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ABSTRACT

While the flexible capabilities of large language models (LLMs) allow them to
answer a range of queries based on existing learned knowledge, information re-
trieval to augment generation is an important tool to allow LLMs to answer ques-
tions on information not included in pre-training data. Such private information
is increasingly being generated in a wide array of distributed contexts by organi-
zations and individuals. Performing such information retrieval using neural em-
beddings of queries and documents always leaked information about queries and
database content unless both were stored locally. We present Private Retrieval
Augmented Generation (PRAG), an approach that uses multi-party computation
(MPC) to securely transmit queries to a distributed set of servers containing a
privately constructed database to return top-k and approximate top-k documents.
This is a first-of-its kind approach to dense information retrieval that ensures no
server observes a client’s query or can see the database content. The approach in-
troduces a novel MPC friendly protocol for inverted file approximate search (IVF)
that allows for fast document search over distributed and private data in sublinear
communication complexity. This work presents new avenues through which data
for use in LLMs can be accessed and used without needing to centralize or forgo
privacy.

1 INTRODUCTION

Heavily pre-trained and fine-tuned Large Language Models (LLMs) have demonstrated exceptional
performance on zero-shot (Kojima et al., 2022) and few-shot tasks (Brown et al., 2020). The ability
of these models to generalize, combined with their costly pretraining, has shifted the focus from
training ad-hoc models to perform specific tasks to utilizing these general-purpose foundational
models for a wide variety of use-cases (Eloundou et al., 2023; OpenAI, 2023). These pre-trained
models lack knowledge of private contexts or recent events.

To provide these LLMs with up-to-date or relevant information, methods such as Retrieval Aug-
mented Generation (RAG) (Lewis et al., 2020; Karpukhin et al., 2020; Mao et al., 2020) are used
to include external information into a generation process without needing fine-tuning on new data.
This process allows LLMs to first query an external data source, retrieve relevant information (with
respect to a given prompt), and then use both the prompt and the retrieved data as input to the
inference phase of the LLM.

Similar to the problem of federated learning (Kairouz et al., 2019), it is valuable to aggregate sen-
sitive data from multiple (perhaps many) data owners. To do that, each party should be able to
guarantee that their own private data remains private even when it is utilized. On the other hand,
model users should be able to query these data from many data owners without needing to share
what questions they are asking.

In this work we argue that LLMs require a new model for sharing data for AI tasks. Compared
to federated learning, which focuses on the training phase, LLMs should focus on the (i) retrieval
phase; (ii) inference phase. For the latter, trusting an external provider (e.g., OpenAI) may suffice
for many. Alternatively, secure inference solutions (Li et al., 2022; Dong et al., 2023; South et al.,
2023; Mo et al., 2020) may provide a solution.
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Figure 1: Overview of PRAG architecture using a distributed, secret-shared inverted file index (IVF),
for retrieving document token vectors closely matching a privately-generated query vector in LLM-
based question answering.

With respect to the retrieval phase, to the best of our knowledge, we are the first to offer a solution,
which we call Private Retrieval Augmented Generation (PRAG).

Our approach and contributions. In this paper, we propose Private Retrieval Augmented Gen-
eration (PRAG), a secure approach to augment neural information retrieval that hides both query
vectors and the retrieval database. We use a retrieval database split across a set of servers, and
we ensure data remains private by using secure multi-party computation (MPC) techniques. To the
best of our knowledge, we are the first to consider the problem of secure distributed retrieval in the
context of LLMs, and more broadly, are the first to propose a solution for private similarity search
that can protect both the query and a database constructed by multiple data owners across. This
approach can be deployed with any standard neural IR embedding model to augment distance cal-
culations (e.g., cosine, dot, euclidean) and top-k retrieval over federated vector stores, scaling to
medium-size databases with very little accuracy loss (99% accuracy on real data).

