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ABSTRACT

Decentralized Learning (DL) enables users to collaboratively train models with-
out sharing raw data by iteratively averaging local updates with neighbors in a net-
work graph. This setting is increasingly popular for its scalability and its ability to
keep data local under user control. Strong privacy guarantees in DL are typically
achieved through Differential Privacy (DP), with results showing that DL can even
amplify privacy by disseminating noise across peer-to-peer communications. Yet
in practice, the observed privacy-utility trade-off often appears worse than in cen-
tralized training, which may be due to limitations in current DP accounting meth-
ods for DL. In this paper, we show that recent advances in centralized DP account-
ing based on Matrix Factorization (MF) for analyzing temporal noise correlations
can also be leveraged in DL. By generalizing existing MF results, we show how to
cast both standard DL algorithms and common trust models into a unified formu-
lation. This yields tighter privacy accounting for existing DP-DL algorithms and
provides a principled way to develop new ones. To demonstrate the approach, we
introduce MAFALDA-SGD, a gossip-based DL algorithm with user-level corre-
lated noise that outperforms existing methods on synthetic and real-world graphs.

1 INTRODUCTION

In Decentralized Learning (DL), participants collaboratively train a shared model by exchanging
model parameters on a peer-to-peer communication graph (Lian et al., 2017; 2018; Koloskova et al.,
2020; Beltrán et al., 2022; Tian et al., 2023; Yuan et al., 2024). By removing the central server,
DL offers faster deployment, higher scalability, and improved robustness. Since data remains local
and each participant sees only a subset of communications, DL is also motivated by privacy con-
cerns (Cyffers & Bellet, 2022; Cyffers et al., 2022; Kairouz et al., 2021c). However, decentralization
alone is insufficient to ensure privacy, as exchanged messages can still leak sensitive information that
enables inference or reconstruction of local data (El Mrini et al., 2024; Pasquini et al., 2023). Data
protection thus requires additional mechanisms beyond decentralization.

Differential Privacy (DP) (Dwork et al., 2006) is the gold standard for privacy in machine learning.
DP protects participation by ensuring that outputs do not depend too strongly on any single data
point, typically through noise injection. Extending DP to Decentralized Learning is challenging:
unlike in centralized settings, where a trusted curator releases only the final output, DL exposes in-
termediate peer-to-peer messages to participants. A natural option is to analyze DP-DL algorithms
under Local DP (Kasiviswanathan et al., 2008; Bellet et al., 2018; Wang et al., 2015), which assumes
all messages are released publicly, but this overly conservative trust model often leads to poor pri-
vacy–utility trade-offs (Chan et al., 2012). More realistic models, such as Pairwise Network DP
(PNDP) (Cyffers et al., 2022; Cyffers & Bellet, 2022) and Secret-based LDP (SecLDP) (Allouah
et al., 2024), have recently been proposed to account for adversaries with only partial knowledge of
the system, showing that decentralization can amplify privacy guarantees relative to Local DP.

Unfortunately, despite these recent advances, designing DP-DL algorithms and analyzing their pri-
vacy guarantees remains a difficult and technical endeavor, and existing results rely on ad hoc proofs
tailored to specific algorithms and trust models (Cyffers et al., 2024; Biswas et al., 2025; Allouah
et al., 2024), rather than on a general, principled approach. There is also room to obtain tighter pri-
vacy guarantees by more carefully accounting for correlated noise arising from redundant exchanges

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

between nodes, both in parallel and across timesteps—an aspect largely overlooked in existing anal-
yses, which can lead to overly pessimistic bounds.

In this work, we address these limitations by introducing a unified formulation for analyzing pri-
vacy guarantees in DP-DL, building on recent advances in centralized privacy accounting via the
Matrix Factorization (MF) mechanism (Kairouz et al., 2021a; Pillutla et al., 2025). MF uses a well-
chosen factorization of a workload matrix representing the algorithm to exploit noise correlations
and achieve stronger privacy–utility trade-offs, but has been so far applied only in centralized con-
texts. We propose a framework that make MF applicable to ensuring DP in decentralized learning.
Achieving this requires addressing several fundamental challenges. First, decentralized learning
algorithms must be encoded as a single tractable matrix multiplication, a formulation that has not
been achieved in prior work. Second, the diversity of trust models requires disentangling the matrix
governing privacy guarantees from the one driving optimization schemes—two quantities that col-
lapse into a single object in the centralized setting. Finally, incorporating these elements requires
generalizing MF to richer classes of workload matrices and constraints. Our framework overcomes
these challenges, providing a principled foundation to analyze existing DP-DL algorithms across
different trust models and to design new ones. Specifically, our contributions are as follows:

(i) We generalize existing privacy guarantees for MF to broader settings;
(ii) We show how existing DP-DL algorithms and trust models can be analyzed as specific

instances of our generalized MF framework;
(iii) We use our framework to design a new algorithm, MAFALDA-SGD; and
(iv) We evaluate our approach on synthetic and real-world graphs and datasets, demonstrating

tighter privacy guarantees for existing algorithms and superior performance of MAFALDA-
SGD compared to prior methods.

2 RELATED WORK

Matrix factorization mechanism. The Matrix Factorization (MF) mechanism for SGD first ap-
peared as a generalization of correlated noise in the online setting (Kairouz et al., 2021b), based
on tree mechanisms (Dwork et al., 2010; Jain et al., 2012), and was later formalized by Denisov
et al. (2022). More recent work improves the factorization either by designing more efficient de-
compositions (Choquette-Choo et al., 2023), or by allowing additional constraints on the strategy
matrix, i.e., the matrix encoding locally applied noise correlations on the gradient. Existing con-
straints typically enforce a limited window for temporal correlations via banded matrices, which
reduces computation (Choquette-Choo et al., 2023; Kalinin & Lampert, 2024), whereas in this work
our constraint in MAFALDA-SGD enforces that correlations occur only within nodes. Other works
extend the mechanism to more complex participation schemes (Choquette-Choo et al., 2023). For a
more comprehensive survey, we refer the reader to Pillutla et al. (2025).

Differentially private decentralized learning. Private decentralized learning was first studied un-
der the trust model of Local DP (Bellet et al., 2018; Cheng et al., 2019; Huang et al., 2015), which
suffers from poor utility due to overly pessimistic assumptions: participants are only protected by
their own noise injection, since all messages are assumed to be known to the attacker. Relaxed trust
models have since gained traction, such as Pairwise Network Differential Privacy (PNDP) (Cyffers
et al., 2022), initially introduced for gossip averaging and later extended to several algorithms (Cyf-
fers et al., 2024; Li et al., 2025; Biswas et al., 2025). PNDP assumes that the attacker is a node
participating in the algorithm, and that it is thus sufficient to protect what a node observes during
the execution—typically only the messages it sends or receives. Similarly, SecLDP (Allouah et al.,
2024) enforces DP conditional on a set of secrets that remain hidden from the attacker. The idea of
correlating noise has a long history in DL, first as an obfuscation method against neighbors with-
out formal guarantees (Mo & Murray, 2017; Gupta et al., 2020). More recent works provide DP
guarantees for algorithms with correlated noise (Sabater et al., 2022; Allouah et al., 2024; Biswas
et al., 2025), but correlations are not optimized and instead dictated by what can be proven, which
explains why our method MAFALDA-SGD significantly outperforms them. Finally, the concept of
representing attacker knowledge in DL via a matrix that can be constructed algorithmically was in-
troduced by El Mrini et al. (2024) and more recently studied by Koskela & Kulkarni (2025), but
only for specific cases of algorithms and trust models, and without establishing a connection to the
matrix factorization mechanism.
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3 BACKGROUND: MATRIX FACTORIZATION MECHANISM

In this section, we review the centralized version of Differentially Private Stochastic Gradient De-
scent (DP-SGD) and its correlated noise variant based on matrix factorization (MF-SGD) (Denisov
et al., 2022), which we will later adapt to the decentralized case.

