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ABSTRACT

In practice, reinforcement learning (RL) agents are often trained with a possibly
imperfect proxy reward function, which may lead to a human-agent alignment is-
sue (i.e., the learned policy either converges to non-optimal performance with low
cumulative rewards, or achieves high cumulative rewards but in undesired man-
ner). To tackle this issue, we consider a framework where a human labeler can
provide additional feedback in the form of corrective actions, which expresses the
labeler’s action preferences although this feedback may possibly be imperfect as
well. In this setting, to obtain a better-aligned policy guided by both learning
signals, we propose a novel value-based deep RL algorithm called Iterative learn-
ing from Corrective actions and Proxy rewards (ICoPro)1, which cycles through
three phases: (1) Solicit sparse corrective actions from a human labeler on the
agent’s demonstrated trajectories; (2) Incorporate these corrective actions into the
Q-function using a margin loss to enforce adherence to labeler’s preferences; (3)
Train the agent with standard RL losses regularized with a margin loss to learn
from proxy rewards and propagate the Q-values learned from human feedback.
Moreover, another novel design in our approach is to integrate pseudo-labels from
the target Q-network to reduce human labor and further stabilize training. We
experimentally validate our proposition on a variety of tasks (Atari games and
autonomous driving on highway). On the one hand, using proxy rewards with dif-
ferent levels of imperfection, our method can better align with human preferences
and is more sample-efficient than baseline methods. On the other hand, facing
corrective actions with different types of imperfection, our method can overcome
the non-optimality of this feedback thanks to the guidance from proxy rewards.

1 INTRODUCTION

While reinforcement learning (RL) has proved its effectiveness in numerous application domains
(Mnih et al., 2015; Silver et al., 2017; Levine et al., 2016), its impressive achievements are only
possible if a high-quality reward signal for the RL agent to learn from is available. In practice,
correctly defining such reward signal is often very difficult (e.g., in autonomous driving). If rewards
are misspecified, the RL agent would generally learn behaviors that are unexpected (Amodei et al.,
2016b) and unwanted (Clark & Amodei, 2016; Russell & Norvig, 2016) by the system designer,
notably due to overoptimization (Gao et al., 2023) or specification gaming (Randlov & Alstrom,
1998). This important issue has been well-recognized in the research community (Amodei et al.,
2016a) and is an active research direction (Ouyang et al., 2022; Skalse et al., 2022).

1We have open-sourced its implementation: https://github.com/JiangZhaoh/ICoPro.
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Various solutions have been proposed to avoid having to define a reward function, for instance, be-
havior cloning (Pomerleau, 1989; Bain & Sammut, 1995), inverse reinforcement learning (Ng &
Russell, 2000; Russell, 1998), (inverse) reward design (Hadfield-Menell et al., 2017), or reinforce-
ment learning from human feedback (Busa-Fekete et al., 2014; Christiano et al., 2017). However,
these approaches could be impractical and inefficient since they may require a perfect demonstrator,
a reliable expert to provide correct labels, or assume that the agent only learns from human feedback,
which would subsequently require too many (often hard-to-answer) queries for a human to consider.

As an alternative intermediate approach, we propose the following framework in which the RL agent
has access to two sources of signals to learn from: proxy rewards and corrective actions. A proxy
reward function is an imperfect reward function, that approximately specifies the task to be learned.
A corrective action is provided by a (possibly unreliable) human labeler when s/he is queried by the
RL agent: a trajectory segment is shown to the labeler, who can then choose to correct an action
performed by the agent by demonstrating another supposedly-good action.

This framework is practical and easily implementable. Regarding proxy rewards, they are generally
easy for system designers to provide. For instance, they can (1) learn proxy rewards from (pos-
sibly imperfect) demonstration, (2) manually specify them to roughly express their intention (e.g.,
supposedly-good actions are rewarded and expected bad actions are penalized), or (3) only define
sparse rewards (e.g., positive reward for reaching a destination and penalty for a crash). Regard-
ing corrective actions, in contrast to typical demonstrations of whole trajectories, this feedback is
usually much easier for the labeler to provide, since humans may not be able to complete a task
themselves but can readily offer action preference on some states.

While only learning with one of those two sources of signals has its own limitations, by proposing
our framework, we argue (and experimentally demonstrate) that learning simultaneously from both
of them, even though both may be imperfect, can be highly beneficial. More specifically, on the
one hand, solely learning from proxy rewards would either lead to very slow learning (e.g., when
proxy rewards are well-aligned with ground-truth rewards but are very sparse) or yield a policy
whose performance is not acceptable to the system designer (e.g., when proxy rewards are dense,
but misspecified). On the other hand, solely learning from corrective actions would require too many
queries to the human labeler and may lead to suboptimal learned behaviors since the human may be
suboptimal. In contrast, our key insight is that the two sources of signals can complement each other.
Since they are generally imperfect in different state-space regions, bad decisions learned from proxy
rewards can be corrected by the human labeler, while the effects of suboptimal corrective actions
may be weakened by proxy rewards. Therefore, learning simultaneously from the two imperfect
signals can achieve better behaviors more aligned to the system designer’s goals than using any one
of the two alone and can be more sample-efficient (in terms of both environmental transitions and
human queries).