We further scale the approach to much larger databases using an approximate k-nearest-neighbors
approach inside MPC, replicating the accuracy of the state of the art in approximate retrieval using
a first-of-its kind inverted files index inside MPC, providing significant speed improvements for
retrieval. Our approach provides both theoretical and empirical improvements of value. We achieve
constant communication on the client’s side and sublinear communication on the servers’ side ––
the bottleneck in MPC approaches. This work is the first IR approach to work across more than
two servers with minimal additional costs. We further present a ‘leaky’ version of the protocol that
allows for partial privacy of queries under a privacy budget with significant improvements to speed.

We evaluate PRAG across a range of data distributions, both real and synthetic, to show it broadly
maintains the performance characteristics of non-secure IR approaches. We provide a pytorch-native
implementation of our system using the Crypten MPC engine and retrieval hooks for langchain and
BEIR.

2 METHODS

In this section, we present the Private Retrieval Augment Generation (PRAG) framework. The
method builds from secret sharing and MPC friendly exact top-k calculations to a new MPC design
of an inverted file index for efficient approximate top-k calculation.
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2.1 OVERVIEW AND TRUST MODEL

Although a wide array of approaches exist for training document embedding models and augmenting
generation with retrieved models, most neural information retrieval methods are underpinned by
a step where a querier sends a query embedding to a server to calculate the distance / similarity
between the query vector and the database, in order to return a document either as an embedding
vector for concatenation or with the document tokens for use in LLM inference. This setup offloads
the storage of large databases and their associated calculations to a more powerful server.

Recently, a significant body of research has been focusing on the problem of secure inference, which
ensures that a query remains private at all times. Whether secure inference is achieved through
cryptographic techniques (e.g., Li et al. (2022); Dong et al. (2023); Akimoto et al. (2023); Chen
et al. (2022); Gupta et al. (2023)), or by running the model locally (Arora & Ré, 2022), if the
inference pipeline includes an external retrieval phase (as is often the case), then security does not
hold as the query itself is leaked to the database operator.

Similarly, the database may itself hold private information, collected by many different data owners.
The only way to protect their data is by making sure both the client and the vector database server(s)
remain oblivious to its content.

To formalize this, we assume our system has nclients clients sending queries and nowners data
owners. Both clients and data owners interact with a set of nservers vector database operators. We
assume that all parties in the system are semi-honest (i.e., they follow the protocol) and that at most
t < nservers

2 of the servers are corrupt (the honest majority setting). In this work, we do not focus
on the nowners data owners privately building the server, and we assume that at some point in the
past these data owners have secret-shared their data to the servers. Instead, we are focused on the
inference stage, a much more frequent and real-time operation.

2.2 EXACT MPC TOOLS

We assume all values are shared using Shamir (1979) secret sharing over a prime field Fp where p
=̃ 32 or 64 bits. We note that our protocols could work using other secret sharing schemes suitable
for the honest-majority setting (e.g., replicated secret sharing (Ito et al., 1989) over the ring Z232 or
Z264 ).

We further assume, as is common in secure machine learning literature (e.g., Riazi et al. (2018);
Knott et al. (2021)), that there is a trusted dealer that generates shared random values. However,
other techniques could distribute this (e.g., Damgård et al. (2013); Orsini et al. (2020); Escudero
et al. (2020)). As in other works, since these protocols happen offline in a preprocessing phase and
do not impact the online performance of serving a query, we do not benchmark their performance.

We denote arithmetic secret-shared values by [x]. A share for a specific server i is denoted as
[x]i. When sharings may appear once as a t-degree sharing and another as a 2t-degree sharing, we
occasionally distinguish these sharings with a superscript (e.g., [x](2t)). We use [x] := SS.Share(x)
and x := SS.Reveal([x]) for sharing and revealing secret shared items.

As is well known, all linear operations over secret-shared values require no interaction between
the servers. For multiplication, a single round of interaction is required. Given our setting, we
find the multiplication protocol by Damgård & Nielsen (2007) to be the most suitable. For com-
pleteness, we briefly describe the protocol: given secret-shared values [x], [y] the protocol securely
produces [z] such that z := xy. The protocol begins by having a pre-computed double sharing of
[r](t), [r](2t) secret-shared between the parties. Then, each party i locally computes a partial masked
multiplication of [z̃](2t)i := [x]i[y]i + [r]

(2t)
i . All parties use SS.Reveal([z̃](2t)) in a single round of

communication to obtain z̃, and finally they each set [z]i := z̃ − [r]
(t)
i to obtain a sharing of the

result.

