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ABSTRACT

Building structured world representations for robotic agents that can generalize
and interact with the physical world is a core challenge in AI. The recently pro-
posed Digital Gene offers a promising direction by representing objects as ex-
plicit, programmatic blueprints, addressing the generalization and interpretability
bottlenecks of end-to-end learning paradigms. However, the practical application
of this technology is hindered by a critical bottleneck: creating these genes for
real-world objects. Prior methods rely on 3D data, which is difficult to acquire
at scale, while parsing directly from ubiquitous 2D images remains an unsolved
challenge.
In this work, we introduce GeneVLM, a vision-language framework that ad-
dresses this bottleneck by automatically parsing executable Digital Gene from
a single 2D image. First, we propose a specialized and scalable model designed
for the image-to-gene parsing task. Second, to enable its training, we design an
efficient and scalable procedural pipeline to synthesize a diverse, multi-million-
pair dataset of images and their corresponding Digital Genes. Third, to facili-
tate rigorous evaluation, we establish and release the first comprehensive, multi-
dimensional benchmark for this task. Our experiments show that GeneVLM suc-
cessfully recovers complex object structures and exhibits consistent performance
scaling with increased model size, validating the effectiveness of our integrated
approach.

1 INTRODUCTION

       Rendering Engine

      GeneVLM

Body

Handle

Lid

ConceptTemplate: Cylindrical_Body
Parameters:
 "outer_size": [0.341, 0.399, 0.980],
 "inner_size": [0.282, 0.341, 0.932]

ConceptTemplate: Curved_Handle
Parameters:
 "radius": [0.319, 0.080],
 "central_angle": [227.325]

ConceptTemplate: Cylindrical_Lid
Parameters:
 "size": [0.338, 0.338, 0.043]

Digital Gene 
(a set of ConceptInstances)

Real World to Digital World

Digital World to Real World

Figure 1: Illustration of the Digital Gene. The mug in the
figure comprises three ConceptInstances, with their correspond-
ing ConceptTemplates being Cylindrical_Body, Curved_Handle,
and Cylindrical_Lid. GeneVLM parses the Digital Gene of the
mug, which is then executed by the Rendering Engine to produce
a 3D Mesh.

Recent advances in robotic learn-
ing, such as Vision-Language-Action
Models (Black et al., 2024; Li et al.,
2024; Kim et al., 2024a), reinforce-
ment learning (Hafner et al., 2024;
Hansen et al., 2022; Zhu et al., 2023),
and diffusion policies (Ze et al.,
2024; Chi et al., 2024), have shown
great potential in training agents for
complex robotics tasks. However,
the dominant paradigm of end-to-
end learning from raw sensory inputs,
such as images, confronts fundamen-
tal bottlenecks. These models often
require vast amounts of interaction
data, struggle to generalize to novel
objects or environments, and operate as "black boxes," making their behavior difficult to predict,
interpret, or verify.

Recently, the concept of a Digital Gene (Sun & Lu, 2025) has been introduced. In contrast to tra-
ditional methods that rely on implicit representations, it uses an explicit, structured representation
that introduces strong inductive biases aligned with the physical nature of manipulation tasks. A
Digital Gene is an executable blueprint that encodes an object’s hierarchical components, geometry,
and functional attributes (e.g., joints, affordances). This hierarchical structure provides a powerful
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abstraction for a robot to reason about how to grasp any mug, regardless of its specific dimensions,
making it easier for the robot to generalize to unseen objects and rendering its behavior more inter-
pretable and predictable.

However, the application of Digital Genes in real-world scenarios is limited by a key bottleneck:
the annotation of objects in the physical world. While prior work has explored automatic generation
from 3D point clouds (Sun et al., 2024c), this reliance on specialized sensors limits its use in uncon-
trolled, real-world environments where 2D images are the most ubiquitous and accessible sensing
modality. Therefore, we argue that automatically parsing an object’s Digital Gene directly from a
single image is a crucial step towards the practical application of this technology and an important
problem that needs to be addressed.

In this work, we address this critical challenge by proposing GeneVLM, a vision-language frame-
work for the automated parsing of Digital Genes from single, 2D images. Our work makes the
following contributions:

• A Specialized Model for image-to-gene (GeneVLM): We propose a scalable image-to-
gene model. Our experiments show GeneVLM successfully recovers complex object struc-
tures and exhibits consistent performance scaling with increased compute.

• An Efficient Data Generation Pipeline and a Large-Scale Public Dataset: We design an
efficient and scalable pipeline to synthesize a diverse, multi-million-pair dataset of images
and corresponding Digital Genes. We use this dataset to successfully train GeneVLM
and will release it publicly to facilitate future research in structured 3D understanding and
robotic manipulation.

• A Comprehensive Multi-Dimensional Benchmark: We establish and release the first
rigorous benchmark for the image-to-gene parsing task. It evaluates performance across
three critical axes: (1) Gene-level matrics; (2) Geometric similarity; and (3) Perceptual
similarity.

The remainder of this paper is organized as follows. We first introduce related works in Sec. 2 and
the preliminary concepts of Digital Genes in Sec. 3. We then detail our proposed data generation
pipeline in Sec. 4. Next, we introduce the GeneVLM model in Sec. 5. Subsequently, we present our
comprehensive evaluation metrics and dataset in Sec. 6. Then, we present experiment setting, quan-
titative and qualitative results, and ablation study in Sec. 7. Finally, we conclude with a discussion
of our findings and future work.

2 RELATED WORK

Understanding and representing the physical world for perception, reasoning, and control has been
approached from two broad directions: explicit, interpretable descriptions grounded in geometry and
mechanics, and implicit, learned representations whose structure is distributed in neural parameters.
We review both families and position Digital Gene within this landscape in Append B.

