge reduction $\tilde{\mathcal{O}}_A := \tilde{A}G + BZ$.*

Proof.

$$AG + BZ = A(K^{G\dagger} K^G)G + A(I - K^{G\dagger} K^G)G + BZ \quad (13)$$

$$= AK^{G\dagger}(K^G G) + \begin{bmatrix} \bar{A}(I - K^{G\dagger} K^G) \\ K^G(I - K^{G\dagger} K^G) \end{bmatrix}G + BZ \quad (14)$$

$$= AK^{G\dagger}(K^G G) + \begin{bmatrix} \bar{A}(I - K^{G\dagger} K^G) \\ 0 \end{bmatrix}G + BZ \quad (15)$$

$$= AK^{G\dagger}(K^G G) + \begin{bmatrix} \bar{A} \\ 0 \end{bmatrix}(I - K^{G\dagger} K^G)G + BZ \quad (16)$$

$$= AK^{G\dagger}(K^G G) + \tilde{A}G + BZ \quad (17)$$

$$(18)$$

Then, as the attacker knows $K^G G$, the GDP properties of $AG + BZ$ are the same as those of $\tilde{A}G + BZ$, which concludes the proof. \square

756 A.2 PROOF OF THEOREM 6 FOR DP-D-SGD
757758 In this section, we make explicit the factorization of Theorem 6 for the DP-SGD algorithm, where
759 all noises are independent, under the different trust models.
760761 **LDP** With LDP, the attacker has only access to messages, therefore no reduction is needed and we
762 analyze directly the factorization of the messages. We have $C_{\text{DP-SGD}} = I_{nT}$, yielding $A_{\text{DP-D-SGD}} =$
763 $B_{\text{DP-D-SGD}} = \mathbf{W}_T$.
764765 **PNDP** PNDP considers a set \mathcal{A} of attacker nodes. Each attacker observes
766767

- the messages it receives,
- its own gradients,
- its own noise,
- the messages it emits (which is a linear combination of previous information, so we will omit it).

772773 To ease the proof, without loss of generality, we reorder \mathbf{G} and \mathbf{Z} such that their first lines correspond
774 to the attackers' gradients and noise.
775776 Define $\mathbf{K}_{\text{PNDP}}^{\mathcal{S}}$ as:
777

778
$$\mathbf{K}_{\text{PNDP}}^{\mathcal{S}} = I_T \otimes K_{\mathcal{A}} \quad (19)$$

779

780 where $K_{\mathcal{A}}[i, \Gamma_{\mathcal{A}}[i]] = 1$ for $i \in \llbracket 1, |\Gamma_{\mathcal{A}}| \rrbracket$, where $\Gamma_{\mathcal{A}} = \bigcup_{a \in \mathcal{A}} \Gamma_a$ represents the (ordered) list of
781 neighbors of \mathcal{A} . $\mathbf{K}_{\text{PNDP}}^{\mathcal{S}}$ thus projects the set of all messages onto the set of messages received by \mathcal{A} .
782 Denote a the number of attackers, and b the total number of their neighbors.
783784 Then, the attacker knowledge is
785

786
$$\begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^{\mathcal{S}} \mathbf{W}_T) \\ I_{aT} & 0 \\ 0 & 0 \end{bmatrix} \mathbf{G} + \begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^{\mathcal{S}} \mathbf{W}_T) \\ 0 & 0 \\ I_{aT} & 0 \end{bmatrix} \mathbf{Z},$$

787 where $\mathbf{Z} \in \mathbb{R}^{nT \times d}$. After reduction, it becomes
788

789
$$\begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^{\mathcal{S}} \mathbf{W}_T) \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I_{(n-a)T} \end{bmatrix} \mathbf{G} + \begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^{\mathcal{S}} \mathbf{W}_T) \\ 0 & 0 \\ I_{aT} & 0 \end{bmatrix} \mathbf{Z}.$$

790

791 Hence $\mathbf{A} = \mathbf{B} \begin{bmatrix} 0_{aT \times aT} & 0_{aT \times (n-a)T} \\ 0_{(n-a)T \times aT} & I_{(n-a)T} \end{bmatrix}$, which concludes the proof for PNDP setting.
792793 A.3 PROOF OF THEOREM 6 FOR ANTI-PGD
794795 In this section, we make explicit the factorization of Theorem 6 for the AntiPGD algorithm, which
796 was studied in Koloskova et al. (2023).
797801 **LDP** Following the factorization found in a centralized setting (Koloskova et al., 2023), we have
802 $C_{\text{ANTI-PGD}} = 1_{t \geq t'} \otimes I_n$, $A_{\text{ANTI-PGD}} = \mathbf{W}_T$ and:
803

804
$$B_{\text{ANTI-PGD}} = \begin{bmatrix} I_n & 0 & \dots & 0 \\ W - I_n & I_n & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ W^{T-2}(W - I_n) & W^{T-3}(W - I_n) & \dots & I_n \end{bmatrix}$$

805

806 This notation shows how noise cancellation is propagated and lagging one step behind in terms of
807 communication.
808

PNDP PNDP considers a set \mathcal{A} of attacker nodes. To ease the proof, without loss of generality, we reorder G and Z such that their first lines correspond to the attackers gradients and noise.