As a proof of concept, we design a novel value-based RL algorithm (see Figure 1), called Itera-
tive learning from Corrective action and Proxy reward (ICoPro). ICoPro alternates between three
steps. In the first step (datacollection-phase), the RL agent interacts with the environment to
collect transition data, and then the labeler provides corrective actions on them. In the second step
(finetune-phase), the RL agent learns to select actions according to this feedback via a margin
loss, which can be interpreted as an imitation learning (IL) loss. In the third step (propagation-
phase), the RL agent is trained to maximize the expected cumulative proxy rewards while further
enforcing a margin loss. This latter loss is expressed on both observed labels (i.e., corrective actions
given by the human labeler) and pseudo-labels generated by a trained model (target Q-network).
Imitating such pseudo-labels can be interpreted in two ways: either to reduce the number of queries
or to stay close to the previously-learned policy, which can stabilize training like in trust region
methods (Schulman et al., 2015; 2017; Asadi et al., 2022). By combining imitation learning and
reinforcement learning in this third phase, the agent can learn from both proxy rewards and enforce
the temporal consistency of the values learned from imitation learning.

The contributions of this paper can be summarized as follows: (1) We propose a practical human-
in-the-loop reinforcement learning framework (Section 3) where the RL agent can learn from proxy
rewards and (possibly suboptimal) corrective actions. (2) To train the agent from these two imperfect
sources, we design an efficient and robust algorithm (Section 4) in which we demonstrate a simple
but useful technique to reduce human feedback. (3) We experimentally validate our proof of concept
(Section 5) by conducting an extensive number of experiments on various domains (e.g., image-
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Figure 1: ICoPro is an iterative method with three phases in each iteration. It starts with the data
collection-phase to collect agent’s rollouts. Segments are then sampled from these rollouts and
used as queries for the labeler to provide several corrective actions. Following this are two separate
phases for policy updating, the finetune- and propagation-phase. Then the updated policy is
utilized in the data collection-phase of the next iteration.

based Atari games and state-based highway driving with sparse and dense proxy rewards) under
different conditions (e.g., simulated or real human labeler).

2 RELATED WORK

Given the difficulties in defining ground-truth rewards, a growing number of studies attempt to in-
corporate various types of human feedback to train agents, for example, demonstrations (Pomerleau,
1989; Hester et al., 2018; Reddy et al., 2019), preferences (Busa-Fekete et al., 2014; Christiano et al.,
2017; Brown et al., 2020; Lee et al., 2021a), scalar evaluation (Knox, 2012; Knox & Stone, 2012;
Saunders et al., 2018), action advising (Maclin & Shavlik, 1996; Da Silva et al., 2020; Ilhan et al.,
2021a), interventions (Peng et al., 2023; Luo et al., 2024), example-states (Eysenbach et al., 2021),
or combination of multiple feedback types (Ibarz et al., 2018; Jeon et al., 2020; Yuan et al., 2024;
Dong et al., 2024). Among them, demonstrations, action advising, and interventions, which we
discuss further below, are the most related to corrective actions. We roughly organize these works
in three clusters. Preference signals can be provided in an offline or online setting. In addition, we
discuss related work that considers combining reward and other preference signals.

Offline setting One of the earliest approaches to circumvent the need of defining a reward function
is imitation learning (aka learning from demonstration), where a batch of demonstration is assumed
to be available. Two main approaches have been developed: Behavior Cloning (BC) and Inverse
Reinforcement Learning (IRL). BC (Pomerleau, 1989; Bain & Sammut, 1995) requires a significant
amount of data to achieve the desired performance, while IRL (Ng & Russell, 2000; Russell, 1998;
Brown et al., 2020) is computationally expensive as it derives the policy from the rewards obtained
from demonstrations, although some work (Ho & Ermon, 2016; Reddy et al., 2019) aims to over-
come these limitations. The major drawback in methods designed in the offline setting stems from
training policies on a fixed limited dataset, which may yield a policy that can perform badly when
deployed due to the train-test distribution mismatch. A typical approach to overcome this issue is to
resort to online policy training, as we do in our method.

Online setting In contrast to the offline setting, here the agent learns with a human in the loop:
either a human actively oversees the agent’s training and can intervene, or the agent can query a
human to obtain feedback to learn from. The former case (Spencer et al., 2020; Peng et al., 2023;
Luo et al., 2024) requires active participation and continuous attention from humans, while the latter
may require too many queries, which can be too labor intensive for one or even multiple humans
to provide. Examples of the latter approach include methods in the DAgger family (Ross et al.,
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2011; Sun et al., 2017; Kelly et al., 2019) (with optimal action labeling), and reinforcement learning
from human feedback (RLHF) methods (Busa-Fekete et al., 2014; Christiano et al., 2017; Lee et al.,
2021a) (with pairwise comparisons).

Combining reward and other signals Since learning from one signal may be insufficient and/or
inefficient, multiple works (Hester et al., 2018; Ibarz et al., 2018) consider learning from demon-
stration and rewards. In such work, demonstration is often provided offline and used for initializing
an online training phase, which can be standard RL training (Hester et al., 2018) or use other types
of feedback such as in RLHF (Ibarz et al., 2018), which can notably help for better human-agent
alignment. In particular, demonstrations can be used to initialize a policy (Ibarz et al., 2018), define
a reward signal (Reddy et al., 2019), or initialize a replay buffer for future RL training (Hester et al.,
2018). In addition, they can also be queried online (Chen et al., 2020; Peng et al., 2023; Luo et al.,
2024). Most works assume a well-specified (ground-truth) reward function, then focus on balanc-
ing the IL and RL objectives when human demonstrations are also usually assumed to be optimal
(Shenfeld et al., 2023; Liu et al., 2024), although some propositions have been made to deal with
suboptimal demonstrations (Nair et al., 2018).

In contrast to previous work, we do not assume the availability of a ground-truth reward function
but only an approximation of it (i.e., a proxy reward), which is easier to specify. Since learning
from this imperfect signal is insufficient, we complement it with corrective actions. Providing cor-
rective actions is less cognitively-demanding for the human than generating whole demonstrations,
especially if the agent and the human do not operate in the same sensori-motor space. Compared to
action labeling (Ross et al., 2011; Kelly et al., 2019) or intervention (Peng et al., 2023; Luo et al.,
2024), which have to happen on all unsatisfactory cases, our corrective action setting is less costly
since the human chooses on which states s/he wants to give the feedback. Finally, compared to most
previous work, we do not assume that the human is optimal. The goal of our paper is to demonstrate
as a proof of concept that the agent can learn more efficiently to reach a better performance from
two imperfect sources of signals than with any of the two alone.