Differential Privacy (DP) (Dwork et al., 2006) ensures that the output of a mechanism does not
reveal too much information about any individual data record in its input. A mechanism satisfies DP
if its output distribution remains close on any two neighboring datasets D and D′ that differ in one
record (denoted D ≃ D′). Although DP is classically defined in terms of (ϵ, δ)-DP, in this paper
we adopt Gaussian DP (GDP), which is particularly well suited to mechanisms with Gaussian noise.
GDP offers tighter privacy accounting, simpler analysis, and can be converted back into Rényi DP
or (ϵ, δ)-DP (Dong et al., 2022).
Definition 1 (Gaussian Differential Privacy (GDP) — Dong et al. 2022; Pillutla et al. 2025). A ran-
domized mechanismM satisfies µ-Gaussian Differential Privacy (µ-GDP) if, for any neighboring
datasets D ≃ D′, there exists a (possibly randomized) function h such that

h(Z)
d
= M(D), Z ∼ N (0, 1), h(Z ′)

d
= M(D′), Z ′ ∼ N (µ, 1),

where d
= denotes equality in distribution.

In practice, Gaussian DP is obtained by adding appropriately calibrated Gaussian noise, which is the
central building block of the centralized DP-SGD algorithm. Given a training dataset D, a learning
rate η > 0, and starting from an initial model θ0 ∈ Rd, the DP-SGD update can be written as:

θt+1 = θt − η (gt + zt) , gt = clip (∇f(θt, ξt),∆) , zt ∼ N (0,∆2σ2Id), (1)
with ξt a sample from D and ∆ = supD≃D′ ∥∇f(D) − ∇f(D′)∥2 the sensitivity of ∇f enforced
by the clipping operation. Even for this simple version of DP-SGD without correlated noise, we can
define a so-called workload matrix Apre ∈ RT×T with Apre

ij = 1i≥j , such that:

θ = 1T ⊗ θ0 − (ApreG+ Z), G ∈ RT×d, (2)
where θ is the matrix of stacked θ1, ..., θT , G is the matrix of stacked gradients and Z ∼
N (0, σ2∆)T×d. Here G corresponds to the data-dependent part of the algorithm, and θ corresponds
to the outputs of DP-SGD. We thus aim to protect G as much as possible by adding a large variance
vector Z, while still achieving the best possible final θT , typically by keeping Z as small as possible.

To reach these contradictory goals, the matrix factorization mechanism exploits the postprocessing
property of DP—which ensures that if a mechanismM is µ-GDP, then for every function f , f ◦M is
also µ-GDP—to allow noise correlation across iterations and improve the privacy–utility trade-off.
For any factorization Apre = BC, one can rewrite ApreG+BZ as Apre(G+C†Z), where the multi-
plication by Apre is seen as a post-processing of the term (G+C†Z) and C† is the pseudo-inverse of
C. This factorization leads to a slight modification of DP-SGD, resulting in the MF-SGD updates:

θt+1 = θt − η
(
gt +

∑t
τ=0 C

†
t,τzτ

)
. (3)

To derive DP guarantees for MF-SGD, it suffices to analyze the privacy guarantees of (G + C†Z).
For neighboring datasets D ≃ D′ differing only in one record x, differences in G occur whenever x
is used, which may happen at multiple timesteps if the dataset is cycled through several times. The
participation scheme Π is the set of all participation patterns π, encoding whether x participates in
a given row of G (see Chapter 3 in Pillutla et al., 2025). This extends the neighboring relation from
datasets to gradients: G ≃Π G′. The sensitivity is then the worst case over all participation patterns:

sens
Π

(C) := sens
Π

(G 7→ CG) = max
G≃ΠG′

∥C (G−G′)∥F . (4)

For a fixed sensitivity sensΠ(C), generating Z ∼ N (0, σ2 sensΠ(C)2)T×d ensures that (G+C†Z)

is 1
σ -GDP. Optimizing the noise correlation is typically done by minimizing sens(C)2 ∥B∥2 under

the constraint Apre = BC, where ∥B∥2 represents the utility of the factorization. While the privacy
analysis is straightforward if G,G′ are fixed in advance, the guarantee remains valid when G is
computed adaptively through time, with gt depending on g1, . . . , gt−1. This has been proven only
for workload matrices that are square, lower triangular, and full rank (Denisov et al., 2022; Pillutla
et al., 2025). We show in Section 5 that the privacy guarantees also hold in a more general case,
thereby enabling adaptivity in DL as well.
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Algorithm 1 MF-D-SGD: Matrix Factorization Decentralized Stochastic Gradient Descent

Require: W ∈ Rn×n, C, T , ∆g , σ, θ0 ∈ Rn×d, Z ∼ N
(
0,∆2

gσ
2
)nT×d

1: for all node u in parallel do
2: for t = 1 to T do
3: g

(u)
t ← clip

[
∇fu(θ(u)t , ξ

(u)
t ),∆g

]
with ξ

(u)
t ∼ Du ▷ Clipped gradient

4: θ
(u)

t+ 1
2

← θ
(u)
t − η

(
g
(u)
t + (C†Z)[nt+u]

)
▷ Local update

5: Send θ
(u)

t+ 1
2

to all neighbors v ∈ Γu

6: Receive θ
(v)

t+ 1
2

from all neighbors v ∈ Γu

7: θ
(u)
t+1 ←

∑
v∈Γu

W[u,v]θ
(v)

t+ 1
2

▷ Local average

8: return θ
(u)
T+1,∀u ∈ J1, nK

4 DECENTRALIZED LEARNING AS A MATRIX FACTORIZATION MECHANISM

In this section, we show that many DL algorithms can be cast as instances of the matrix factorization
mechanism. To do so, we must address several challenges: encoding the updates of the algorithms,
representing the sensitive information, and capturing what is known to a given attacker in a form
suitable for analyzing DP guarantees. For concreteness, we first show in Section 4.1 how to proceed
for a specific yet already fairly general algorithm, which we call MF-D-SGD, under Local DP, and
then further generalize to a large class of DL algorithms and trust models in Section 4.2.

4.1 WARM-UP: MF-D-SGD UNDER LOCAL DP

We introduce the decentralized setting studied in our work and build step-by-step the encoding of
a Decentralized SGD (D-SGD) algorithm where DP is introduced in a similar way as in MF-SGD.
We refer to this algorithm as MF-D-SGD and present its pseudocode from the users’ perspective in
Algorithm 1 and from the matrix perspective in Figure 1.

We consider that n users, represented as nodes of a graph G = (V, E), collaboratively minimizing a
loss function by alternating gradient steps computed on their local datasets (Du)u∈V (Lines 3 and 4)
and gossiping steps, i.e., averaging their local models with their neighbors (Line 5–7). In DL, two
datasets D = (Du)u∈V and D′ = (D′

u)u∈V are neighboring if they differ in exactly one record at a
single node u, i.e., Dv = D′

v for all v ̸= u and D′
u = Du \ {x} ∪ {x′}. We write this as D ≃u D′.

