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ABSTRACT

Network pruning techniques, including weight pruning and filter pruning, reveal
that most state-of-the-art neural networks can be accelerated without a significant
performance drop. This work focuses on filter pruning which enables accelerated
inference with any off-the-shelf deep learning library and hardware. We propose
the concept of network pruning spaces that parametrize populations of subnetwork
architectures. Based on this concept, we explore the structure aspect of subnet-
works that result in minimal loss of accuracy in different pruning regimes and
arrive at a series of observations by comparing subnetwork distributions. We con-
jecture through empirical studies that there exists an optimal FLOPs-to-parameter-
bucket ratio related to the design of original network in a pruning regime. Statisti-
cally, the structure of a winning subnetwork guarantees an approximately optimal
ratio in this regime. Upon our conjectures, we further refine the initial pruning
space to reduce the cost of searching a good subnetwork architecture. Our ex-
perimental results on ImageNet show that the subnetwork we found is superior to
those from the state-of-the-art pruning methods under comparable FLOPs.

1 INTRODUCTION

Large neural networks are usually preferred as they exhibit better generalization capability than
small ones. In many model families such as ResNets (He et al., 2016) and MobileNets (Howard
et al., 2017), large networks consistently achieve higher accuracy and are superior to small ones.
Although large networks have revolutionized many fields such as computer vision and natural lan-
guage processing, they suffer from significant inference costs in practice, especially when used with
embedded sensors or mobile devices. For many practical applications, computational efficiency and
small network sizes are crucial factors in addition to performance.

Recent works on network pruning reveal that most state-of-the-art models are over-parameterized (Li
et al., 2017; Frankle & Carbin, 2019). We can remove weights (Frankle & Carbin, 2019), filters (Li
et al., 2017; Luo et al., 2017) and other structures (Meng et al., 2020) from large networks without
inducing significant performance drop by network pruning techniques. Such strategies reduce the
resource demands of neural network inference, including storage requirements, energy consumption
and latency, and thus increase runtime efficiency. This work focuses on filter pruning, which prunes
the original network to a slimmer subnetwork. Unlike weight pruning approaches that lead to irreg-
ular sparsity patterns and require specialized libraries or hardware for computational speedups, filter
pruning enables accelerated inference with any off-the-shelf deep learning library and hardware.

In the literature, a well-established paradigm is to train a large network to completions, prune the
network according to some heuristics and retrain the pruned subnetwork to recover the accuracy
loss (Renda et al., 2020). Despite the effectiveness of this prune-then-retrain paradigm, existing
filter pruning methods have one major limitation: their outcome is merely a single pruning recipe
tuned to a specific setting1 and may fail to generalize to new settings. For example, we find that some
filter pruning methods cannot produce subnetworks that outperform a regular subnetwork with an
uniform pruning ratio in some extreme pruning regimes where we reduce more than 90% FLOPs of
a network. Moreover, the prune-then-retrain paradigm does not deepen our understanding about the
reason why these recipes produced by pruning approaches work well in specific regimes.

Instead of producing the best single pruning recipe like existing works (Li et al., 2017; He et al.,
2018; Li et al., 2020), we explore the general principles that can help us understand and refine prun-

1In this work, we refer to the combination of pruning ratios for the layers in a network as pruning recipe.
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ing algorithms. Inspired by Radosavovic et al. (2019; 2020), we present network pruning spaces in
this work. Given a network, its network pruning space is a large population of subnetwork archi-
tectures produced by pruning recipes. This is different from architecture search spaces (Zoph & Le,
2017; Tan & Le, 2019) and network design spaces (Radosavovic et al., 2019; 2020), which aim to
produce model families with good generalization from scratch. Specifically, we start with a well-
designed network architecture and sample subnetworks from its pruning space, which gives rise to a
subnetwork distribution. Based on this distribution, we present a tool to analyze the pruning space.
With a constraint on pruning recipes, we divide the initial pruning space into several subspaces to
explore the structure aspect of winning subnetworks and reduce the cost of searching such a subnet-
work under different settings. The implementation is still filter pruning in common, but elevated to
the population level and guided via distribution estimates following Radosavovic et al. (2019).

