

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 GENEVLM: AUTOMATED PARSING EXECUTABLE DIGITAL GENE FROM A SINGLE IMAGE

Anonymous authors

Paper under double-blind review

ABSTRACT

Building structured world representations for robotic agents that can generalize and interact with the physical world is a core challenge in AI. The recently proposed *Digital Gene* offers a promising direction by representing objects as explicit, programmatic blueprints, addressing the generalization and interpretability bottlenecks of end-to-end learning paradigms. However, the practical application of this technology is hindered by a critical bottleneck: creating these genes for real-world objects. Prior methods rely on 3D data, which is difficult to acquire at scale, while parsing directly from ubiquitous 2D images remains an unsolved challenge.

In this work, we introduce **GeneVLM**, a vision-language framework that addresses this bottleneck by automatically parsing executable Digital Gene from a single 2D image. First, we propose a specialized and scalable model designed for the image-to-gene parsing task. Second, to enable its training, we design an efficient and scalable procedural pipeline to synthesize a diverse, multi-million-pair dataset of images and their corresponding Digital Genes. Third, to facilitate rigorous evaluation, we establish and release the first comprehensive, multi-dimensional benchmark for this task. Our experiments show that GeneVLM successfully recovers complex object structures and exhibits consistent performance scaling with increased model size, validating the effectiveness of our integrated approach.

1 INTRODUCTION

Recent advances in robotic learning, such as Vision-Language-Action Models (Black et al., 2024; Li et al., 2024; Kim et al., 2024a), reinforcement learning (Hafner et al., 2024; Hansen et al., 2022; Zhu et al., 2023), and diffusion policies (Ze et al., 2024; Chi et al., 2024), have shown great potential in training agents for complex robotics tasks. However, the dominant paradigm of end-to-end learning from raw sensory inputs, such as images, confronts fundamental bottlenecks. These models often require vast amounts of interaction data, struggle to generalize to novel objects or environments, and operate as "black boxes," making their behavior difficult to predict, interpret, or verify.

Recently, the concept of a **Digital Gene** (Sun & Lu, 2025) has been introduced. In contrast to traditional methods that rely on *implicit* representations, it uses an *explicit, structured* representation that introduces strong inductive biases aligned with the physical nature of manipulation tasks. A Digital Gene is an executable blueprint that encodes an object's hierarchical components, geometry, and functional attributes (e.g., joints, affordances). This hierarchical structure provides a powerful

Figure 1: Illustration of the Digital Gene. The mug in the figure comprises three *ConceptInstances*, with their corresponding *ConceptTemplates* being **Cylindrical_Body**, **Curved_Handle**, and **Cylindrical_Lid**. GeneVLM parses the Digital Gene of the mug, which is then executed by the Rendering Engine to produce a 3D Mesh.

abstraction for a robot to reason about how to grasp any mug, regardless of its specific dimensions, making it easier for the robot to generalize to unseen objects and rendering its behavior more interpretable and predictable.

However, the application of Digital Genes in real-world scenarios is limited by a key bottleneck: the annotation of objects in the physical world. While prior work has explored automatic generation from 3D point clouds (Sun et al., 2024c), this reliance on specialized sensors limits its use in uncontrolled, real-world environments where 2D images are the most ubiquitous and accessible sensing modality. Therefore, we argue that automatically parsing an object’s Digital Gene directly from a single image is a crucial step towards the practical application of this technology and an important problem that needs to be addressed.

In this work, we address this critical challenge by proposing **GeneVLM**, a vision-language framework for the automated parsing of Digital Genes from single, 2D images. Our work makes the following contributions:

- **A Specialized Model for image-to-gene (GeneVLM):** We propose a scalable image-to-gene model. Our experiments show GeneVLM successfully recovers complex object structures and exhibits consistent performance scaling with increased compute.
- **An Efficient Data Generation Pipeline and a Large-Scale Public Dataset:** We design an efficient and scalable pipeline to synthesize a diverse, multi-million-pair dataset of images and corresponding Digital Genes. We use this dataset to successfully train GeneVLM and will release it publicly to facilitate future research in structured 3D understanding and robotic manipulation.
- **A Comprehensive Multi-Dimensional Benchmark:** We establish and release the first rigorous benchmark for the image-to-gene parsing task. It evaluates performance across three critical axes: (1) Gene-level metrics; (2) Geometric similarity; and (3) Perceptual similarity.

The remainder of this paper is organized as follows. We first introduce related works in Sec. 2 and the preliminary concepts of Digital Genes in Sec. 3. We then detail our proposed data generation pipeline in Sec. 4. Next, we introduce the GeneVLM model in Sec. 5. Subsequently, we present our comprehensive evaluation metrics and dataset in Sec. 6. Then, we present experiment setting, quantitative and qualitative results, and ablation study in Sec. 7. Finally, we conclude with a discussion of our findings and future work.

2 RELATED WORK

Understanding and representing the physical world for perception, reasoning, and control has been approached from two broad directions: *explicit*, interpretable descriptions grounded in geometry and mechanics, and *implicit*, learned representations whose structure is distributed in neural parameters. We review both families and position **Digital Gene** within this landscape in Append B.

3 PRELIMINARY

To understand the contribution of our work, it is essential to clearly define its target output. We build upon the notion of **Digital Genes**, a formal, programmatic framework for representing physical world concepts introduced by Sun & Lu (Sun & Lu, 2025). The original work defines Digital Genes at two levels of abstraction: high-level, executable Python classes called *Concept Templates* that define an analytic concept of an object (e.g., a general ‘Cylindrical_Body’ of a mug), and specific *Concept Instances* that represent a single analytic concept with fixed parameters.

As shown in Figure 1, when we refer to the Digital Gene of an object, we are specifically referring to the set of *Concept Instances* it comprises, represented as a parameterized JSON file. This JSON file is the direct output of our GeneVLM model and serves as a structured, machine-readable blueprint for a single object observed in an image. Crucially, this symbolic representation is not merely descriptive; it is *actionable*. As illustrated in the original Digital Gene pipeline (Sun & Lu, 2025), this JSON instance can be processed by a procedural generation engine to render a corresponding 3D mesh that contains manipulation knowledge. This explicit link from a structured text file to

108 a physical 3D model and its manipulation knowledge is what makes the Digital Gene a powerful
 109 representation for robotics.
 110

111 4 DATASET

113 Training a model for the novel task of image-to-gene parsing requires a massive training dataset of
 114 paired images and their corresponding Digital Genes. Manually creating the required large-scale
 115 dataset of paired images and Digital Genes is unscalable. We therefore developed a procedural
 116 pipeline to automatically generate diverse, high-fidelity data by systematically varying object struc-
 117 ture, pose, and visual realism, as illustrated in Figure 2. The entire process yields two final datasets: a
 118 large-scale *WhiteImage-Gene* Dataset for learning Digital Gene priors, and a smaller, higher-fidelity
 119 *ColorImage-Gene* Dataset designed to bridge the simulation-to-reality gap.
 120