Define $\mathbf{K}_{\text{PNDP}}^S$ as the projection of all messages onto the set of messages received by \mathcal{A} . Denote a the number of attackers, and b the total number of their neighbors.

An alternative expression of messages in ANTI-PGD is $\widetilde{\mathbf{W}}_T (G + DZ)$, where D is the invertible

lower-triangular matrix
$$\begin{bmatrix} 1 & & & & \\ -1 & 1 & & & 0 \\ 0 & -1 & 1 & & \\ \vdots & \ddots & \ddots & \ddots & \\ 0 & \dots & 0 & -1 & 1 \end{bmatrix}.$$

Then, the attacker knowledge is

$$\begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S \mathbf{W}_T) \\ I_{aT} & 0 \\ 0 & 0 \end{bmatrix} G + \begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S \mathbf{W}_T D) \\ 0 & 0 \\ I_{aT} & 0 \end{bmatrix} Z,$$

where $Z \in \mathbb{R}^{nT \times d}$. After reduction, it becomes

$$\begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S \mathbf{W}_T) \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I_{(n-a)T} \end{bmatrix} G + \begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S \mathbf{W}_T D) \\ 0 & 0 \\ I_{aT} & 0 \end{bmatrix} Z.$$

Hence $A = BD^{-1} \begin{bmatrix} 0_{aT \times aT} & 0_{aT \times (n-a)T} \\ 0_{(n-a)T \times aT} & I_{(n-a)T} \end{bmatrix}$, which concludes the proof for PNDP setting.

A.4 PROOF OF THEOREM 6 FOR MUFFLIATO-SGD

In this section, we make explicit the factorization of Theorem 6 for the Muffliato algorithm, which was studied in Cyffers et al. (2022).

LDP Muffliato-SGD (Cyffers et al., 2022) requires a different communication workload than \mathbf{W}_T . That is because they consider multiple communication rounds before computing a new gradient. Formally, they define K the number of communication steps between two gradients, and they perform T iterations. This means that the set of messages shared is:

$$\mathcal{O}_{\text{Muffliato-SGD}} = \mathbf{W}_{KT} \left(I_T \otimes \begin{bmatrix} I_n \\ \mathbf{0}_{Kn \times n} \end{bmatrix} \right) (G + Z).$$

We see here that Muffliato-SGD adds uncorrelated local noises ($C^\dagger = I_{nT}$), and thus we have $C_{\text{Muffliato-SGD}} = I_{nT}$, as well as $A_{\text{Muffliato-SGD}} = B_{\text{Muffliato-SGD}} = \mathbf{W}_{KT} \left(I_T \otimes \begin{bmatrix} I_n \\ \mathbf{0}_{(K-1)n \times n} \end{bmatrix} \right)$.

PNDP For Muffliato-SGD(K), we assume $T = KT'$, where T' is the number of gradient descent, and has K communication rounds between each gradient descent.

PNDP considers a set \mathcal{A} of attacker nodes. To ease the proof, without loss of generality, we reorder G and Z such that their first lines corresponds to the attackers gradients and noise.

Define $\mathbf{K}_{\text{PNDP}}^S$ as the projection of all messages onto the set of messages received by \mathcal{A} . Denote a the number of attackers, and b the total number of their neighbors.

Then, the attacker knowledge is

$$\begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S A_{\text{Muffliato-SGD}}) \\ I_{aT} & 0 \\ 0 & 0 \end{bmatrix} G + \begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S A_{\text{Muffliato-SGD}}) \\ 0 & 0 \\ I_{aT} & 0 \end{bmatrix} Z,$$

where $Z \in \mathbb{R}^{nT \times d}$. After reduction, it becomes

$$\begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S A_{\text{Muffliato-SGD}}) \\ 0 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I_{(n-a)T} \end{bmatrix} G + \begin{bmatrix} (\mathbf{K}_{\text{PNDP}}^S A_{\text{Muffliato-SGD}}) \\ 0 & 0 \\ I_{aT} & 0 \end{bmatrix} Z.$$

864 Hence $A = B \begin{bmatrix} 0_{aT \times aT} & 0_{aT \times (n-a)T} \\ 0_{(n-a)T \times aT} & I_{(n-a)T} \end{bmatrix}$, which concludes the proof for PNDP setting.
 865
 866

