
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

GENEVLM: AUTOMATED PARSING EXECUTABLE
DIGITAL GENE FROM A SINGLE IMAGE

Anonymous authors
Paper under double-blind review

ABSTRACT

Building structured world representations for robotic agents that can generalize
and interact with the physical world is a core challenge in AI. The recently pro-
posed Digital Gene offers a promising direction by representing objects as ex-
plicit, programmatic blueprints, addressing the generalization and interpretability
bottlenecks of end-to-end learning paradigms. However, the practical application
of this technology is hindered by a critical bottleneck: creating these genes for
real-world objects. Prior methods rely on 3D data, which is difficult to acquire
at scale, while parsing directly from ubiquitous 2D images remains an unsolved
challenge.
In this work, we introduce GeneVLM, a vision-language framework that ad-
dresses this bottleneck by automatically parsing executable Digital Gene from
a single 2D image. First, we propose a specialized and scalable model designed
for the image-to-gene parsing task. Second, to enable its training, we design an
efficient and scalable procedural pipeline to synthesize a diverse, multi-million-
pair dataset of images and their corresponding Digital Genes. Third, to facili-
tate rigorous evaluation, we establish and release the first comprehensive, multi-
dimensional benchmark for this task. Our experiments show that GeneVLM suc-
cessfully recovers complex object structures and exhibits consistent performance
scaling with increased model size, validating the effectiveness of our integrated
approach.

1 INTRODUCTION

 Rendering Engine

 GeneVLM

Body

Handle

Lid

ConceptTemplate: Cylindrical_Body
Parameters:
 "outer_size": [0.341, 0.399, 0.980],
 "inner_size": [0.282, 0.341, 0.932]

ConceptTemplate: Curved_Handle
Parameters:
 "radius": [0.319, 0.080],
 "central_angle": [227.325]

ConceptTemplate: Cylindrical_Lid
Parameters:
 "size": [0.338, 0.338, 0.043]

Digital Gene
(a set of ConceptInstances)

Real World to Digital World

Digital World to Real World

Figure 1: Illustration of the Digital Gene. The mug in the
figure comprises three ConceptInstances, with their correspond-
ing ConceptTemplates being Cylindrical_Body, Curved_Handle,
and Cylindrical_Lid. GeneVLM parses the Digital Gene of the
mug, which is then executed by the Rendering Engine to produce
a 3D Mesh.

Recent advances in robotic learn-
ing, such as Vision-Language-Action
Models (Black et al., 2024; Li et al.,
2024; Kim et al., 2024a), reinforce-
ment learning (Hafner et al., 2024;
Hansen et al., 2022; Zhu et al., 2023),
and diffusion policies (Ze et al.,
2024; Chi et al., 2024), have shown
great potential in training agents for
complex robotics tasks. However,
the dominant paradigm of end-to-
end learning from raw sensory inputs,
such as images, confronts fundamen-
tal bottlenecks. These models often
require vast amounts of interaction
data, struggle to generalize to novel
objects or environments, and operate as "black boxes," making their behavior difficult to predict,
interpret, or verify.

Recently, the concept of a Digital Gene (Sun & Lu, 2025) has been introduced. In contrast to tra-
ditional methods that rely on implicit representations, it uses an explicit, structured representation
that introduces strong inductive biases aligned with the physical nature of manipulation tasks. A
Digital Gene is an executable blueprint that encodes an object’s hierarchical components, geometry,
and functional attributes (e.g., joints, affordances). This hierarchical structure provides a powerful

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

abstraction for a robot to reason about how to grasp any mug, regardless of its specific dimensions,
making it easier for the robot to generalize to unseen objects and rendering its behavior more inter-
pretable and predictable.

However, the application of Digital Genes in real-world scenarios is limited by a key bottleneck:
the annotation of objects in the physical world. While prior work has explored automatic generation
from 3D point clouds (Sun et al., 2024c), this reliance on specialized sensors limits its use in uncon-
trolled, real-world environments where 2D images are the most ubiquitous and accessible sensing
modality. Therefore, we argue that automatically parsing an object’s Digital Gene directly from a
single image is a crucial step towards the practical application of this technology and an important
problem that needs to be addressed.

In this work, we address this critical challenge by proposing GeneVLM, a vision-language frame-
work for the automated parsing of Digital Genes from single, 2D images. Our work makes the
following contributions:

• A Specialized Model for image-to-gene (GeneVLM): We propose a scalable image-to-
gene model. Our experiments show GeneVLM successfully recovers complex object struc-
tures and exhibits consistent performance scaling with increased compute.

• An Efficient Data Generation Pipeline and a Large-Scale Public Dataset: We design an
efficient and scalable pipeline to synthesize a diverse, multi-million-pair dataset of images
and corresponding Digital Genes. We use this dataset to successfully train GeneVLM
and will release it publicly to facilitate future research in structured 3D understanding and
robotic manipulation.

• A Comprehensive Multi-Dimensional Benchmark: We establish and release the first
rigorous benchmark for the image-to-gene parsing task. It evaluates performance across
three critical axes: (1) Gene-level matrics; (2) Geometric similarity; and (3) Perceptual
similarity.

The remainder of this paper is organized as follows. We first introduce related works in Sec. 2 and
the preliminary concepts of Digital Genes in Sec. 3. We then detail our proposed data generation
pipeline in Sec. 4. Next, we introduce the GeneVLM model in Sec. 5. Subsequently, we present our
comprehensive evaluation metrics and dataset in Sec. 6. Then, we present experiment setting, quan-
titative and qualitative results, and ablation study in Sec. 7. Finally, we conclude with a discussion
of our findings and future work.

2 RELATED WORK

Understanding and representing the physical world for perception, reasoning, and control has been
approached from two broad directions: explicit, interpretable descriptions grounded in geometry and
mechanics, and implicit, learned representations whose structure is distributed in neural parameters.
We review both families and position Digital Gene within this landscape in Append B.

3 PRELIMINARY

To understand the contribution of our work, it is essential to clearly define its target output. We build
upon the notion of Digital Genes, a formal, programmatic framework for representing physical
world concepts introduced by Sun & Lu (Sun & Lu, 2025). The original work defines Digital Genes
at two levels of abstraction: high-level, executable Python classes called Concept Templates that
define an analytic concept of an object (e.g., a general ‘Cylindrical_Body‘ of a mug), and specific
Concept Instances that represent a single analytic concept with fixed parameters.

As shown in Figure 1, when we refer to the Digital Gene of an object, we are specifically referring to
the set of Concept Instances it comprises, represented as a parameterized JSON file. This JSON file
is the direct output of our GeneVLM model and serves as a structured, machine-readable blueprint
for a single object observed in an image. Crucially, this symbolic representation is not merely
descriptive; it is actionable. As illustrated in the original Digital Gene pipeline (Sun & Lu, 2025),
this JSON instance can be processed by a procedural generation engine to render a corresponding
3D mesh that contains manipulation knowledge. This explicit link from a structured text file to

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a physical 3D model and its manipulation knowledge is what makes the Digital Gene a powerful
representation for robotics.