3 PROBLEM FORMULATION

We consider a reinforcement learning (RL) problem (Sutton & Barto, 2018) where an RL agent
repeatedly interacts with an environment: Given the state space S and action space A, at a time
step t, after observing an (observation) state st ∈ S, it performs an action at ∈ A, which yields
an immediate reward rt ∈ R and brings the agent to a new state st+1 ∼ P (·|st, at) where P is
the environmental transition function. The goal of the RL agent is to learn, from interaction tuples
(st, at, rt, st+1), a policy π∗ : S → A that maximizes the expected discounted sum of rewards.
Recall that a policy can be represented as the greedy policy with respect to a Q-function, where
Q : S×A → R and Q(s, a) = E [

∑∞
t=0 γ

trt] with discount factor γ, then π(s) = argmaxa Q(s, a).

In contrast to standard RL, we do not assume that a ground-truth reward function (i.e., providing a
perfect description of the task that the RL agent needs to learn) is available. Instead, the agent only
receives an approximation of it, called proxy reward function and denoted r̃. Indeed, while a precise
reward function capturing all aspects of a desired behavior is hard to define for a system designer
providing a proxy reward function to roughly express the system designer’s objectives is much easier
to achieve (Reddy et al., 2019; Jeon et al., 2020; Luo et al., 2024). However, since the proxy rewards
are approximate, purely relying on learning from them may never achieve the desired performance.
Therefore, we assume that the RL agent can also query a human labeler to obtain additional feedback
under the form of corrective actions (see Figure 1). Formally, a query corresponds to a T -step seg-
ment (i.e., sequence of state-action tuples) q = (st, at, . . . , st+T−1, at+T−1), which can for instance
be sampled from trajectories generated from the interaction of the RL agent with its environment.
Given such query, the human labeler may select one state st′ (such that t ≤ t′ ≤ t + T − 1) where
s/he provides a corrective action aLt′ = πL(st′), where πL is the labeler’s policy. The corrective
action is supposedly a better choice than the actually-performed one at′ . Moreover, the labeler may
choose to provide no feedback if all the actions in the segment are good.

Note that we do not assume that the labeler is necessarily optimal. This means that it is not possible
to solely rely on the corrective actions (without proxy rewards) to learn a policy to achieve the
desired performance, which would furthermore be impractical in terms of label collection cost for
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the human labeler. Instead, by combining the two imperfect sources of learning signals, the RL
agent could possibly learn a policy with a better performance and in a more sample-efficient way
than using proxy rewards or corrective actions alone. Intuitively, the imperfections of the two signals
probably do not lie in the same state-action space regions and therefore the two signals could correct
each other. We confirm this intuition in our experiments (see Sections 5.2 and 5.3).

4 METHOD

As a first work demonstrating the benefit of learning from the two imperfect sources of feed-
back, we assume the action space A is finite for simplicity. Building on the Rainbow algorithm
(Hessel et al., 2018), we design ICoPro, an iterative approach to learn Qθ with desired policy
πθ(s) = argmaxa∈A Qθ(s, ·). At each iteration i, ICoPro updates the current Qθi to obtain the
next Qθi+1 according to the three phases: DataCollection, Finetune, and Propagation, which
we elaborate on next. Figure 1 outlines the proposed framework and Algorithm 1 is provided in
Appendix B.1.

Data Collection-phase. Inspired by the popular RLHF setting (Christiano et al., 2017), we adopt
the following protocol for collecting two types of data: interaction tuples and corrective actions.
For the former, the agent acts in its environment according to the ϵ-greedy policy with respect to
Qθi , denoted Gϵ(Qθi), to collect a setDenv

i of H interaction tuples, (st, at, r̃t, st+1), which are also
stored in the transition replay buffer Denv . For the latter, the RL agent can regularly during RL
training issue a batch of sampled queries fromDenv

i to the labeler to obtain a setDL
i of pairs of state

and corrective action (s, aL), which are also stored in the feedback replay buffer DL. The collected
data, Denv and DL, are used to train the RL agent in the next two phases. As a side remark, for
simplicity, querying the labeler is currently implemented in our experiments in a synchronous way
(i.e., the agent waits for the labeler’s feedback), but this process could possibly also be asynchronous.

Finetune-phase. This phase is a pure supervised training phase to learn from all the labeler’s
corrective actions collected so far in DL. Formally, Qθi is updated with the following margin loss
LMG
L (Kim et al., 2013; Piot et al., 2014; Hester et al., 2018; Ibarz et al., 2018):

LMG(θi | DL) = E(s,aL)∈DL

[
max
a∈A

[
Qθi(s, a) + l(aL, a)

]
−Qθi(s, aL)

]
, (1)

where l(aL, a) = 0 if a = aL, and a non-negative margin value C otherwise. This loss
amounts to enforcing that the corrective actions’ Q-values should not be smaller than those of
any other actions. As common practice, Qθi is updated via mini-batch stochastic gradient de-
scent using Equation (1). Following classical methods (Christiano et al., 2017) in RLHF, the
updates end when the actions predicted by the updated Qθi reaches a pre-defined accuracy δacc:
Ps∼DL

[
aL = argmaxa Q

θi(s, a)
]
> δacc .

Propagation-phase. Since pure imitation learning requires a large number of human labels, we
design the propagation-phase to include the training of the updated Qθi with a combination of RL
losses and margin loss (from actual labels in DL but also pseudo-labels), which we explain next.