867 Note that while the formulation is similar to the proof for DP-D-SGD, the workload matrix here has
 868 K times more rows.
 869

870 A.5 PROOF OF THEOREM 6 FOR DECOR

871 In this section, we make explicit the factorization of Theorem 6 for the DECOR algorithm, which
 872 was studied in Allouah et al. (2024).
 873

874 First, let us provide the correlation matrix used in DECOR C_{DECOR} . Correlation is performed *edge-
 875 wise* in the graph, as each neighbor adds a noise correlated with their neighbors to their local noise.
 876 Consider an arbitrary orientation E of edges \mathcal{E} of the symmetric graph \mathcal{G} . The correlation matrix
 877 has the following structure:

$$878 \quad C_{\text{DECOR}} = I_T \otimes [I_n \quad C_{\text{nodes}}^\dagger]^\dagger$$

$$879$$

$$880 \quad \forall e \in \llbracket 1, |E| \rrbracket, \forall i \in \llbracket 1, n \rrbracket : C_{\text{nodes}}^\dagger[i, e] = \begin{cases} 1 & \text{if } E[e] = (i, j) \\ -1 & \text{if } E[e] = (j, i) \\ 0 & \text{otherwise} \end{cases}.$$

$$881$$

$$882$$

883 where the first part of $[I_{nT} \quad C^\dagger]$ corresponds to the local private noise, and the second part to the
 884 "secrets". Interestingly, multiple correlation matrices (and thus equivalent factorizations) exist for
 885 DECOR, as there are multiple ways to generate possible orientations of the edges of the graph \mathcal{G} .
 886

887 **LDP** The messages exchanged by DECOR take the form $-\eta \widetilde{\mathbf{W}}_T (G + C_{\text{DECOR}}^\dagger Z)$. Hence $A =$
 888 $\widetilde{\mathbf{W}}_T, B = \widetilde{\mathbf{W}}_T [I_{nT} \quad C^\dagger]$, and $A = B \begin{bmatrix} I_{nT} \\ 0 \end{bmatrix}$, which concludes the proof for LDP setting.
 889

890 **PNDP** With DECOR, each node knows some of the noises of its neighbors. Therefore Sec-LDP
 891 is more appropriate to describe the knowledge gathered by some attackers.
 892

893 **Sec-LDP** Let consider a set \mathcal{A} of attacker nodes. To ease the proof, without loss of generality, we
 894 reorder G such that its first lines corresponds to the attackers gradients. For Z , we first gather the
 895 local noise of the attackers, then other local noises, and finally the "secrets" noise.
 896

897 Define $\mathbf{K}_{\text{PNDP}}^S$ as the projection of all messages onto the set of messages received by \mathcal{A} . Denote a
 898 the number of attackers.
 899

900 Then, the attacker knowledge is
 901

$$902 \quad \begin{bmatrix} \mathbf{K}_{\text{PNDP}}^S \mathbf{W}_T \\ I_{aT} \\ 0 \\ 0 \\ 0 \end{bmatrix} G + \begin{bmatrix} \mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T [I_{nT} \quad D^\dagger] \\ 0 \\ 0 \\ 0 \\ I_{aT} \\ 0 \\ 0 \\ 0 \end{bmatrix} Z,$$

$$903$$

$$904$$

$$905$$

906 where $Z \in \mathbb{R}^{nT \times d}$ and D is the correlation matrix of secrets and D a subpart of E . After reduction,
 907 it becomes
 908

$$909 \quad \begin{bmatrix} \mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & I_{(n-a)T} \end{bmatrix} G + \begin{bmatrix} \mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T [I_{nT} \quad D^\dagger] \\ 0 \\ 0 \\ 0 \\ I_{aT} \\ 0 \\ 0 \\ 0 \end{bmatrix} Z.$$

$$910$$

$$911$$

912 Hence $A = B \begin{bmatrix} 0_{aT \times aT} & 0_{aT \times (n-a)T} \\ 0_{(n-a)T \times aT} & I_{(n-a)T} \\ 0_{b \times aT} & 0_{b \times (n-a)T} \end{bmatrix}$, where b is the number of columns of D^\dagger , which
 913 concludes the proof for PNDP setting.
 914

915 Note that while the formulation is similar to the proof for DP-D-SGD, the workload matrix here has
 916 K times more rows.
 917

918 A.6 PROOF OF THEOREM 6 FOR ZIP-DL
919

920 In this section, we make explicit the factorization of Theorem 6 for the Zip-DL algorithm, which
921 was introduced in Biswas et al. (2025).