We note that recently Goyal et al. (2021) showed how to improve the efficiency of this protocol. Our
work could leverage this optimization technique in a black-box manner without further changes.

Since in this work we operate in the semi-honest, honest-majority setting, we encode real numbers
into a field, we use the common technique of representing all underlying values as fixed-point in-
tegers (Catrina & Saxena, 2010). In practice, this means that for any real value x̃ ∈ R, we encode
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it as a fixed-point integer ⌊x̃2f⌋ ∈ Z with precision f . Note that multiplying two encoded values
results in a value with 2f -precision. Therefore, truncation is needed after every multiplication to
avoid causing an overflow inside the field, which would distort results.

2.2.1 DISTANCE CALCULATIONS

While there is some heterogeneity in distance measures used in neural information retrieval, the
majority use dot products, cosine similarity, or L2 norms (euclidean distance). We provide MPC
friendly implementations of all three.

A naive implementation of a dot product between a vector and a matrix can be provided by running
the secure multiplication protocol in parallel. Both the communication and the computation com-
plexity scale linearly with the size of the database N and embedding dimension size de, the latter of
which is fixed in almost all cases. Round complexity remains the same (constant) regardless.

Extending the dot product gives us cosine similarity, the predominant distance measure in sentence
transformer style models (Reimers & Gurevych, 2019). To save on expensive MPC computations,
we pre-normalize the input vectors and matrices prior to secret sharing into MPC, allowing for
cosine similarity to reduce to a simple dot product. Computing Euclidean distance can also be
achieved directly through MPC, but we observe that this is a much more expensive operation, as it
requires computing square roots inside the MPC circuit. For example, Crypten (Knott et al., 2021),
which we use in our implementation, uses a slow Newton-Raphson approach for computing square
roots, requiring multiple rounds of communication.

However, we make the observation that given that top-k calculations are the end goal of distance
calculations, the monotonic square root step in L2 can be ignored completely before looking for the
top-k elements in the distance vector, removing the need to compute the square root securely.

2.2.2 FAST SECURE DOT PRODUCT

Computing the dot product of two vectors x, y requires computing the sum of their point-wise prod-
ucts z :=

∑d
j=1 xjyj . This can be achieved in MPC naively by using a secure multiplication

protocol in parallel. However, for vectors of size N , this requires pre-processing and communicat-
ing O(N) elements per dot product. This further compounds as we try to securely multiply matrices
together, as in our case.

However, as was observed by Chida et al. (2018) and leveraged in works such as Abraham et al.
(2020), we can reduce the communication complexity of computing a dot product from N elements
to a single element, by first having each party first locally compute the sum of point-wise products
(instead of each product independently), and only masking the final result, as is shown in Protocol
1. Repeating this across a dimension of a matrix, we can use this for efficient matrix multiplication.

Algorithm 1: ΠSumProd

Input: Public Parameters: t, d
Input: [x](t), [y](t) two input vectors of size d given as t-sharings
Preprocessed: ([r](t), [r](2t))
Output: Returns [z](t)

1 Compute [z](2t) :=
∑d

j=1[x]j [y]j // local dot product;
2 Compute [z](t) := SS.Reveal([z](2t) + [r](2t))− [r](t) (Re-randomize and reduce sharing);
3 Return [z](t);

2.2.3 RELATION TO PRIVATE INFORMATION RETRIEVAL

A well-known method of privately reading a specific entry in a database is by computing the dot
product between a one-hot-vector with a non-zero element at the index of interest. Assuming i is the
index of interest from some arbitrary vector or matrix x, one can privately retrieve the data at row i,
without leaking any information as [0, . . . , 1, . . . , 0] · [x1, . . . , xi, . . . , xN ]T = [xi]. To read several
rows at once, we can first sum across several one-hot-vectors to obtain a single vector.
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This simple oblivious private retrieval from a database allows us to extract any top-k elements from a
database matrix that has been secret shared. This allows us to extract either database embedding vec-
tors or token arrays from inside the distributed database for return. In essence, rather than securely
returning top-k indices and asking the user to separately extract them, we can return the original
tokens from a secret shared database directly in MPC. This oblivious retrieval is used extensively
throughout our protocols below, such as in extracting candidate vectors from clusters.