121 **Digital Gene Database.** The pipeline begins with a seed collection of Digital Genes, covering
 122 distinct object categories such as chairs and mugs. We programmatically synthesizes new gene
 123 variations (Sun et al., 2024a) by: (1) substituting high-level *ConceptInstance* components within a
 124 gene’s template (e.g., swapping one leg style for another); (2) adjusting discrete parameters (e.g.,
 125 modifying the number of buttons on a controller); and (3) sampling new values for continuous par-
 126 ameters (e.g., altering object dimensions). This automated expansion rapidly populates our Digital
 127 Gene collection with structures of rich combinatorial diversity. We then introduce two key diversifi-
 128 cation stages to mitigate the inherent bias of synthetic data and improve the diversity of our dataset.
 129 First, to enhance object diversity, we stochastically remove non-essential *ConceptInstance* from the
 130 genes. The rationale is that real-world objects often deviate from their idealized forms; for example,
 131 a mug may be missing its lid. Second, to ensure diversity in the 6D pose, we apply pose augmen-
 132 tation. Specifically, for each gene, we generate five distinct 6D poses by sampling a ‘position(x, y, z)’
 133 within [-1.0, 1.0] on each axis and a ‘rotation (x, y, z)’ within [-180, 180].
 134

151 **Figure 2:** An overview of our data generation pipeline. (a) showcases rule-based gene synthesis.
 152 (b) demonstrates the stochastic removal of a non-essential concept, *Curve_Handle*. (c) illus-
 153 trates pose augmentation applied to the gene. (d) shows the use of a diffusion model to add color and texture to a *WhiteImage*, resulting
 154 in a *ColorImage*. For clarity in the diagram, we have also visualized the genes at stages before Gene Rendering
 155 to more intuitively demonstrate the effect of our operations.
 156

157 **Image-Gene Dataset.** After obtaining a diverse and augmented dataset of Digital Genes, we
 158 proceed to the rendering phase to generate *Image-Gene* pairs. We first generate the large-scale
 159 **WhiteImage-Gene Dataset.** This is done by passing each gene through the rendering engine to
 160 produce a 3D mesh. The mesh is then rendered from a fixed camera perspective into a 2D im-
 161 age that contains only the 3D mesh, without any texture, lighting, or material. Since the object in
 162 this 2D image appears grayish white, we refer to it as a *WhiteImage*. This step is computationally
 163 efficient, allowing us to generate a vast corpus covering a wide range of structures and poses. It

162 serves as the primary data source for teaching the model the fundamental mapping from visual geometry to gene. To bridge the gap between *WhiteImages* and real photos, we leverage a pretrained diffusion model (Team, 2025b) to transform them into more realistic images, thereby creating the
 163 **ColorImage-Gene Dataset**. While preserving the underlying mesh structure, this process adds factors such as color, lighting, and texture. This stage is more computationally intensive, resulting
 164 in a smaller but higher-quality dataset that is essential for fine-tuning the model to generalize to
 165 real-world visual inputs.
 166

170 5 GENEVLM MODEL

171 5.1 MODEL ARCHITECTURE

173 Our model, which we term GeneVLM, is built upon the Qwen2.5-VL (Team, 2025a) architecture and fine-tuned for the specialized task of Digital Gene parsing. A significant challenge during fine-
 174 tuning arises from the specific structure of *ConceptInstance*, which consist of key-value pairs where values are often high-precision floating-point numbers. Standard tokenizers lead to excessively long
 175 token sequences, a verbosity that not only severely degrades training and inference efficiency, but also obscures the overall gene structure, making it difficult for the model to predict the correct gene.
 176 To overcome this critical bottleneck, we introduce a specialized tokenization scheme for numerical
 177 values, inspired by Open-VLA (Kim et al., 2024b).
 178

195 **Figure 3:** Overview of our model architecture. (a) illustrates the preprocessing of floating-point numbers
 196 to obtain F_{index} . (b) shows the overall model architecture and illustrates how F_{index} is mapped into the
 197 vocabulary space.

198 As illustrated in Figure 3, our method converts each floating-point number in a gene into a single spe-
 199 cial token, thereby preserving its semantic integrity and drastically shortening the sequence length.
 200 Specifically, for each key in the *ConceptInstance*, we first analyze its value distribution within the
 201 dataset and pre-compute 1024 quantiles. During data preprocessing, any given value is mapped to
 202 the index of its nearest pre-computed quantile. Formally, given a raw value v and an ordered set of
 203 1024 quantiles $\{q_0, q_1, \dots, q_{1023}\}$, its index F_{index} is calculated as:
 204

$$F_{index} = \operatorname{argmin}_{i \in \{0, \dots, 1023\}} |v - q_i| \quad (1)$$

205 Finally, we allocate a rarely used space in the vocabulary (starting at BoF) to map these indices:
 206

$$F_{index} \rightarrow \text{BoF} + F_{index} \quad (2)$$

207 This quantization strategy offers several profound advantages. Firstly, it drastically reduces the
 208 sequence length for each data sample, leading to a significant reduction in computational cost and
 209 a corresponding increase in training throughput. Secondly, this atomic representation allows the
 210 model to treat numerical parameters as single semantic units, enabling it to focus on the high-level
 211 syntax and structure of the Digital Gene. Furthermore, this discrete representation greatly simplifies
 212 the implementation of the constrained decoding logic used during inference. Crucially, this process
 213 also implicitly embeds a strong prior of the dataset's numerical distribution into the system, guiding
 214 the model towards generating plausible parameter values.
 215

216 We employ a two-stage training strategy to effectively leverage our generated datasets. The first
 217 stage focuses on learning the foundational mapping from geometry to gene, where the model is
 218 trained on the *WhiteImage-Gene* dataset. The second stage is dedicated to bridging the sim-to-real
 219 gap, where the model is fine-tuned on the *ColorImage-Gene* dataset. We mix in a general-purpose
 220 SFT dataset during both stages to ensure that the model retains its powerful capabilities for general
 221 visual understanding. Throughout both stages, the vision encoder is kept frozen to preserve its image
 222 encoding capabilities.

223

224 5.2 CONSTRAINED DECODING

225 Standard auto-regressive decoding often fails to generate syntactically valid Digital Genes, as their
 226 strict structure is easily violated. Such errors render the output gene unexecutable and unusable. To
 227 overcome this challenge, we introduce a constrained decoding method to guarantee the executability
 228 of the genes predicted by our model.

229

230 At each sampling step, based on the sequence generated so far and the strict constraints of the
 231 digital genes themselves, we identify a set of permissible tokens for the current step and mask out
 232 all others. This forces the model to sample only from a grammatically valid set, effectively guiding
 233 the generation process. Our constrained decoding method is implemented as a Finite State Machine
 234 (FSM) where each state corresponds to a specific point in the Digital Gene’s abstract syntax tree. As
 235 a result, the reliability and utility of our model are significantly improved. A detailed implementation
 236 and its pseudocode are provided in Appendix A.2.

237

238 6 EVALUATION

239 We design a multi-dimensional benchmark and set of metrics to comprehensively evaluate the
 240 GeneVLM performance.

241

242

243 6.1 GENE-LEVEL EVALUATION

244 To quantitatively evaluate the generated Digital Genes, we established two primary metrics: Concept
 245 Accuracy and Float Error. These are assessed on a test set of 15k *WhiteImage-Gene* pairs.