In our empirical studies, the core observations on network pruning spaces are simple but interesting:
(a) There exists an optimal FLOPs-to-parameter-bucket ratio in a pruning regime; (b) Subnetworks
with the optimal FLOPs-to-parameter-bucket ratios will be winning ones; (c) The limitation of per-
formance in a pruning regime is predictable by a function of the optimal FLOPs-to-parameter-bucket
ratio. With these observations, we return to examine some subnetworks produced by existing prun-
ing methods (Luo et al., 2017; Li et al., 2017). We find that these subnetworks with good perfor-
mance match our observations (a and b). Moreover, our Observation c is consistent with Rosenfeld
et al. (2021) in weight pruning, suggesting that we are able to use an empirical function to make
trade-offs between efficiency and accuracy when pruning filters in a network.

The contributions of this work are threefold:

• We present the new concept of network pruning spaces that parametrize populations of subnetwork
architectures in the field of filter pruning. With this concept, we empirically study the structure as-
pect of winning subnetworks in different pruning regimes and explore general pruning principles.

• Based on our experimental results, we make a series of conjectures that help us understand filter
pruning principles. With these conjectures, we refine the initial pruning space with a constraint on
FLOPs-to-parameter-bucket ratio to reduce the cost of searching a winning subnetwork.

• We analytically show that the limitation of performance in a pruning regime is predictable, sug-
gesting that we can build an empirical tool for reasoning trade-offs between efficiency and accu-
racy in filter pruning.

2 REVISIT FILTER PRUNING

In this section, we revisit existing techniques in filter pruning and introduce an efficient setting
for further exploration. Generally, a pruning method involves instantiating each of the steps in the
prune-then-retrain paradigm from a range of choices. The combination of such choices has a major
impact on the final performance (Renda et al., 2020). The combinations of pruning implementations
vary from each other in accuracy and efficiency. Since we aim to explore general pruning principles
that can interpret the behaviors of filter pruning, a qualified and efficient setting is needed. In the
following, we assess different pruning implementations and finally introduce a standard setting for
conducting empirical studies. Our main experiments use ResNet-50 (He et al., 2016) on CIFAR-
10 (Krizhevsky, 2009). The input images are resized to 224× 224 such that we only modify the last
fully-connected layer in ResNet-50.

2.1 PRUNING FILTERS

We briefly describe the procedure of pruning filters on the convolutional layers. Extending it to
other layers is straightforward. Let ci denote the number of input channels for the ith convolutional
layer in a network and hi/wi be the height/width of the input feature maps. The convolutional
layer transforms the input feature maps xi ∈ Rci×hi×wi into the output feature maps xi+1 ∈
Rci+1×hi+1×wi+1 , which are used as input feature maps for the next convolutional layer, by applying
ci+1 filters on the ci input channels.

Each filter Fi,j ∈ Rci×k×k is composed by ci 2D kernels K ∈ Rk×k and generates one feature
map xi+1,j ∈ R1×hi+1×wi+1 on top of xi ∈ Rci×hi×wi . All the filters constitute the convolutional
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Figure 1: Pruning filters of ResNet-50 on CIFAR-10. (Left) Pruning filters of ResNet-50 based
on different pruning heuristics, including `1 norm, `2 norm and FPGM (He et al., 2019). (Center)
Experiments on fine-tuning epochs with different pruning ratios. (Right) Comparison of fine-tuning,
rewinding and retraining from scratch with an uniform pruning ratio of 0.75.

kernel Fi ∈ Rci×ci+1×k×k. When m filters are pruned with a ratio ri = m/ci+1, m corresponding
feature maps are removed. It reduces m/ci+1 of the computational cost for both layers i and i+ 1.