3 PRELIMINARY

To understand the contribution of our work, it is essential to clearly define its target output. We build
upon the notion of Digital Genes, a formal, programmatic framework for representing physical
world concepts introduced by Sun & Lu (Sun & Lu, 2025). The original work defines Digital Genes
at two levels of abstraction: high-level, executable Python classes called Concept Templates that
define an analytic concept of an object (e.g., a general ‘Cylindrical_Body‘ of a mug), and specific
Concept Instances that represent a single analytic concept with fixed parameters.

As shown in Figure 1, when we refer to the Digital Gene of an object, we are specifically referring to
the set of Concept Instances it comprises, represented as a parameterized JSON file. This JSON file
is the direct output of our GeneVLM model and serves as a structured, machine-readable blueprint
for a single object observed in an image. Crucially, this symbolic representation is not merely
descriptive; it is actionable. As illustrated in the original Digital Gene pipeline (Sun & Lu, 2025),
this JSON instance can be processed by a procedural generation engine to render a corresponding
3D mesh that contains manipulation knowledge. This explicit link from a structured text file to
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a physical 3D model and its manipulation knowledge is what makes the Digital Gene a powerful
representation for robotics.

4 DATASET

Training a model for the novel task of image-to-gene parsing requires a massive training dataset of
paired images and their corresponding Digital Genes. Manually creating the required large-scale
dataset of paired images and Digital Genes is unscalable. We therefore developed a procedural
pipeline to automatically generate diverse, high-fidelity data by systematically varying object struc-
ture, pose, and visual realism, as illustrated in Figure 2. The entire process yields two final datasets: a
large-scale WhiteImage-Gene Dataset for learning Digital Gene priors, and a smaller, higher-fidelity
ColorImage-Gene Dataset designed to bridge the simulation-to-reality gap.

Digital Gene Database. The pipeline begins with a seed collection of Digital Genes, covering
distinct object categories such as chairs and mugs. We programmatically synthesizes new gene
variations (Sun et al., 2024a) by: (1) substituting high-level ConceptInstance components within a
gene’s template (e.g., swapping one leg style for another); (2) adjusting discrete parameters (e.g.,
modifying the number of buttons on a controller); and (3) sampling new values for continuous pa-
rameters (e.g., altering object dimensions). This automated expansion rapidly populates our Digital
Gene collection with structures of rich combinatorial diversity. We then introduce two key diversifi-
cation stages to mitigate the inherent bias of synthetic data and improve the diversity of our dataset.
First, to enhance object diversity, we stochastically remove non-essential ConceptInstance from the
genes. The rationale is that real-world objects often deviate from their idealized forms; for example,
a mug may be missing its lid. Second, to ensure diversity in the 6D pose, we apply pose augmenta-
tion. Specifically, for each gene, we generate five distinct 6D poses by sampling a ‘position(x, y, z)‘
within [-1.0, 1.0] on each axis and a ‘rotation (x, y, z) ‘ within [-180, 180].

Stochastic 
Removal

Rule-Based 
Augmentation

Gene Seed

Pose 
Augmentation

Gene
Rendering

Diffusion
Rendering

WhiteImage-Gene Dataset

(a) (b)

(c) (d)

Remove Curve_Handle

"conceptualization": [
  {"template": "Cuboidal_Body"},
  {"template": "Curve_Handle"},
  {"template": "Sunken_Door"},
  {"template": "Controller_With_Button"}
]

pair

"conceptualization": [
  {"template": "Cuboidal_Body"},
  {"template": "Controller_With_Button"},
  {"template": "Sunken_Door"}
]

pair

"conceptualization": [
  {"template": "Cuboidal_Body"},
  {"template": "Controller_With_Button"},
  {"template": "Sunken_Door"}
]

pair

"pose": {
  "global_positon":  [...],
  "global_rotation": [...]
}
"conceptualization": [...]

pair

Sample 6D-Pose 

"pose": {
  "global_positon":  [...],
  "global_rotation": [...]
}
"conceptualization": [...]

Render (Diffusion Model)

WhiteImage ColorImage

pair1 pair2

ColorImage-Gene Dataset

{"template": "Sunken_Door"} {"template": "Cuboidal_Door"}

{"num_buttons": 2} {"num_buttons": 1}

{"curve_exist_angle": 75.0} {"curve_exist_angle": 85.0}

(1) Substitute concept template

(2) Adjust discrete parameters

(3) Sample continuous parameters

Figure 2: An overview of our data generation pipeline. (a) showcases rule-based gene synthesis. (b) demon-
strates the stochastic removal of a non-essential concept, Curve_Handle. (c) illustrates pose augmentation
applied to the gene. (d) shows the use of a diffusion model to add color and texture to a WhiteImage, resulting
in a ColorImage. For clarity in the diagram, we have also visualized the genes at stages before Gene Rendering
to more intuitively demonstrate the effect of our operations.

Image-Gene Dataset. After obtaining a diverse and augmented dataset of Digital Genes, we
proceed to the rendering phase to generate Image-Gene pairs. We first generate the large-scale
WhiteImage-Gene Dataset. This is done by passing each gene through the rendering engine to
produce a 3D mesh. The mesh is then rendered from a fixed camera perspective into a 2D im-
age that contains only the 3D mesh, without any texture, lighting, or material. Since the object in
this 2D image appears grayish white, we refer to it as a WhiteImage. This step is computationally
efficient, allowing us to generate a vast corpus covering a wide range of structures and poses. It
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serves as the primary data source for teaching the model the fundamental mapping from visual ge-
ometry to gene. To bridge the gap between WhiteImages and real photos, we leverage a pretrained
diffusion model (Team, 2025b) to transform them into more realistic images, thereby creating the
ColorImage-Gene Dataset. While preserving the underlying mesh structure, this process adds fac-
tors such as color, lighting, and texture. This stage is more computationally intensive, resulting
in a smaller but higher-quality dataset that is essential for fine-tuning the model to generalize to
real-world visual inputs.