2.2.4 EXACT TOP-K FOR RETRIEVAL

Retrieving the most similar documents to a query requires first ranking all documents by some
similarity metric (as above) and then picking the top k documents that are closest to the query.

Our solution is conceptually similar to secure top-k circuits designed in other works such as Chen
et al. (2020), where O(kN) comparisons are needed. These circuits operate by successively keeping
an ordered list of k items, and then computing each value in the array with the minimum value in the
(much smaller) sorted list. Unfortunately, this solution also requires O(N) rounds for MPC based
on secret-sharing.

Instead, our protocol iterates k times over a secret-shared vector [x]. In each iteration, we run
argmax([x]) to extract the current minimum’s index in the vector. We then obliviously scale down
the selected value enough so it will be ignored in future iterations.

There are many ways to implement an MPC protocol for argmax([x]). Our description above
assumes a recursive tree-reduction based protocol as in Knott et al. (2021), having O(log2(N))
rounds and O(N log2(N)) total communication. This leads to an exact top-k round complexity of
O(k log2(N)) and O(kN log2(N)) overall communication.

By combining this with distance calculations and oblivious private retrieval from a database we can
provide an end-to-end exhaustive exact algorithm to return the top-k nearest documents to a query
from a database of embeddings (and a database of tokens for exact document return).

Secret share
query

embedding

MPC
distance

calculation

Secret shared
distance vector

MPC top-k
Oblivious
database
retrieval

2.3 NEAREST NEIGHBORS AND INVERTED FILES (IVF)

At its core, the information retrieval task of top-k closest points is exactly the task of solving the k-
nearest-neighbors (kNN) problem, which requires finding the k points in a database that are nearest
to the given data point (the query). While the above exact approach achieves this, it does so at a
significant speed cost (both with or without MPC), motivating the creation of approximate nearest
neighbors algorithms, which only require a sublinear amount of work.

These algorithms operate by first computing a compact representation of the dataset called the index,
and then executing queries on the index. Many approximate nearest neighbors techniques exist, and
one that is particularly amenable to MPC is the inverted files index (IVF) (e.g., Johnson et al. (2017),
Jégou et al. (2011)). This technique works by first using a clustering algorithm (e.g., k-means) over
the data set to find its nc centroids. Then, each centroid represents a cluster holding all points
associated with that cluster. In other words, this process splits the database into nc buckets.

After this one-time step, querying the data starts by computing the nearest neighbors of the query
with respect to all centroids. Then, the nprobe nearest inverted files are searched, looking for the k
nearest neighbors among them.

During IVF generation, parameter choices in how the index is built affect the downstream perfor-
mance of the queries. We choose the number of clusters to be nc = α

√
N to get sublinear complex-

ity, where α is a free parameter that can be tuned. During query time, we find the distance to all nc

centroids, and select the top nprobe clusters to inspect further. As we will see during experiments,
this choice of nprobe increases the recall performance of the model, and indeed at nprobe = nc,
all clusters are inspected and the search becomes exact. However, the nature of the IVF clustering
allows a smaller nprobe to be chosen while still achieving high accuracy.
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2.4 EFFICIENT APPROXIMATE VECTOR NEAREST NEIGHBOR SEARCH IN MPC

Bringing this into MPC, the protocol ΠIVFQuery securely computes the approximate nearest neighbors
using an inverted file index. The protocol assumes the servers pre-computed the secret-shared in-
verted index [IVF], which consists of nc lists of size m, both of which are of size O(

√
N), ensuring

the overall communication complexity is sublinear. We use the MPC distance measures established
above to calculate the distance between the query vector and each of the nc cluster means.

The parties then run a secure protocol of exact top k as described earlier to identify the nprobe most
similar clusters. Unlike non-MPC protocols, it is critical that the servers remain oblivious as to
which are the top clusters for this query. Otherwise, information about both the query and database
would leak. For this reason, we require the top-k protocol to return each index as a one-hot-vector
of size nc which are collectively stored in [closest buckets].