Filter importance. There exist a wide variety of pruning heuristics for evaluating the importance of
filters. Figure 1 (left) shows accuracy drop curves of some pruning heuristics when we prune more
filters. The difference between these pruning heuristics is small and they have the same trend when
pruning filters. We adopt `2 norm pruning heuristic in this work because of its simplicity.

One-shot pruning. We prune the network to a target size at once. In contrast, the prune-retrain circle
can be repeated until a target network size is reached, which is known as iterative pruning. Renda
et al. (2020) and our experiments (not shown) suggest that iterative pruning is slightly superior to
one-shot pruning in high-pruning-ratio regimes; however, it takes much more time on retraining
(about 5×). Such an accuracy gain can be ignored considering that one-shot pruning saves a lot of
time, especially when we need to study a large population of pruned subnetworks in this work.

2.2 RETRAINING SUBNETWORKS

When the filters of the large network are removed after pruning, accuracy significantly decreases.
It is standard to retrain the pruned subnetwork with the remaining weights to recover the original
accuracy. We discuss and evaluate conventional retraining techniques in the literature. Our experi-
ments prune the network with different uniform pruning ratios and retrain pruned subnetworks using
existing techniques.

Fine-tuning. The first common retraining technique is fine-tuning, which retrains pruned subnet-
works for a specified number of epochs t using a small learning rate lr (Molchanov et al., 2019;
Renda et al., 2020). In this work, we use a cosine annealing learning rate schedule (Loshchilov &
Hutter, 2017) with an initial lr = 0.01 and empirically study the influence of t in the field of filter
pruning. As shown in Figure 1 (center), in low-pruning-ratio regimes, it is sufficient to fine-tune
pruned subnetworks for a few epochs (e.g., 50 epochs under an uniform pruning ratio of 0.25). In
high-pruning-ratio regimes, where more than 90% parameters are removed after pruning, subnet-
works require more epochs for fine-tuning to recover the original accuracy.

Learning rate rewinding. Renda et al. (2020) introduce a retraining technique, namely learning
rate rewinding, which retrains the pruned networks using the original schedule from last t epochs
of training. During retraining, the learning rate in rewinding is always larger than that used in fine-
tuning. In this work, we adopt a slightly different rewinding implementation, which starts from the
initial learning rate lr in training and retrains pruned subnetworks for t epochs with warming up for
5 epochs. Our implementation is similar to learning rate restarting (Le & Hua, 2021) with a cosine
annealing schedule in practice.2 Figure 1 (right) shows the experimental results in a high-pruning-
ratio regime. Comparison between rewinding and fine-tuning shows that their performance is almost
the same after retraining 200 epochs. However, in a low-epoch retraining regime, fine-tuning is more
efficient than rewinding for filter pruning.

2We consider learning rate rewinding and learning rate restarting as the same type of retraining technique,
as both of them rely on a large learning rate.
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From scratch. We also conduct experiments that retrain pruned subnetworks from scratch, where
the parameters of a subnetwork are re-initialized after pruning. The original learning rate schedule is
adopted during retraining. As shown in Figure 1 (right, green line), retraining from scratch requires
more epochs to reduce accuracy drop compared to fine-tuning and rewinding. When retrained for
enough epochs (e.g., 600 or 800 epochs), retraining from scratch is able to produce comparable per-
formance, which is consistent with Liu et al. (2019b).3 Moreover, our experimental results suggest
that it is unfair to compare retraining techniques under different epochs, since all of them benefit
from more epochs.

Discussion. In this subsection, we empirically study existing retraining techniques, including fine-
tuning, rewinding and retraining from scratch. Our experimental results show that these retraining
techniques can achieve similar performance if we retrain pruned subnetworks with enough epochs.
However, fine-tuning for a few epochs is a more efficient choice among them as our focus is not
on recovering the original accuracy as much as possible in the following. Finally, we introduce a
standard setting for further exploration. Given a pruning recipe, the standard setting prunes filters
by their `2 norms in a one-shot manner, and fine-tunes pruned subnetworks with lr = 0.01 for t
epochs.