5 GENEVLM MODEL

5.1 MODEL ARCHITECTURE

Our model, which we term GeneVLM, is built upon the Qwen2.5-VL (Team, 2025a) architecture
and fine-tuned for the specialized task of Digital Gene parsing. A significant challenge during fine-
tuning arises from the specific structure of ConceptInstance, which consist of key-value pairs where
values are often high-precision floating-point numbers. Standard tokenizers lead to excessively long
token sequences, a verbosity that not only severely degrades training and inference efficiency, but
also obscures the overall gene structure, making it difficult for the model to predict the correct gene.
To overcome this critical bottleneck, we introduce a specialized tokenization scheme for numerical
values, inspired by Open-VLA (Kim et al., 2024b).

...  "bottom_size": [ 0.596, 1.603, 0.0769]  ...

      Qwen2.5-VL

Vision Encoder Float Processor and Tokenizer

0

1

...

99999

100000

...

100644

...

100728

...

100910

...

101023

101024

...

...
Image Tokens ...“bottle_size”: [

...
...F645 F911 F729

...
F645 

F729

F911

...  "bottom_size": [0.596, 1.603, 0.0769]  ...

quantiles (bottle_size)

dim1 0.0 0.363 0.371 ... 3.059

dim2 0.0 0.235 0.239 .. 2.134

dim3 0.0 0.060 0.061 ... 0.119

1024 quantiles

...  "bottom_size": [F645, F911, F729]  ...

Next Token
Prediction

...... Vocab

(a) (b)

Figure 3: Overview of our model architecture. (a) illustrates the preprocessing of floating-point numbers
to obtain Findex. (b) shows the overall model architecture and illustrates how Findex is mapped into the
vocabulary space.

As illustrated in Figure 3, our method converts each floating-point number in a gene into a single spe-
cial token, thereby preserving its semantic integrity and drastically shortening the sequence length.
Specifically, for each key in the ConceptInstance, we first analyze its value distribution within the
dataset and pre-compute 1024 quantiles. During data preprocessing, any given value is mapped to
the index of its nearest pre-computed quantile. Formally, given a raw value v and an ordered set of
1024 quantiles {q0, q1, . . . , q1023}, its index Findex is calculated as:

Findex = argmin
i∈{0,...,1023}

|v − qi| (1)

Finally, we allocate a rarely used space in the vocabulary (starting at BoF) to map these indices:

Findex → BoF + Findex (2)

This quantization strategy offers several profound advantages. Firstly, it drastically reduces the
sequence length for each data sample, leading to a significant reduction in computational cost and
a corresponding increase in training throughput. Secondly, this atomic representation allows the
model to treat numerical parameters as single semantic units, enabling it to focus on the high-level
syntax and structure of the Digital Gene. Furthermore, this discrete representation greatly simplifies
the implementation of the constrained decoding logic used during inference. Crucially, this process
also implicitly embeds a strong prior of the dataset’s numerical distribution into the system, guiding
the model towards generating plausible parameter values.
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We employ a two-stage training strategy to effectively leverage our generated datasets. The first
stage focuses on learning the foundational mapping from geometry to gene, where the model is
trained on the WhiteImage-Gene dataset. The second stage is dedicated to bridging the sim-to-real
gap, where the model is fine-tuned on the ColorImage-Gene dataset. We mix in a general-purpose
SFT dataset during both stages to ensure that the model retains its powerful capabilities for general
visual understanding. Throughout both stages, the vision encoder is kept frozen to preserve its image
encoding capabilities.

5.2 CONSTRAINED DECODING

Standard auto-regressive decoding often fails to generate syntactically valid Digital Genes, as their
strict structure is easily violated. Such errors render the output gene unexecutable and unusable. To
overcome this challenge, we introduce a constrained decoding method to guarantee the executability
of the genes predicted by our model.

At each sampling step, based on the sequence generated so far and the strict constraints of the
digital genes themselves, we identify a set of permissible tokens for the current step and mask out
all others. This forces the model to sample only from a grammatically valid set, effectively guiding
the generation process. Our constrained decoding method is implemented as a Finite State Machine
(FSM) where each state corresponds to a specific point in the Digital Gene’s abstract syntax tree. As
a result, the reliability and utility of our model are significantly improved. A detailed implementation
and its pseudocode are provided in Appendix A.2.

6 EVALUATION

We design a multi-dimensional benchmark and set of metrics to comprehensively evaluate the
GeneVLM performance.

6.1 GENE-LEVEL EVALUATION

To quantitatively evaluate the generated Digital Genes, we established two primary metrics: Concept
Accuracy and Float Error. These are assessed on a test set of 15k WhiteImage-Gene pairs.

Concept Accuracy. This metric evaluates the rate of structural correctness for the genes generated
by the model over the entire test set. A generated gene, Gpred, is defined as structurally correct with
respect to its ground truth, Ggt, if and only if it satisfies all the conditions outlined in the following
expression:

IsCorrect(Gpred, Ggt) ⇐⇒
{

IsExecutable(Gpred) ∧
T (Gpred) = T (Ggt)

(3)

where T (G) represents the set of the gene’s ConceptTemplates.

Float Error This metric is calculated only for genes that are deemed structurally correct and eval-
uates the precision of its numerical parameters. To account for the varying scales and meanings of
different parameters, we calculate the Mean Absolute Error on their corresponding quantile indices
(as detailed in Section 5.1). This approach normalizes the errors onto a unified scale of 0-1024,
allowing for a consistent and meaningful comparison.