4 DATASET

Training a model for the novel task of image-to-gene parsing requires a massive training dataset of
paired images and their corresponding Digital Genes. Manually creating the required large-scale
dataset of paired images and Digital Genes is unscalable. We therefore developed a procedural
pipeline to automatically generate diverse, high-fidelity data by systematically varying object struc-
ture, pose, and visual realism, as illustrated in Figure 2. The entire process yields two final datasets: a
large-scale WhiteImage-Gene Dataset for learning Digital Gene priors, and a smaller, higher-fidelity
ColorImage-Gene Dataset designed to bridge the simulation-to-reality gap.

Digital Gene Database. The pipeline begins with a seed collection of Digital Genes, covering
distinct object categories such as chairs and mugs. We programmatically synthesizes new gene
variations (Sun et al., 2024a) by: (1) substituting high-level ConceptInstance components within a
gene’s template (e.g., swapping one leg style for another); (2) adjusting discrete parameters (e.g.,
modifying the number of buttons on a controller); and (3) sampling new values for continuous pa-
rameters (e.g., altering object dimensions). This automated expansion rapidly populates our Digital
Gene collection with structures of rich combinatorial diversity. We then introduce two key diversifi-
cation stages to mitigate the inherent bias of synthetic data and improve the diversity of our dataset.
First, to enhance object diversity, we stochastically remove non-essential ConceptInstance from the
genes. The rationale is that real-world objects often deviate from their idealized forms; for example,
a mug may be missing its lid. Second, to ensure diversity in the 6D pose, we apply pose augmenta-
tion. Specifically, for each gene, we generate five distinct 6D poses by sampling a ‘position(x, y, z)‘
within [-1.0, 1.0] on each axis and a ‘rotation (x, y, z) ‘ within [-180, 180].

Stochastic
Removal

Rule-Based
Augmentation

Gene Seed

Pose
Augmentation

Gene
Rendering

Diffusion
Rendering

WhiteImage-Gene Dataset

(a) (b)

(c) (d)

Remove Curve_Handle

"conceptualization": [
 {"template": "Cuboidal_Body"},
 {"template": "Curve_Handle"},
 {"template": "Sunken_Door"},
 {"template": "Controller_With_Button"}
]

pair

"conceptualization": [
 {"template": "Cuboidal_Body"},
 {"template": "Controller_With_Button"},
 {"template": "Sunken_Door"}
]

pair

"conceptualization": [
 {"template": "Cuboidal_Body"},
 {"template": "Controller_With_Button"},
 {"template": "Sunken_Door"}
]

pair

"pose": {
 "global_positon": [...],
 "global_rotation": [...]
}
"conceptualization": [...]

pair

Sample 6D-Pose

"pose": {
 "global_positon": [...],
 "global_rotation": [...]
}
"conceptualization": [...]

Render (Diffusion Model)

WhiteImage ColorImage

pair1 pair2

ColorImage-Gene Dataset

{"template": "Sunken_Door"} {"template": "Cuboidal_Door"}

{"num_buttons": 2} {"num_buttons": 1}

{"curve_exist_angle": 75.0} {"curve_exist_angle": 85.0}

(1) Substitute concept template

(2) Adjust discrete parameters

(3) Sample continuous parameters

Figure 2: An overview of our data generation pipeline. (a) showcases rule-based gene synthesis. (b) demon-
strates the stochastic removal of a non-essential concept, Curve_Handle. (c) illustrates pose augmentation
applied to the gene. (d) shows the use of a diffusion model to add color and texture to a WhiteImage, resulting
in a ColorImage. For clarity in the diagram, we have also visualized the genes at stages before Gene Rendering
to more intuitively demonstrate the effect of our operations.

Image-Gene Dataset. After obtaining a diverse and augmented dataset of Digital Genes, we
proceed to the rendering phase to generate Image-Gene pairs. We first generate the large-scale
WhiteImage-Gene Dataset. This is done by passing each gene through the rendering engine to
produce a 3D mesh. The mesh is then rendered from a fixed camera perspective into a 2D im-
age that contains only the 3D mesh, without any texture, lighting, or material. Since the object in
this 2D image appears grayish white, we refer to it as a WhiteImage. This step is computationally
efficient, allowing us to generate a vast corpus covering a wide range of structures and poses. It

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

serves as the primary data source for teaching the model the fundamental mapping from visual ge-
ometry to gene. To bridge the gap between WhiteImages and real photos, we leverage a pretrained
diffusion model (Team, 2025b) to transform them into more realistic images, thereby creating the
ColorImage-Gene Dataset. While preserving the underlying mesh structure, this process adds fac-
tors such as color, lighting, and texture. This stage is more computationally intensive, resulting
in a smaller but higher-quality dataset that is essential for fine-tuning the model to generalize to
real-world visual inputs.

5 GENEVLM MODEL

5.1 MODEL ARCHITECTURE

Our model, which we term GeneVLM, is built upon the Qwen2.5-VL (Team, 2025a) architecture
and fine-tuned for the specialized task of Digital Gene parsing. A significant challenge during fine-
tuning arises from the specific structure of ConceptInstance, which consist of key-value pairs where
values are often high-precision floating-point numbers. Standard tokenizers lead to excessively long
token sequences, a verbosity that not only severely degrades training and inference efficiency, but
also obscures the overall gene structure, making it difficult for the model to predict the correct gene.
To overcome this critical bottleneck, we introduce a specialized tokenization scheme for numerical
values, inspired by Open-VLA (Kim et al., 2024b).

... "bottom_size": [0.596, 1.603, 0.0769] ...

 Qwen2.5-VL

Vision Encoder Float Processor and Tokenizer

0

1

...

99999

100000

...

100644

...

100728

...

100910

...

101023

101024

...

...
Image Tokens ...“bottle_size”: [

...
...F645 F911 F729

...
F645

F729

F911

... "bottom_size": [0.596, 1.603, 0.0769] ...

quantiles (bottle_size)

dim1 0.0 0.363 0.371 ... 3.059

dim2 0.0 0.235 0.239 .. 2.134

dim3 0.0 0.060 0.061 ... 0.119

1024 quantiles

... "bottom_size": [F645, F911, F729] ...

Next Token
Prediction

...... Vocab

(a) (b)

Figure 3: Overview of our model architecture. (a) illustrates the preprocessing of floating-point numbers
to obtain Findex. (b) shows the overall model architecture and illustrates how Findex is mapped into the
vocabulary space.