3 NETWORK PRUNING SPACES

In this section, we introduce network pruning spaces, which are inspired by the concept of network
design spaces (Radosavovic et al., 2019). Given a trained network fθ, a network pruning space S
comprises a large population of subnetworks {fθsub} pruned from fθ. The initial pruning space S is
loosely defined by a constraint on FLOPs. We refer to the constraint on FLOPs as cflops, which is
a relative value calculated by cflops = FLOPs(fθsub)/FLOPs(fθ) in this work. In practice, we use a
range cflops ± δ (δ = 0.002) for efficiency, as it is difficult to search recipes with a fixed constraint.

Based on the specified pruning heuristics (e.g., our standard setting), a subnetwork fθsub in S is
generated by a pruning recipe, which consists of pruning ratios r = {r1, r2, . . . , rN} for N layers.
We sample a number of pruning recipes from S, giving rise to a subnetwork distribution, and analyze
the pruning space.

Tools for pruning spaces. We adopt accuracy drop empirical distribution functions (EDFs) (Ra-
dosavovic et al., 2019; 2020) to analyze the pruning space. Given a set of n subnetworks with
accuracy drops {ei}, the accuracy drop EDF is given by:

F (e) =
1

n

n∑
i=1

1[ei < e], (1)

where 1 is the indicator function. F (e) represents the fraction of subnetworks with accuracy drop
less than e after retraining.

3.1 THE STD PRUNING SPACES

We start with the initial pruning space S. Any recipe generation strategy, such as evolutionary
algorithm and reinforcement learning (He et al., 2018), can be used when sampling subnetworks.
Random sampling is the most straightforward one, which randomly generates N real numbers from
a given range [0, R] as a pruning recipe r (Li et al., 2020).4

Although a random recipe that meets the requirement cflops can be a valid one, we observe an interest-
ing problem when sampling subnetworks from S following Li et al. (2020). This random sampling
process is not effective enough, taking many times for a valid recipe, as we have a compact con-
straint (i.e., small δ). It is much easier to collect enough recipes when we start with an uniform
pruning ratio and modify {ri} with N small random numbers. Therefore, we take a refinement step
and come to STD pruning spaces.

We additionally use a constraint cstd on the standard deviation of the recipe r and refer to the pruning
spaces with this constraint as STD pruning spaces. By controlling the standard deviation of r, we

3In our experiments, the others outperform retraining from scratch with a less accuracy drop of 0.3.
4R is the largest pruning ratio applied to a layer.
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(a) cflops = 0.25 (b) cflops = 0.1 (c) cflops = 0.05 (d) cflops = 0.02

Figure 2: STD pruning spaces under cflops = {0.25, 0.1, 0.05, 0.02}. In the figure, we study three
STD pruning spaces, including STD-0.1, STD-0.05 and STD-0.01 spaces. (Row 1) Accuracy
drop EDFs on STD spaces. (Row 2) Standard deviation of r distribution. (Row 3) Remaining
FLOPs distribution. (Row 4) Remaining parameters distribution. (Row 5) Mean computation budget
distribution. (Row 6) The winning pruning recipe on each STD pruning space. Note that the scales
of accuracy drop under different cflops varies.

divide the initial space S into STD subspaces. In this work, we mainly study three STD pruning
spaces with cstd = {0.1, 0.05, 0.01}, denoted as STD-0.1, STD-0.05 and STD-0.01 spaces
respectively.