6.2 GEOMETRIC AND PERCEPTUAL EVALUATION

For images that do not have a reference Digital Gene, we design a comprehensive, two-part bench-
mark that jointly measures (i) geometric similarity under standardized 3D metrics (e.g., Chamfer
distance and F-scores), and (ii) perceptual similarity via a VLM-as-a-judge protocol. We adopt
this dual-aspect evaluation because each metric possesses complementary strengths. While geo-
metric metrics provide precise quantitative scores, they can be sensitive to misalignment and fail to
capture semantic plausibility in real scenes. Conversely, perceptual judgments are more robust in the
wild but lack absolute geometric guarantees. By triangulating these two axes, our benchmark pro-
vides a principled evaluation, ensuring that the generated Digital Genes are not only geometrically
faithful but also produce visually coherent results that align with human perception.

5
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6.2.1 GEOMETRIC EVALUATION

Dataset and setup As mentioned in Sec. 3, the Digital genes generated by GENEVLM could be
converted to mesh. Thus, GENEVLM could be considered as single-image 3D reconstruction model
as well. Thus, we follow established single-image evaluation protocols from recent works (Liu
et al., 2025; Huang et al., 2023; Liu et al., 2023b) to establish this benchmark. We construct our
test set from the OmniObject3D dataset (Wu et al., 2023), selecting categories that overlap with our
taxonomy. For each object, we uniformly sample 8 distinct views from the corresponding video,
creating a set of 6,000 image-mesh pairs. The detailed breakdown of the number of samples in each
class is provided in Appendix A.7.

Metrics We report two standard metrics for 3D shape comparison: Chamfer Distance (CD) and
F-Score. CD measures the average squared distance between two point clouds, providing a measure
of overall shape alignment. Given a predicted point cloud P and a ground-truth point cloud Q, the
symmetric CD is:

CD(P,Q) =
1

|P |
∑
p∈P

min
q∈Q
∥p− q∥22 +

1

|Q|
∑
q∈Q

min
p∈P
∥q − p∥22. (4)

The F-Score provides a complementary view by measuring the harmonic mean of precision and re-
call at a given distance threshold d, indicating the percentage of the surface reconstructed within that
tolerance. We report F@{0.01, 0.02, 0.05}, following common practice. To ensure fair evaluation
of metrics under unknown global transforms, we adopt the commonly used alignment between pre-
dicted mesh and ground truth mesh (Huang et al., 2023). The details are provided in Appendix A.8

6.2.2 PERCEPTUAL EVALUATION

We also build a benchmark of 2,640 real-world images to test our GeneVLM in real-world scenarios
(see Appendix for examples). This dataset has no 3D ground truth available; we assess semantic and
geometric agreement by using a VLM to compare the input photo with renderings of the predicted
mesh. We use Gemini2.5-flash (Comanici et al., 2025) for this purpose.

The complete evaluation pipeline is summarized as follows. Given the predicted mesh, we render
multi-view RGB images using Blender. We sample views by rendering the object from eight fixed,
equidistant azimuthal viewpoints, with the orientation set to look at the object center. From these
eight sampled views, we randomly select four to form a (photo, renderings) pair for a single evalua-
tion procedure. Each (photo, renderings) pair is scored by a fixed VLM prompt that asks for a scalar
geometric-similarity judgment (the prompt is provided in Appendix A.3). We repeat this process for
three independent runs and report the mean VLM score across the three runs. We provide examples
of real images in this benchmark, corresponding predicted 3D mesh, and VLM similarity score in
Appendix A.11.

The validity of VLM-based similarity score As this VLM-based similarity is newly introduced,
its validity require evaluation. We validate this pipeline using a human-labeled partial-order set
comprising 3,000 instances. The result shows this evaluation protocal achieving 92% agreement
on a partial-order ranking task. This high consistency confirms the score’s reliability and strong
alignment with human perception. The detailed validation procedure is described in Appendix A.9.

7 EXPERIMENTS

7.1 SETUP

Our model is built upon the Qwen-2.5-VL. The model was trained in two stages. The first stage
trained on 6M WhiteImage-Gene pairs. The second stage used a dataset of 800k ColorImage-Gene
pairs. In both stages, we mixed in approximately 300k samples from three general SFT datasets
(InternVL-SFT (Chen et al., 2023), ShareGPT-4o (Cui et al., 2024), and LLaVA (Liu et al., 2023a))
to ensure the model’s ability to recognize and analyze real images.

Baseline We tested Qwen-2.5VL-32B as our baseline. Since Qwen has not been trained on our
task, we wrote a detailed prompt explaining the gene’s meaning, format, and examples to guide
its generation. Additionally, a portion of the genes generated by Qwen were not executable, so
we calculated the evaluation results on the correct samples to serve as the baseline. We report the
prompt used for baseline in the Appendix A.4.
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7.2 MAIN RESULTS

This section will present our main experimental results. We first showcase qualitative results to
provide an intuitive demonstration of the model’s capabilities, followed by a quantitative evaluation.

7.2.1 QUALITATIVE RESULTS

Figure 4: General results. The first row shows the input images containing the object to be parsed. The
second row displays the visualizations rendered from the model’s parsed Digital Genes. Different colors on the
components represent different ConceptImstances defined in the gene.

General Parsing Ability. Figure 4 displays visualization results for 8 objects. From these visual-
izations, we can observe two key points. First, the model adeptly parses the fundamental structure
and constituent components of the objects. This success is attributable to the robust visual recogni-
tion ability from its pre-training and the parsing capability endowed by our extensive Digital Gene
dataset. Second, the model demonstrates the ability to parse a variety of everyday objects across
multiple categories, successfully resolving the structure and functional components for all eight
classes shown in the figure.

(a) (b) (c) (d)

Figure 5: Generalization results. From the original image (a),
we derive variations by adjusting the viewpoint and lighting
(b), the object’s articulated pose (c), and the specific instance
within the same category (d).