922 Zip-DL considers message-wise noises, with one noise per message sent between nodes. For each
923 node i , let Γ_i be its set of neighbors. Define $s_i = |\Gamma_i|$ the number of messages sent by i and
924 $s = \sum_{i=1}^n s_i$ the total number of messages.
925

926 Zip-DL is already expressed under a matrix form (Biswas et al., 2025): by introducing n^2 virtual
927 nodes, and translating express the gossip matrix W under this virtual equivalent as $\widetilde{W} \in \mathbb{R}^{n^2 \times n^2}$ to
928 encodes messages. Formally, we have $\widetilde{W}[ni+j+1, nj+i+1] = W[i, j]$. Furthermore, considering
929 an averaging matrix \widetilde{M} , and a correlation matrix $C_{\text{Zip-DL}}^\dagger$ (coined \hat{C} in Biswas et al. (2025)), Zip-DL
930 can be expressed as:
931

$$\theta_{t+1} = \widetilde{M}\widetilde{W} \left(1_n(\theta_t - \eta G_t) + C_{\text{Zip-DL}}^\dagger Z \right) \quad (20)$$

933 We can now define the messages shared on the network, and viewed by an LDP attacker \mathcal{A} :
934

$$\mathcal{O}_{\mathcal{A}} = \widetilde{\mathbf{W}}_T \left((I_{nT} \otimes 1_n) G + \left(I_T \otimes C_{\text{Zip-DL}}^\dagger \right) Z \right), \quad (21)$$

$$\widetilde{\mathbf{W}}_T = \left(I_T \otimes \widetilde{I}_{n^2} \right) \begin{bmatrix} I_{n^2} & 0 & \dots & 0 \\ \widetilde{M}\widetilde{W} & I_{n^2} & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ \left(\widetilde{M}\widetilde{W} \right)^{T-1} & \left(\widetilde{M}\widetilde{W} \right)^{T-2} & \dots & I_{n^2} \end{bmatrix} \quad (22)$$

937 where \widetilde{I}_{n^2} is a diagonal matrix filled with zeros except for $\widetilde{I}_{n^2}[ni+j+1, ni+j+1] = 1 \iff j \in$
938 Γ_i . Intuitively, $\widetilde{M}\widetilde{W}$ corresponds to one round of averaging. This is typically a very sparse matrix,
939 even more so because many lines will be zero when considering communication graphs that are not
940 the complete graph.
941

942 **LDP** $A = \widetilde{\mathbf{W}}_T (I_{nT} \otimes 1_n)$, $B = \widetilde{\mathbf{W}}_T (I_{nT} \otimes 1_n) \left(I_T \otimes C_{\text{Zip-DL}}^\dagger \right)$, and $C = (I_T \otimes C_{\text{Zip-DL}})$
943 concludes the proof for Zip-DL algorithm.
944

945 **PNDP** For the ease of notation, we assume here that for any node i , $s_i = c$. The generalization is
946 straight-forward. To ease the proof, without loss of generality, we reorder G and Z such that their
947 first lines correspond to the attackers gradients and noise.
948

949 We denote \mathcal{A} the set of attacker nodes, and assume for simplicity there is only one such attacker
950 node (extension to more simply requires doing this decomposition multiple times, or extending the
951 projection matrices). Denote $\mathbf{K}_{\text{PNDP}}^S \in \mathbb{R}^{cT \times cnT}$ the matrix selecting the messages received by \mathcal{A} .
952

953 The PNDP attacker knowledge is therefore

$$\begin{bmatrix} \left(\mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T \right) & 0 \\ \left(I_T \otimes [1 \ 0_{1 \times c-1}] \right) & 0 \\ 0 & 0 \end{bmatrix} (I_{nT} \otimes \mathbf{1}_c) G + \begin{bmatrix} \left(\mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T \right) \\ 0 \ 0 \\ I_{cT} \ 0 \end{bmatrix} Z,$$

954 where $Z \in \mathbb{R}^{ncT \times d}$. After reduction, it becomes
955

$$\begin{bmatrix} \left(\mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T \right) \\ 0 \ 0 \\ 0 \ 0 \end{bmatrix} \begin{bmatrix} 0 & 0 \\ 0 & (I_{(n-1)T} \otimes \mathbf{1}_c) \end{bmatrix} G + \begin{bmatrix} \left(\mathbf{K}_{\text{PNDP}}^S \widetilde{\mathbf{W}}_T \right) \\ 0 \ 0 \\ I_{cT} \ 0 \end{bmatrix} Z.$$

956 Hence $A = B \begin{bmatrix} 0_{cT \times cT} & 0_{cT \times (n-1)cT} \\ 0_{(n-1)cT \times cT} & I_{(n-1)T} \otimes \mathbf{1}_c \end{bmatrix}$, which concludes the proof for Zip-DL algorithm.
957