As illustrated in Figure 3, our method converts each floating-point number in a gene into a single spe-
cial token, thereby preserving its semantic integrity and drastically shortening the sequence length.
Specifically, for each key in the ConceptInstance, we first analyze its value distribution within the
dataset and pre-compute 1024 quantiles. During data preprocessing, any given value is mapped to
the index of its nearest pre-computed quantile. Formally, given a raw value v and an ordered set of
1024 quantiles {q0, q1, . . . , q1023}, its index Findex is calculated as:

Findex = argmin
i∈{0,...,1023}

|v − qi| (1)

Finally, we allocate a rarely used space in the vocabulary (starting at BoF) to map these indices:

Findex → BoF + Findex (2)

This quantization strategy offers several profound advantages. Firstly, it drastically reduces the
sequence length for each data sample, leading to a significant reduction in computational cost and
a corresponding increase in training throughput. Secondly, this atomic representation allows the
model to treat numerical parameters as single semantic units, enabling it to focus on the high-level
syntax and structure of the Digital Gene. Furthermore, this discrete representation greatly simplifies
the implementation of the constrained decoding logic used during inference. Crucially, this process
also implicitly embeds a strong prior of the dataset’s numerical distribution into the system, guiding
the model towards generating plausible parameter values.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

We employ a two-stage training strategy to effectively leverage our generated datasets. The first
stage focuses on learning the foundational mapping from geometry to gene, where the model is
trained on the WhiteImage-Gene dataset. The second stage is dedicated to bridging the sim-to-real
gap, where the model is fine-tuned on the ColorImage-Gene dataset. We mix in a general-purpose
SFT dataset during both stages to ensure that the model retains its powerful capabilities for general
visual understanding. Throughout both stages, the vision encoder is kept frozen to preserve its image
encoding capabilities.

5.2 CONSTRAINED DECODING

Standard auto-regressive decoding often fails to generate syntactically valid Digital Genes, as their
strict structure is easily violated. Such errors render the output gene unexecutable and unusable. To
overcome this challenge, we introduce a constrained decoding method to guarantee the executability
of the genes predicted by our model.

At each sampling step, based on the sequence generated so far and the strict constraints of the
digital genes themselves, we identify a set of permissible tokens for the current step and mask out
all others. This forces the model to sample only from a grammatically valid set, effectively guiding
the generation process. Our constrained decoding method is implemented as a Finite State Machine
(FSM) where each state corresponds to a specific point in the Digital Gene’s abstract syntax tree. As
a result, the reliability and utility of our model are significantly improved. A detailed implementation
and its pseudocode are provided in Appendix A.2.

6 EVALUATION

We design a multi-dimensional benchmark and set of metrics to comprehensively evaluate the
GeneVLM performance.

6.1 GENE-LEVEL EVALUATION

To quantitatively evaluate the generated Digital Genes, we established two primary metrics: Concept
Accuracy and Float Error. These are assessed on a test set of 15k WhiteImage-Gene pairs.

Concept Accuracy. This metric evaluates the rate of structural correctness for the genes generated
by the model over the entire test set. A generated gene, Gpred, is defined as structurally correct with
respect to its ground truth, Ggt, if and only if it satisfies all the conditions outlined in the following
expression:

IsCorrect(Gpred, Ggt) ⇐⇒
{

IsExecutable(Gpred) ∧
T (Gpred) = T (Ggt)

(3)

where T (G) represents the set of the gene’s ConceptTemplates.

Float Error This metric is calculated only for genes that are deemed structurally correct and eval-
uates the precision of its numerical parameters. To account for the varying scales and meanings of
different parameters, we calculate the Mean Absolute Error on their corresponding quantile indices
(as detailed in Section 5.1). This approach normalizes the errors onto a unified scale of 0-1024,
allowing for a consistent and meaningful comparison.

6.2 GEOMETRIC AND PERCEPTUAL EVALUATION

For images that do not have a reference Digital Gene, we design a comprehensive, two-part bench-
mark that jointly measures (i) geometric similarity under standardized 3D metrics (e.g., Chamfer
distance and F-scores), and (ii) perceptual similarity via a VLM-as-a-judge protocol. We adopt
this dual-aspect evaluation because each metric possesses complementary strengths. While geo-
metric metrics provide precise quantitative scores, they can be sensitive to misalignment and fail to
capture semantic plausibility in real scenes. Conversely, perceptual judgments are more robust in the
wild but lack absolute geometric guarantees. By triangulating these two axes, our benchmark pro-
vides a principled evaluation, ensuring that the generated Digital Genes are not only geometrically
faithful but also produce visually coherent results that align with human perception.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

6.2.1 GEOMETRIC EVALUATION

Dataset and setup As mentioned in Sec. 3, the Digital genes generated by GENEVLM could be
converted to mesh. Thus, GENEVLM could be considered as single-image 3D reconstruction model
as well. Thus, we follow established single-image evaluation protocols from recent works (Liu
et al., 2025; Huang et al., 2023; Liu et al., 2023b) to establish this benchmark. We construct our
test set from the OmniObject3D dataset (Wu et al., 2023), selecting categories that overlap with our
taxonomy. For each object, we uniformly sample 8 distinct views from the corresponding video,
creating a set of 6,000 image-mesh pairs. The detailed breakdown of the number of samples in each
class is provided in Appendix A.7.

Metrics We report two standard metrics for 3D shape comparison: Chamfer Distance (CD) and
F-Score. CD measures the average squared distance between two point clouds, providing a measure
of overall shape alignment. Given a predicted point cloud P and a ground-truth point cloud Q, the
symmetric CD is:

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q
∥p− q∥22 +

1

|Q|
∑
q∈Q

min
p∈P
∥q − p∥22. (4)

The F-Score provides a complementary view by measuring the harmonic mean of precision and re-
call at a given distance threshold d, indicating the percentage of the surface reconstructed within that
tolerance. We report F@{0.01, 0.02, 0.05}, following common practice. To ensure fair evaluation
of metrics under unknown global transforms, we adopt the commonly used alignment between pre-
dicted mesh and ground truth mesh (Huang et al., 2023). The details are provided in Appendix A.8

6.2.2 PERCEPTUAL EVALUATION

We also build a benchmark of 2,640 real-world images to test our GeneVLM in real-world scenarios
(see Appendix for examples). This dataset has no 3D ground truth available; we assess semantic and
geometric agreement by using a VLM to compare the input photo with renderings of the predicted
mesh. We use Gemini2.5-flash (Comanici et al., 2025) for this purpose.

The complete evaluation pipeline is summarized as follows. Given the predicted mesh, we render
multi-view RGB images using Blender. We sample views by rendering the object from eight fixed,
equidistant azimuthal viewpoints, with the orientation set to look at the object center. From these
eight sampled views, we randomly select four to form a (photo, renderings) pair for a single evalua-
tion procedure. Each (photo, renderings) pair is scored by a fixed VLM prompt that asks for a scalar
geometric-similarity judgment (the prompt is provided in Appendix A.3). We repeat this process for
three independent runs and report the mean VLM score across the three runs. We provide examples
of real images in this benchmark, corresponding predicted 3D mesh, and VLM similarity score in
Appendix A.11.