Generalization Parsing Ability. We
conducted an experiment using eye-
glasses to test the model’s generalization
ability. We captured multiple photos un-
der varying camera viewpoints and light-
ing conditions while adjusting the open/-
closed state of the eyeglass-leg. The re-
sults, shown in Figure 5, indicate that
the model correctly identifies the object’s
constituent structure under these different
conditions, demonstrating its robustness
and that it is not limited to a specific per-
spective. Furthermore, the model is able
to correctly extract and parse different ob-
ject poses arising from its own joint artic-
ulation. This is proven by the fact that the
open/closed state of the eyeglass-leg in the visualized results is consistent with the original images.

7.2.2 QUANTITY RESULTS

Our main quantitative results are summarized in Table 1. A key finding is that our specially fine-
tuned GeneVLM models substantially outperform the powerful Qwen-32B baseline. And our ap-
proach exhibits excellent scalability. Scaling the model from 7B to 32B parameters yields consistent
performance improvements across all metrics. This positive scaling trend indicates that GeneVLM
is a robust and promising framework, offering a scalable solution to the challenging ’image-to-gene’
task.

To provide a reference for future research, the scaling properties of the proposed model were further
investigated. Specifically, the relationship between training computation, measured in GFLOPS,
and various evaluation metrics was tracked using the Gene-VLM-7B training configuration. As

7
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Model Concept Acc. Float Err. ↓ VLM-Score CD ↓ F@0.01 F@0.02 F@0.05

Qwen-32B 0.112 232.205 0.402 0.131 0.051 0.271 0.3459

Gene-7B 0.625 122.46 0.721 0.111 0.1523 0.2344 0.5013
Gene-32B 0.660 115.367 0.815 0.055 0.1385 0.3147 0.6086

Table 1: Main results. Arrows indicate preferred direction for metrics (↓ lower is better).

depicted in Figure 6a, both Concept Accuracy and Float Error demonstrate improvement with in-
creased computational resources, which provides evidence of predictable code-generation scaling.
Furthermore, Figure 6b illustrates a generally monotonic increase in the VLM-Score across the ob-
served computational budgets, with no apparent plateau within the tested range. Collectively, these
results indicate that greater computational investment yields enhanced performance in structure ex-
traction,and stronger geometric similarity.
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Figure 6: Scaling Properties. (a). Concept Accuracy and Float Error. Both 1 - ConceptAcc and Float Error
decrease as the GFLOPS increases, demonstrating a clear scaling trend. (b) VLM-Score. The VLM-Score
increases with GFLOPS, showing consistent gains. We report the detailed data in the Appendix A.6.1

7.3 ABLATION STUDIES

7.3.1 EFFECT OF SPECIALIZED NUMERICAL TOKENIZATION

We conducted an ablation study to evaluate our specialized tokenization scheme for floating-point
numbers. We trained two models on a dataset of 400k white-background images across eight object
categories: Model-B (base), which uses a standard tokenizer, and Model-S (special), which employs
our proposed Float Tokenization method.

Figure 7: Sequence lengths with and without special-
ized tokenization. We report the detailed data in the
Appendix A.6.2

First, we analyzed the impact of our method on
the sequence length of the training data. Fig-
ure 7 shows the sequence lengths for the eight
categories before and after applying our tok-
enization scheme. It is evident that our method
reduces the sequence length by nearly half in
every category, which implies a significant re-
duction in model training costs and a substan-
tial increase in inference speed.

We trained both models for one epoch and eval-
uated them on a test set of 4k white-background
images. Since our constrained decoding is in-
compatible with Model-B, we used standard auto-regressive decoding for both models.

Model Training PFLOPS Inference Hours Concept Accuracy ↑ Float Error ↓
Model-B 52719 5.5 0.568 132.912
Model-S 26355 1.5 0.668 134.176

Table 2: Ablation study on specialized tokenization scheme.
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The data in Table 2 shows that, compared to Model-S, Model-B requires significantly more training
compute for the same amount of raw data and performs markedly worse in both inference speed
and result quality. This fully demonstrates the effectiveness of our method. At the same time, we
note that the accuracy of parameter prediction is comparable between the two models, with Model-
S showing no clear advantage. Therefore, this operation does not directly improve the model’s
precision in predicting parameters, an aspect we will explore in future work.

7.3.2 EFFECT OF GENERAL-PURPOSE SFT DATA

We conducted an ablation study on the general-purpose SFT dataset using a smaller training set. This
set contained 750k white-background images and 750k color images from 15 object categories. We
trained three models: (1) Model-W, using only WhiteImage-Gene data pairs; (2) Model-WC, using
both WhiteImage-Gene and ColorImage-Gene data pairs; and (3) Model-WG, using WhiteImage-
Gene data pairs mixed with the general SFT dataset. We evaluated them on a dataset of 1,000
real-world images, with results shown in Table 3.

Model CD ↓ F@0.01 ↑ F@0.02 ↑ F@0.05 ↑
Model-W 0.35885 0.079454 0.190559 0.41414
Model-WC 0.11184 0.152324 0.234478 0.50139
Model-WG 0.06109 0.100066 0.24722 0.51837

Table 3: Ablation study on the effect of a general-purpose SFT dataset.

The results clearly demonstrate that incorporating a general-purpose SFT dataset is effective for im-
proving performance on real-world images. We conclude that this is due to the significant domain
gap between our synthetic white-background images and real images. Training on large-scale syn-
thetic data alone can degrade the model’s ability to understand real images, and mixing in the SFT
dataset effectively mitigates this problem. We also note that Model-WC underperforms Model-WG
in this experiment. We speculate this may be due to quality issues within the unfiltered 750k color
images, which could have negatively impacted the model’s performance.

8 LIMITATIONS AND FUTURE WORK

Despite the promising results, our work has several limitations.

First, during the rendering of ColorImage from WhiteImage using the pretrained diffusion model,
unavoidable alterations to the mesh structure can occur. This may introduce noise into the
ColorImage-Gene dataset, potentially affecting the model’s learning.

Second, the model’s current prediction accuracy may not yet meet the high-precision requirements
for real-world robotic manipulation.