Model updates. We stack the local parameters of the n nodes as a vector θt ∈ Rn×d, where θ
(u)
t

is the local parameter of node u at time t ∈ J0, T − 1K. The gradient step can then be written as
θt+ 1

2
= θt − η

(
Gt + C†

tZ
)
, where each row u of Gt is the vector G(u)

t = ∇fu
(
θ
(u)
t , ξ

(u)
t

)⊤
, the

gradient of the local loss function fu on the sample ξ(u)t from the local dataset Du, and C†
t ∈ Rn×m

is the block of C† from the (tn+1)-th row to the (t+1)n-th one. Here, C†
tZ can lead to arbitrarily

complex noise correlation. Note that for C = InT , we recover the local updates of DP-D-SGD,
the simple decentralized SGD with uncorrelated noise. After the local updates, nodes perform a
gossiping step, exchanging their models with neighbors and averaging the intermediate models θ

t+
1
2

using the gossip matrix W .

Definition 2 (Gossip matrix). A gossip matrix W ∈ Rn×n
≥0 on the graph G = (V, E) is a stochastic

matrix, i.e.,
∑n

v=1 Wuv = 1, and if Wuv > 0 then v is a neighbor of u, denoted v ∈ Γu.

With this definition, the gossiping step can be written as θt+1 = Wθt+ 1
2

. Thus, one full iteration of

MF-D-SGD corresponds to θt+1 = W
(
θt − η (Gt + C†

tZ)
)
.

We now stack all steps of MF-D-SGD over T iterations. This requires defining a matrix M with
stacked powers of W (starting with power 0) and a larger matrix WT ∈ RnT×nT with blocks of
size n × n in lower triangular Toeplitz form, where the main diagonal is filled with In and the i-th

4
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Figure 1: Overview of the MF-D-SGD algorithm written as a single equation.

diagonal with W i−1. The whole algorithm can then be summarized as:

θ = (IT ⊗W )
(
Mθ0 − ηWT

(
G+ C†Z

))
, (5)

where θ and G denote the collections of local models and gradients, respectively, after T iterations.
Remark 3. Up to this point, we have assumed that the gossip matrix W is fixed across iterations for
simplicity’s sake (notably when explaining Figure 1). In the remainder of the paper we move to the
more general case of time-varying gossip matrices Wt. This change only requires replacing powers
of a single matrix gossip W by products of matrices in the expression of WT . See Appendix A.7 for
details of this more general expression.

Attacker knowledge. A subtlety arises from the fact that under decentralized trust models, an
attacker typically does not observe the sequence of local models θ directly. Hence, we should not
apply the MF mechanism to Equation (5), but rather the peer-to-peer messages. Under the Local DP
trust model, where all messages exchanged by the nodes throughout the algorithm are assumed to
be public, the view OA of the attacker can be seen as a MF mechanism:

OA := WT

(
G+ C†Z

)
. (6)

4.2 GENERAL FORMULATION

The factorization obtained in previous section for MF-D-SGD requires two assumptions: (i) at each
iteration, every node sends the same message to all of its neighbors, and (ii) the attacker observes all
messages shared on the network. To encompass a broader range of algorithms and trust models, this
section proposes more general definitions for both. To the best of our knowledge, these definitions
cover all existing DP-DL algorithms and trust models.
Definition 4 (Linear DL algorithm). A decentralized learning algorithm is linear if all observable
quantities can be expressed as a linear combination of the concatenated gradients G and the con-
catenated noise Z.

This definition covers the Zip-DL algorithm, in which a user u applies distinct yet correlated noises
to its communications within the same gossiping step (Biswas et al., 2025). We complete our frame-
work by defining trust models on linear DL algorithms as follows.
Definition 5 (Attacker knowledge). Given a Linear DL algorithm, the attacker knowledge of a
trust model, i.e., the information the attacker A derives from its observations, can be expressed as
OA := AG+BZ.

This definition encompasses not only scenarios in which knowledge is obtained by observing mes-
sages or models, but also situations where the attacker sees only a subset of them, as in PNDP. It
further allows encoding: (i) gradients already known to the attacker, e.g., when a user knows its
own gradients or those of colluding users (in which case the corresponding columns of A are 0);
(ii) information available about the noise, e.g., when a user knows the noise it added, or in SecLDP
when some neighbors’ noise values are known (in which case the corresponding columns of B are
0), as shown by the following theorem.

Remarkably, these general definitions not only capture all widely used trust models and algorithms,
but the existence of a corresponding factorization for these cases is also guaranteed, as established
by the following theorem.
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Theorem 6. For each of the three trust models—LDP, PNDP, and SecLDP—and for all existing DL
algorithms, there exist matrices A, B, and C such that the attacker knowledge can be expressed as
OA = AG+BZ with A = BC.

We refer the reader to Appendix A for the proof, where we construct the matrices A, B and C for
each trust model based on the algorithms that introduced them. These matrices are constructed in
two steps: (i) forming three distinct blocks corresponding to observed messages, known gradients,
and known noise; (ii) removing from the overall matrix A the contribution of the known gradients.
The first step ensures that all known information is properly accounted for, while the second step
guarantees the existence of a factorization A = BC, which is crucial to obtain GDP guarantees, as
established in the next section by Theorem 8.

5 MORE GENERAL PRIVACY GUARANTEES FOR MATRIX FACTORIZATION

In Section 4, we showed how to cast the attacker knowledge in DL as a MF mechanism AG+ BZ
with A = BC. However, the resulting matrices do not satisfy the assumptions used in existing
MF results, which require A to be a square, full rank and lower-triangular matrix. In this section,
we extend the MF mechanism’s differential privacy guarantees to workloads A that may violate
these assumptions. To do so, we first introduce a more precise definition of sensitivity, which is
fundamental for evaluating the quality of a factorization (Pillutla et al., 2025).
Definition 7 (Sensitivity under participation, generalized). Let B and C be two matrices. The
sensitivity of C with respect to B and a participation schema Π is

sens
Π

(C;B) := max
G≃ΠG′

∥C (G−G′)∥B†B , (7)

with ∥A∥2B := tr
(
A⊤BA

)
.

With this definition, we state our main privacy theorem, whose proof is provided in Appendix B.
Theorem 8. Let OA = AG + BZ be the attacker knowledge of a trust model on a linear DL
algorithm, and denoteM(G) the corresponding mechanism. Let Π be a participation scheme for
G. For Z ∼ N

(
0, ν2

)m×d
, when A is a column-echelon matrix and there exists some matrix C

such that A = BC with

ν = σ sens
Π

(C;B) with sens
Π

(C;B) ≤ max
π∈Π

∑
s,t∈π

∣∣∣(C⊤B†BC
)
s,t

∣∣∣ , (8)

thenM is 1
σ -GDP, even when G is chosen adaptively.

Theorem 8 shows that the privacy guarantees of a matrix factorization mechanism remain valid for
a broader class of matrices A, even when the gradient vector is chosen adaptively, i.e., when it may
depend arbitrarily on all past information (Denisov et al., 2022). The column-echelon form property
of the matrix ensures it cannot depend on future information. This generalization of the usual lower-
triangular property is necessary when considering attackers who have only partial information over
the network. Most sets of observations that follow the natural causal ordering in DL can be rewritten
as a column-echelon matrix.

Our result generalizes existing results by allowing A to be rectangular and possibly rank-deficient,
a relaxation crucial for applying it to DL algorithms. The price of this extension is a dependency on
B: since C is not invertible, B is not unique, and sensitivity now depends on both the encoder matrix
C and the decoder matrix B. The correction B†B can be seen as a projection onto the column space
of B, discarding inaccessible gradient combinations. When B is square and full rank, as in prior
work, we recover the known formula sensΠ(C;B) = sensΠ(C; I) = sensΠ(C).
Remark 9. In DL, the participation schema Π is also slightly modified. A participation pattern π is
associated to a local dataset Du and can be non-negative only for the rows in {u, n+ u, . . . , (T −
1)n+ u}, which corresponds to gradients computed from Du.