972 A.7 EXTENDING NOTATIONS TO TIME-VARYING GOSSIP
973974 We extend the notations introduced in Section 4.1 to time-varying graphs encoded as a sequence of
975 gossip matrices W_t , for $t \in \llbracket 1, T \rrbracket$. In this more general context, the workload matrix \mathbf{W}_T becomes:
976

977
$$\mathbf{W}_T = \begin{bmatrix} I_n & 0 & 0 & \dots & 0 \\ W_1 & I_n & 0 & \dots & 0 \\ W_2 W_1 & W_2 & I_n & \dots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \Pi_{t=T}^1 W_t & \Pi_{t=T-1}^2 W_t & \Pi_{t=T-1}^3 W_t & \dots & I_n \end{bmatrix}$$

983

984 This new definition of \mathbf{W}_T encodes how messages spread through time using the sequence of gossip
985 matrices $(W_t)_t$. The formalization of the MF-D-SGD algorithm (initially presented in Equation (5))
986 similarly needs adapting by replacing $I_T \otimes W$ by a block diagonal matrix of all W_t :
987

988
$$\theta = \begin{bmatrix} W_1 & 0 & \dots & 0 \\ 0 & W_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & W_T \end{bmatrix} (M\theta_0 - \eta \mathbf{W}_T (G + C^\dagger Z)), \quad (23)$$

991

992 B PROOF OF THEOREM 8
993994 *Proof.* (of Theorem 8)995 We denote $\mathcal{M} \equiv \mathcal{M}'$ two mechanism that have the same μ -GDP properties. In this proof, this will
996 either be because they are distributionally equivalent, or because they are an invertible operation
997 away from each other (meaning they have the same μ -GDP properties by post-processing).
9981000 We start by proving the following equivalences:
1001

1002
$$\begin{aligned} \mathcal{M} : G &\rightarrow B(CG + Z) \\ &\equiv \mathcal{M}_1 : G \rightarrow B'(CG + Z) \quad \triangleright \text{with } B' \in \mathbb{R}^{\text{rank}(B) \times m} \text{ and } B'C \text{ an echelon matrix} \\ &\equiv \mathcal{M}_2 : G \rightarrow [L \ 0] (QCG + Z) \quad \triangleright \text{with } B' = [L \ 0] Q \text{ the LQ decomposition of } B' \\ &\equiv \mathcal{M}_3 : G \rightarrow (\tilde{Q}CG + \tilde{Z}) \quad \triangleright \text{with } \tilde{Q} \text{ (resp. } \tilde{Z}) \text{ the first rank } (B') \text{ rows of } Q \text{ (resp. } Z) \end{aligned}$$

1006

1007 Then, since \mathcal{M}_3 can operate in the continual release model, those privacy guarantees will transfer
1008 back to \mathcal{M} .
10091010 **Algorithm 3** Rows Selection for Matrix B 1011 **Require:** Matrix $B \in \mathbb{R}^{a \times b}$
1012 1: $R \leftarrow \emptyset$ \triangleright Selected rows (empty matrix)
1013 2: $P \leftarrow \emptyset$
1014 3: **for** $i = 1$ to a **do**
1015 4: **if** $B_{[i]}$ is not a linear combination of rows in R **then**
1016 5: $R \leftarrow \begin{pmatrix} R \\ B_{[i]} \end{pmatrix}$
1017 6: $P \leftarrow \begin{pmatrix} P \\ e_i^\top \end{pmatrix}$ $\triangleright e_i \in \mathbb{R}^a$ selects line i of BC
1018 7: **return** P
10191020 **Proof that $\mathcal{M} \equiv \mathcal{M}_1$:** Let P be a projection matrix selecting $\text{rank}(B)$ rows of B , in the original
1021 order, and such that $\text{rank}(PB) = \text{rank}(B)$. P can be obtained through Algorithm 3. Denote B' the
1022 matrix PB . By design, B' is full-rank, $B' \in \mathbb{R}^{\text{rank}(B) \times m}$, $\text{rank}(B') = \text{rank}(B) \leq m$, and $B'C$ is
1023 an echelon matrix.
1024

1026 Denote S the rows of B not in B' . By design, they are linear combinations of rows of B' , meaning
 1027 there exists a matrix D such that $S = DB'$.

1028 As S is the complement of B' , there exists a permutation matrix π such that

$$1030 \quad B = \pi \begin{bmatrix} B' \\ S \end{bmatrix} = \pi \begin{bmatrix} B' \\ DB' \end{bmatrix} = \pi \begin{bmatrix} I_{\text{rank } B} \\ D \end{bmatrix} B',$$

1032 and finally $\mathcal{M} = \pi \begin{bmatrix} I_{\text{rank } B} \\ D \end{bmatrix} \mathcal{M}_1$.