We focus on exploring the structure aspect of winning subnetworks that have the best performance
after retraining. With our baseline setting, we sample n = 100 subnetworks from STD pruning
spaces and fine-tune these subnetworks for t = 50 epochs. Although better performance can be
achieved when we retrain subnetworks for more epochs, we argue that fine-tuning for 50 epochs is
more efficient for most settings.
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Figure 3: We present winning subnetworks on all STD spaces with cflops and cparams respectively.
(Left) Parameters distribution of winning subnetworks under cflops = {0.25, 0.1, 0.05, 0.02}. (Right)
FLOPs distribution of winning subnetworks under cparams = {0.25, 0.1, 0.05, 0.02}.

Medium-pruning-ratio regime. Figure 2a (Row 1) illustrates accuracy drop EDFs for three STD
pruning spaces in a medium-pruning-ratio regime. As a baseline, the pruned subnetwork with an
uniform pruning ratio of 0.5 reduces 74.1% FLOPs (corresponds to cflops = 0.259) from the original
network and has an accuracy drop of 0.3% after fine-tuning for 50 epochs. On each STD space, we
can easily find many subnetworks (about a fraction of 60%) that outperform the baseline subnetwork.

The winning subnetworks in this regime have significantly different recipes (Row 6) and all of them
lead to pruned subnetworks without any accuracy drop.5 From accuracy drop EDFs and standard
deviation of r (Row 2), the cost to find such a good subnetwork on each STD space is similar,
suggesting that there is no difference between STD spaces in medium-pruning-ratio regimes.

High-pruning-ratios regime. Next, we present STD spaces in high-pruning-ratio regimes, where
more than 90% FLOPs are reduced after pruning. In Figure 2b, 2c and 2d (Row 1) we find that
the accuracy drop EDFs for STD spaces progressively differ from each other. From cflops = 0.1
to cflops = 0.02, STD-0.01 spaces become higher than STD-0.05 and STD-0.1 spaces con-
sistently. In other words, STD-0.01 space has a higher fraction of better subnetworks at every
accuracy drop threshold when we prune more filters. This clear qualitative difference suggests that
the cost to find a good subnetwork on STD-0.01 spaces is less than the costs on others. More-
over, under an extreme constraint such as cflops = 0.02, we can easily find many subnetworks on
STD-0.01 space that outperform the winning one on STD-0.1 space. There might exist a win-
ning subnetwork on STD-0.1 space that is comparable to the best subnetworks on others, as we
only sample n = 100 recipes in the experiments. However, it does not alter our conclusion that
STD-0.01 space is a more efficient network pruning space across pruning regimes, especially in
high-pruning-ratio regimes.

According to our experimental results, in these pruning regimes, there seems to be no shared pattern
from the perspective of winning subnetwork structures. However, we observed an interesting trend
that good pruning recipes always have a small standard deviation, although those with a large stan-
dard deviation can also produce good subnetworks with a small probability. Upon this discovery,
one might ask: What makes these recipes with a small standard deviation outperform others?

Distribution comparison. In Figure 2 we present FLOPs distribution (Row 3) and parameter bucket
distribution (Row 4). A pattern emerges: the amount of remaining parameters of subnetworks on
STD-0.01 spaces is much closer to a certain number than those on other STD spaces in each
pruning regime. Since we produce pruning recipes r with a constraint on FLOPs, we have the
following conjecture:

Conjecture 1. (a) Given a target FLOPs reduction, there exists an optimal parameter bucket for
pruning filters; (b) Subnetworks that have the optimal parameter bucket will be the winning ones
on S; (c) A good structure of pruned subnetwork guarantees an approximately optimal parameter
bucket under its FLOPs.

5A small loss of 0.02% is ingored here, as better performance can be achieved when retrained for more
epochs.
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(a) cparams = 0.25 (b) cparams = 0.1 (c) cparams = 0.05 (d) cparams = 0.02

Figure 4: STD pruning spaces under cparams = {0.25, 0.1, 0.05, 0.02}. In the figure, we study three
STD pruning spaces, including STD-0.1, STD-0.05 and STD-0.01 spaces with a constraint on
parameter bucket. (Row 1) Accuracy drop EDFs on STD spaces. (Row 2) Remaining FLOPs distri-
bution. (Row 3) Remaining parameters distribution. (Row 4) Mean computation budget distribution.
(Row 5) The winning pruning recipe on each STD pruning space.