Remark 10. Following Corollary 1 of Dong et al. (2022), µ-GDP directly and tightly translates
into (ϵ, δ)-DP, with appropriate ϵ and δ values. Moreover, it is also possible to derive (α, ϵ)-Rényi
DP Gil et al. (2013).
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6 A NOVEL ALGORITHM WITH OPTIMIZED NOISE CORRELATION

In this section, we showcase how the formalization developed in the previous sections enables op-
timizing noise correlation in DL algorithms. Specifically, we introduce MAFALDA-SGD (MAtrix
FActorization for Local Differentially privAte SGD), a new algorithm for DL with LDP, which can
be seen as a special instance of MF-D-SGD.

We first define an objective function Lopti capturing the optimization error of MF-D-SGD.
Definition 11. Consider Equation (5) with encoder matrix C, such that WT = BC. The optimal
correlation can be found by minimizing the following objective function:

Lopti (WT , B, C) := sens
Π

(C;B)
2 ∥∥(IT ⊗W )WTC

†∥∥2
F
. (9)

In DL, the optimization loss is defined with respect to the averaged model, as explicitly written in
Equation (5) for MF-D-SGD. However, sensitivity must also account for the attacker knowledge
( Theorem 8), which in this case corresponds to OA (defined in Equation (6)). The difference
between the two terms explains why, despite having a workload matrix equal to WT , the second
term involves (IT ⊗W )WT instead.

While one could attempt to minimize Equation (9) directly, doing so is impractical without additional
constraints. The encoder matrix C has size nT ×nT , which becomes intractable for large graphs or
long time horizons. Furthermore, the resulting correlated noises could necessitate correlations across
nodes, which in turn would require trust between them. These challenges motivate the introduction
of structural constraints on C.

Here, we focus on Local DP guarantees, where nodes cannot share noise. Accordingly, we consider
only local correlations, constraining C = Clocal ⊗ In so that the block structure enforces locality
and all nodes follow the same pattern, reducing the cost of computing C. For simplicity, we also
assume that all nodes adhere to the same local participation pattern. Correlation schemes proposed
for the centralized setting naturally fit this form; for example, AntiPGD (Koloskova et al., 2023)
subtracts the noise added at a given step in the next step. However, we find that this correlation
pattern performs poorly when used in DL (see Section 7), motivating our approach of optimizing
correlations specifically for decentralized algorithms.

Under LDP and local noise correlation, sensitivity depends only on Clocal. We simplify the general
objective in Definition 11 with the following lemma, with its proof deferred to Appendix D.

Lemma 12. Consider the LDP trust model (Ã = WT , B̃ = B) and local noise correlation C =
Clocal ⊗ In. Define:

Ai :=
[
(IT ⊗W )WTK

(T,n)
]
[:,iT :(i+1)T−1]

, H :=

n∑
i=1

A⊤
i Ai, (10)

where K(T,n) is a commutation matrix that commutes space and time in our representation (Loan,
2000). Then, the objective function of Equation (9) is equivalent to:

Lopti (WT , B,Clocal) = Lopti (WT , Clocal) = sens
Πlocal

(Clocal)
2
∥∥∥LC†

local

∥∥∥2
F
, (11)

where L is lower triangular and obtained by Cholesky decomposition of H = L⊤L.

This yields a standard factorization problem for L, which can be solved using existing frameworks
for the MF mechanism Choquette-Choo et al. (2023); Pillutla et al. (2025). In practice, these frame-
works operate on the Gram matrix H = L⊤L, avoiding the need for Cholesky decomposition.

Algorithm 2 summarizes our novel MAFALDA-SGD algorithm. It first computes the optimal
correlation by optimizing for the privacy-utility trade-off in DL based on the objective function
in Lemma 12, before running MF-D-SGD with the resulting Cmafalda. Note that Cmafalda can be
computed offline by any party that knows the gossip matrix and the participation pattern.
Remark 13. The complexity of Algorithm 2 is driven by (i) the computation of the matrix L, which
costs O(n3T + n2T 3) in time, and O(n2T 2) in space, and (ii) the minimization of Lopti which is
O(T 3) per step of L-BFGS. Correlation restarts (Pillutla et al., 2025) can be used to keep T within
reasonable bounds.
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Algorithm 2 MAFALDA-SGD: MAtrix FActorization for Local Differentially privAte SGD

Require: W ∈ Rn×n, T , ∆g , σ, θ0 ∈ Rn×d

1: Build workload matrix WT ▷ Figure 1
2: H ←

∑n
i=1 A

⊤
i Ai where Ai :=

[
(IT ⊗W )WTK

(T,n)
]
[:,iT :(i+1)T−1]

▷ Lemma 12

3: L← Cholesky decomposition of H ▷ H = L⊤L
4: Cmafalda ← minClocal Lopti(L,Clocal) ▷ Using L-BFGS Choquette-Choo et al. (2023)
5: return MF-D-SGD(W,Cmafalda, T,∆g, σ, θ0) ▷ Algorithm 1

7 EXPERIMENTS

In this section, we highlight the advantages of our approach by first showing that we can achieve
significantly tighter privacy accounting for an existing algorithm under PNDP (Section 7.1), and
then demonstrating that MAFALDA-SGD outperforms existing DL algorithms under LDP. We use
both synthetic and real-world graphs. Additional experiments are reported in Appendix C.

7.1 TIGHTER ACCOUNTING FOR PNDP
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Figure 2: PNDP loss accounting for DP-D-SGD: comparison between the original accounting of
Cyffers et al. (2022) (dashed lines) and our accounting (solid lines) under the PNDP trust model.
We report the Rényi divergence (fixing α = 2 w.l.o.g., since the results are proportional to α) for
the minimum, maximum, and average in error bars over nodes at a given distance.

In this experiment, we consider DP-D-SGD—which corresponds to the Muffliato-SGD algorithm
from Cyffers et al. (2022) when the number of gossip steps is set to K = 1—and compute its PNDP
guarantee with two different privacy accounting methods: the one proposed by Cyffers et al. (2022)
and our own, obtained by casting the guarantees of Theorem 8 to the case of DP-D-SGD with a
PNDP attacker as follows. For Ca = InT and Ba = PaWT , using Theorem 8, the bound on
sensitivity of DP-D-SGD under PNDP is

sens
Π

(Ca;Ba) ≤ max
π∈Π

∑
s,t∈π

∣∣∣(B†
aBa

)
s,t

∣∣∣ = max
π∈Π

∑
s,t∈π

∣∣∣∣((PaWT )
†
PaWT

)
s,t

∣∣∣∣ . (12)

This sensitivity allows us to compute a µ-GDP bound, which we then convert into RDP. Since the
initial accounting in Cyffers et al. (2022) was performed at the user level rather than at the finer-
grained record level, we run our accounting under the worst-case assumption that the attacked node
always exposes the same single record (this corresponds to (T, 1)-participation for all nodes). This
ensures that our guarantees are computed at the same user level, leading to a fair comparison.

Note that the accounting does not depend on the choice of learning model or dataset. Rather, it is
determined by the participation scheme, the number of epochs, the clipping parameter, and the noise
scale, but also on the communication graph through the gossip matrix, as PNDP provides privacy
guarantees that are specific to each pair of nodes. We thus consider several graphs that correspond
to plausible real-world scenarios:

• Erdős–Rényi graphs: generated randomly with 100 nodes and parameter p = 0.2, ensuring that
each generated graph is strongly connected. These graphs have expander properties and can be
generated in a distributed fashion.