246

247 Concept Accuracy. This metric evaluates the rate of structural correctness for the genes generated
 248 by the model over the entire test set. A generated gene, G_{pred} , is defined as structurally correct with
 249 respect to its ground truth, G_{gt} , if and only if it satisfies all the conditions outlined in the following
 250 expression:

251

$$\text{IsCorrect}(G_{pred}, G_{gt}) \iff \begin{cases} \text{IsExecutable}(G_{pred}) & \wedge \\ T(G_{pred}) = T(G_{gt}) \end{cases} \quad (3)$$

252

253 where $T(G)$ represents the set of the gene’s *ConceptTemplates*.

254

255 Float Error This metric is calculated only for genes that are deemed structurally correct and eval-
 256 uates the precision of its numerical parameters. To account for the varying scales and meanings of
 257 different parameters, we calculate the Mean Absolute Error on their corresponding quantile indices
 258 (as detailed in Section 5.1). This approach normalizes the errors onto a unified scale of 0-1024,
 259 allowing for a consistent and meaningful comparison.

260

261 6.2 GEOMETRIC AND PERCEPTUAL EVALUATION

262

263 For images that do not have a reference Digital Gene, we design a comprehensive, two-part bench-
 264 mark that jointly measures (i) **geometric similarity** under standardized 3D metrics (e.g., Chamfer
 265 distance and F-scores), and (ii) **perceptual similarity** via a *VLM-as-a-judge* protocol. We adopt
 266 this dual-aspect evaluation because each metric possesses complementary strengths. While geo-
 267 metric metrics provide precise quantitative scores, they can be sensitive to misalignment and fail to
 268 capture semantic plausibility in real scenes. Conversely, perceptual judgments are more robust in the
 269 wild but lack absolute geometric guarantees. By triangulating these two axes, our benchmark pro-
 270 vides a principled evaluation, ensuring that the generated Digital Genes are not only geometrically
 271 faithful but also produce visually coherent results that align with human perception.

270 6.2.1 GEOMETRIC EVALUATION
271

272 **Dataset and setup** As mentioned in Sec. 3, the Digital genes generated by GENEVLM could be
273 converted to mesh. Thus, GENEVLM could be considered as single-image 3D reconstruction model
274 as well. Thus, we follow established single-image evaluation protocols from recent works (Liu
275 et al., 2025; Huang et al., 2023; Liu et al., 2023b) to establish this benchmark. We construct our
276 test set from the OmniObject3D dataset (Wu et al., 2023), selecting categories that overlap with our
277 taxonomy. For each object, we uniformly sample 8 distinct views from the corresponding video,
278 creating a set of 6,000 image-mesh pairs. The detailed breakdown of the number of samples in each
279 class is provided in Appendix A.7.

280 **Metrics** We report two standard metrics for 3D shape comparison: **Chamfer Distance (CD)** and
281 **F-Score**. CD measures the average squared distance between two point clouds, providing a measure
282 of overall shape alignment. Given a predicted point cloud P and a ground-truth point cloud Q , the
283 symmetric CD is:

$$284 \quad \text{CD}(P, Q) = \frac{1}{|P|} \sum_{p \in P} \min_{q \in Q} \|p - q\|_2^2 + \frac{1}{|Q|} \sum_{q \in Q} \min_{p \in P} \|q - p\|_2^2. \quad (4)$$

287 The **F-Score** provides a complementary view by measuring the harmonic mean of precision and re-
288 call at a given distance threshold d , indicating the percentage of the surface reconstructed within that
289 tolerance. We report $\text{F}@\{0.01, 0.02, 0.05\}$, following common practice. To ensure fair evaluation
290 of metrics under unknown global transforms, we adopt the commonly used alignment between pre-
291 dicted mesh and ground truth mesh (Huang et al., 2023). The details are provided in Appendix A.8

292 6.2.2 PERCEPTUAL EVALUATION
293

294 We also build a benchmark of 2,640 real-world images to test our GeneVLM in real-world scenarios
295 (see Appendix for examples). This dataset has no 3D ground truth available; we assess semantic and
296 geometric agreement by using a VLM to compare the input photo with renderings of the predicted
297 mesh. We use Gemini2.5-flash (Comanici et al., 2025) for this purpose.

298 The complete evaluation pipeline is summarized as follows. Given the predicted mesh, we render
299 multi-view RGB images using Blender. We sample views by rendering the object from eight fixed,
300 equidistant azimuthal viewpoints, with the orientation set to look at the object center. From these
301 eight sampled views, we randomly select four to form a (photo, renderings) pair for a single evalua-
302 tion procedure. Each (photo, renderings) pair is scored by a fixed VLM prompt that asks for a scalar
303 geometric-similarity judgment (the prompt is provided in Appendix A.3). We repeat this process for
304 three independent runs and report the mean VLM score across the three runs. We provide examples
305 of real images in this benchmark, corresponding predicted 3D mesh, and VLM similarity score in
306 Appendix A.11.

307 **The validity of VLM-based similarity score** As this VLM-based similarity is newly introduced,
308 its validity require evaluation. We validate this pipeline using a human-labeled partial-order set
309 comprising 3,000 instances. The result shows this evaluation protocol achieving 92% agreement
310 on a partial-order ranking task. This high consistency confirms the score’s reliability and strong
311 alignment with human perception. The detailed validation procedure is described in Appendix A.9.

312 7 EXPERIMENTS

313 7.1 SETUP

315 Our model is built upon the Qwen-2.5-VL. The model was trained in two stages. The first stage
316 trained on 6M *WhiteImage-Gene* pairs. The second stage used a dataset of 800k *ColorImage-Gene*
317 pairs. In both stages, we mixed in approximately 300k samples from three general SFT datasets
318 (InternVL-SFT (Chen et al., 2023), ShareGPT-4o (Cui et al., 2024), and LLaVA (Liu et al., 2023a))
319 to ensure the model’s ability to recognize and analyze real images.

320 **Baseline** We tested Qwen-2.5VL-32B as our baseline. Since Qwen has not been trained on our
321 task, we wrote a detailed prompt explaining the gene’s meaning, format, and examples to guide
322 its generation. Additionally, a portion of the genes generated by Qwen were not executable, so
323 we calculated the evaluation results on the correct samples to serve as the baseline. We report the
prompt used for baseline in the Appendix A.4.

324 7.2 MAIN RESULTS
325

326 This section will present our main experimental results. We first showcase qualitative results to
327 provide an intuitive demonstration of the model’s capabilities, followed by a quantitative evaluation.
328

329 7.2.1 QUALITATIVE RESULTS
330

341 **Figure 4:** General results. The first row shows the input images containing the object to be parsed. The
342 second row displays the visualizations rendered from the model’s parsed Digital Genes. Different colors on the
343 components represent different *ConceptInstances* defined in the gene.