With Conjecture 1, we present the best 40 subnetworks on all STD spaces under each cflops in Fig-
ure 3 (left). Note that the 40 winning subnetworks have different standard deviations of r, which
empirically proves our Conjecture 1c.

Constraint on parameter bucket. Consider a simple question: What kind of subnetworks will be
winning ones under a constraint on parameter bucket? Next, we present STD pruning spaces with
a constraint on parameter bucket cparams in Figure 4. We observe a consistent trend that STD-0.01
space is higher than others in high-pruning-ratio regimes (e.g., cparams = {0.05, 0.02}). Similarly,
in Figure 3 (right), we present the best 40 subnetworks on all STD spaces under each cparams and
have the following conjecture:

Conjecture 2. (a) Given a target parameter bucket reduction, there exists an optimal FLOPs for
pruning filters; (b) Subnetworks that have the optimal FLOPs will be winning ones on S; (c) A good
structure of pruned subnetwork guarantees an approximately optimal FLOPs under its parameter
bucket.
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Figure 5: (Left) Sort winning subnetworks under different constraints (cflops and cparams) by their
accuracy drops. Each one is the best on all STD spaces under a constraint. (Right) We present the
best 40 subnetworks on all STD spaces under each constraint.

Based on Conjectures 1 and 2, we believe that the winning subnetworks in different pruning regimes
have optimal configurations of (FLOPs, parameter bucket), which are achieved by their pruning
recipes. To further reduce the degrees of freedom, we introduce a tool that represents the FLOPs-to-
parameter-bucket ratio compared to the original network, namely mean computation budget (mCB):

mCB =
FLOPs(fθsub)/Params(fθsub)

FLOPs(fθ)/Params(fθ)
. (2)

In Figure 2 (Row 5) and Figure 4 (Row 4) we present mCB distribution of subnetworks with cflops
and cparams respectively. With this tool, we combine Conjectures 1 and 2 into one and have the
following conjecture:

Conjecture 3. (a) In a pruning regime, there exists an optimal mean computation budget for
pruning filters; (b) Subnetworks that have the optimal mean computation budget will be the winning
ones on S; (c) A good structure of pruned subnetwork guarantees an approximately optimal mean
computation budget in this pruning regime.

Taking the design of the original network as the optimal configuration of (FLOPs, parameter bucket),
we argue that the optimal mCBs in many pruning regimes are roughly equivalent to 1.0. In Figure 5
(right), we present mCB distribution of winning subnetworks when FLOPs reduction increases.
Statistically, our experimental results show that the optimal mCB for a pruning regime should be a
dynamic range and the optimal mCB range is around 1.0 in most pruning regimes.

Moreover, the optimal mCB tends to increase when we reduce more FLOPs by pruning. We draw
a fitted curve of optimal mCB in Figure 5 (right, red dashed line) and the curve rises significantly
when the reduction is above 90%. We also draw a curve (orange dashed line) presenting the mCB of
subnetworks with uniform pruning ratios. These two curves are close in most regimes, suggesting
that an uniform recipe is a good starting point when we search winning pruning recipes. That
might be the reason why uniform pruning ratios outperform some pruning methods in our extremely
pruning experiments.