The validity of VLM-based similarity score As this VLM-based similarity is newly introduced,
its validity require evaluation. We validate this pipeline using a human-labeled partial-order set
comprising 3,000 instances. The result shows this evaluation protocal achieving 92% agreement
on a partial-order ranking task. This high consistency confirms the score’s reliability and strong
alignment with human perception. The detailed validation procedure is described in Appendix A.9.

7 EXPERIMENTS

7.1 SETUP

Our model is built upon the Qwen-2.5-VL. The model was trained in two stages. The first stage
trained on 6M WhiteImage-Gene pairs. The second stage used a dataset of 800k ColorImage-Gene
pairs. In both stages, we mixed in approximately 300k samples from three general SFT datasets
(InternVL-SFT (Chen et al., 2023), ShareGPT-4o (Cui et al., 2024), and LLaVA (Liu et al., 2023a))
to ensure the model’s ability to recognize and analyze real images.

Baseline We tested Qwen-2.5VL-32B as our baseline. Since Qwen has not been trained on our
task, we wrote a detailed prompt explaining the gene’s meaning, format, and examples to guide
its generation. Additionally, a portion of the genes generated by Qwen were not executable, so
we calculated the evaluation results on the correct samples to serve as the baseline. We report the
prompt used for baseline in the Appendix A.4.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

7.2 MAIN RESULTS

This section will present our main experimental results. We first showcase qualitative results to
provide an intuitive demonstration of the model’s capabilities, followed by a quantitative evaluation.

7.2.1 QUALITATIVE RESULTS

Figure 4: General results. The first row shows the input images containing the object to be parsed. The
second row displays the visualizations rendered from the model’s parsed Digital Genes. Different colors on the
components represent different ConceptImstances defined in the gene.

General Parsing Ability. Figure 4 displays visualization results for 8 objects. From these visual-
izations, we can observe two key points. First, the model adeptly parses the fundamental structure
and constituent components of the objects. This success is attributable to the robust visual recogni-
tion ability from its pre-training and the parsing capability endowed by our extensive Digital Gene
dataset. Second, the model demonstrates the ability to parse a variety of everyday objects across
multiple categories, successfully resolving the structure and functional components for all eight
classes shown in the figure.

(a) (b) (c) (d)

Figure 5: Generalization results. From the original image (a),
we derive variations by adjusting the viewpoint and lighting
(b), the object’s articulated pose (c), and the specific instance
within the same category (d).

Generalization Parsing Ability. We
conducted an experiment using eye-
glasses to test the model’s generalization
ability. We captured multiple photos un-
der varying camera viewpoints and light-
ing conditions while adjusting the open/-
closed state of the eyeglass-leg. The re-
sults, shown in Figure 5, indicate that
the model correctly identifies the object’s
constituent structure under these different
conditions, demonstrating its robustness
and that it is not limited to a specific per-
spective. Furthermore, the model is able
to correctly extract and parse different ob-
ject poses arising from its own joint artic-
ulation. This is proven by the fact that the
open/closed state of the eyeglass-leg in the visualized results is consistent with the original images.

7.2.2 QUANTITY RESULTS

Our main quantitative results are summarized in Table 1. A key finding is that our specially fine-
tuned GeneVLM models substantially outperform the powerful Qwen-32B baseline. And our ap-
proach exhibits excellent scalability. Scaling the model from 7B to 32B parameters yields consistent
performance improvements across all metrics. This positive scaling trend indicates that GeneVLM
is a robust and promising framework, offering a scalable solution to the challenging ’image-to-gene’
task.

To provide a reference for future research, the scaling properties of the proposed model were further
investigated. Specifically, the relationship between training computation, measured in GFLOPS,
and various evaluation metrics was tracked using the Gene-VLM-7B training configuration. As

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Model Concept Acc. Float Err. ↓ VLM-Score CD ↓ F@0.01 F@0.02 F@0.05

Qwen-32B 0.112 232.205 0.402 0.131 0.051 0.271 0.3459

Gene-7B 0.625 122.46 0.721 0.111 0.1523 0.2344 0.5013
Gene-32B 0.660 115.367 0.815 0.055 0.1385 0.3147 0.6086

Table 1: Main results. Arrows indicate preferred direction for metrics (↓ lower is better).

depicted in Figure 6a, both Concept Accuracy and Float Error demonstrate improvement with in-
creased computational resources, which provides evidence of predictable code-generation scaling.
Furthermore, Figure 6b illustrates a generally monotonic increase in the VLM-Score across the ob-
served computational budgets, with no apparent plateau within the tested range. Collectively, these
results indicate that greater computational investment yields enhanced performance in structure ex-
traction,and stronger geometric similarity.

0.50 0.60 0.70 0.80 0.90 1.00
GFLOPS (x1012)

0.31

0.32

0.33

0.34

0.35

0.36

0.37

0.38

1
- C

on
ce

pt
Ac

c

116

118

120

122

124

126

128

130

Fl
oa

t E
rro

r

1 - ConceptAcc and Float Error vs. GFLOPS
1 - ConceptAcc
Float Error

(a)
0.40 0.50 0.60 0.70 0.80 0.90 1.00

GFLOPS (x1012)

0.62

0.63

0.64

0.65

0.66

0.67

0.68

0.69

0.70

vl
m

-s
co

re

VLM Score vs. GFLOPS

(b)
Figure 6: Scaling Properties. (a). Concept Accuracy and Float Error. Both 1 - ConceptAcc and Float Error
decrease as the GFLOPS increases, demonstrating a clear scaling trend. (b) VLM-Score. The VLM-Score
increases with GFLOPS, showing consistent gains. We report the detailed data in the Appendix A.6.1

7.3 ABLATION STUDIES

7.3.1 EFFECT OF SPECIALIZED NUMERICAL TOKENIZATION

We conducted an ablation study to evaluate our specialized tokenization scheme for floating-point
numbers. We trained two models on a dataset of 400k white-background images across eight object
categories: Model-B (base), which uses a standard tokenizer, and Model-S (special), which employs
our proposed Float Tokenization method.

Figure 7: Sequence lengths with and without special-
ized tokenization. We report the detailed data in the
Appendix A.6.2

First, we analyzed the impact of our method on
the sequence length of the training data. Fig-
ure 7 shows the sequence lengths for the eight
categories before and after applying our tok-
enization scheme. It is evident that our method
reduces the sequence length by nearly half in
every category, which implies a significant re-
duction in model training costs and a substan-
tial increase in inference speed.

We trained both models for one epoch and eval-
uated them on a test set of 4k white-background
images. Since our constrained decoding is in-
compatible with Model-B, we used standard auto-regressive decoding for both models.