344 **General Parsing Ability.** Figure 4 displays visualization results for 8 objects. From these visualiza-
345 tions, we can observe two key points. First, the model adeptly parses the fundamental structure
346 and constituent components of the objects. This success is attributable to the robust visual recogni-
347 tion ability from its pre-training and the parsing capability endowed by our extensive Digital Gene
348 dataset. Second, the model demonstrates the ability to parse a variety of everyday objects across
349 multiple categories, successfully resolving the structure and functional components for all eight
350 classes shown in the figure.

351 **Generalization Parsing Ability.** We
352 conducted an experiment using eye-
353 glasses to test the model’s generalization
354 ability. We captured multiple photos
355 under varying camera viewpoints and light-
356 ing conditions while adjusting the open/
357 closed state of the eyeglass-leg. The re-
358 sults, shown in Figure 5, indicate that
359 the model correctly identifies the object’s
360 constituent structure under these different
361 conditions, demonstrating its robustness
362 and that it is not limited to a specific per-
363 spective. Furthermore, the model is able
364 to correctly extract and parse different ob-
365 ject poses arising from its own joint artic-
366 ulation. This is proven by the fact that the
367 open/closed state of the eyeglass-leg in the visualized results is consistent with the original images.

368 7.2.2 QUANTITY RESULTS
369

370 Our main quantitative results are summarized in Table 1. A key finding is that our specially fine-
371 tuned GeneVLM models substantially outperform the powerful Qwen-32B baseline. And our ap-
372 proach exhibits excellent scalability. Scaling the model from 7B to 32B parameters yields consistent
373 performance improvements across all metrics. This positive scaling trend indicates that GeneVLM
374 is a robust and promising framework, offering a scalable solution to the challenging ‘image-to-gene’
375 task.

376 To provide a reference for future research, the scaling properties of the proposed model were further
377 investigated. Specifically, the relationship between training computation, measured in GFLOPS,
and various evaluation metrics was tracked using the Gene-VLM-7B training configuration. As

378
379
380
381
382
383
384
385

Model	Concept Acc.	Float Err. \downarrow	VLM-Score	CD \downarrow	F@0.01	F@0.02	F@0.05
Qwen-32B	0.112	232.205	0.402	0.131	0.051	0.271	0.3459
Gene-7B	0.625	122.46	0.721	0.111	0.1523	0.2344	0.5013
Gene-32B	0.660	115.367	0.815	0.055	0.1385	0.3147	0.6086

Table 1: Main results. Arrows indicate preferred direction for metrics (\downarrow lower is better).

depicted in Figure 6a, both Concept Accuracy and Float Error demonstrate improvement with increased computational resources, which provides evidence of predictable code-generation scaling. Furthermore, Figure 6b illustrates a generally monotonic increase in the VLM-Score across the observed computational budgets, with no apparent plateau within the tested range. Collectively, these results indicate that greater computational investment yields enhanced performance in structure extraction, and stronger geometric similarity.

Figure 6: Scaling Properties. (a). Concept Accuracy and Float Error. Both 1 - ConceptAcc and Float Error decrease as the GFLOPS increases, demonstrating a clear scaling trend. (b) VLM-Score. The VLM-Score increases with GFLOPS, showing consistent gains. We report the detailed data in the Appendix A.6.1

7.3 ABLATION STUDIES

7.3.1 EFFECT OF SPECIALIZED NUMERICAL TOKENIZATION

We conducted an ablation study to evaluate our specialized tokenization scheme for floating-point numbers. We trained two models on a dataset of 400k white-background images across eight object categories: **Model-B** (base), which uses a standard tokenizer, and **Model-S** (special), which employs our proposed Float Tokenization method.

First, we analyzed the impact of our method on the sequence length of the training data. Figure 7 shows the sequence lengths for the eight categories before and after applying our tokenization scheme. It is evident that our method reduces the sequence length by nearly half in every category, which implies a significant reduction in model training costs and a substantial increase in inference speed.

We trained both models for one epoch and evaluated them on a test set of 4k white-background images. Since our constrained decoding is incompatible with Model-B, we used standard auto-regressive decoding for both models.

Figure 7: Sequence lengths with and without specialized tokenization. We report the detailed data in the Appendix A.6.2

428
429
430
431

Model	Training PFLOPS	Inference Hours	Concept Accuracy \uparrow	Float Error \downarrow
Model-B	52719	5.5	0.568	132.912
Model-S	26355	1.5	0.668	134.176

Table 2: Ablation study on specialized tokenization scheme.

The data in Table 2 shows that, compared to Model-S, Model-B requires significantly more training compute for the same amount of raw data and performs markedly worse in both inference speed and result quality. This fully demonstrates the effectiveness of our method. At the same time, we note that the accuracy of parameter prediction is comparable between the two models, with Model-S showing no clear advantage. Therefore, this operation does not directly improve the model’s precision in predicting parameters, an aspect we will explore in future work.

7.3.2 EFFECT OF GENERAL-PURPOSE SFT DATA

We conducted an ablation study on the general-purpose SFT dataset using a smaller training set. This set contained 750k white-background images and 750k color images from 15 object categories. We trained three models: (1) **Model-W**, using only *WhiteImage-Gene* data pairs; (2) **Model-WC**, using both *WhiteImage-Gene* and *ColorImage-Gene* data pairs; and (3) **Model-WG**, using *WhiteImage-Gene* data pairs mixed with the general SFT dataset. We evaluated them on a dataset of 1,000 real-world images, with results shown in Table 3.

Model	CD ↓	F@0.01 ↑	F@0.02 ↑	F@0.05 ↑
Model-W	0.35885	0.079454	0.190559	0.41414
Model-WC	0.11184	0.152324	0.234478	0.50139
Model-WG	0.06109	0.100066	0.24722	0.51837

Table 3: Ablation study on the effect of a general-purpose SFT dataset.

The results clearly demonstrate that incorporating a general-purpose SFT dataset is effective for improving performance on real-world images. We conclude that this is due to the significant domain gap between our synthetic white-background images and real images. Training on large-scale synthetic data alone can degrade the model’s ability to understand real images, and mixing in the SFT dataset effectively mitigates this problem. We also note that Model-WC underperforms Model-WG in this experiment. We speculate this may be due to quality issues within the unfiltered 750k color images, which could have negatively impacted the model’s performance.

8 LIMITATIONS AND FUTURE WORK

Despite the promising results, our work has several limitations.

First, during the rendering of *ColorImage* from *WhiteImage* using the pretrained diffusion model, unavoidable alterations to the mesh structure can occur. This may introduce noise into the *ColorImage-Gene* dataset, potentially affecting the model’s learning.

Second, the model’s current prediction accuracy may not yet meet the high-precision requirements for real-world robotic manipulation.

Finally, our evaluation metrics could be refined. The gene-level metrics may not capture fine-grained errors in the generated genes. Concurrently, the VLM-as-a-Judge evaluation can be susceptible to the inherent biases of the VLM itself.