Finally, our evaluation metrics could be refined. The gene-level metrics may not capture fine-grained
errors in the generated genes. Concurrently, the VLM-as-a-Judge evaluation can be susceptible to
the inherent biases of the VLM itself.

9 CONCLUSION

This paper addresses the critical manual annotation bottleneck in the creation of Digital Genes by
proposing an automated solution named GeneVLM. Through an innovative reverse-synthesis data
pipeline, a robust vision-to-program translation model, and a constrained decoding technique that
guarantees syntactic validity, the GeneVLM framework successfully achieves end-to-end conversion
from visual diagrams to executable Digital Gene code. We designed and implemented a comprehen-
sive evaluation suite, including a novel VLM-as-a-Judge metric, and our experimental results fully
demonstrate the effectiveness and superiority of our method. This work not only paves the way for
the large-scale application of Digital Genes but also provides a crucial technical foundation and a
new research paradigm for advancing AI systems toward a deeper and more reliable understanding
of and reasoning about the physical world.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

10 REPRODUCIBILITY STATEMENT

Reproducibility Statement. We aim to make our results fully reproducible by referencing where all
necessary details appear in the paper and supplement. Data generation: Sec. 4 and Fig. 2 document
the complete pipeline (rule-based gene synthesis, stochastic component removal, pose augmentation,
and White/Color image rendering), and category counts for the geometric benchmark are listed in
App. A.7. Model & training: Sec. 5.1 specifies the GeneVLM architecture and float-tokenization
scheme (with equations), while Sec. 5.2 and App. A.2 provide the constrained-decoding FSM and
pseudocode; the exact training output format/prompt is in App. A.5, and the two-stage training setup
and dataset sizes are summarized in Sec. 7.1. Evaluation: Sec. 6.1 defines Concept Accuracy and
Float Error; Sec. 6.2.1 details the geometric metrics (Chamfer Distance and F-score, with Eq. (4))
and the mesh-alignment protocol is in App. A.8; Sec. 6.2.2 outlines the VLM-as-judge procedure
with the precise prompt (App. A.3) and its human-agreement validation (App. A.9). We further
report per-budget scaling data and sequence-length statistics in App. A.6, and include the baseline
prompting used for comparisons in App. A.4. In the anonymous supplementary materials, we will
provide a downloadable code archive containing model implementation, constrained decoding ,and
evaluation benchmark sufficient to reproduce all tables and figures.
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A APPENDIX

A.1 USE OF LARGE LANGUAGE MODELS (LLMS)

In accordance with the ICLR policy on LLM usage, we disclose that we used an LLM (ChatGPT,
OpenAI) only after completing the full manuscript draft, and solely for surface-level proofreading:
correcting grammar, punctuation, and minor phrasing for clarity and consistency. The LLM did not
contribute to research ideation, problem formulation, method or experiment design, data collection
or labeling, analysis. Every suggested edit was manually reviewed and selectively adopted by the
authors.

We understand and accept full responsibility for all content written under our names, including any
text that may have been revised with LLM assistance. We took care to avoid plagiarism and factual
errors and did not provide the LLM with proprietary or personally identifiable data beyond de-
identified manuscript excerpts necessary for proofreading. The LLM is not an author or contributor
under ICLR authorship criteria.

A.2 DETAILED IMPLEMENTATION OF CONSTRAINED DECODING

To enforce the grammatical integrity of the output at inference time, we employ a deterministic
Finite State Machine (FSM) to guide the decoding process. This FSM acts as a grammar-aware
guardrail, ensuring that every generated token conforms to the strict syntax of a valid Digital Gene.

Our FSM is composed of a set of discrete states (e.g., GEN_CATEGORY_VALUE,
ADD_POSITION_KEY, GEN_PARAM_VALUE), where each state corresponds to a specific node
or element in the hierarchical JSON structure of the Digital Gene. The generation process starts
in an initial state and transitions between states based on a predefined transition table, effectively
traversing the abstract syntax tree of the gene. This mechanism is implemented via a custom ‘Log-
itsProcessor‘ within the generation pipeline, as detailed in Algorithm 1.

Algorithm 1 FSM-Guided Constrained Decoding

1: Input: Model logits S ∈ RV , generated token sequence Igen, FSM state Fstate

2: Output: Masked logits S′

3: function PROCESSLOGITS(S, Igen, Fstate)
4: Fstate ← UPDATEFSMSTATE(Igen)
5: Vallowed ← GETALLOWEDTOKENS(Fstate)
6: M ← ones(V )× (−∞) ▷ Create a mask with −∞ for all tokens
7: for v ∈ Vallowed do
8: M [v]← 0 ▷ Unmask allowed tokens by setting their mask value to 0
9: end for

10: S′ ← S +M ▷ Apply mask to original logits
11: return S′

12: end function

At each generation step, the processor intercepts the model’s output logits. Based on the FSM’s
current state, it identifies a small subset of permissible next tokens. The logits for all other tokens in
the vocabulary are masked (set to −∞), forcing the model to sample only from the valid set. These
constraints operate in two modes: for deterministic syntactic elements (e.g., keys like ‘"pose":"‘ or
structural characters like ‘[‘), the FSM forces the exact token sequence; for generative content (e.g.,
a template name or a parameter value), the FSM restricts the output to the class of valid tokens
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(e.g., any of the known template names or the special quantized numerical tokens introduced in our
tokenization scheme).

This FSM-guided approach guarantees the syntactic correctness of the output by construction, com-
pletely eliminating the possibility of structural errors and significantly improving the executability
rate of the generated code. It transforms the generation task from a purely probabilistic sequence
prediction into a structured traversal problem, leveraging the VLM’s powerful visual understanding
to make informed choices within a grammatically sound framework.