Then, the parties perform an exact-match private information retrieval to get all the vectors in the
closest buckets. These [candidates] can be obliviously found through a product of [closest buckets],
a mapping of centroids indices to cluster indices in the database, [IVF indices], and the entire [IVF]
vector database. By obliviously reducing the entire vector database into a much smaller search space
that only includes vectors from the nprobe nearest clusters, we are able to achieve sublinear overall
communication.

At this stage, [candidates] holds a reduced (nprobe×m)×d vector matrix (where d is the embedding
dimension). [candidates indices] will similarly store the mapping from each candidate to the original
database index. We proceed by running an exact nearest neighbor search again, which computes the
distances between the query and all candidates and then securely gets the top-k entries. Using
[candidates indices], these top-k entries are mapped back to the original database records, where
documents can be obviously retrieved.

Algorithm 2: ΠIVFQuery

Input: Public Parameters: n, k, nc, nprobe, m, d
Client: query x ∈ Rd

Server: Secret-shared inverted file clusters [IVF clusters]∈ Rnc×d, Inverted file index values
[IVF] ∈ Rnc×m×d, Inverted file index indices [IVF indices] ∈ Rnc×m

Output: k-nearest-neighbors (approximate)
1 Client computation:
2 [x] := SS.Share(x);
3 Send each server i its share [x]i;
4 Servers computation:
5 in parallel Iterate over [cluster] ∈ [IVF clusters];
6 [centroid distancei] := SumProd([x], [cluster]);
7 [centroid distances] := {[centroid distance1](t), . . . , [centroid distancenc

](t)};
8 Compute [closest buckets] := ExactTopk([centroid distances], nprobe);
9 Compute [candidates] := MatMult([closest buckets], [IVF]) and

[candidates indices] := MatMult([closest buckets], [IVF indices]);
10 in parallel Iterate over [candidate] ∈ [candidates];
11 Compute distance using SumProd and store as [candidate distances];
12 Compute [candidate top-k indices] := ExactTopk([candidate distances], k);
13 Compute [database top-k indices] via private exact-match retrieval of [candidate top-k indices]

from [candidates indices];
14 Return [database top-k indices] documents via private retrieval.

2.4.1 SUBLINEAR COMMUNICATION COMPLEXITY

The client maintains an optimal communication complexity of O(1), as it only needs to communi-
cate a share of the query vector to each server.

As to the servers, in lines 5-7 a total of nc := O(
√
N) elements are communicated. Computing the

exact top-k over these nc distances requires O(k · log2(nc)) communication. Reducing the dataset
obliviously costs O(nprobe

N
md). With our choice of parameters, nprobe and d are constant, and
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m =
√
N , yielding O(

√
N) communication. This gives a candidate dataset that is approximately

of size nprobe

√
N . Finally, we can compute the distances and exact top-k on this reduced dataset,

but as it now only contains O(
√
N), the overall communication of that step is O(k · log2(

√
N)).

Overall, we see that end-to-end the servers communicate O(
√
N + log2(

√
N)) field elements while

the client communicates O(1) elements (in fact, she communicates exactly d elements, as is the
size of the input vector). This holds true so long as nprobe remains small enough to be considered
a constant. As the number of candidate clusters to be probed becomes nc, the overall complexity
of the approach becomes O(

√
N ·

√
N) = O(N), which is no better than exact search but with

additional overhead operations. Hence, nprobe should be kept low as we will see in the experimental
settings.

2.5 SACRIFICING PRIVACY FOR SPEED IN MPC IVF

The fast secure dot product trick above helps significantly improve the speed of the step wherein we
reduce the full database to only the nprobe clusters vectors relevant to the query. However, this step
is still extremely costly, requiring the manipulation of a large database of vectors for lookup when
the clusters are stored in a large matrix.