1034 As also $\mathcal{M}_1 = P\mathcal{M}$, by applying post-processing in both directions, we have $\mathcal{M} \equiv \mathcal{M}_1$.

1036 **Proof of $\mathcal{M}_1 \equiv \mathcal{M}_2$:** Consider an LQ -decomposition of B' : since $\text{rank}(B') = \text{rank}(B) \leq m$
 1037 we can find a decomposition $B' = [L \ 0] Q$ such that $L \in \mathbb{R}^{\text{rank}(B') \times \text{rank}(B')}$ is lower triangular
 1038 and $Q \in \mathbb{R}^{m \times m}$ is an orthonormal matrix Trefethen (1997). Then, $\mathcal{M}_1(G) = [L \ 0] (QCG + QZ)$
 1039 for any G . Since Q is an orthonormal matrix, this is distributionally equivalent to \mathcal{M}_2 .

1041 **Proof of $\mathcal{M}_2 \equiv \mathcal{M}_3$:** L in \mathcal{M}_2 has been constructed to be square and lower triangular matrix
 1042 of full rank (as B' is of full-rank). Thus, L is invertible. This means, by post-processing using an
 1043 invertible operator L , that the privacy guarantees of \mathcal{M}_2 are the one of $[I_{\text{rank}(B')} \ 0] (QCG + Z)$.
 1044 It suffices to name $\tilde{Q} = [I_{\text{rank}(B')} \ 0] Q$ and $\tilde{Z} = [I_{\text{rank}(B')} \ 0] Z$ to see this corresponds to \mathcal{M}_3 .

1046 **Proof of $\frac{1}{\sigma}$ -GDP of \mathcal{M}_3 :** \mathcal{M}_3 is an instance of the Gaussian mechanism on $\tilde{Q}CG$. Since $\tilde{Z} \sim$
 1047 $\mathcal{N}(0, \nu^2)^{\text{rank}(B') \times d}$, this mechanism is $\frac{1}{\sigma}$ -GDP if $\nu = \sigma \text{sens}_{\Pi}(\tilde{Q}C)$. Additionally, we have $PA =$
 1048 $B'C = L\tilde{Q}C$. Then, $\tilde{Q}C = L^{-1}PA$, which implies that $\tilde{Q}C$ is lower echelon (by design of P and
 1049 L). Therefore, for the same value of ν , \mathcal{M}_3 remains $\frac{1}{\sigma}$ -GDP when considering adaptive gradients.

1051 Note that

$$1053 \quad \text{sens}(\tilde{Q}C) = \max_{G \simeq_{\Pi} G'} \left\| \tilde{Q}C(G - G') \right\|_F \quad (24)$$

$$1055 \quad = \max_{G \simeq_{\Pi} G'} \sqrt{\text{tr} \left((C(G - G'))^{\top} \tilde{Q}^{\top} \tilde{Q}C(G - G') \right)} \quad (25)$$

$$1057 \quad = \max_{G \simeq_{\Pi} G'} \sqrt{\text{tr} \left((C(G - G'))^{\top} B^{\dagger} BC(G - G') \right)} \quad (26)$$

$$1059 \quad = \max_{G \simeq_{\Pi} G'} \|C(G - G')\|_{B^{\dagger} B} \quad (27)$$

$$1061 \quad = \text{sens}(C; B), \quad (28)$$

1062 where Equation (26) stands as the rows of \tilde{Q} and B span the same space.

1063 Then, applying Lemma 3.15 of Pillutla et al. (2025) allows us to derive the following bound:

$$1065 \quad \text{sens}(C; B) = \text{sens}(\tilde{Q}C) \leq \max_{\pi \in \Pi} \sum_{s, t \in \pi} \left| \left((\tilde{Q}C)^{\top} \tilde{Q}C \right)_{s, t} \right| \quad (29)$$

$$1068 \quad \leq \max_{\pi \in \Pi} \sum_{s, t \in \pi} \left| \left(C^{\top} \tilde{Q}^{\top} \tilde{Q}C \right)_{s, t} \right| \quad (30)$$

$$1071 \quad \leq \max_{\pi \in \Pi} \sum_{s, t \in \pi} \left| \left(C^{\top} B'^{\dagger} B'C \right)_{s, t} \right| \quad (31)$$

$$1073 \quad \leq \max_{\pi \in \Pi} \sum_{s, t \in \pi} \left| \left(C^{\top} B^{\dagger} BC \right)_{s, t} \right|, \quad (32)$$

1075 where Equation (29) corresponds to Part (a) of Lemma 3.15 in Pillutla et al. (2025) (generalization
 1076 to batch releases). We also have equality when the $\left((\tilde{Q}C)^{\top} \tilde{Q}C \right) [t, \tau] > 0$ for all $t, \tau \in \pi$, for all
 1077 $\pi \in \Pi$).
 1078