9 CONCLUSION

This paper addresses the critical manual annotation bottleneck in the creation of Digital Genes by proposing an automated solution named GeneVLM. Through an innovative reverse-synthesis data pipeline, a robust vision-to-program translation model, and a constrained decoding technique that guarantees syntactic validity, the GeneVLM framework successfully achieves end-to-end conversion from visual diagrams to executable Digital Gene code. We designed and implemented a comprehensive evaluation suite, including a novel VLM-as-a-Judge metric, and our experimental results fully demonstrate the effectiveness and superiority of our method. This work not only paves the way for the large-scale application of Digital Genes but also provides a crucial technical foundation and a new research paradigm for advancing AI systems toward a deeper and more reliable understanding of and reasoning about the physical world.

486 10 REPRODUCIBILITY STATEMENT
487

488 Reproducibility Statement. We aim to make our results fully reproducible by referencing where all
489 necessary details appear in the paper and supplement. Data generation: Sec. 4 and Fig. 2 document
490 the complete pipeline (rule-based gene synthesis, stochastic component removal, pose augmentation,
491 and White/Color image rendering), and category counts for the geometric benchmark are listed in
492 App. A.7. Model & training: Sec. 5.1 specifies the GeneVLM architecture and float-tokenization
493 scheme (with equations), while Sec. 5.2 and App. A.2 provide the constrained-decoding FSM and
494 pseudocode; the exact training output format/prompt is in App. A.5, and the two-stage training setup
495 and dataset sizes are summarized in Sec. 7.1. Evaluation: Sec. 6.1 defines Concept Accuracy and
496 Float Error; Sec. 6.2.1 details the geometric metrics (Chamfer Distance and F-score, with Eq. (4))
497 and the mesh-alignment protocol is in App. A.8; Sec. 6.2.2 outlines the VLM-as-judge procedure
498 with the precise prompt (App. A.3) and its human-agreement validation (App. A.9). We further
499 report per-budget scaling data and sequence-length statistics in App. A.6, and include the baseline
500 prompting used for comparisons in App. A.4. In the anonymous supplementary materials, we will
501 provide a downloadable code archive containing model implementation, constrained decoding ,and
502 evaluation benchmark sufficient to reproduce all tables and figures.

503 REFERENCES
504

505 Kevin Black, Noah Brown, Danny Driess, Adnan Esmail, Michael Equi, Chelsea Finn, Niccolo
506 Fusai, Lachy Groom, Karol Hausman, Brian Ichter, Szymon Jakubczak, Tim Jones, Liyiming Ke,
507 Sergey Levine, Adrian Li-Bell, Mohith Mothukuri, Suraj Nair, Karl Pertsch, Lucy Xiaoyang Shi,
508 James Tanner, Quan Vuong, Anna Walling, Haohuan Wang, and Ury Zhilinsky. π_0 : A vision-
509 language-action flow model for general robot control, 2024. URL <https://arxiv.org/abs/2410.24164>.

510

511 Zhe Chen, Jiannan Wu, Wenhai Wang, Weijie Su, Guo Chen, Sen Xing, Muyan Zhong, Qing-
512 long Zhang, Xizhou Zhu, Lewei Lu, Bin Li, Ping Luo, Tong Lu, Yu Qiao, and Jifeng Dai. Internvl:
513 Scaling up vision foundation models and aligning for generic visual-linguistic tasks. [arXiv preprint arXiv:2312.14238](https://arxiv.org/abs/2312.14238), 2023.

514

515 Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ Tedrake,
516 and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion, 2024. URL
517 <https://arxiv.org/abs/2303.04137>.

518

519 Gheorghe Comanici, Eric Bieber, Mike Schaeckermann, Ice Pasupat, Noveen Sachdeva, Inderjit
520 Dhillon, Marcel Blistein, Ori Ram, Dan Zhang, Evan Rosen, et al. Gemini 2.5: Pushing the
521 frontier with advanced reasoning, multimodality, long context, and next generation agentic capa-
522 bilities. [arXiv preprint arXiv:2507.06261](https://arxiv.org/abs/2507.06261), 2025.

523

524 Erfei Cui, Yinan He, Zheng Ma, Zhe Chen, Hao Tian, Weiyun Wang, Kunchang Li, Yi Wang,
525 Wenhai Wang, Xizhou Zhu, Lewei Lu, Tong Lu, Yali Wang, Limin Wang, Yu Qiao, and Jifeng
526 Dai. Sharegpt-4o: Comprehensive multimodal annotations with gpt-4o, 2024. URL <https://sharegpt4o.github.io/>.

527

528 Danijar Hafner, Jurgis Pasukonis, Jimmy Ba, and Timothy Lillicrap. Mastering diverse domains
529 through world models, 2024. URL <https://arxiv.org/abs/2301.04104>.

530

531 Nicklas Hansen, Xiaolong Wang, and Hao Su. Temporal difference learning for model predictive
532 control, 2022. URL <https://arxiv.org/abs/2203.04955>.

533

534 Zixuan Huang, Stefan Stojanov, Anh Thai, Varun Jampani, and James M. Rehg. Zeroshape:
535 Regression-based zero-shot shape reconstruction. [2024 IEEE/CVF Conference on Computer
Vision and Pattern Recognition \(CVPR\)](https://openaccess.thecvf.com/content_cvpr_2024/html/Huang_Zeroshape_Regression-based_Zero-shot_Shape_Reconstruction_CVPR_2024_paper.html), pp. 10061–10071, 2023. URL <https://api.semanticscholar.org/CorpusID:266521309>.

536

537 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
538 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
539 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
540 Openvla: An open-source vision-language-action model, 2024a. URL <https://arxiv.org/abs/2406.09246>.

540 Moo Jin Kim, Karl Pertsch, Siddharth Karamcheti, Ted Xiao, Ashwin Balakrishna, Suraj Nair,
 541 Rafael Rafailov, Ethan Foster, Grace Lam, Pannag Sanketi, Quan Vuong, Thomas Kollar, Ben-
 542 jamin Burchfiel, Russ Tedrake, Dorsa Sadigh, Sergey Levine, Percy Liang, and Chelsea Finn.
 543 Openvla: An open-source vision-language-action model. [arXiv preprint arXiv:2406.09246](https://arxiv.org/abs/2406.09246),
 544 2024b.

545 Xinghang Li, Minghuan Liu, Hanbo Zhang, Cunjun Yu, Jie Xu, Hongtao Wu, Chilam Cheang,
 546 Ya Jing, Weinan Zhang, Huaping Liu, Hang Li, and Tao Kong. Vision-language foundation
 547 models as effective robot imitators, 2024. URL <https://arxiv.org/abs/2311.01378>.

548 Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. In NeurIPS,
 549 2023a.

550 Katherine Liu, Sergey Zakharov, Dian Chen, Takuya Ikeda, Gregory Shakhnarovich, Adrien Gaidon,
 551 and Rares Ambrus. Omnisshape: Zero-shot multi-hypothesis shape and pose estimation in the real
 552 world. 2025 IEEE International Conference on Robotics and Automation (ICRA), pp. 16020–
 553 16027, 2025. URL <https://api.semanticscholar.org/CorpusID:280526919>.