8
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• Facebook Ego graph (Leskovec & Mcauley, 2012): corresponds to the graph of a fixed Facebook
user (omitted from the graph), where nodes are the user’s friends and edges represent friendships
between them. This graph has 148 nodes.

• PeerTube graph (Damie & Cyffers, 2025): an example of decentralized social platform. PeerTube
is an open-source decentralized alternative to YouTube. Each node represents a PeerTube server
and edges encode follow relationships between servers, allowing users to watch recommended
videos across instances. The graph, restricted to its largest connected component, has 271 nodes.

• Florentine Families (Breiger & Pattison, 1986): a historical graph with 15 nodes describing mar-
ital relations between families in 15th-century Florence.

Results are shown in Figure 2. For all graphs, our accounting is significantly tighter for all possible
distances between nodes. In particular, while the PNDP accounting of Cyffers et al. (2022) provides
no improvement over LDP guarantees for nodes at distances less than or equal to 2, our method
already achieves significant gains—up to an order of magnitude. The improvement is even larger,
with reductions of at least two orders of magnitude at distances greater than or equal to 3. The gains
are consistent across all the considered graphs, demonstrating the versatility of our method, which
leverages both the topology and the correlations induced between nodes.

7.2 MAFALDA-SGD

We now illustrate the performance of MAFALDA-SGD under LDP and compare it with three base-
lines: non-private D-SGD, AntiPGD as defined in Appendix A, and standard DP-D-SGD without
noise correlation between nodes. Results on the Facebook Ego graph are shown in Figure 3, with
additional results for other privacy levels and graphs reported in Appendix C. We use our accounting
for all the algorithms to provide a fair comparison and because it is the tightest accounting available.

We study a regression task on the Housing dataset,1 which has 8 features and 20,640 data points, with
the goal of predicting house prices based on demographic and housing features. We use a simple
multilayer perceptron (MLP) with one hidden layer of width 64 and ReLU activation, followed by
a linear output layer for regression, trained with the mean-square error loss, in all experiments.
This dataset has been used in several related works (Cyffers et al., 2022; Li et al., 2025). In all
experiments, we cycle over the data points such that each of them participates 20 times in total, with
participation every 19 steps. These numbers were chosen for memory constraints and not optimized.
This cyclic participation corresponds to a (k, b)-participation scheme with k = 20 and b = 19 in the
matrix factorization literature (Choquette-Choo et al., 2023).

Our algorithm MAFALDA-SGD outperforms all private baselines across all privacy regimes by a
large margin. For a fixed privacy budget ϵ, MAFALDA-SGD achieves a 31% average improvement
in test loss in the last 50 training steps, while for a fixed test-loss value of 0.75, it achieves a 2-fold
reduction in ϵ. These results illustrate the importance of correlated noise for the performance of
differentially private decentralized algorithms. Additional experiments confirm that this superiority
holds regardless of the graph topology. In particular, under small privacy budgets, there exist regimes
where MAFALDA-SGD converges while competitors diverge (e.g., AntiPGD in Figure 3).

We also evaluate MAFALDA-SGD on the federated EMNIST (FEMNIST) image classification task
from the LEAF benchmark Caldas et al. (2018), predicting handwritten characters across users. This
setting is highly non-iid and realistic for decentralized learning. To ensure enough data is present,
each node is given 10 unique handwritting as training data. We use a small convolutional network
comprising two convolutional layers (16 and 32 filters, 3 × 3 kernels) with ReLU and 2 × 2 max-
pooling, followed by group normalization and a fully-connected layer for a softmax output trained
with cross-entropy. Training uses a cyclic participation scheme ((k, b) = (20, 16)).

We compare MAFALDA-SGD to baselines under local DP accounting. Results (averaged over 20
runs) are reported in Figure 4. Across privacy budgets, MAFALDA-SGD consistently achieves higher
test accuracy than the private baselines, with the largest relative gains at tight privacy levels where
correlated noise preserves utility while satisfying LDP.

1https://www.openml.org/d/823
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Figure 3: Comparison of MAFALDA-SGD with the non-private baseline, AntiPGD, and standard
DP-SGD under local differential privacy on the Housing dataset with the Facebook Ego graph. Left:
test loss over time (AntiPGD does not appear because the test loss is always greater than 6), averaged
over 20 runs. Right: final test loss as a function of the LDP privacy budget, averaged over 20 runs.
In both cases, data points are distributed uniformly at random across nodes.
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Figure 4: FEMNIST classification results on the Facebook Ego graph. Left: test accuracy evolution
for a fixed privacy budget. Right: privacy-utility tradeoff between the final test accuracy as a function
of the LDP privacy budget. Error bands show 95% confidence intervals.

8 CONCLUSION

In this work, we establish a new connection between two separate research directions by extend-
ing the matrix factorization mechanism from the well-studied centralized DP-SGD to differentially
private decentralized learning. This required generalizing known results in matrix factorization to
broader classes of matrices, which may also prove useful in other contexts. Our framework is flexi-
ble enough to capture both algorithms and trust models, while providing tighter privacy guarantees
than prior analyses. It also enables the design of new algorithms, as illustrated by MAFALDA-SGD,
which outperforms existing approaches. Overall, our framework lays the foundation for a more prin-
cipled design of private decentralized algorithms and enhances the practicality of privacy-preserving
machine learning in decentralized settings.

Reproducibility We provide all code used to generate the figures along with this submission, and
plan to publicly release it upon acceptance. Large Language models were used only for rewording,
basic scripting and documentation purposes.
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Pires, Rishi Sharma, and François Taı̈ani. Low-Cost Privacy-Preserving Decentralized Learning.
Proceedings on Privacy Enhancing Technologies, 2025(3), 2025. ISSN 2299-0984.

Ronald L. Breiger and Philippa E. Pattison. Cumulated social roles: The duality of persons and their
algebras. Social Networks, 8(3), September 1986. ISSN 0378-8733.

Sebastian Caldas, Sai Meher Karthik Duddu, Peter Wu, Tian Li, Jakub Konečnỳ, H Brendan McMa-
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Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
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A SOTA DP-DL APPROACHES AS MATRIX FACTORIZATION MECHANISMS

In this section we prove Theorem 6, by looking at algorithms one by one. But first we explain the
strategy used to get the factorization, and we present a useful Lemma.

A.1 PATH TO MATRIX FACTORIZATION MECHANISMS

For each setting the proof of Theorem 6 follows a two-steps strategy:

1. list observed messages, known gradients, and known noise, and derive the corresponding
matrices A and B;

2. (if necessary) remove the impact of the known gradients from matrix A (apply Lemma 14).
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Symbol Usage Source
V Set of nodes participating in the training
n Number of nodes in the training
d Model size
η Learning rate
T time t ranges from 1 to T
Φ Number of observations made by the attacker
θ A model during the training
W Gossip matrix
WT Decentralized learning workload Figure 1
C⊤ Transpose of matrix C.
C† Moore-Penrose pseudo-inverse of matrix C
⊗ Kronecker product
Π Participation scheme
Du Dataset of some node u

Table 1: List of symbols used in this work

Apart from LDP, the second step is mandatory to recover a proper factorization. Indeed, if one

considers a Linear DL algorithm and an attacker knowledgeOA = AG+BZ such that A =

[
Ā
KG

]
and B =

[
B̄
0

]
. Then, no matrix C is such that A = BC, as it would imply that KG = 0C.