- Training with RL Losses allows not only learning from proxy rewards, but also propagating the
effect of human labels to more states (learned in the previous phase). The initial target Q̄ in this
phase is the Qθi obtained at the end of the finetune-phase. These RL losses are composed of two
commonly used terms, LRL

1 and LRL
n , which are respectively defined as:

LRL
1 (θi | Denv, Q̄) = EDenv

[(
Qθi(st, at)−

(
r̃t + γmax

a′∈A
Q̄(st+1, a

′)

))2
]

and (2)

LRL
n (θi | Denv, Q̄) = EDenv

(Qθi(st, at)−

(
n−1∑
k=0

γkr̃t+k + γn max
a′∈A

Q̄(st+n, a
′)

))2
 , (3)

where Denv is the transition replay buffer, and Q̄ is the target network from a historical version of
Qθi . Note that in the context of standard RL, Equation (3) is actually not theoretically-founded,
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since the goal is to learn a greedy policy. However, in our context, it can help propagate faster the
Q-values learned from the corrective actions.

- Training with margin loss using both actual and pseudo-labels allows to complement and correct
the training with proxy rewards. Since the corrective actions inDL are not executed inDenv , training
with them using loss LMG prevents the agent from forgetting about the actual labels. In addition,
training with pseudo-labels can reduce the cost of collecting human labels by leveraging the large
number of unlabeled states in Denv . Pseudo-labels can be generated, using predicted greedy actions
from the target Q̄, only on unlabeled states, since otherwise, it is better to enforce the actual label
than a pseudo-label. Formally, the margin loss using pseudo-labels can be expressed as follows:

LMG
TGT (θi | DTGT ) = E(s,aTGT )∈DTGT

[
max
a∈A

[
Qθi(s, a) + l(aTGT , a)

]
−Qθi(s, aTGT )

]
, (4)

where DTGT = {(s, aTGT ) | s ∈ Denv\DL, aTGT = argmaxa∈A Q̄(s, ·)} and by abuse of
notations, Denv\DL denotes the states that have not received any actual corrective actions aE . In-
tuitively, as the training process goes on, we expect that the quality of the pseudo-labels improves,
enhancing further the benefit of enforcing LMG

TGT . As a side note, LMG
TGT can also be understood

as regularizing the online network’s parameters to stay close to the target network, which has been
shown to be beneficial in terms of learning efficiency (Asadi et al., 2022). In contrast to this previous
work, we regularize via the margin loss in the policy space instead of the parameter space.

To sum up, the total loss in this phase is the sum of the RL losses and the margin losses2:

LProp = LRL
1 (θi | Denv, Q̄) + LRL

n (θi | Denv, Q̄) + LMG
L+TGT (θi | Denv,DL),

where LMG
L+TGT (θi | Denv,DL) = (1− w̄)LMG

L (θi | DL) + w̄ · LMG
TGT (θi | Denv), (5)

and hyperparameter w̄ controls how much weight is put on pseudo-labels. In our implementation,
LRL
1 , LRL

n and LMG
TGT works on a same minibatch from Denv in each gradient step, while LMG

L

works on another one of the same size fromDL to relieve the unbalanced issue of these two datasets.

4.1 OTHER IMPLEMENTATION DETAILS

Updating schedule for Qθ and Q̄. Since aTGT will change every time we update the target Q̄,
we update Q̄ with low frequency to stabilize training. Concretely, there are E epochs in one
propagation-phase that each epoch optimize LProp through Denv . At the end of each epoch,
Q̄ will be updated to the online parameter Qθi . If E = 1, pseudo-labels in propagation-phase are
generated form the policy at the end of finetune-phase. If E > 1, pseudo-labels are changing after
each epoch and can come from the (potentially) improved Qθ after optimizing LProp.

Optimization for ICoPro’s iterative scheme. As for the optimizer, we use use a same optimizer
through the two learning phases in ICoPro. Since ICoPro uses an iterative learning scheme, we
follow the research from Asadi et al. (2024) that reset the 1st and 2nd order moment inside the
Adam optimizer at the beginning of each learning phase. The finetune- and propagation-phase
use the same learning rate α, which remains unchanged throughout the training procedure.

5 EXPERIMENTS

We first explain our general experimental settings in Section 5.1. To compare ICoPro with baselines
and analyze its design components on a large scale of experiments, we use simulated labelers to
demonstrate and analyze ICoPro’s performance in Sections 5.2 and 5.3. Then in Section 5.4, we
further verify the alignment performance of ICoPro using real humans’ action feedback.

5.1 GENERAL EXPERIMENTAL SETUPS

To ensure reasonable labeling effort, only at most 1% of the environmental transitions are labeled
in our experiments. Hyper-parameter values are given in Appendix B.2 unless otherwise specified.
Detailed evaluation configurations can be checked in Appendix D.1.

2In Equation (5) we give equal weight to the IL and RL losses, but unequal weights could be provided if we
expect one source to be more suboptimal than the other.
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Baselines. To compare with the performance of learning from only proxy rewards, we use Rain-
bow (Hessel et al., 2018) as a baseline. To compare with the performance of learning from only
corrective actions using LMG

L (Equation (1)), we evaluate behavior cloning (BC-L) on all collected
labels DL at the end of training of ICoPro as the one in offline style, and adapt HG-DAgger (Kelly
et al., 2019) (HGDAgger-L) by removing the propagation-phase from ICoPro as the one in on-
line style. As for baselines involving learning from both signals, since no previous work considers
the exact same learning scheme as explained in Section 3, we adapt two state-of-the-art methods
that were initially designed on normal RL methods into our iterative learning setting with the same
labeling schedule and budget, DQfD (Hester et al., 2018) (DQfD-I) and PVP (Peng et al., 2023)
(PVP-I), to compare the performance when learning from both corrective actions and proxy re-
wards. Basically, the adaption is canceling the finetune-phase in ICoPro and replacing their
loss functions with ICoPro’s LProp (Equation (5)) in the propagation-phase. DQfD-I can be
seen as an ablation of ICoPro by removing LMG

TGT from LProp. PVP-I’s loss replaces LMG
L+TGT

to LPV P
L = E(s,a,aE)∼DL

[
|Qθ(s, aE)− 1|2 + |Qθ(s, a) + 1|2

]
, but using zero rewards in LRL

1

and LRL
n . We also test in PVP-I, the effects of using proxy rewards instead of zeros (PVP-IR).