□

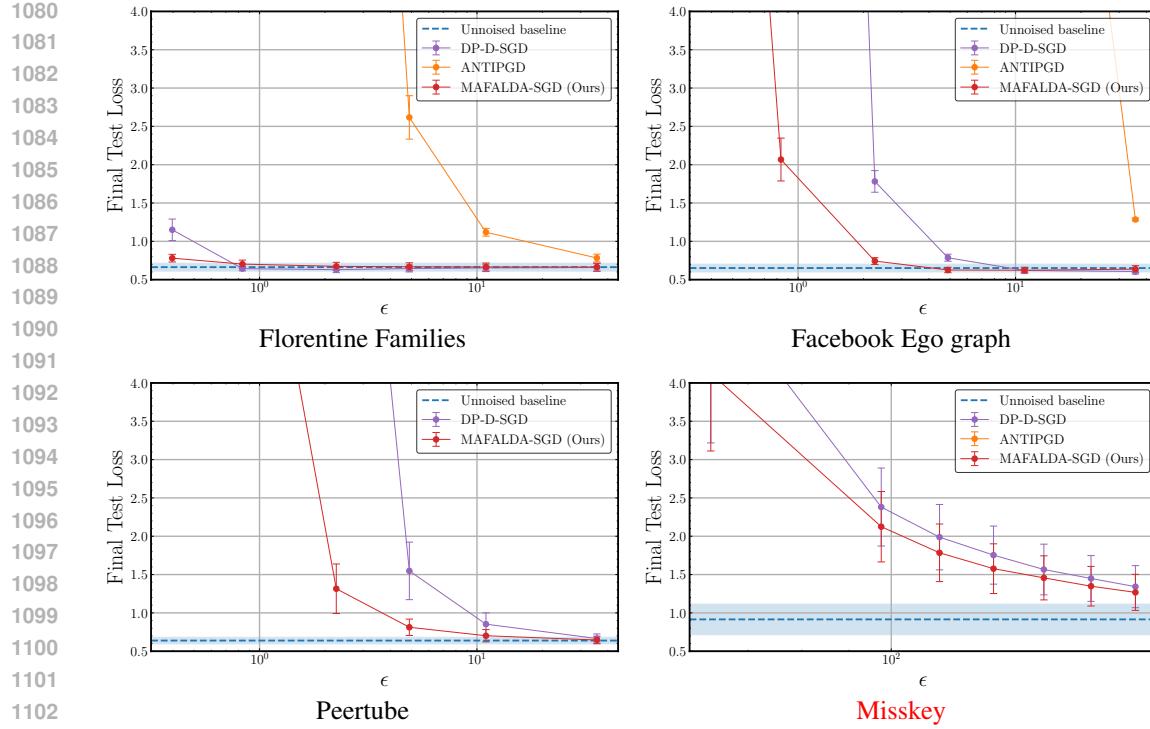


Figure 5: Privacy-utility tradeoff on the housing dataset for various graphs.

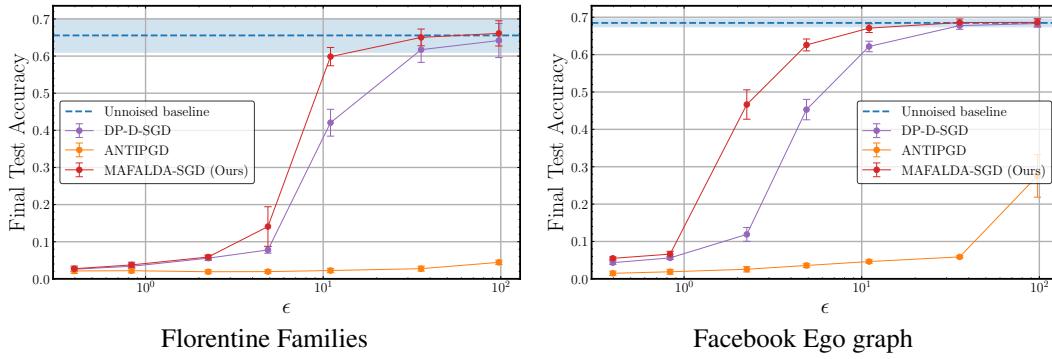


Figure 6: Privacy-utility tradeoff on the FEMNIST dataset for various graphs.

C ADDITIONAL EXPERIMENTS

In this section, we provide missing experimental details and results from Section 7.

C.1 HOUSING PRIVACY-UTILITY TRADEOFF

We simulate all baselines on the Housing dataset for various values of σ . We display their utility privacy tradeoff, by considering the utility as a function of ϵ for an $(\epsilon, 1e^{-6})$ -DP privacy guarantee. Figure 5 reports the resulting privacy-utility tradeoff offered by MAFALDA-SGD improves upon that of the existing literature.