However, by following the cleaning strategy given by Lemma 14, we obtain a second reduced view,
ÕA := ÃG+BZ, such that Ã = BC can exist.

Lemma 14 (Attacker-knowledge reduction). Let OA = AG + BZ be the attacker knowledge of
a trust model on a Linear DL algorithm, such that the attacker is aware of some linear combina-
tions of gradients (without noise). Without loss of generality, let assume A = [Ā⊤ KG⊤

]⊤ and
B = [B̄⊤ 0]⊤ where none of B̄’s rows are null. If we define Ã := A(I − KG†

KG), then the
GDP guarantees of the attacker knowledge OA are the same as the one of the attacker-knowledge
reduction ÕA := ÃG+BZ.

Proof.

AG+BZ = A
(
KG†

KG
)
G+A

(
I −KG†

KG
)
G+BZ (13)

= AKG† (
KGG

)
+

 Ā
(
I −KG†

KG
)

KG
(
I −KG†

KG
)G+BZ (14)

= AKG† (
KGG

)
+

[
Ā
(
I −KG†

KG
)

0

]
G+BZ (15)

= AKG† (
KGG

)
+

[
Ā
0

](
I −KG†

KG
)
G+BZ (16)

= AKG† (
KGG

)
+ ÃG+BZ (17)

(18)

Then, as the attacker knows KGG, the GDP properties of AG + BZ are the same as those of
ÃG+BZ, which concludes the proof.
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A.2 PROOF OF THEOREM 6 FOR DP-D-SGD

In this section, we make explicit the factorization of Theorem 6 for the DP-SGD algorithm, where
all noises are independent, under the different trust models.

LDP With LDP, the attacker has only access to messages, therefore no reduction is needed and we
analyze directly the factorization of the messages. We have CDP–SGD = InT , yielding ADP-D-SGD =
BDP-D-SGD = WT .

PNDP PNDP considers a set A of attacker nodes. Each attacker observes

• the messages it receives,

• its own gradients,

• its own noise,

• the messages it emits (which is a linear combination of previous information, so we will omit it).

To ease the proof, without loss of generality, we reorder G and Z such that their first lines correspond
to the attackers’ gradients and noise.

Define KS
PNDP as:

KS
PNDP = IT ⊗KA (19)

where KA[i,ΓA[i]] = 1 for i ∈ J1, |ΓA|K, where ΓA =
⋃

a∈A Γa represents the (ordered) list of
neighbors ofA. KS

PNDP thus projects the set of all messages onto the set of messages received byA.
Denote a the number of attackers, and b the total number of their neighbors.

Then, the attacker knowledge is(KS
PNDPWT )
IaT 0
0 0

G+

(KS
PNDPWT )
0 0

IaT 0

Z,

where Z ∈ RnT×d. After reduction, it becomes(KS
PNDPWT )
0 0
0 0

[0 0
0 I(n−a)T

]
G+

(KS
PNDPWT )
0 0

IaT 0

Z.

Hence A = B

[
0aT×aT 0aT×(n−a)T

0(n−a)T×aT I(n−a)T

]
, which concludes the proof for PNDP setting.

A.3 PROOF OF THEOREM 6 FOR ANTI-PGD

In this section, we make explicit the factorization of Theorem 6 for the AntiPGD algorithm, which
was studied in Koloskova et al. (2023).

LDP Following the factorization found in a centralized setting (Koloskova et al., 2023), we have
CANTI-PGD = 1t≥t′ ⊗ In, AANTI-PGD = WT and:

BANTI-PGD =


In 0 . . . 0

W − In In . . . 0
...

...
. . .

...
WT−2(W − In) WT−3(W − In) . . . In


This notation shows how noise cancellation is propagated and lagging one step behind in terms of
communication.
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PNDP PNDP considers a set A of attacker nodes. To ease the proof, without loss of generality,
we reorder G and Z such that their first lines correspond to the attackers gradients and noise.

Define KS
PNDP as the projection of all messages onto the set of messages received by A. Denote a

the number of attackers, and b the total number of their neighbors.

An alternative expression of messages in ANTI-PGD is W̃T (G+DZ), where D is the invertible

lower-triangular matrix


1
−1 1 0
0 −1 1
...

. . . . . . . . .
0 . . . 0 −1 1

 .

Then, the attacker knowledge is(KS
PNDPWT )
IaT 0
0 0

G+

(KS
PNDPWTD

)
0 0

IaT 0

Z,

where Z ∈ RnT×d. After reduction, it becomes(KS
PNDPWT

)
0 0
0 0

[0 0
0 I(n−a)T

]
G+

(KS
PNDPWTD

)
0 0

IaT 0

Z.

Hence A = BD−1

[
0aT×aT 0aT×(n−a)T

0(n−a)T×aT I(n−a)T

]
, which concludes the proof for PNDP setting.

A.4 PROOF OF THEOREM 6 FOR MUFFLIATO-SGD

In this section, we make explicit the factorization of Theorem 6 for the Muffliato algorithm, which
was studied in Cyffers et al. (2022).

LDP Muffliato-SGD (Cyffers et al., 2022) requires a different communication workload than WT .
That is because they consider multiple communication rounds before computing a new gradient. For-
mally, they define K the number of communication steps between two gradients, and they perform
T iterations. This means that the set of messages shared is:

OMuffliato-SGD = WKT

(
IT ⊗

[
In

0Kn×n

])
(G+ Z) .

We see here that Muffliato-SGD adds uncorrelated local noises (C† = InT ), and thus we have

CMuffliato-SGD = InT , as well as AMuffliato-SGD = BMuffliato-SGD = WKT

(
IT ⊗

[
In

0(K−1)n×n

])
.

PNDP For Muffliato-SGD(K), we assume T = KT ′, where T ′ is the number of gradient descent,
and has K communication rounds between each gradient descent.

PNDP considers a set A of attacker nodes. To ease the proof, without loss of generality, we reorder
G and Z such that their first lines corresponds to the attackers gradients and noise.

Define KS
PNDP as the projection of all messages onto the set of messages received by A. Denote a

the number of attackers, and b the total number of their neighbors.

Then, the attacker knowledge is(KS
PNDPAMuffliato-SGD

)
IaT 0
0 0

G+

(KS
PNDPAMuffliato-SGD

)
0 0

IaT 0

Z,

where Z ∈ RnT×d. After reduction, it becomes(KS
PNDPAMuffliato-SGD

)
0 0
0 0

[0 0
0 I(n−a)T

]
G+

(KS
PNDPAMuffliato-SGD

)
0 0

IaT 0

Z.
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Hence A = B

[
0aT×aT 0aT×(n−a)T

0(n−a)T×aT I(n−a)T

]
, which concludes the proof for PNDP setting.

Note that while the formulation is similar to the proof for DP-D-SGD, the workload matrix here has
K times more rows.

A.5 PROOF OF THEOREM 6 FOR DECOR

In this section, we make explicit the factorization of Theorem 6 for the DECOR algorithm, which
was studied in Allouah et al. (2024).

First, let us provide the correlation matrix used in DECOR CDECOR. Correlation is performed edge-
wise in the graph, as each neighbor adds a noise correlated with their neighbors to their local noise.
Consider an arbitrary orientation E of edges E of the symmetric graph G. The correlation matrix
has the following structure:

CDECOR = IT ⊗
[
In C†

nodes

]†
∀e ∈ J1, |E|K ,∀i ∈ J1, nK : C†

nodes[i, e] =


1 if E[e] = (i, j)

−1 if E[e] = (j, i)

0 otherwise
.

where the first part of
[
InT C†] corresponds to the local private noise, and the second part to the

”secrets”. Interestingly, multiple correlation matrices (and thus equivalent factorizations) exist for
DECOR, as there are multiple ways to generate possible orientations of the edges of the graph G.