More details about the baselines and other ablations mentioned in Section 5.2 can be checked in
Appendix C.1.

Environments. Our experiments involve both the state-based highway (Leurent, 2018) environment
and imaged-based Atari (Aitchison et al., 2023) environments.

Table 1: Engineered proxy rewards on highway.
We normalize the rewards into the range [−1, 1]
in each step by min-max scaling if Normaliza-
tion is not None, where the min (max) reward is
the sum of negative (positive) event rewards.

Configurations Proxy Rewards
PRExp PR1 PR2 PR3 PR4

Rewards
for

Events

Change lane 0.2 0 0.2 0 0
High speed 1.5 2 0.8 0 0
Low speed -0.5 -1 0 0 0
Crash -1.7 -1 -1 -1 -1

Normalization [-1,1] [-1,1] [-1,1] [-1,1] None

Dense(D) or Sparse(S) D D – D S

Highway is an environment that allows for flex-
ible design of diverse proxy rewards and evalua-
tion metrics, but is relatively simpler than Atari
in terms of action dimension (|A| = 5) and en-
vironmental complexity. The basic goal in this
environment is to drive a car on a straight road
with multiple lanes. The final performance of
the trained vehicle can be measured with dif-
ferent metrics, e.g., the ratio of episodes with a
crash (%Crash), the average total forward dis-
tance in a given time limit (Distance-Avg), the
average speed (Speed-Avg), and the ratio of tak-
ing a change lane action (%LaneChange-Avg).
We design representative proxy rewards in differ-
ent levels of imperfection by associating events
with different rewards as shown in Table 1.

In contrast, Atari provides more complex environments with larger action dimensions and longer
episode lengths, although with less flexibility in designing proxy rewards and diverse performance
metrics. Since the dimension of action space can be seen as a measurement of hardness for one
game, we first select 6 representative games with the full action dimension (|A| = 18) across var-
ious categories suggested by Aitchison et al. (2023): (1) Combat: Battlezone and Seaquest, (2)
Sports: Boxing, (3) Maze: Alien, (4) Action: Frostbite and Hero. We also include smaller-action-
dimensional but classical games to complement our evaluation: MsPacman and Enduro (|A| = 9),
Pong (|A| = 6), and Freeway (|A| = 3). In this setting, cumulative episodic raw rewards from ALE
are used to measure agent performance, with signed raw rewards serving as proxy rewards3.

Simulated labeler. We use Q-values trained with Rainbow to simulate human feedback with
Qdiff (s, a, aL) = QL(s, aL)−QL(s, a), where QL(s, a) = EP,πL [

∑∞
t=0 γ

trL(s, a)|s0 = s, a0 =

a] is the labeler’s Q-function, and aL ∼ Gϵ(QL(s, ·)) is the action issued from the labeler,
a ∼ Gϵ(Qθ(s, ·)) is the executed action from the training agent. In practice, we select states with
top NCF largest Qdiff to give corrective actions for a querying segment Luo et al. (2024) , where
NCF = 1 is our default configuration. Basically, simulated labelers are agent checkpoints trained
with engineered rewards by Rainbow but do not necessarily converge to optimal performances. For
highway, labelers are trained with PRExp mentioned in Table 1. For Atari, labelers are trained with
the signed raw rewards. Concrete configurations to train labelers can be checked in Appendix D.4.

3Raw rewards rA in Atari can be seen as goal-conditioned rewards, but not all desired performances (e.g.,
achieve goals in the right way) are rewarded in rA. Further discussion is available in Appendix D.3.
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Proxy Rewards Methods

(a) Compare ICoPro (solid lines) with Rainbow (dotted lines) using different proxy rewards (different colors).
Methods

(b) Compare ICoPro with other baselines (different colors). Results are averaged over the set of proxy rewards.

Figure 2: Experiments on highway using the set of proxy rewards mentioned in Table 1. Each sub-
plot compares the performance with respect to one representative performance metric. |DL|=1.5K.

Table 2: Experimental results on Atari with different size of |DL|. Red fonts denote the best results
with the largest mean score. Bold black fonts emphasize results whose mean+std covers the best
mean score. Yellow backgrounds highlight results that match the labelers’ performance in the sense
that their mean scores are in the range of the labelers’ mean±std.

|DL| Methods Environments
Seaquest Boxing Battlezone Frostbite Alien Hero MsPacman

\ Labeler 1071.92±224.88 66.05±9.17 24485.19±4987.60 5647.63±1038.91 2908.97±908.32 26866.07±612.29 3539.54±1270.95
Rainbow 707.04±98.96 1.99±0.71 17058.00±2310.60 2766.40±518.78 1319.83±457.06 19413.57±600.39 1773.98±323.19