A.3 PROMPT USED FOR VLM-SCORE QUERY

Here is the prompt that we used in the VLM-score query described in Sec 6.2.2.
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You are a 3D geometry comparison expert. I will give you a colored image and four
rendered images. Four rendered images are from different viewpoints of a same object.
Compare the geometric shape of the object in the colored image with the objects in the
four rendered images provided. *Do not consider texture or color differences.* Focus
*exclusively* on the 3D shape, proportions, and the presence, absence, and relative
positioning of components.
First, describe your reasoning step-by-step. Analyze the similarities and differences you
observe between the colored image and the rendered images. Consider:
* Overall shape and silhouette.
* Presence and relative position of major components.
* Proportions and sizes of components.
* Any noticeable distortions, exaggerations, or omissions.
* Specific features and details.

After your detailed reasoning, provide a single numerical score between 0.0 and 1.0,
representing the geometric similarity. Use the following scale as a guide:
* **1.0:** Perfect geometric match. All aspects of the 3D shape are identical.

* **0.9 - 0.99:** Near-perfect match. Minor differences, possibly in fine details or slight
proportional variations that are barely perceptible.
* **0.8 - 0.89:** Very good match. The overall structure is the same, but there might be
small, noticeable differences in the size, shape, or angle of some sub-components. The core
geometry is preserved.
* **0.7 - 0.79:** Good match. The general shape is recognizable, but there are clear
differences in several sub-components. Some features might be slightly exaggerated,
compressed, or otherwise distorted.
* **0.6 - 0.69:** Moderate match. The object is still identifiable, but significant differences
are present. The arrangement of some sub-components might be altered, or their shapes
might be substantially different.
* **0.5 - 0.59:** Fair match. The basic silhouette might be similar, but major structural
differences are evident. This might involve missing or added components, or significant
changes in component placement.
* **0.4 - 0.49:** Poor match. Only a vague resemblance remains. Key structural elements
are different or missing. The object’s overall form is substantially altered.
* **0.3 - 0.39:** Very poor match. Minimal resemblance. Major components are missing,
added, or drastically changed.
* **0.2 - 0.29:** Extremely poor match. Almost no geometric similarity.
* **0.0 - 0.19:** No discernible geometric similarity. * if there are any dis-connected
sub-components or un-reasonable sub-components(assume all objects are daily objects) in
the rendered images, the score should be lower than 0.3.

Your final answer *MUST* end with a line in the following format:

‘FINAL SCORE: X.X‘

Where ‘X.X‘ is the numerical score (e.g., ‘FINAL SCORE: 0.8‘). The reasoning should
come *before* this line.

A.4 PROMPT USED FOR BASELINE

Here is the prompt that we used in the Qwen generation procedur described in Sec 7.1.
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You are an image-to-JSON scene encoder.
The user supplies one image.
You MUST output only a JSON object that lists every recognizable object in the image,
following the schema below.

### Scene JSON schema
{
"category": "<One of the top-level keys in param_dims.py>",
"pose": {
"global_position": [value_x, value_y, value_z], // object’s
offset
"global_rotation": [value_x, value_y, value_z] // rotation
order is x -> y -> z, range: [-180, 180]
},
"conceptualization": [
{
"template": "<One legal concept name under that category
(param_dims.keys())>",
"parameters": {
"<param_1>": [ value_1, value_2, ... ], // length must
match the vector length
"<param_2>": [ ... ],
...
}
},
{
next template ...
}
]
}

here is param_dims.py:
“‘python
param_dims = {param_str}
“‘

• template and parameter names/vector lengths are authoritative in
param_dims.py.

– A value of ‘[2]‘ means exactly two numbers, ‘[3]‘ means three numbers,
‘[2,3]‘ means two or three numbers are acceptable.

• Omit any parameter that is not listed for the chosen concept.
• Use lower-case decimal numbers (floats). Units are metres for lengths/positions

and degrees for rotations unless the parameter’s meaning implies otherwise.
• Put objects in the ‘"objects"‘ array in any order; each physical part (e.g. a mug

body and its handle) is a separate object entry.
• Output only valid JSON – no comments, no trailing commas, no additional keys,

no explanatory prose.

### Tips & constraints
1. Vector length correctness is critical. If a parameter’s required length ̸= the length

you output, the scene will be rejected.
2. Spell everything exactly as in ‘param_dims.py‘ (case-sensitive).
3. If an object is partially occluded, estimate its parameters from visible evidence.

### Example:
<code>
{example_str}
</code> 15
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A.5 PROMPT USED FOR TRAINING

Here is the prompt that we used in training described in Sec 5.1.

You are given a task that involves both language reasoning and image understanding. Based
on the provided textual and visual inputs, estimate the underlying structure and parameters
of the described object. Your goal is to generate a structured representation of the object as
JSON code.

Use both linguistic reasoning and visual cues to infer the object’s geometry, configuration,
and relevant parameters.

All numerical values in the code should be linearly mapped and discretized into integers
within the range 2048 to 3072.

The final output must be a JSON code block enclosed within <code> and </code> tags.
Only include the code inside these tags — no explanations, descriptions, or formatting
outside of them.

Ensure your output is accurate, complete, and strictly adheres to this format.

A.6 DETAILED EXPERIMENTAL RESULTS

A.6.1 DETAILED DATA FOR SCALING ANALYSIS

The following Table 4 provides the detailed data for the scaling law analysis presented in the main
text. It records the changes in Gene-level evaluation metrics as the training computation (GFLOPS)
increases.

The following Table 5 provides the detailed data for the VLM-Score, tracking its change as the
training computation (GFLOPS) increases.