554 Ruoshi Liu, Rundi Wu, Basile Van Hoorick, Pavel Tokmakov, Sergey Zakharov, and Carl Vondrick.
 555 Zero-1-to-3: Zero-shot one image to 3d object, 2023b. URL <https://arxiv.org/abs/2303.11328>.

556 Ben Mildenhall, Pratul P. Srinivasan, Matthew Tancik, Jonathan T. Barron, Ravi Ramamoorthi, and
 557 Ren Ng. Nerf: Representing scenes as neural radiance fields for view synthesis, 2020. URL
 558 <https://arxiv.org/abs/2003.08934>.

559 Jeong Joon Park, Peter Florence, Julian Straub, Richard Newcombe, and Steven Lovegrove.
 560 DeepSDF: Learning continuous signed distance functions for shape representation, 2019. URL
 561 <https://arxiv.org/abs/1901.05103>.

562 Jianhua Sun and Cewu Lu. Digital gene: Learning about the physical world through analytic con-
 563 cepts, 2025. URL <https://arxiv.org/abs/2504.04170>.

564 Jianhua Sun, Yuxuan Li, Jiude Wei, Longfei Xu, Nange Wang, Yining Zhang, and Cewu Lu. Arti-
 565 pg: A toolbox for procedurally synthesizing large-scale and diverse articulated objects with rich
 566 annotations, 2024a. URL <https://arxiv.org/abs/2412.14974>.

567 Jianhua Sun, Yuxuan Li, Longfei Xu, Nange Wang, Jiude Wei, Yining Zhang, and Cewu Lu. Con-
 568 ceptfactory: Facilitate 3d object knowledge annotation with object conceptualization, 2024b.
 569 URL <https://arxiv.org/abs/2411.00448>.

570 Jianhua Sun, Yuxuan Li, Longfei Xu, Jiude Wei, Liang Chai, and Cewu Lu. Discovering conceptual
 571 knowledge with analytic ontology templates for articulated objects, 2024c. URL <https://arxiv.org/abs/2409.11702>.

572 Qwen Team. Qwen2.5-vl, January 2025a. URL <https://qwenlm.github.io/blog/qwen2.5-vl/>.

573 Tencent Hunyuan3D Team. Hunyuan3d 2.1: From images to high-fidelity 3d assets with production-
 574 ready pbr material, 2025b.

575 Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based control.
 576 In 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033.
 577 IEEE, 2012. doi: 10.1109/IROS.2012.6386109.

578 Tong Wu, Jiarui Zhang, Xiao Fu, Yuxin Wang, Jiawei Ren, Liang Pan, Wayne Wu, Lei Yang,
 579 Jiaqi Wang, Chen Qian, Dahua Lin, and Ziwei Liu. Omniobject3d: Large-vocabulary 3d ob-
 580 ject dataset for realistic perception, reconstruction and generation. 2023 IEEE/CVF Conference
 581 on Computer Vision and Pattern Recognition (CVPR), pp. 803–814, 2023. URL <https://api.semanticscholar.org/CorpusID:255998491>.

582 Yanjie Ze, Gu Zhang, Kangning Zhang, Chenyuan Hu, Muhan Wang, and Huazhe Xu. 3d diffusion
 583 policy: Generalizable visuomotor policy learning via simple 3d representations, 2024. URL
 584 <https://arxiv.org/abs/2403.03954>.

594 Xinghao Zhu, JingHan Ke, Zhixuan Xu, Zhixin Sun, Bizhe Bai, Jun Lv, Qingtao Liu, Yuwei Zeng,
 595 Qi Ye, Cewu Lu, Masayoshi Tomizuka, and Lin Shao. Diff-lfd: Contact-aware model-based
 596 learning from visual demonstration for robotic manipulation via differentiable physics-based sim-
 597 ulation and rendering. In Jie Tan, Marc Toussaint, and Kourosh Darvish (eds.), *Proceedings
 598 of The 7th Conference on Robot Learning*, volume 229 of *Proceedings of Machine Learning
 599 Research*, pp. 499–512. PMLR, 06–09 Nov 2023. URL <https://proceedings.mlr.press/v229/zhu23a.html>.

601 602 A APPENDIX 603

604 A.1 USE OF LARGE LANGUAGE MODELS (LLMs) 605

606 In accordance with the ICLR policy on LLM usage, we disclose that we used an LLM (ChatGPT,
 607 OpenAI) only after completing the full manuscript draft, and solely for surface-level proofreading:
 608 correcting grammar, punctuation, and minor phrasing for clarity and consistency. The LLM did not
 609 contribute to research ideation, problem formulation, method or experiment design, data collection
 610 or labeling, analysis. Every suggested edit was manually reviewed and selectively adopted by the
 611 authors.

612 We understand and accept full responsibility for all content written under our names, including any
 613 text that may have been revised with LLM assistance. We took care to avoid plagiarism and factual
 614 errors and did not provide the LLM with proprietary or personally identifiable data beyond de-
 615 identified manuscript excerpts necessary for proofreading. The LLM is not an author or contributor
 616 under ICLR authorship criteria.

617 A.2 DETAILED IMPLEMENTATION OF CONSTRAINED DECODING 618

619 To enforce the grammatical integrity of the output at inference time, we employ a deterministic
 620 Finite State Machine (FSM) to guide the decoding process. This FSM acts as a grammar-aware
 621 guardrail, ensuring that every generated token conforms to the strict syntax of a valid Digital Gene.

622 Our FSM is composed of a set of discrete states (e.g., *GEN_CATEGORY_VALUE*,
 623 *ADD_POSITION_KEY*, *GEN_PARAM_VALUE*), where each state corresponds to a specific node
 624 or element in the hierarchical JSON structure of the Digital Gene. The generation process starts
 625 in an initial state and transitions between states based on a predefined transition table, effectively
 626 traversing the abstract syntax tree of the gene. This mechanism is implemented via a custom ‘Log-
 627 itsProcessor’ within the generation pipeline, as detailed in Algorithm 1.

629 Algorithm 1 FSM-Guided Constrained Decoding 630

```

631 1: Input: Model logits  $S \in \mathbb{R}^V$ , generated token sequence  $I_{gen}$ , FSM state  $F_{state}$ 
632 2: Output: Masked logits  $S'$ 
633 3: function PROCESSLOGITS( $S, I_{gen}, F_{state}$ )
634 4:    $F_{state} \leftarrow \text{UPDATEFSMSTATE}(I_{gen})$ 
635 5:    $V_{allowed} \leftarrow \text{GETALLOWEDTOKENS}(F_{state})$ 
636 6:    $M \leftarrow \text{ones}(V) \times (-\infty)$                                  $\triangleright$  Create a mask with  $-\infty$  for all tokens
637 7:   for  $v \in V_{allowed}$  do
638 8:      $M[v] \leftarrow 0$                                           $\triangleright$  Unmask allowed tokens by setting their mask value to 0
639 9:   end for
640 10:   $S' \leftarrow S + M$                                           $\triangleright$  Apply mask to original logits
641 11:  return  $S'$ 
642 12: end function

```

643 At each generation step, the processor intercepts the model’s output logits. Based on the FSM’s
 644 current state, it identifies a small subset of permissible next tokens. The logits for all other tokens in
 645 the vocabulary are masked (set to $-\infty$), forcing the model to sample only from the valid set. These
 646 constraints operate in two modes: for deterministic syntactic elements (e.g., keys like “pose”:“ or
 647 structural characters like ‘[‘), the FSM forces the exact token sequence; for generative content (e.g.,
 a template name or a parameter value), the FSM restricts the output to the class of valid tokens

648 (e.g., any of the known template names or the special quantized numerical tokens introduced in our
649 tokenization scheme).