Large

HGDAgger-L 790.10±73.98 24.95±2.22 16573.33±1262.82 3207.35±527.35 2067.45±262.04 13258.79±2128.13 3052.38±370.50
PVP-I 635.83±65.74 7.76±0.84 15183.03±1739.17 1535.28±528.88 596.56±99.45 8503.46±1205.13 1686.13±608.96
PVP-IR 770.88±91.00 13.36±2.00 17378.18±2245.64 1664.62±414.02 798.55±137.99 7729.12±1282.99 920.25±216.76
BC-L 758.40±41.31 21.39±1.21 16020.00±2081.92 3410.27±479.08 2360.40±422.57 14288.67±1673.48 2877.07±279.24
w/o aTGT 1213.98±102.54 48.19±7.90 18111.52±1409.68 3874.36±515.30 1835.06±267.85 17805.35±2471.35 2579.86±186.22
w/o Finetune 1234.39±113.44 51.83±26.67 19366.67±285.28 4713.07±1211.91 2223.66±368.38 8398.37±2729.85 2633.59±154.34
DQfD-I 1155.43±85.98 41.71±5.09 18444.85±1279.70 4176.27±659.14 2079.99±293.53 17814.10±1688.55 2734.25±176.22
ICoPro 1274.76±109.53 61.52±2.47 20030.30±1620.36 4817.74±605.45 2360.27±301.52 23344.01±2353.67 3188.20±453.13

Small

HGDAgger-L 508.34±77.91 17.91±2.21 14682.22±1633.46 1561.04±457.61 1582.74±467.88 10617.77±1664.62 2342.51±264.97
PVP-I 439.96±68.62 1.09±2.05 9242.42±2056.15 509.45±237.64 402.53±78.44 6454.75±1193.92 891.84±251.87
PVP-IR 733.73±116.70 14.33±3.98 16510.30±1684.40 1883.64±270.40 1136.07±301.34 8777.76±1410.76 1097.92±246.94
BC-L 537.20±51.86 9.09±4.64 17273.33±2605.40 1348.80±236.28 1711.00±659.06 10252.73±1556.18 2278.00±337.84
w/o aTGT 1065.65±164.01 40.56±10.22 16465.45±1434.87 2785.41±452.83 1269.06±288.76 15420.19±2108.08 1676.97±652.21
w/o Finetune 1081.16±131.98 19.35±16.53 21253.33±2694.61 3037.84±1152.24 891.97±148.50 9759.02±3093.64 1830.23±559.33
DQfD-I 1003.21±128.45 39.27±20.85 17003.64±1532.05 3146.25±418.00 1075.79±249.17 16525.18 ±1915.10 1952.64±427.78
ICoPro 1167.19±103.02 61.40±23.91 19969.09±1555.69 3368.31±701.54 1736.52±513.91 17862.58±2181.02 2558.57±331.18

5.2 SAMPLE-EFFICIENT ALIGNMENT WITH IMPERFECT PROXY REWARDS

We use one scripted labeler for each environment to validate the alignment ability of ICoPro and
compare it with baselines, using proxy rewards with different levels of imperfections. In the follow-
ing of this part, we analyze ICoPro’s performance based on results shown in Figure 2 and Table 2.
More specifically, Figure 2 evaluates the performance with various performance metrics, while Ta-
ble 2 evaluates the performance with small or large size of action label budget4. Due to space
constraints, results for easier Atari tasks (i.e., Pong, Freeway, and Enduro) and corresponding plots
for the results in Table 2, are put into Appendix A.

4Considering that the action budgets required to align depend on the complexity of the labeler’s perfor-
mance, the concrete values of |DL| is not specified in the main text but can be checked in Table 7.
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Learning from a combination of two imperfect signals performs better than learning from
r̃ or corrective actions alone. Compared to Rainbow, Figure 2a and Table 2 show that ICoPro
with corrective actions can converge quickly and stably to the labeler’s performance using proxy
rewards with different levels of imprefection, but Rainbow’s performance is unstable and can easily
converge to non-optimal performance without the guidance from corrective actions. Compared to
BC-L and HGDAgger-L, Figure 2b and Table 2 demonstrate that ICoPro’s performance exceeds their
performances substantially in most of the games, which confirms the effectiveness of integrating the
proxy rewards with the RL losses to achieve better alignment than using corrective actions alone.

ICoPro achieves better alignment performance than baselines. As shown in Figure 2b and Ta-
ble 2, using the same sample budget in terms of both environmental transitions and label budget,
ICoPro achieves the best performance in terms of aligning with labelers’ performance in almost all
settings, or performs similarly with the best one otherwise. In Figure 2b, except for Rainbow, all
methods perform similarly in terms of aligning the labeler’s Speed-Avg and %LaneChange-Avg per-
formance, while for the harder performance metrics %Crash and Distance-Avg, ICoPro and DQfD-I
perform similarly, and both are significantly better than PVP-I, PVP-IR, and HGDAgger-L. In Ta-
ble 2, with largeDL, ICoPro does match the labelers’ performances, except in the hardest Hero with
full action dimensions and relatively long episode length. Specifically, compared with the two PVP
methods, their performances are obviously worse than that of the methods using margin loss, since
LPV P
L sets a pre-defined bound for Q-values making it fails to adapt to various reward settings. In

some games, incorporating proxy rewards into their framework (PVP-IR) performs even worse than
not (PVP-I). However, margin loss is a suitable choice to incorporate the corrective actions with
proxy rewards. As for DQfD-I, in simple environments we perform similarly, but in harder Atari
environments ICoPro outperforms it and shows more notable performance gaps than in highway.

Ablations: ICoPro’s integral design leads to a stable and robust performance. Considering that
the two-phase learning and pseudo-labeling are the main novel designs in ICoPro, there are two
additional settings to be examined besides DQfD-I and HGDAgger-L: (1) w/o Finetune, which
removes the Finetune-phase but retains the pseudo-labels, and (2) w/o aTGT , which removes
pseudo-labels5. In the highway environment, the two ablations perform similarly to ICoPro, and
we include them into Appendix A.2 instead of Figure 2b to make it clearer to check. However, in
Table 2, we find that while the two ablation settings may perform well in individual environments
when action feedback is abundant, they are not as robust as ICoPro across different environments,
especially when feedback is limited and tasks are challenging. ICoPro consistently demonstrates
superior performance in such scenarios, maintaining its lead even with fewer feedback instances.