Instead, we can take an alternate approach, where each cluster is stored in its own secret shared
database, with an exposed lookup table. The centroids of the database still remain secret shared
and private, but during query time, the nprobe closest clusters (shuffled to avoid exposing order)
are decrypted by each server to retrieve the relevant secret shared cluster matrices, which can then
be concatenated before passing into the second distance-top-k calculation. This has large speed
implications, dramatically decreasing the data access time and allowing for speed more competitive
with non-MPC IVF.

However, this does come at the cost of privacy. Each server will now know the nprobe closest clusters
to the query, which leaks the area in the embedding space where the query is coming from. Indeed,
while the centroids are secret shared, knowing the lookup table and what a user accesses would
allow an actor to determine an average point across those centroids with more queries.

To mitigate this, a query could be noised according to a privacy budget similar to differential privacy,
as for sufficiently large nprobe, even a high noised query would likely contain the relevant closest
clusters nearby. One slight advantage here is that larger choices of nprobe provide more privacy (and
more capacity for noising), while also increasing the overall accuracy of the search (as we see in
Figure 3).

In general, this final methodological change differs from above by no longer being fully private, but
is presented as part of the spectrum from slow but exact private search to fast approximate search,
and finally to fastest but leaky approximate search.

3 EXPERIMENTS

To demonstrate the performance of these models we run a series of experiments on both synthetic
and real data to determine performance properties of the implementations of these methods above.

We benchmark the retrieval accuracy and speed across a range of embedding sizes (256 to 8192),
synthetic embedding distributions (N(0, 0.05), N(0, 1), U(−1, 1), Binary), distance functions (co-
sine, dot product, euclidean), top-k values, IVF parameters, and database sizes. We perform MPC
experiments on a single 2.2GHz Intel Xeon Silver CPU using Crypten’s built-in communication
code to spawn processes for each server.

Further to this, we test the approaches on retrieval of real neural embedding datasets from
BEIR (Thakur et al., 2021) using the same environment. While there are several parallelization
improvements that can be made locally within each server, our implementations of each algorithm
above remain unoptimized.
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Figure 2: Time taken to retrieve top-k closest vectors in the database for end-to-end MPC exact
search across increasing synthetic database sizes.

3.1 EXACT SEARCH

Each step of the exact search approach is extremely accurate, with small numerical errors intro-
duced during MPC. For distance measures, MPC vectors have a mean squared error difference from
pytorch calculated distances of less than 10−5 for euclidean and 10−8 for cosine, going as low as
10−11 for euclidean distance on N(0, 0.05). These errors do not change with database size, and are
introduced at the numerical level of the elements.

The exact top-k approach using tree reduction applied interactive k times suffers from similar small
numerical errors. For distance vectors drawn N(0, 0.05), where outliers are often standalone, top-k
elements are picked out with 0.99 or above recall and precision. For uniform distributions (unrealis-
tic for embedding distance vectors) the f1 accuracy is lower for top-1 (0.842) and top-k (0.96) with
recall and precision climbing for higher k. This is explained by the small distances present between
the max and its nearest value when drawn from a uniform distribution, leading numerical errors to
induce a loss of accuracy. Fortunately, the nature of real distance distributions means performance
is high in real contexts. For small values of k, this approach can be relatively fast but increasing the
choice of k dramatically increases the time cost due to communication complexity in the interactive
argmax looping.

Putting distance calculations, top-k, and oblivious retrieval together, the exact search approach in
MPC can identify the top-1 (argmax) most similar vector to a query with 97.5% accuracy and top-
50 with 98.6% F1 score, with accuracy independent of database sizes tested up to 5 × 105. The
constraint on the use of this MPC exact approach is the speed, taking up to 10 seconds for top-1 and
top-5 for a 105 size database, and increasing dramatically for larger k as in Figure 2.

3.2 APPROXIMATE SEARCH

Our MPC IVF implementation, using both fully secure and partially leaky clustering, returns the
elements as the standard IVF implementation with an average of over 99% recall on both synthetic
and real embedding data, with errors explained by numerical errors at runtime. For real data, we use
embeddings from msmarco-distilbert-base-v3 from Reimers & Gurevych (2019). These numerical
errors partly flow through from the exact search above, which is used at various points in the IVF
MPC algorithm. This accuracy of the MPC IVF to non-IVF is stable across choices of nprobe and
nc.