650 This FSM-guided approach guarantees the syntactic correctness of the output by construction, com-
651 pletely eliminating the possibility of structural errors and significantly improving the executability
652 rate of the generated code. It transforms the generation task from a purely probabilistic sequence
653 prediction into a structured traversal problem, leveraging the VLM’s powerful visual understanding
654 to make informed choices within a grammatically sound framework.

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

A.3 PROMPT USED FOR VLM-SCORE QUERY

688

689

690

691

692

693

694

695

696

697

698

699

700

701

Here is the prompt that we used in the VLM-score query described in Sec 6.2.2.

702

703 You are a 3D geometry comparison expert. I will give you a colored image and four
 704 rendered images. Four rendered images are from different viewpoints of a same object.

705 Compare the geometric shape of the object in the colored image with the objects in the
 706 four rendered images provided. *Do not consider texture or color differences.* Focus
 707 *exclusively* on the 3D shape, proportions, and the presence, absence, and relative
 708 positioning of components.

709 First, describe your reasoning step-by-step. Analyze the similarities and differences you
 710 observe between the colored image and the rendered images. Consider:

- 711 * Overall shape and silhouette.
- 712 * Presence and relative position of major components.
- 713 * Proportions and sizes of components.
- 714 * Any noticeable distortions, exaggerations, or omissions.
- 715 * Specific features and details.

716 After your detailed reasoning, provide a single numerical score between 0.0 and 1.0,
 717 representing the geometric similarity. Use the following scale as a guide:

718 * **1.0:** Perfect geometric match. All aspects of the 3D shape are identical.

719 * **0.9 - 0.99:** Near-perfect match. Minor differences, possibly in fine details or slight
 720 proportional variations that are barely perceptible.

721 * **0.8 - 0.89:** Very good match. The overall structure is the same, but there might be
 722 small, noticeable differences in the size, shape, or angle of some sub-components. The core
 723 geometry is preserved.

724 * **0.7 - 0.79:** Good match. The general shape is recognizable, but there are clear
 725 differences in several sub-components. Some features might be slightly exaggerated,
 726 compressed, or otherwise distorted.

727 * **0.6 - 0.69:** Moderate match. The object is still identifiable, but significant differences
 728 are present. The arrangement of some sub-components might be altered, or their shapes
 729 might be substantially different.

730 * **0.5 - 0.59:** Fair match. The basic silhouette might be similar, but major structural
 731 differences are evident. This might involve missing or added components, or significant
 732 changes in component placement.

733 * **0.4 - 0.49:** Poor match. Only a vague resemblance remains. Key structural elements
 734 are different or missing. The object's overall form is substantially altered.

735 * **0.3 - 0.39:** Very poor match. Minimal resemblance. Major components are missing,
 736 added, or drastically changed.

737 * **0.2 - 0.29:** Extremely poor match. Almost no geometric similarity.

738 * **0.0 - 0.19:** No discernible geometric similarity. * if there are any dis-connected
 739 sub-components or un-reasonable sub-components(assume all objects are daily objects) in
 the rendered images, the score should be lower than 0.3.

740

741 Your final answer *MUST* end with a line in the following format:

742

743 'FINAL SCORE: X.X'

744

745 Where 'X.X' is the numerical score (e.g., 'FINAL SCORE: 0.8'). The reasoning should
 746 come *before* this line.

747

748

749

750

751

752

753

754

755

A.4 PROMPT USED FOR BASELINE

Here is the prompt that we used in the Qwen generation procedure described in Sec 7.1.

```

756
757 You are an image-to-JSON scene encoder.
758 The user supplies one image.
759 You MUST output only a JSON object that lists every recognizable object in the image,
760 following the schema below.
761
762
763
764 ### Scene JSON schema
765 {
766     "category": "<One of the top-level keys in param_dims.py>",
767     "pose": {
768         "global_position": [value_x, value_y, value_z], // object's
769         offset
770         "global_rotation": [value_x, value_y, value_z] // rotation
771         order is x -> y -> z, range: [-180, 180]
772     },
773     "conceptualization": [
774         {
775             "template": "<One legal concept name under that category
776             (param_dims.keys())>",
777             "parameters": {
778                 "<param_1>": [value_1, value_2, ...], // length must
779                 match the vector length
780                 "<param_2>": [...],
781                 ...
782             },
783             {
784                 next template ...
785             }
786         }
787     }
788
789     here is param_dims.py:
790     ``python
791     param_dims = {param_str}
792     ``"
793
794         • template and parameter names/vector lengths are authoritative in
795         param_dims.py.
796             - A value of '[2]' means exactly two numbers, '[3]' means three numbers,
797                 '[2,3]' means two or three numbers are acceptable.
798
799         • Omit any parameter that is not listed for the chosen concept.
800
801         • Use lower-case decimal numbers (floats). Units are metres for lengths/positions
802             and degrees for rotations unless the parameter's meaning implies otherwise.
803
804         • Put objects in the "objects" array in any order; each physical part (e.g. a mug
805             body and its handle) is a separate object entry.
806
807         • Output only valid JSON – no comments, no trailing commas, no additional keys,
808             no explanatory prose.
809
810 ### Tips & constraints
811
812     1. Vector length correctness is critical. If a parameter's required length  $\neq$  the length
813         you output, the scene will be rejected.
814
815     2. Spell everything exactly as in 'param_dims.py' (case-sensitive).
816
817     3. If an object is partially occluded, estimate its parameters from visible evidence.
818
819 ### Example:
820 <code>
821 {example_str}
822 </code>

```

810 A.5 PROMPT USED FOR TRAINING
811812 Here is the prompt that we used in training described in Sec 5.1.
813814 You are given a task that involves both language reasoning and image understanding. Based
815 on the provided textual and visual inputs, estimate the underlying structure and parameters
816 of the described object. Your goal is to generate a structured representation of the object as
817 JSON code.818 Use both linguistic reasoning and visual cues to infer the object’s geometry, configuration,
819 and relevant parameters.820 All numerical values in the code should be linearly mapped and discretized into integers
821 within the range 2048 to 3072.822 The final output must be a JSON code block enclosed within `<code>` and `</code>` tags.
823 Only include the code inside these tags — no explanations, descriptions, or formatting
824 outside of them.