5.3 OVERCOMING NON-OPTIMALITY OF CORRECTIVE ACTIONS WITH PROXY REWARDS

To simulate different types of imperfections inside corrective actions, the most natural and com-
monly adopted (Lee et al., 2021b; Luo et al., 2024) one is to replace part of a labeler’s corrective
actions with random actions (DiffRand). In our setting, it simulates labelers who know which
state-action pairs to correct but provide noisy corrective actions. We evaluate it in three represen-
tative environments that cover various environmental complexities: highway, Boxing and Seaquest.
As shown in Figures 3a and 3b. ICoPro performs robustly within a reasonable ratio of random ac-
tions (i.e., < 25%), and can perform significantly better than the labelers with large randomness (i.e.,
50%). For Atari, we further consider a harder type that uses different labelers with worse perfor-
mances (DiffLabler) to simulate labelers who are suboptimal on both where and how to provide
corrective actions. As shown in Figure 3c, ICoPro still demonstrate a strong capability to overcome
the non-optimality inside such unreasonable action feedback in most of the cases. Performance
of Highway using another labeler, and training plots with concrete budget sizes or proxy rewards,
instead of the averaged ones in Figure 3 can be checked in Appendices A.1.3, A.2.2 and A.2.3.

5.4 USER STUDY

To verify that ICoPro can align with real human’s preferences when the desired performance is
hard to be obtained with engineered rewards, we use highway (|A| = 5), Pong (|A| = 6), and
Seaquest (|A| = 18) as three representative environments to evaluate ICoPro with real human

5Considering that removing margin loss on DL from the propagation-phase is not reasonable, we do
not show this set of ablations in the main text, but the results can be checked in Appendix C.3.1.
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Ratio of Random Actions Policy

(a) Highway with DiffRand. Performances are averaged over the set of proxy rewards in Table 1.
Ratio of Random Actions

Policy

(b) Atari (Boxing, Seaquest) with DiffRand.

Ranks of Performance

Policy

(c) Atari (Boxing, Seaquest) with DiffLabler.

Figure 3: ICoPro facing different types of non-optimality of corrective actions (different colors).
Performances are averaged over large/small DL in Figures 3b and 3c.

(ICoPro-Human) with less than 500 action labels. For highway, we use PR4 as the proxy reward in
ICoPro-Human since it does not introduce any extra performance shaping, and obtain a vehicle that
knows how to take over cars with super fast average speed ([Speed-Avg,%Crash]=[29.02, 0.22]),
which is a behavior that we could never obtain with Rainbow using PR4 alone. For Pong, ICoPro-
Human obtains an agent that performs more human-like than the simulated optimal labelers (see
Figure 12 in Appendix E.1 for details). For Seaquest, we use it to further verify the applicability
of ICoPro-Human to environments with larger action dimensions. In this game, saving divers is a
desired performance that has never been correctly rewarded in its proxy rewards. ICoPro-Human
obtains an agent that rescues 1.5 times more divers than the scripted labeler (3.2 vs. 1.9, averaged
over 50 evaluation episodes), even though the scripted labeler costs 46 times more timesteps (0.1M
vs. 4.6M). Moreover, compared to ICoPro-Human, BC-L on those real human labels gets poor
performance due to the limited data and non-optimality of human feedback (highway: [29.02, 0.22]
vs. [27.90, 0.41]), Pong: 7.83 vs. -11.26, Seaquest: 3.2 vs. 2.1), which confirms again ICoPro’s
ability to learn from two imperfect signals in a sample-efficient way. User interfaces and instructions
for each environment, examples of corrective actions from humans, as well as the training plots and
evaluation videos of ICoPro-Human, are provided in Appendix E.

6 CONCLUSIONS AND LIMITATIONS

We present a human-in-the-loop framework where an RL agent can learn from two potentially unre-
liable signals: corrective actions provided by a labeler and a pre-defined proxy reward. The motiva-
tion for combining the two learning signals is threefold: (1) guide the agents’ training process with
corrective actions, (2) use proxy rewards to help reduce human labeling efforts, and (3) possibly
compensate for the imperfection of one signal with the other. Our value-based method trains a pol-
icy in an iterative way, with two separate learning phases inside each iteration: the finetune-phase
uses a margin loss to update the policy to better align with action feedback, then the propagation-
phase incorporates RL losses as well as the margin loss expressed with pseudo-labels to generalize
the improved values. Our experiments validate our algorithmic design.

While we demonstrated the feasibility and the benefit of learning from two imperfect signals, we
plan as future work to provide a more theoretical analysis to reveal what assumptions about the
misspecification of proxy rewards and/or the suboptimality of the corrective actions could guarantee
their synergetic combination.
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A MORE EXPERIMENTAL RESULTS AND PLOTS

A.1 ATARI

A.1.1 LEARNING CURVES FOR TABLE 2 INCLUDING PONG, FREEWAY, AND ENDURO

Figure 4 show plots comparing ICoPro with various baselines, and Figure 5 show ablation study for
ICoPro. Lines represent the average episodic return in terms of the raw reward. Shadows represent
the standard deviation. For Rainbow, the x-axis should read in terms of steps instead of iterations.
For other methods, the x-axis can be read in terms of steps or iterations.