Model Training PFLOPS Inference Hours Concept Accuracy ↑ Float Error ↓
Model-B 52719 5.5 0.568 132.912
Model-S 26355 1.5 0.668 134.176

Table 2: Ablation study on specialized tokenization scheme.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

The data in Table 2 shows that, compared to Model-S, Model-B requires significantly more training
compute for the same amount of raw data and performs markedly worse in both inference speed
and result quality. This fully demonstrates the effectiveness of our method. At the same time, we
note that the accuracy of parameter prediction is comparable between the two models, with Model-
S showing no clear advantage. Therefore, this operation does not directly improve the model’s
precision in predicting parameters, an aspect we will explore in future work.

7.3.2 EFFECT OF GENERAL-PURPOSE SFT DATA

We conducted an ablation study on the general-purpose SFT dataset using a smaller training set. This
set contained 750k white-background images and 750k color images from 15 object categories. We
trained three models: (1) Model-W, using only WhiteImage-Gene data pairs; (2) Model-WC, using
both WhiteImage-Gene and ColorImage-Gene data pairs; and (3) Model-WG, using WhiteImage-
Gene data pairs mixed with the general SFT dataset. We evaluated them on a dataset of 1,000
real-world images, with results shown in Table 3.

Model CD ↓ F@0.01 ↑ F@0.02 ↑ F@0.05 ↑
Model-W 0.35885 0.079454 0.190559 0.41414
Model-WC 0.11184 0.152324 0.234478 0.50139
Model-WG 0.06109 0.100066 0.24722 0.51837

Table 3: Ablation study on the effect of a general-purpose SFT dataset.

The results clearly demonstrate that incorporating a general-purpose SFT dataset is effective for im-
proving performance on real-world images. We conclude that this is due to the significant domain
gap between our synthetic white-background images and real images. Training on large-scale syn-
thetic data alone can degrade the model’s ability to understand real images, and mixing in the SFT
dataset effectively mitigates this problem. We also note that Model-WC underperforms Model-WG
in this experiment. We speculate this may be due to quality issues within the unfiltered 750k color
images, which could have negatively impacted the model’s performance.

8 LIMITATIONS AND FUTURE WORK

Despite the promising results, our work has several limitations.

First, during the rendering of ColorImage from WhiteImage using the pretrained diffusion model,
unavoidable alterations to the mesh structure can occur. This may introduce noise into the
ColorImage-Gene dataset, potentially affecting the model’s learning.

Second, the model’s current prediction accuracy may not yet meet the high-precision requirements
for real-world robotic manipulation.

Finally, our evaluation metrics could be refined. The gene-level metrics may not capture fine-grained
errors in the generated genes. Concurrently, the VLM-as-a-Judge evaluation can be susceptible to
the inherent biases of the VLM itself.

9 CONCLUSION

This paper addresses the critical manual annotation bottleneck in the creation of Digital Genes by
proposing an automated solution named GeneVLM. Through an innovative reverse-synthesis data
pipeline, a robust vision-to-program translation model, and a constrained decoding technique that
guarantees syntactic validity, the GeneVLM framework successfully achieves end-to-end conversion
from visual diagrams to executable Digital Gene code. We designed and implemented a comprehen-
sive evaluation suite, including a novel VLM-as-a-Judge metric, and our experimental results fully
demonstrate the effectiveness and superiority of our method. This work not only paves the way for
the large-scale application of Digital Genes but also provides a crucial technical foundation and a
new research paradigm for advancing AI systems toward a deeper and more reliable understanding
of and reasoning about the physical world.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 REPRODUCIBILITY STATEMENT

Reproducibility Statement. We aim to make our results fully reproducible by referencing where all
necessary details appear in the paper and supplement. Data generation: Sec. 4 and Fig. 2 document
the complete pipeline (rule-based gene synthesis, stochastic component removal, pose augmentation,
and White/Color image rendering), and category counts for the geometric benchmark are listed in
App. A.7. Model & training: Sec. 5.1 specifies the GeneVLM architecture and float-tokenization
scheme (with equations), while Sec. 5.2 and App. A.2 provide the constrained-decoding FSM and
pseudocode; the exact training output format/prompt is in App. A.5, and the two-stage training setup
and dataset sizes are summarized in Sec. 7.1. Evaluation: Sec. 6.1 defines Concept Accuracy and
Float Error; Sec. 6.2.1 details the geometric metrics (Chamfer Distance and F-score, with Eq. (4))
and the mesh-alignment protocol is in App. A.8; Sec. 6.2.2 outlines the VLM-as-judge procedure
with the precise prompt (App. A.3) and its human-agreement validation (App. A.9). We further
report per-budget scaling data and sequence-length statistics in App. A.6, and include the baseline
prompting used for comparisons in App. A.4. In the anonymous supplementary materials, we will
provide a downloadable code archive containing model implementation, constrained decoding ,and
evaluation benchmark sufficient to reproduce all tables and figures.

REFERENCES

Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π0: A vision-
language-action flow model for general robot control, 2024. URL https://arxiv.org/
abs/2410.24164.

Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qing-
long Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. In-
ternvl: Scaling up vision foundation models and aligning for generic visual-linguistic tasks. arXiv
preprint arXiv:2312.14238, 2023.

Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
https://arxiv.org/abs/2303.04137.

Gheorghe Comanici, Eric Bieber, Mike Schaekermann, Ice Pasupat, Noveen Sachdeva, Inderjit
Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
bilities. arXiv preprint arXiv:2507.06261, 2025.

Erfei Cui, Yinan He, Zheng Ma, Zhe Chen, Hao Tian, Weiyun Wang, Kunchang Li, Yi Wang,
Wenhai Wang, Xizhou Zhu, Lewei Lu, Tong Lu, Yali Wang, Limin Wang, Yu Qiao, and Jifeng
Dai. Sharegpt-4o: Comprehensive multimodal annotations with gpt-4o, 2024. URL https:
//sharegpt4o.github.io/.

Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
through world models, 2024. URL https://arxiv.org/abs/2301.04104.

Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
control, 2022. URL https://arxiv.org/abs/2203.04955.

Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, and James M. Rehg. Zeroshape:
Regression-based zero-shot shape reconstruction. 2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 10061–10071, 2023. URL https://api.
semanticscholar.org/CorpusID:266521309.

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model, 2024a. URL https://arxiv.org/
abs/2406.09246.

10

https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2410.24164
https://arxiv.org/abs/2303.04137
https://sharegpt4o.github.io/
https://sharegpt4o.github.io/
https://arxiv.org/abs/2301.04104
https://arxiv.org/abs/2203.04955
https://api.semanticscholar.org/CorpusID:266521309
https://api.semanticscholar.org/CorpusID:266521309
https://arxiv.org/abs/2406.09246
https://arxiv.org/abs/2406.09246

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
Openvla: An open-source vision-language-action model. arXiv preprint arXiv:2406.09246,
2024b.

Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
Ya Jing, Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong. Vision-language foundation
models as effective robot imitators, 2024. URL https://arxiv.org/abs/2311.01378.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
2023a.

Katherine Liu, Sergey Zakharov, Dian Chen, Takuya Ikeda, Gregory Shakhnarovich, Adrien Gaidon,
and Rares Ambrus. Omnishape: Zero-shot multi-hypothesis shape and pose estimation in the real
world. 2025 IEEE International Conference on Robotics and Automation (ICRA), pp. 16020–
16027, 2025. URL https://api.semanticscholar.org/CorpusID:280526919.

Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
Zero-1-to-3: Zero-shot one image to 3d object, 2023b. URL https://arxiv.org/abs/
2303.11328.

Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
https://arxiv.org/abs/2003.08934.

Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
Deepsdf: Learning continuous signed distance functions for shape representation, 2019. URL
https://arxiv.org/abs/1901.05103.

Jianhua Sun and Cewu Lu. Digital gene: Learning about the physical world through analytic con-
cepts, 2025. URL https://arxiv.org/abs/2504.04170.

Jianhua Sun, Yuxuan Li, Jiude Wei, Longfei Xu, Nange Wang, Yining Zhang, and Cewu Lu. Arti-
pg: A toolbox for procedurally synthesizing large-scale and diverse articulated objects with rich
annotations, 2024a. URL https://arxiv.org/abs/2412.14974.

Jianhua Sun, Yuxuan Li, Longfei Xu, Nange Wang, Jiude Wei, Yining Zhang, and Cewu Lu. Con-
ceptfactory: Facilitate 3d object knowledge annotation with object conceptualization, 2024b.
URL https://arxiv.org/abs/2411.00448.

Jianhua Sun, Yuxuan Li, Longfei Xu, Jiude Wei, Liang Chai, and Cewu Lu. Discovering conceptual
knowledge with analytic ontology templates for articulated objects, 2024c. URL https://
arxiv.org/abs/2409.11702.

Qwen Team. Qwen2.5-vl, January 2025a. URL https://qwenlm.github.io/blog/
qwen2.5-vl/.

Tencent Hunyuan3D Team. Hunyuan3d 2.1: From images to high-fidelity 3d assets with production-
ready pbr material, 2025b.

Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang,
Jiaqi Wang, Chen Qian, Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary 3d ob-
ject dataset for realistic perception, reconstruction and generation. 2023 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pp. 803–814, 2023. URL https:
//api.semanticscholar.org/CorpusID:255998491.

Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
policy: Generalizable visuomotor policy learning via simple 3d representations, 2024. URL
https://arxiv.org/abs/2403.03954.

11

https://arxiv.org/abs/2311.01378
https://api.semanticscholar.org/CorpusID:280526919
https://arxiv.org/abs/2303.11328
https://arxiv.org/abs/2303.11328
https://arxiv.org/abs/2003.08934
https://arxiv.org/abs/1901.05103
https://arxiv.org/abs/2504.04170
https://arxiv.org/abs/2412.14974
https://arxiv.org/abs/2411.00448
https://arxiv.org/abs/2409.11702
https://arxiv.org/abs/2409.11702
https://qwenlm.github.io/blog/qwen2.5-vl/
https://qwenlm.github.io/blog/qwen2.5-vl/
https://api.semanticscholar.org/CorpusID:255998491
https://api.semanticscholar.org/CorpusID:255998491
https://arxiv.org/abs/2403.03954

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xinghao Zhu, JingHan Ke, Zhixuan Xu, Zhixin Sun, Bizhe Bai, Jun Lv, Qingtao Liu, Yuwei Zeng,
Qi Ye, Cewu Lu, Masayoshi Tomizuka, and Lin Shao. Diff-lfd: Contact-aware model-based
learning from visual demonstration for robotic manipulation via differentiable physics-based sim-
ulation and rendering. In Jie Tan, Marc Toussaint, and Kourosh Darvish (eds.), Proceedings
of The 7th Conference on Robot Learning, volume 229 of Proceedings of Machine Learning
Research, pp. 499–512. PMLR, 06–09 Nov 2023. URL https://proceedings.mlr.
press/v229/zhu23a.html.

A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we disclose that we used an LLM (ChatGPT,
OpenAI) only after completing the full manuscript draft, and solely for surface-level proofreading:
correcting grammar, punctuation, and minor phrasing for clarity and consistency. The LLM did not
contribute to research ideation, problem formulation, method or experiment design, data collection
or labeling, analysis. Every suggested edit was manually reviewed and selectively adopted by the
authors.

We understand and accept full responsibility for all content written under our names, including any
text that may have been revised with LLM assistance. We took care to avoid plagiarism and factual
errors and did not provide the LLM with proprietary or personally identifiable data beyond de-
identified manuscript excerpts necessary for proofreading. The LLM is not an author or contributor
under ICLR authorship criteria.

A.2 DETAILED IMPLEMENTATION OF CONSTRAINED DECODING

To enforce the grammatical integrity of the output at inference time, we employ a deterministic
Finite State Machine (FSM) to guide the decoding process. This FSM acts as a grammar-aware
guardrail, ensuring that every generated token conforms to the strict syntax of a valid Digital Gene.

Our FSM is composed of a set of discrete states (e.g., GEN_CATEGORY_VALUE,
ADD_POSITION_KEY, GEN_PARAM_VALUE), where each state corresponds to a specific node
or element in the hierarchical JSON structure of the Digital Gene. The generation process starts
in an initial state and transitions between states based on a predefined transition table, effectively
traversing the abstract syntax tree of the gene. This mechanism is implemented via a custom ‘Log-
itsProcessor‘ within the generation pipeline, as detailed in Algorithm 1.

Algorithm 1 FSM-Guided Constrained Decoding

1: Input: Model logits S ∈ RV , generated token sequence Igen, FSM state Fstate

2: Output: Masked logits S′

3: function PROCESSLOGITS(S, Igen, Fstate)
4: Fstate ← UPDATEFSMSTATE(Igen)
5: Vallowed ← GETALLOWEDTOKENS(Fstate)
6: M ← ones(V)× (−∞) ▷ Create a mask with −∞ for all tokens
7: for v ∈ Vallowed do
8: M [v]← 0 ▷ Unmask allowed tokens by setting their mask value to 0
9: end for

10: S′ ← S +M ▷ Apply mask to original logits
11: return S′

12: end function

At each generation step, the processor intercepts the model’s output logits. Based on the FSM’s
current state, it identifies a small subset of permissible next tokens. The logits for all other tokens in
the vocabulary are masked (set to −∞), forcing the model to sample only from the valid set. These
constraints operate in two modes: for deterministic syntactic elements (e.g., keys like ‘"pose":"‘ or
structural characters like ‘[‘), the FSM forces the exact token sequence; for generative content (e.g.,
a template name or a parameter value), the FSM restricts the output to the class of valid tokens

12

https://proceedings.mlr.press/v229/zhu23a.html
https://proceedings.mlr.press/v229/zhu23a.html

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

(e.g., any of the known template names or the special quantized numerical tokens introduced in our
tokenization scheme).