A.6.2 DETAILED DATA FOR SEQUENCE LENGTH REDUCTION

The following Table 6 provides a detailed breakdown of the sequence length before and after apply-
ing our specialized tokenization scheme for floating-point numbers. The data supports the analysis
of training efficiency gains discussed in the main text.
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GFLOPS (×1012) Concept Acc Float Error
0.45 0.632 124.962
0.47 0.625 127.259
0.49 0.645 130.322
0.51 0.645 130.203
0.54 0.647 128.666
0.56 0.657 124.347
0.58 0.652 123.945
0.60 0.653 120.737
0.63 0.667 122.165
0.65 0.662 123.267
0.67 0.659 119.279
0.69 0.662 120.122
0.71 0.670 117.868
0.74 0.677 117.570
0.76 0.679 119.470
0.78 0.680 120.317
0.80 0.680 116.236
0.83 0.680 118.790
0.85 0.676 120.165
0.87 0.680 117.446
0.89 0.677 117.590
0.92 0.678 117.667
0.94 0.682 117.524
0.96 0.679 117.543
0.98 0.678 118.185
1.01 0.678 117.722

Table 4: Gene-level metrics as a function of training computation (GFLOPS).

GFLOPS (×1012) VLM-Score
0.45 0.6276
0.56 0.6500
0.67 0.6330
0.78 0.6780
0.89 0.6770
1.01 0.6960

Table 5: VLM-Score as a function of training computation (GFLOPS).

Min Tokens Max Tokens Average Tokens

Category wo w wo w wo w

Bottle 621 345 644 356 633.923 354.202
Box 568 316 1035 601 791.240 457.674
Bucket 324 210 614 376 419.169 263.602
Dispenser 410 314 726 437 566.430 371.812
Kettle 1353 855 2422 1411 1842.810 1088.989
KitchenPot 362 229 1074 663 714.620 456.029
StorageFurniture 5091 3022 10021 5303 7169.164 4024.182
Table 520 375 6962 4262 2432.800 1645.236

Table 6: Sequence length comparison with and without ("w/o" vs "w") specialized tokenization.
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A.7 CLASS DISTRIBUTION OF GEOMETRIC SIMILARITY BENCHMARK

Category Bottle Box Bucket Chair Eyeglasses Kettle Knife
Number 500 820 560 580 100 240 560

Category Laptop Microwave Mug Shampoo Storage
Furniture Table Trashcan

Number 80 160 740 660 140 460 400

A.8 ALIGNMENT PROCEDURE OF TWO MESH

To ensure fair evaluation of metrics under unknown global similarity transforms, we adopt the align-
ment protocol proposed in (Liu et al., 2025). Specifically, we first sample 10,000 points from the
surfaces of the predicted and ground-truth meshes. Both point clouds are normalized to fit within a
unit sphere. We then perform a coarse grid search over rigid rotations, followed by a fine-grained
Iterative Closest Point (ICP) alignment.

A.9 THE DETAILS OF VALIDITY OF VLM-BASED SIMILARITY SCORE

As this VLM-based similarity is newly introduced, its validity and robustness require evaluation.
We validate this pipeline using a human-labeled partial-order set comprising 3,000 instances; each
instance contains one real photo and four candidate 3D meshs {M1,M2,M3,M4} with human
similarity labels (e.g., s1 = s2 > s3 > s4). For each instance, our VLM pipeline produces a
ranking of the four image–mesh pairs of each mesh based on VLM-based similarity introduced in
Sec. 6.2.2 (e.g., s1 = 0.5, s2 = 0.8, s3 = 0.2, s4 = 0.5).We measure preference consistency as a
hit if and only if the VLM ranking is identical to the human partial order; otherwise it is a miss.
The protocol based on VLM-based similarity introduced in Sec. 6.2.2 achieves 92% agreement with
human labels on this partial-order set, indicating high reliability for this similarity judgments.

A.10 EXAMPLES OF FAILURE CASES

Figure 8: Examples of failure cases on real images.
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A.11 EXAMPLES OF PERCEPTUAL EVALUATION BENCHMARK

VLM Similarity score:0.88

VLM Similarity score:0.83

VLM Similarity score:0.62

VLM Similarity score:0.89

Figure 9: Examples of real images in our benchmark and its predicted mesh and VLM similarity score.

B RELATED WORK

B.1 EXPLICIT OBJECT/SCENE REPRESENTATIONS.

Physics simulators such as MuJoCo use XML-based schemas (MJCF/URDF) to explicitly declare
bodies, joints, inertias, contacts, and actuators; models are compiled from human-interpretable hi-
erarchies into executable dynamics (Todorov et al., 2012). Programmatic CAD/DSLs (e.g., CSG,
hierarchical part grammars) similarly encode geometry via primitives and parameters. These ap-
proaches offer editability and controllability but primarily target simulation/geometry specification

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

rather than analytic, concept-level structure. Digital Genes (Sun & Lu, 2025; Sun et al., 2024c;b) in-
stead formalize analytic concepts—executable programs describing parts, parameters, and physical
attributes intended to bridge perception, reasoning, and action .

B.2 IMPLICIT NEURAL 3D REPRESENTATIONS.

Neural fields represent scenes or shapes as continuous functions learned from data, trading inter-
pretability for fidelity. NeRF models radiance and density for photorealistic view synthesis (Milden-
hall et al., 2020), while DeepSDF and Occupancy Networks learn signed-distance and occupancy
functions for geometry modeling (Park et al., 2019). These methods excel at reconstruction and ren-
dering but lack named parts, compositional parameters, or direct programmatic affordances, making
them complementary to explicit Digital Gene code.

Position of Digital Genes and GeneVLM. Compared to simulator XMLs (MJCF/URDF), Digi-
tal Genes are not merely scene descriptions but analytic programs emphasizing compositional parts,
parameters, and functional attributes intended for both perception and control. Compared to implicit
neural fields, they trade raw photorealism for interpretability and reusability. GeneVLM contributes
an automatic image-to-gene pipeline that recovers such explicit programs from single images, ad-
vancing Digital Genes as a practical substrate for grounded reasoning and robotic manipulation (Sun
& Lu, 2025; Sun et al., 2024c).
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