Smaller graphs only yield better privacy/utility tradeoffs only because data is partitioned in bigger batches on smaller graphs, as there is more data for each node, netting better privacy properties.

1134 C.2 FEMNIST PRIVACY-UTILITY TRADEOFF
11351136 We also include Figure 6 to present the privacy-utility tradeoffs for the FEMNIST dataset on the
1137 Florentine families graph and the Facebook Ego graph. In both cases, better test accuracy are
1138 consistently reached by MAFALDA-SGD for different values of ϵ .1140 D PROOF OF LEMMA 12
11411142 In this section we present the proof of Lemma 12, which is used in Section 6 to justify Algorithm 2.
11431144 *Proof.* (Lemma 12)1145 Consider local correlation and $\mathbf{P}_{\mathcal{A}} = I_{nT}$. Then, the optimization loss of Equation (9) becomes:

1146
1147
$$\mathcal{L}_{\text{opti}}(\mathbf{W}_T, C_{\text{local}}) = \underset{\Pi_{\text{local}}}{\text{sens}}(C_{\text{local}})^2 \left\| (I_T \otimes W) \mathbf{W}_T (C_{\text{local}}^\dagger \otimes I_n) \right\|_F^2 \quad (33)$$

1148

1149 This follows from the property of the Moore-Penrose pseudoinverse: $(C_{\text{local}} \otimes I_n)^\dagger = C_{\text{local}}^\dagger \otimes I_n$,
1150 as well as the fact that $\text{sens}_{\Pi}(C_{\text{local}} \otimes I_{nT}; B) = \text{sens}_{\Pi_{\text{local}}}(C_{\text{local}})$ under a localized participation
1151 scheme Π that is identical for all nodes.1152 As highlighted in Loan (2000), the commutation matrix $\mathbf{K}^{(n,T)}$ (also called the vec-permutation
1153 matrix Henderson & Searle (1981)) is a way to change the representation from stacking through
1154 time the observations of the global system to stacking locally the observations through time for each
1155 node. In other words, for any matrix $X \in \mathbb{R}^{n \times n}, Y \in \mathbb{R}^{T \times T}$, we have:

1156
1157
$$\mathbf{K}^{(n,T)}(X \otimes Y) = (Y \otimes X) \mathbf{K}^{(T,n)}$$

1158

1159 It suffices to focus on the norm, since the sensitivity term remains unchanged. Let $A =$
1160 $(I_T \otimes W) \mathbf{W}_T \mathbf{K}_{n,T}$. First, note that $\mathbf{K}_{T,n}$ is a permutation matrix, so we have:

1161
1162
$$\begin{aligned} \left\| (I_T \otimes W) \mathbf{W}_T (C_{\text{local}}^\dagger \otimes I_n) \right\|_F^2 &= \left\| (I_T \otimes W) \mathbf{W}_T (C_{\text{local}}^\dagger \otimes I_n) \mathbf{K}_{T,n} \right\|_F^2 \\ 1163 &= \left\| (I_T \otimes W) \mathbf{W}_T \mathbf{K}_{n,T} (I_n \otimes C_{\text{local}}^\dagger) \right\|_F^2 \\ 1164 &= \left\| A (I_n \otimes C_{\text{local}}^\dagger) \right\|_F^2 \\ 1165 &= \text{tr} \left([A (I_n \otimes C_{\text{local}})]^\top A (I_n \otimes C_{\text{local}}) \right) \end{aligned}$$

1166
1167
1168
1169

1170 If we consider $A_i = A_{[:, T:i:T(i+1)-1]}$, then $A [I_n \otimes C_{\text{local}}] = [A_1 C_{\text{local}} \dots A_n C_{\text{local}}]$. Thus,
1171 when considering the trace, the product will only focus on the blocks for a given node i , and there
1172 are no cross-terms:

1173
1174
$$\begin{aligned} \left\| (I_T \otimes W) \mathbf{W}_T (C_{\text{local}}^\dagger \otimes I_n) \right\|_F^2 &= \text{tr} \left(\sum_{i=1}^n (A_i C_{\text{local}})^\top A_i C_{\text{local}} \right) \\ 1175 &= \text{tr} \left(\sum_{i=1}^n C_{\text{local}}^\top A_i^\top A_i C_{\text{local}} \right) \\ 1176 &= \text{tr} \left(C_{\text{local}}^\top \left(\sum_{i=1}^n A_i^\top A_i \right) C_{\text{local}} \right). \end{aligned}$$

1177
1178
1179
1180
1181

1182 Taking L such that $L^\top L = \sum_{i=1}^n A_i^\top A_i$ using the Cholesky decomposition yields the desired result.
1183 \square 1184
1185
1186
1187