This FSM-guided approach guarantees the syntactic correctness of the output by construction, com-
pletely eliminating the possibility of structural errors and significantly improving the executability
rate of the generated code. It transforms the generation task from a purely probabilistic sequence
prediction into a structured traversal problem, leveraging the VLM’s powerful visual understanding
to make informed choices within a grammatically sound framework.

A.3 PROMPT USED FOR VLM-SCORE QUERY

Here is the prompt that we used in the VLM-score query described in Sec 6.2.2.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

You are a 3D geometry comparison expert. I will give you a colored image and four
rendered images. Four rendered images are from different viewpoints of a same object.
Compare the geometric shape of the object in the colored image with the objects in the
four rendered images provided. *Do not consider texture or color differences.* Focus
exclusively on the 3D shape, proportions, and the presence, absence, and relative
positioning of components.
First, describe your reasoning step-by-step. Analyze the similarities and differences you
observe between the colored image and the rendered images. Consider:
* Overall shape and silhouette.
* Presence and relative position of major components.
* Proportions and sizes of components.
* Any noticeable distortions, exaggerations, or omissions.
* Specific features and details.

After your detailed reasoning, provide a single numerical score between 0.0 and 1.0,
representing the geometric similarity. Use the following scale as a guide:
* **1.0:** Perfect geometric match. All aspects of the 3D shape are identical.

* **0.9 - 0.99:** Near-perfect match. Minor differences, possibly in fine details or slight
proportional variations that are barely perceptible.
* **0.8 - 0.89:** Very good match. The overall structure is the same, but there might be
small, noticeable differences in the size, shape, or angle of some sub-components. The core
geometry is preserved.
* **0.7 - 0.79:** Good match. The general shape is recognizable, but there are clear
differences in several sub-components. Some features might be slightly exaggerated,
compressed, or otherwise distorted.
* **0.6 - 0.69:** Moderate match. The object is still identifiable, but significant differences
are present. The arrangement of some sub-components might be altered, or their shapes
might be substantially different.
* **0.5 - 0.59:** Fair match. The basic silhouette might be similar, but major structural
differences are evident. This might involve missing or added components, or significant
changes in component placement.
* **0.4 - 0.49:** Poor match. Only a vague resemblance remains. Key structural elements
are different or missing. The object’s overall form is substantially altered.
* **0.3 - 0.39:** Very poor match. Minimal resemblance. Major components are missing,
added, or drastically changed.
* **0.2 - 0.29:** Extremely poor match. Almost no geometric similarity.
* **0.0 - 0.19:** No discernible geometric similarity. * if there are any dis-connected
sub-components or un-reasonable sub-components(assume all objects are daily objects) in
the rendered images, the score should be lower than 0.3.

Your final answer *MUST* end with a line in the following format:

‘FINAL SCORE: X.X‘

Where ‘X.X‘ is the numerical score (e.g., ‘FINAL SCORE: 0.8‘). The reasoning should
come *before* this line.

A.4 PROMPT USED FOR BASELINE

Here is the prompt that we used in the Qwen generation procedur described in Sec 7.1.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

You are an image-to-JSON scene encoder.
The user supplies one image.
You MUST output only a JSON object that lists every recognizable object in the image,
following the schema below.

Scene JSON schema
{
"category": "<One of the top-level keys in param_dims.py>",
"pose": {
"global_position": [value_x, value_y, value_z], // object’s
offset
"global_rotation": [value_x, value_y, value_z] // rotation
order is x -> y -> z, range: [-180, 180]
},
"conceptualization": [
{
"template": "<One legal concept name under that category
(param_dims.keys())>",
"parameters": {
"<param_1>": [value_1, value_2, ...], // length must
match the vector length
"<param_2>": [...],
...
}
},
{
next template ...
}
]
}

here is param_dims.py:
“‘python
param_dims = {param_str}
“‘

• template and parameter names/vector lengths are authoritative in
param_dims.py.

– A value of ‘[2]‘ means exactly two numbers, ‘[3]‘ means three numbers,
‘[2,3]‘ means two or three numbers are acceptable.

• Omit any parameter that is not listed for the chosen concept.
• Use lower-case decimal numbers (floats). Units are metres for lengths/positions

and degrees for rotations unless the parameter’s meaning implies otherwise.
• Put objects in the ‘"objects"‘ array in any order; each physical part (e.g. a mug

body and its handle) is a separate object entry.
• Output only valid JSON – no comments, no trailing commas, no additional keys,

no explanatory prose.

Tips & constraints
1. Vector length correctness is critical. If a parameter’s required length ̸= the length

you output, the scene will be rejected.
2. Spell everything exactly as in ‘param_dims.py‘ (case-sensitive).
3. If an object is partially occluded, estimate its parameters from visible evidence.

Example:
<code>
{example_str}
</code> 15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

A.5 PROMPT USED FOR TRAINING

Here is the prompt that we used in training described in Sec 5.1.

You are given a task that involves both language reasoning and image understanding. Based
on the provided textual and visual inputs, estimate the underlying structure and parameters
of the described object. Your goal is to generate a structured representation of the object as
JSON code.

Use both linguistic reasoning and visual cues to infer the object’s geometry, configuration,
and relevant parameters.

All numerical values in the code should be linearly mapped and discretized into integers
within the range 2048 to 3072.

The final output must be a JSON code block enclosed within <code> and </code> tags.
Only include the code inside these tags — no explanations, descriptions, or formatting
outside of them.

Ensure your output is accurate, complete, and strictly adheres to this format.

A.6 DETAILED EXPERIMENTAL RESULTS

A.6.1 DETAILED DATA FOR SCALING ANALYSIS

The following Table 4 provides the detailed data for the scaling law analysis presented in the main
text. It records the changes in Gene-level evaluation metrics as the training computation (GFLOPS)
increases.

The following Table 5 provides the detailed data for the VLM-Score, tracking its change as the
training computation (GFLOPS) increases.