In Figure 3, we observed that the optimal parameter bucket, the optimal FLOPs and the final per-
formance of winning subnetworks seemed to be predictable. This observation is consistent with
Rosenfeld et al. (2021), in which a scaling law is developed to estimate the error after weight prun-
ing. Therefore, we have another conjecture:

Conjecture 4. The limitation of performance in each pruning regime can be predicted by a func-
tional form.6

In Figure 5 (left), we present the relationship between the mCBs of winning subnetworks and their
accuracy drops. We observed that the limitation of performance could be predicted by a function of
the optimal mCB in a pruning regime. Since the goal of network pruning is to increase efficiency

6The limitations of performance and the curves in Figure 3 can be further refined, as we only retrain sub-
networks for 50 epochs.
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Table 1: Pruning ResNet-50 on ImageNet. † denotes our re-implementation.

FLOPs zone method FLOPs (G) Top-1 (%) Top-5 (%)

- ResNet-50 (He et al., 2016)† 4.12 76.88 93.44

2G

Thinet-50 (Luo et al., 2017) 2.10 74.70 90.02
EagleEye (Li et al., 2020) 2.00 76.40 92.89
MetaPruning (Liu et al., 2019a) 2.00 75.40 -
AutoSlim (Yu & Huang, 2019) 1.00 75.60 -
HRank (Lin et al., 2020) 2.30 74.98 92.33
FPGM (He et al., 2019) 1.92 74.83 92.32
Ours (cflops = 0.5) 2.06 76.90 93.55

1G

ThiNet-30 (Luo et al., 2017) 1.20 72.10 88.30
EagleEye (Li et al., 2020) 1.00 74.20 91.77
MetaPruning (Liu et al., 2019a) 1.00 73.40 -
AutoSlim (Yu & Huang, 2019) 1.00 74.00 -
HRank (Lin et al., 2020) 1.55 71.98 91.01
Ours (cflops = 0.25) 1.03 74.96 92.51

while maintaining accuracy, such an empirical function helps a lot when one is making a trade-off.
Moreover, we believe that one might find a winning subnetwork without any accuracy drop in many
pruning regimes, where the optimal mCB ranges are around 1.0.7

4 RESNET-50 ON IMAGENET

In this section, we prune ResNet-50 on ImageNet (Russakovsky et al., 2015) with cflops = 0.5 and
cflops = 0.25. Since ImageNet is a large-scale dataset that takes more time for one epoch than
CIFAR-10, we first generate pruning recipes and then fine-tune subnetwork candidates for 5 epochs.
The top-5 ranking candidates will be retrained with a complete schedule. Specifically, we fine-tune
subnetworks with an initial learning rate lr = 0.01 for 100 epochs on ImageNet.

In the experiments, we produce pruning recipes with a refined pruning space upon the proposed
Conjecture 3. We empirically use a constraint on mCB cmCB = 1.0 ± 0.1 instead of a constraint
on the standard deviation of recipes r for efficiency. This is because all STD spaces have a sim-
ilar distribution in such a pruning regime, according to our analysis for CIFAR-10. Note that the
excepted parameter bucket range is decided by cmCB when a target FLOPs reduction is set. We gen-
erate n = 300 subnetwork candidates and finally keep the top-5 ranking candidates. In Table 1, we
compare the winning subnetwork to the state-of-the-art pruning methods. The comparison shows
that our analysis for network pruning spaces guides us to better pruning results.

5 CONCLUSION AND DISCUSSION

In this work, we introduce network pruning spaces for exploring general pruning principles. Inspired
by (Radosavovic et al., 2019; 2020), we focus on the structure aspect of subnetwork architectures
by comparing populations of subnetworks, instead of producing the best single pruning recipe. Al-
though our empirical studies do not lead to a common pattern from the perspective of architecture,
we observe that there exists an optimal mean computation budget in a pruning regime. Moreover,
our observations suggest that the limitations of performance in different pruning regimes might be
predictable by a function of the optimal mean computation budget. Our work empirically provides
insight into the existence of such a functional form that approximates the accuracy drops and char-
acterizes filter pruning.

7We argue that the limitation is related to the dataset size. Our experiments on ImageNet fail to find such a
subnetwork without any accuracy drop when we reduce more than 75% FLOPs.
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