While the MPC IVF matches the recall performance of the standard IVF, the underlying approximate
nature of the IVF provides tradeoffs between accuracy and speed. As shown in Figure 2, increasing
the value of nprobe increases the proportion of the full database that is inspected at query time, in
turn increasing the overall runtime. The benefit of IVF is that we can achieve high accuracy for even
a low value of nprobe, dramatically reducing query time at the cost of accuracy.
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Figure 3: Information retrieval using IVF improves accuracy with increased nprobe (top left) but
increases query time as a larger proportion of the index (nprobe

nc
) must be searched (bottom left).

These retrieval approaches (both IVF and exact) scale favorably across multiple servers (right).

4 RELATED WORK

Drawing on the ideas in private federated learning, we can maintain privacy when doing public
queries (Arora et al., 2022) and move beyond in-context learning (Arora & Ré, 2022)/

We bring privacy to this idea through augmenting existing non-private retrieval methods, ranging
from exact search on small datasets to large scale approximate retrieval (Johnson et al., 2017; Jégou
et al., 2011). While several other works have examined the problem of secure similarity search
(e.g., Chen et al. (2020); Zuber & Sirdey (2021); Servan-Schreiber et al. (2022); Asharov et al.
(2017); Schoppmann et al. (2018); Shaul et al. (2018a;b); Songhori et al. (2015)), to the best of
our knowledge we are the first to examine a model where the database is secret shared as well, and
where an arbitrary number of servers and database owners can be supported. A comparison to the
state-of-the-art protocols (Servan-Schreiber et al., 2022; Chen et al., 2020) is available in Table 1.

These approaches can augment other pieces of privacy-first ML infrastructure from fully secure
LLM inference (Li et al., 2022; Dong et al., 2023) and federated or privacy preserving K-means
clustering (Vaidya & Clifton, 2003; Jagannathan & Wright, 2005). We choose to focus on MPC
techniques in this paper, as opposed to secure retrieval schemes that rely trusted execution environ-
ments (TEEs) (Wang et al., 2006; Yang et al., 2008; Papadopoulos et al., 2010; Drean et al., 2023),
as TEEs have been known to suffer from privacy-breaching attacks.

5 CONCLUSION

We introduced PRAG, a novel approach for secure, distributed information retrieval for large lan-
guage models. PRAG uniquely safeguards both query vectors and a multi-owner database using
multi-party computation (MPC). Key contributions include an MPC-friendly protocol for inverted
file approximate search, allowing for rapid document retrieval with sublinear communication com-
plexity; analysis of exact search performance on language embeddings; and a version of the protocol
that offers a trade-off between speed and partial privacy, under a predefined privacy budget. These
tools allow for a new mechanism of neural information retrieval, which when combined with se-
cure inference of LLMs, is a stepping stone towards fully secure foundation model agent pipelines.
However, much like secure execution of LLMs, the approach put forward here has significant com-
putational costs and speed limitations, especially for large databases and high accuracy demands.
Future work should explore optimizing communication costs, enhancing protocol robustness against
collusion, and integrating PRAG into larger secure machine learning frameworks.
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A APPENDIX

Protocol
Number of

servers
Model

Client
Communication

Server
Communication

Private
Database

Chen et al. (2020) m = 1 Single server High (GBs/query) High (GBs/query) No
Servan-Schreiber et al. (2022) m = 2 Two servers (dis-

honest majority)
O(

√
nlog(h)) O(1) No

Servan-Schreiber et al. (2022) m > 2 Any number of
servers (dishon-
est majority)

O(nlog(h)) O(1) No

This work m ≥ 2 Any number of
servers (honest
majority)

O(1)

(=input size)
O(

√
nlog(n)) Yes

Table 1: A comparison of this work’s contribution to distributed secure approximate kNN with
previous work from Chen et al. (2020) and Servan-Schreiber et al. (2022). While Chen et al. (2020)
has technically sublinear communication, it uses heavy-duty cryptographic techniques leading to
higher communication costs compared to our and Servan-Schreiber et al. (2022)’s techniques.
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