LDP The messages exchanged by DECOR take the form −ηW̃T

(
G+ C†

DECORZ
)

. Hence A =

W̃T , B = W̃T

[
InT C†], and A = B

[
InT
0

]
, which concludes the proof for LDP setting.

PNDP With DECOR, each node knows some of the noises of its neighbors. Therefore Sec-LDP
is more appropriate to describe the knowledge gathered by some attackers.

Sec-LDP Let consider a set A of attacker nodes. To ease the proof, without loss of generality, we
reorder G such that its first lines corresponds to the attackers gradients. For Z, we first gather the
local noise of the attackers, then other local noises, and finally the ”secrets” noise.

Define KS
PNDP as the projection of all messages onto the set of messages received by A. Denote a

the number of attackers.

Then, the attacker knowledge isK
S
PNDPWT

IaT 0
0 0
0 0

G+

K
S
PNDPW̃T

[
InT D†]

0 0 0
IaT 0 0
0 0 E

Z,

where Z ∈ RnT×d and D is the correlation matrix of secrets and D a subpart of E. After reduction,
it becomes K

S
PNDPW̃T

0 0
0 0
0 0

[0 0
0 I(n−a)T

]
G+

K
S
PNDPW̃T

[
InT D†]

0 0 0
IaT 0 0
0 0 E

Z.

Hence A = B

 0aT×aT 0aT×(n−a)T

0(n−a)T×aT I(n−a)T

0b×aT 0b×(n−a)T

 , where b is the number of columns of D†, which

concludes the proof for PNDP setting.

Note that while the formulation is similar to the proof for DP-D-SGD, the workload matrix here has
K times more rows.
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A.6 PROOF OF THEOREM 6 FOR ZIP-DL

In this section, we make explicit the factorization of Theorem 6 for the Zip-DL algorithm, which
was introduced in Biswas et al. (2025).

Zip-DL considers message-wise noises, with one noise per message sent between nodes. For each
node i, let Γi be its set of neighbors. Define si = |Γi| the number of messages sent by i and
s =

∑n
i=1 si the total number of messages.

Zip-DL is already expressed under a matrix form (Biswas et al., 2025): by introducing n2 virtual
nodes, and translating express the gossip matrix W under this virtual equivalent as W̃ ∈ Rn2×n2

to
encodes messages. Formally, we have W̃ [ni+j+1, nj+i+1] = W[i, j]. Furthermore, considering
an averaging matrix M̃ , and a correlation matrix C†

Zip-DL (coined Ĉ in Biswas et al. (2025)), Zip-DL
can be expressed as:

θt+1 = M̃W̃
(
1n(θt − ηGt) + C†

Zip-DLZ
)

(20)

We can now define the messages shared on the network, and viewed by an LDP attacker A:

OA = W̃T

(
(InT ⊗ 1n)G+

(
IT ⊗ C†

Zip-DL

)
Z
)
, (21)

W̃T =
(
IT ⊗ Ĩn2

)


In2 0 . . . 0

M̃W̃ In2 . . . 0
...

...
. . .

...(
M̃W̃

)T−1 (
M̃W̃

)T−2

. . . In2

 (22)

where Ĩn2 is a diagonal matrix filled with zeros except for Ĩn2 [ni+ j+1, ni+ j+1] = 1 ⇐⇒ j ∈
Γi. Intuitively, M̃W̃ corresponds to one round of averaging. This is typically a very sparse matrix,
even more so because many lines will be zero when considering communication graphs that are not
the complete graph.

LDP A = W̃T (InT ⊗ 1n), B = W̃T (InT ⊗ 1n)
(
IT ⊗ C†

Zip-DL

)
, and C = (IT ⊗ CZip-DL)

concludes the proof for Zip-DL algorithm.

PNDP For the ease of notation, we assume here that for any node i, si = c. The generalization is
straight-forward. To ease the proof, without loss of generality, we reorder G and Z such that their
first lines correspond to the attackers gradients and noise.

We denote A the set of attacker nodes, and assume for simplicity there is only one such attacker
node (extension to more simply requires doing this decomposition multiple times, or extending the
projection matrices). Denote KS

PNDP ∈ RcT×cnT the matrix selecting the messages received by A.

The PNDP attacker knowledge is therefore
(
KS

PNDPW̃T

)
(IT ⊗ [1 01×c−1]) 0

0 0

 (InT ⊗ 1c)G+


(
KS

PNDPW̃T

)
0 0
IcT 0

Z,

where Z ∈ RncT×d. After reduction, it becomes
(
KS

PNDPW̃T

)
0 0
0 0

[0 0
0
(
I(n−1)T ⊗ 1c

)]G+


(
KS

PNDPW̃T

)
0 0
IcT 0

Z.

Hence A = B

[
0cT×cT 0cT×(n−1)cT

0(n−1)cT×cT I(n−1)T ⊗ 1c

]
, which concludes the proof for Zip-DL algorithm.
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A.7 EXTENDING NOTATIONS TO TIME-VARYING GOSSIP

We extend the notations introduced in Section 4.1 to time-varying graphs encoded as a sequence of
gossip matrices Wt, for t ∈ J1, T K. In this more general context, the workload matrix WT becomes:

WT =


In 0 0 . . . 0
W1 In 0 . . . 0

W2W1 W2 In . . . 0
...

...
...

. . .
...

Π1
t=TWt Π2

t=T−1Wt Π3
t=T−1Wt . . . In


This new definition of WT encodes how messages spread through time using the sequence of gossip
matrices (Wt)t. The formalization of the MF-D-SGD algorithm (initially presented in Equation (5))
similarly needs adapting by replacing IT ⊗W by a block diagonal matrix of all Wt:

θ =


W1 0 . . . 0
0 W2 . . . 0
...

...
. . .

...
0 0 . . . WT

(Mθ0 − ηWT

(
G+ C†Z

))
, (23)

B PROOF OF THEOREM 8

Proof. (of Theorem 8)

We denoteM ≡M′ two mechanism that have the same µ-GDP properties. In this proof, this will
either be because they are distributionally equivalent, or because they are an invertible operation
away from each other (meaning they have the same µ-GDP properties by post-processing).

We start by proving the following equivalences:

M : G→ B(CG+ Z)

≡M1 : G→ B′(CG+ Z) ▷ with B′ ∈ Rrank(B)×m and B′C an echelon matrix

≡M2 : G→ [L 0] (QCG+ Z) ▷ with B′ = [L 0]Q the LQ decomposition of B′

≡M3 : G→ (Q̃CG+ Z̃) ▷ with Q̃ (resp. Z̃) the first rank (B′) rows of Q (resp. Z)

Then, sinceM3 can operate in the continual release model, those privacy guarantees will transfer
back toM.

Algorithm 3 Rows Selection for Matrix B

Require: Matrix B ∈ Ra×b

1: R← [] ▷ Selected rows (empty matrix)
2: P ← []
3: for i = 1 to a do
4: if B[i] is not a linear combination of rows in R then

5: R←
(

R
B[i]

)
6: P ←

(
P
e⊤i

)
▷ ei ∈ Ra selects line i of BC

7: return P

Proof thatM≡M1: Let P be a projection matrix selecting rank(B) rows of B, in the original
order, and such that rank(PB) = rank(B). P can be obtained through Algorithm 3. Denote B′ the
matrix PB. By design, B′ is full-rank, B′ ∈ Rrank(B)×m, rank(B′) = rank(B) ⩽ m, and B′C is
an echelon matrix.
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Denote S the rows of B not in B′. By design, they are linear combinations of rows of B′, meaning
there exists a matrix D such that S = DB′.