825 Ensure your output is accurate, complete, and strictly adheres to this format.

830
831 A.6 DETAILED EXPERIMENTAL RESULTS
832833 A.6.1 DETAILED DATA FOR SCALING ANALYSIS
834835 The following Table 4 provides the detailed data for the scaling law analysis presented in the main
836 text. It records the changes in Gene-level evaluation metrics as the training computation (GFLOPS)
837 increases.838 The following Table 5 provides the detailed data for the VLM-Score, tracking its change as the
839 training computation (GFLOPS) increases.840
841 A.6.2 DETAILED DATA FOR SEQUENCE LENGTH REDUCTION
842843 The following Table 6 provides a detailed breakdown of the sequence length before and after applying
844 our specialized tokenization scheme for floating-point numbers. The data supports the analysis
845 of training efficiency gains discussed in the main text.846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890

	GFLOPS ($\times 10^{12}$)	Concept Acc	Float Error
	0.45	0.632	124.962
	0.47	0.625	127.259
	0.49	0.645	130.322
	0.51	0.645	130.203
	0.54	0.647	128.666
	0.56	0.657	124.347
	0.58	0.652	123.945
	0.60	0.653	120.737
	0.63	0.667	122.165
	0.65	0.662	123.267
	0.67	0.659	119.279
	0.69	0.662	120.122
	0.71	0.670	117.868
	0.74	0.677	117.570
	0.76	0.679	119.470
	0.78	0.680	120.317
	0.80	0.680	116.236
	0.83	0.680	118.790
	0.85	0.676	120.165
	0.87	0.680	117.446
	0.89	0.677	117.590
	0.92	0.678	117.667
	0.94	0.682	117.524
	0.96	0.679	117.543
	0.98	0.678	118.185
	1.01	0.678	117.722

891 **Table 4:** Gene-level metrics as a function of training computation (GFLOPS).
892
893
894

895
896
897
898
899
900
901
902

	GFLOPS ($\times 10^{12}$)	VLM-Score
	0.45	0.6276
	0.56	0.6500
	0.67	0.6330
	0.78	0.6780
	0.89	0.6770
	1.01	0.6960

903 **Table 5:** VLM-Score as a function of training computation (GFLOPS).
904
905
906

907
908
909
910
911
912
913
914
915
916

Category	Min Tokens		Max Tokens		Average Tokens	
	w/o	w	w/o	w	w/o	w
Bottle	621	345	644	356	633.923	354.202
Box	568	316	1035	601	791.240	457.674
Bucket	324	210	614	376	419.169	263.602
Dispenser	410	314	726	437	566.430	371.812
Kettle	1353	855	2422	1411	1842.810	1088.989
KitchenPot	362	229	1074	663	714.620	456.029
StorageFurniture	5091	3022	10021	5303	7169.164	4024.182
Table	520	375	6962	4262	2432.800	1645.236

917 **Table 6:** Sequence length comparison with and without ("w/o" vs "w") specialized tokenization.

918 A.7 CLASS DISTRIBUTION OF GEOMETRIC SIMILARITY BENCHMARK
919

Category	Bottle	Box	Bucket	Chair	Eyeglasses	Kettle	Knife
Number	500	820	560	580	100	240	560
Category	Laptop	Microwave	Mug	Shampoo	Storage Furniture	Table	Trashcan
Number	80	160	740	660	140	460	400

926 A.8 ALIGNMENT PROCEDURE OF TWO MESH
927

929 To ensure fair evaluation of metrics under unknown global similarity transforms, we adopt the alignment
930 protocol proposed in (Liu et al., 2025). Specifically, we first sample 10,000 points from the
931 surfaces of the predicted and ground-truth meshes. Both point clouds are normalized to fit within a
932 unit sphere. We then perform a coarse grid search over rigid rotations, followed by a fine-grained
933 Iterative Closest Point (ICP) alignment.

934 A.9 THE DETAILS OF VALIDITY OF VLM-BASED SIMILARITY SCORE
935

936 As this VLM-based similarity is newly introduced, its validity and robustness require evaluation.
937 We validate this pipeline using a human-labeled partial-order set comprising 3,000 instances; each
938 instance contains one real photo and four candidate 3D meshes $\{M_1, M_2, M_3, M_4\}$ with human
939 similarity labels (e.g., $s_1 = s_2 > s_3 > s_4$). For each instance, our VLM pipeline produces a
940 ranking of the four image–mesh pairs of each mesh based on VLM-based similarity introduced in
941 Sec. 6.2.2 (e.g., $s_1 = 0.5, s_2 = 0.8, s_3 = 0.2, s_4 = 0.5$). We measure preference consistency as a
942 hit if and only if the VLM ranking is identical to the human partial order; otherwise it is a miss.
943 The protocol based on VLM-based similarity introduced in Sec. 6.2.2 achieves 92% agreement with
944 human labels on this partial-order set, indicating high reliability for this similarity judgments.

945 A.10 EXAMPLES OF FAILURE CASES
946955 **Figure 8:** Examples of failure cases on real images.
956
957
958
959
960

972
973

A.11 EXAMPLES OF PERCEPTUAL EVALUATION BENCHMARK

974

975

976

977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

VLM Similarity score:0.88

VLM Similarity score:0.83

VLM Similarity score:0.62

VLM Similarity score:0.89

Figure 9: Examples of real images in our benchmark and its predicted mesh and VLM similarity score.**B RELATED WORK****B.1 EXPLICIT OBJECT/SCENE REPRESENTATIONS.**

Physics simulators such as MuJoCo use XML-based schemas (MJCF/URDF) to explicitly declare bodies, joints, inertias, contacts, and actuators; models are compiled from human-interpretable hierarchies into executable dynamics (Todorov et al., 2012). Programmatic CAD/DSLs (e.g., CSG, hierarchical part grammars) similarly encode geometry via primitives and parameters. These approaches offer editability and controllability but primarily target simulation/geometry specification

1026 rather than analytic, concept-level structure. Digital Genes (Sun & Lu, 2025; Sun et al., 2024c;b) in-
1027 stead formalize analytic concepts—executable programs describing parts, parameters, and physical
1028 attributes intended to bridge perception, reasoning, and action .
1029

1030 B.2 IMPLICIT NEURAL 3D REPRESENTATIONS. 1031

1032 Neural fields represent scenes or shapes as continuous functions learned from data, trading inter-
1033 pretability for fidelity. NeRF models radiance and density for photorealistic view synthesis (Milden-
1034 hall et al., 2020), while DeepSDF and Occupancy Networks learn signed-distance and occupancy
1035 functions for geometry modeling (Park et al., 2019). These methods excel at reconstruction and ren-
1036 dering but lack named parts, compositional parameters, or direct programmatic affordances, making
1037 them complementary to explicit Digital Gene code.
1038

1039 **Position of Digital Genes and GeneVLM.** Compared to simulator XMLs (MJCF/URDF), Digi-
1040 tal Genes are not merely scene descriptions but analytic programs emphasizing compositional parts,
1041 parameters, and functional attributes intended for both perception and control. Compared to implicit
1042 neural fields, they trade raw photorealism for interpretability and reusability. GeneVLM contributes
1043 an automatic image-to-gene pipeline that recovers such explicit programs from single images, ad-
1044 vancing Digital Genes as a practical substrate for grounded reasoning and robotic manipulation (Sun
& Lu, 2025; Sun et al., 2024c).
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079