A.6.2 DETAILED DATA FOR SEQUENCE LENGTH REDUCTION

The following Table 6 provides a detailed breakdown of the sequence length before and after apply-
ing our specialized tokenization scheme for floating-point numbers. The data supports the analysis
of training efficiency gains discussed in the main text.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

GFLOPS (×1012) Concept Acc Float Error
0.45 0.632 124.962
0.47 0.625 127.259
0.49 0.645 130.322
0.51 0.645 130.203
0.54 0.647 128.666
0.56 0.657 124.347
0.58 0.652 123.945
0.60 0.653 120.737
0.63 0.667 122.165
0.65 0.662 123.267
0.67 0.659 119.279
0.69 0.662 120.122
0.71 0.670 117.868
0.74 0.677 117.570
0.76 0.679 119.470
0.78 0.680 120.317
0.80 0.680 116.236
0.83 0.680 118.790
0.85 0.676 120.165
0.87 0.680 117.446
0.89 0.677 117.590
0.92 0.678 117.667
0.94 0.682 117.524
0.96 0.679 117.543
0.98 0.678 118.185
1.01 0.678 117.722

Table 4: Gene-level metrics as a function of training computation (GFLOPS).

GFLOPS (×1012) VLM-Score
0.45 0.6276
0.56 0.6500
0.67 0.6330
0.78 0.6780
0.89 0.6770
1.01 0.6960

Table 5: VLM-Score as a function of training computation (GFLOPS).

Min Tokens Max Tokens Average Tokens

Category wo w wo w wo w

Bottle 621 345 644 356 633.923 354.202
Box 568 316 1035 601 791.240 457.674
Bucket 324 210 614 376 419.169 263.602
Dispenser 410 314 726 437 566.430 371.812
Kettle 1353 855 2422 1411 1842.810 1088.989
KitchenPot 362 229 1074 663 714.620 456.029
StorageFurniture 5091 3022 10021 5303 7169.164 4024.182
Table 520 375 6962 4262 2432.800 1645.236

Table 6: Sequence length comparison with and without ("w/o" vs "w") specialized tokenization.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

A.7 CLASS DISTRIBUTION OF GEOMETRIC SIMILARITY BENCHMARK

Category Bottle Box Bucket Chair Eyeglasses Kettle Knife
Number 500 820 560 580 100 240 560

Category Laptop Microwave Mug Shampoo Storage
Furniture Table Trashcan

Number 80 160 740 660 140 460 400

A.8 ALIGNMENT PROCEDURE OF TWO MESH

To ensure fair evaluation of metrics under unknown global similarity transforms, we adopt the align-
ment protocol proposed in (Liu et al., 2025). Specifically, we first sample 10,000 points from the
surfaces of the predicted and ground-truth meshes. Both point clouds are normalized to fit within a
unit sphere. We then perform a coarse grid search over rigid rotations, followed by a fine-grained
Iterative Closest Point (ICP) alignment.

A.9 THE DETAILS OF VALIDITY OF VLM-BASED SIMILARITY SCORE

As this VLM-based similarity is newly introduced, its validity and robustness require evaluation.
We validate this pipeline using a human-labeled partial-order set comprising 3,000 instances; each
instance contains one real photo and four candidate 3D meshs {M1,M2,M3,M4} with human
similarity labels (e.g., s1 = s2 > s3 > s4). For each instance, our VLM pipeline produces a
ranking of the four image–mesh pairs of each mesh based on VLM-based similarity introduced in
Sec. 6.2.2 (e.g., s1 = 0.5, s2 = 0.8, s3 = 0.2, s4 = 0.5).We measure preference consistency as a
hit if and only if the VLM ranking is identical to the human partial order; otherwise it is a miss.
The protocol based on VLM-based similarity introduced in Sec. 6.2.2 achieves 92% agreement with
human labels on this partial-order set, indicating high reliability for this similarity judgments.

A.10 EXAMPLES OF FAILURE CASES

Figure 8: Examples of failure cases on real images.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

A.11 EXAMPLES OF PERCEPTUAL EVALUATION BENCHMARK

VLM Similarity score:0.88

VLM Similarity score:0.83

VLM Similarity score:0.62

VLM Similarity score:0.89

Figure 9: Examples of real images in our benchmark and its predicted mesh and VLM similarity score.

B RELATED WORK

B.1 EXPLICIT OBJECT/SCENE REPRESENTATIONS.

Physics simulators such as MuJoCo use XML-based schemas (MJCF/URDF) to explicitly declare
bodies, joints, inertias, contacts, and actuators; models are compiled from human-interpretable hi-
erarchies into executable dynamics (Todorov et al., 2012). Programmatic CAD/DSLs (e.g., CSG,
hierarchical part grammars) similarly encode geometry via primitives and parameters. These ap-
proaches offer editability and controllability but primarily target simulation/geometry specification

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

rather than analytic, concept-level structure. Digital Genes (Sun & Lu, 2025; Sun et al., 2024c;b) in-
stead formalize analytic concepts—executable programs describing parts, parameters, and physical
attributes intended to bridge perception, reasoning, and action .

B.2 IMPLICIT NEURAL 3D REPRESENTATIONS.

Neural fields represent scenes or shapes as continuous functions learned from data, trading inter-
pretability for fidelity. NeRF models radiance and density for photorealistic view synthesis (Milden-
hall et al., 2020), while DeepSDF and Occupancy Networks learn signed-distance and occupancy
functions for geometry modeling (Park et al., 2019). These methods excel at reconstruction and ren-
dering but lack named parts, compositional parameters, or direct programmatic affordances, making
them complementary to explicit Digital Gene code.

Position of Digital Genes and GeneVLM. Compared to simulator XMLs (MJCF/URDF), Digi-
tal Genes are not merely scene descriptions but analytic programs emphasizing compositional parts,
parameters, and functional attributes intended for both perception and control. Compared to implicit
neural fields, they trade raw photorealism for interpretability and reusability. GeneVLM contributes
an automatic image-to-gene pipeline that recovers such explicit programs from single images, ad-
vancing Digital Genes as a practical substrate for grounded reasoning and robotic manipulation (Sun
& Lu, 2025; Sun et al., 2024c).

20

	Introduction
	Related Work
	Preliminary
	Dataset
	GeneVLM Model
	Model Architecture
	Constrained Decoding

	Evaluation
	Gene-Level Evaluation
	Geometric and Perceptual Evaluation
	Geometric Evaluation
	Perceptual Evaluation

	Experiments
	Setup
	Main Results
	Qualitative Results
	Quantity Results

	Ablation Studies
	Effect of Specialized Numerical Tokenization
	Effect of General-Purpose SFT Data

	Limitations and Future Work
	Conclusion
	Reproducibility statement
	Appendix
	Use of Large Language Models (LLMs)
	Detailed Implementation of Constrained Decoding
	Prompt used for VLM-score query
	Prompt used for Baseline
	Prompt used for Training
	Detailed Experimental Results
	Detailed Data for Scaling Analysis
	Detailed Data for Sequence Length Reduction

	Class Distribution of Geometric Similarity Benchmark
	Alignment procedure of two mesh
	The details of validity of VLM-based similarity score
	Examples of Failure Cases
	Examples of Perceptual Evaluation Benchmark

	Related Work
	Explicit object/scene representations.
	Implicit neural 3D representations.