As S is the complement of B′, there exists a permutation matrix π such that

B = π

[
B′

S

]
= π

[
B′

DB′

]
= π

[
IrankB

D

]
B′,

and finallyM = π

[
IrankB

D

]
M1.

As alsoM1 = PM, by applying post-processing in both directions, we haveM≡M1.

Proof ofM1 ≡ M2 : Consider an LQ-decomposition of B′ : since rank(B′) = rank(B) ≤ m

we can find a decomposition B′ = [L 0]Q such that L ∈ Rrank(B′)×rank(B′) is lower triangular
and Q ∈ Rm×m is an orthonormal matrix Trefethen (1997). Then,M1(G) = [L 0] (QCG+QZ)
for any G. Since Q is an orthonormal matrix, this is distributionally equivalent toM2.

Proof of M2 ≡ M3: L in M2 has been constructed to be square and lower triangular matrix
of full rank (as B′ is of full-rank). Thus, L is invertible. This means, by post-processing using an
invertible operator L, that the privacy guarantees ofM2 are the one of

[
Irank(B′) 0

]
(QCG+Z).

It suffices to name Q̃ =
[
Irank(B′) 0

]
Q and Z̃ =

[
Irank(B′) 0

]
Z to see this corresponds toM3.

Proof of 1
σ -GDP of M3: M3 is an instance of the Gaussian mechanism on Q̃CG. Since Z̃ ∼

N
(
0, ν2

)rank(B′)×d
, this mechanism is 1

σ -GDP if ν = σ sensΠ(Q̃C). Additionally, we have PA =

B′C = LQ̃C. Then, Q̃C = L−1PA, which implies that Q̃C is lower echelon (by design of P and
L). Therefore, for the same value of ν,M3 remains 1

σ -GDP when considering adaptive gradients.

Note that

sens
Π

(Q̃C) = max
G≃ΠG′

∥∥∥Q̃C (G−G′)
∥∥∥
F

(24)

= max
G≃ΠG′

√
tr
(
(C (G−G′))

⊤
Q̃⊤Q̃C (G−G′)

)
(25)

= max
G≃ΠG′

√
tr
(
(C (G−G′))

⊤
B†BC (G−G′)

)
(26)

= max
G≃ΠG′

∥C (G−G′)∥B†B (27)

= sens
Π

(C;B), (28)

where Equation (26) stands as the rows of Q̃ and B span the same space.

Then, applying Lemma 3.15 of Pillutla et al. (2025) allows us to derive the following bound:

sens
Π

(C;B) = sens
Π

(Q̃C) ≤ max
π∈Π

∑
s,t∈π

∣∣∣∣∣
((

Q̃C
)⊤

Q̃C

)
s,t

∣∣∣∣∣ (29)

≤ max
π∈Π

∑
s,t∈π

∣∣∣∣(C⊤Q̃⊤Q̃C
)
s,t

∣∣∣∣ (30)

≤ max
π∈Π

∑
s,t∈π

∣∣∣(C⊤B′†B′C
)
s,t

∣∣∣ (31)

≤ max
π∈Π

∑
s,t∈π

∣∣∣(C⊤B†BC
)
s,t

∣∣∣ , (32)

where Equation (29) corresponds to Part (a) of Lemma 3.15 in Pillutla et al. (2025) (generalization

to batch releases). We also have equality when the
((

Q̃C
)⊤

Q̃C

)
[t, τ ] > 0 for all t, τ ∈ π, for all

π ∈ Π).
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Figure 5: Privacy-utility tradeoff on the housing dataset for various graphs.
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Figure 6: Privacy-utility tradeoff on the FEMNIST dataset for various graphs.

C ADDITIONAL EXPERIMENTS

In this section, we provide missing experimental details and results from Section 7.

C.1 HOUSING PRIVACY-UTILITY TRADEOFF

We simulate all baselines on the Housing dataset for various values of σ. We display their utility
privacy tradeoff, by considering the utility as a function of ϵ for an (ϵ, 1e−6)-DP privacy guarantee.
Figure 5 reports the resulting privacy budget. For all graphs, the privacy-utility tradeoff offered by
MAFALDA-SGD improves upon that of the existing literature.

Smaller graphs only yield better privacy/utility tradeoffs only because data is partitioned in bigger
batches on smaller graphs, as there is more data for each node, netting better privacy properties.
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C.2 FEMNIST PRIVACY-UTILITY TRADEOFF

We also include Figure 6 to present the privacy-utility tradeoffs for the FEMNIST dataset on the
Florentine families graph and the Facebook Ego graph. In both cases, better test accuracy are con-
sistently reached by MAFALDA-SGD for different values of ϵ.

D PROOF OF LEMMA 12

In this section we present the proof of Lemma 12, which is used in Section 6 to justify Algorithm 2.

Proof. (Lemma 12)

Consider local correlation and PA = InT . Then, the optimization loss of Equation (9) becomes:

Lopti (WT , Clocal) = sens
Πlocal

(Clocal)
2
∥∥∥(IT ⊗W )WT

(
C†

local ⊗ In

)∥∥∥2
F

(33)

This follows from the property of the Moore-Penrose pseudoinverse: (Clocal ⊗ In)
†
= C†

local ⊗ In,
as well as the fact that sensΠ(Clocal ⊗ InT ;B) = sensΠlocal(Clocal) under a localized participation
scheme Π that is identical for all nodes.

As highlighted in Loan (2000), the commutation matrix K(n,T ) (also called the vec-permutation
matrix Henderson & Searle (1981)) is a way to change the representation from stacking through
time the observations of the global system to stacking locally the observations through time for each
node. In other words, for any matrix X ∈ Rn×n, Y ∈ RT×T , we have:

K(n,T ) (X ⊗ Y ) = (Y ⊗X)K(T,n)

It suffices to focus on the norm, since the sensitivity term remains unchanged. Let A =
(IT ⊗W )WTKn,T . First, note that KT,n is a permutation matrix, so we have:∥∥∥(IT ⊗W )WT

(
C†

local ⊗ In

)∥∥∥2
F
=
∥∥∥(IT ⊗W )WT

(
C†

local ⊗ In

)
KT,n

∥∥∥2
F

=
∥∥∥(IT ⊗W )WTKn,T

(
In ⊗ C†

local

)∥∥∥2
F

=
∥∥∥A(In ⊗ C†

local

)∥∥∥2
F

= tr
(
[A (In ⊗ Clocal)]

⊤
A (In ⊗ Clocal)

)
If we consider Ai = A[:,T i:T (i+1)−1], then A [In ⊗ Clocal] = [A1Clocal . . . AnClocal]. Thus,
when considering the trace, the product will only focus on the blocks for a given node i, and there
are no cross-terms:∥∥∥(IT ⊗W )WT

(
C†

local ⊗ In

)∥∥∥2
F
=tr

(
n∑

i=1

(AiClocal)
⊤
AiClocal

)

=tr

(
n∑

i=1

C⊤
localA

⊤
i AiClocal

)

=tr

(
C⊤

local

(
n∑

i=1

A⊤
i Ai

)
Clocal

)
.

Taking L such that L⊤L =
∑n

i=1 A
⊤
i Ai using the Cholesky decomposition yields the desired result.
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