Larger 𝑁!  (More feedback) Smaller 𝑁!  (Less feedback) Larger 𝑁!  (More feedback) Smaller 𝑁!  (Less feedback) 

Figure 4: Compare baseline methods on Atari in terms of the averaged episode return measured with
the raw reward rA. The shadow indicates the standard deviation over 5 seeds. Nq in titles refer to
the number of queries per iteration, and the larger (resp. smaller) ones correspond to the large (resp.
small) DL in Table 2.

A.1.2 COMPARE ICOPRO WITH MORE RELATED WORKS.

Compare with Ilhan et al. (2021b). In Table 3, we compare the performance of ICoPro with
ActionImitation (Ilhan et al., 2021b), which is a method that also uses action advice but is to augment
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Larger 𝑁!  (More feedback) Smaller 𝑁!  (Less feedback) Larger 𝑁!  (More feedback) Smaller 𝑁!  (Less feedback) 

Figure 5: Ablation study on Atari to test the effect of ICoPro’s two-phase scheme and target pseudo
label. Nq in titles refer to the number of queries per iteration, and the larger (resp. smaller) ones
correspond to the large (resp. small) DL in Table 2.

the replay buffer, on their experimental environments. Results for ActionImitation come from their
paper. Our simulated labelers in the three games achieved the same score as theirs (full score on
Pong and Freeway, and 1200 score on Enduro), so we put ICoPro’s results from Figure 4 directly to
compare with. Our method uses significantly less data than the ActionImitation method.

Table 3: Compare the number of feedback actions (|Nlab|) and environmental interaction timesteps
(Tenv) needed to reach the labelers’ score in each environment.

Method |Nlab| Tenv

Pong Freeway Enduro Pong Freeway Enduro

ActionImitation 10K 10K 10K 3M 3M 3M
ICoPro 375 2K 8k 375K 500K 2M
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Ratio of Random Actions

Policy

(a) DiffRand correspond to Figure 3b.

Ranks of Performance

Policy

(b) DiffLabler correspond to Figure 3c.

Figure 6: Detailed plots with large/small budget size for the averaged plots in Figure 3b , although
the plots for Pong are not shown in the main text due to the space limit. Larger (resp. smaller) Nq

indicates the large (resp. small) budget DL.

A.1.3 DETAILED RESULTS FOR DIFFRAND AND DIFFLABLER WITH DIFFERENT LABEL
BUDGET SIZE

Figure 6 are separated plots using different size of label busget in Figures 3b and 3c. Overall, ICoPro
can overcome the two kinds of imperfections from the labeler (i.e., checkpoint) in most cases. A
larger label budget tends to lead to performance with less variance in both of the two settings.

For DiffRand, which involves replacing part of the same labeler’s labels with different ratios of
random actions, a larger number of imperfect labels does not necessarily result in worse perfor-
mance. This suggests ICoPro’s capability to effectively utilize those good labels and overcome the
effects of bad labels with proxy rewards, as illustrated in Figure 6a.

For DiffLabler, which employs labelers of varying performance levels, we have three main ob-
servations from the results shown in Figure 6b. (1) For ICoPro, a worse labeler does not necessarily
decrease its performance. For example, in Figure 6b, the two labelers with performance ranks 0 and
1 (in green and nacarat) in Boxing-Nq = 5, or the two labelers with performance ranks 2 and 3 (in
purple and pink) in Seaquest-Nq = 20, ICoPro labeled by them exhibit similar performances, de-
spite the obvious performance gap between these two labelers. (2) Labelers with lower performance
indeed tend to lead to worse performances of the trained agent from ICoPro, which is also widely
noted by related works that involve human feedback (e.g., PVP (Peng et al., 2023), RLIF (Luo et al.,
2024)). (3) ICoPro demonstrates a strong capability to overcome the non-optimality of the labeler
in most cases: For example, in Pong, even though the worst labeler only achieves scores around
-15, ICoPro trained with this labeler can still achieve scores larger than +10. But if the labeler’s
performance is bad, a larger number of ”corrective” actions (i.e., experiments using larger Nq) may
lead to a poorer performance of ICoPro.
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A.2 HIGHWAY

A.2.1 EXTRA RESULTS FOR ABLATION STUDY

Figure 7 shows the ablation study on highway. For such an environment with a relatively small num-
ber of action dimensions, ICoPro can outperform HGDAgger-L significantly but only outperform
other ablations slightly. Similar performance can also be observed in Atari games with small action
dimension like Pong and Freeway in Figure 5.

Methods

Figure 7: Extra ablation results on highway with the labeler used in Figure 2. Performances are
averaged over the set of proxy rewards mentioned in Table 1.

A.2.2 EXTRA EVALUATION WITH ANOTHER SCRIPTED LABELER (DIFFLABLER)

In Table 4, we compare the two simulated labelers used in our experiments. The first labeler
(Labeler-CL), which is the labeler illustrated in our main text, prefers driving faster and changing to
different lanes more often than the second one, but with a larger crash rate as well. The second one
(Labeler-RL) drives in a safer way at a lower speed and prefers to drive in lanes on the right. Then,
in Table 5, we list the 2 sets of proxy rewards for the two labelers.

Figure 8 shows experimental results with Labeler-RL, which confirm our analysis in Section 5.2
again that ICoPro can align to the desired performance better than baselines.

Table 4: Performance metric for the 2 simulated labelers in highway.

Labeler %Crash Step-Avg Step-Min Distance-Avg Distance-Min Speed-Avg LanePosition-Avg %LaneChange-Avg

Labeler-CL 0.10 48.51±0.39 20.80±9.78 1163.689±12.85 483.09±227.80 23.97±0.06 0.57±0.05 0.18±0.02
Labeler-RL 0.02 49.29±0.74 28.95±19.92 1099.38±19.02 608.93±404.97 22.30±0.12 0.91±0.02 0.04±0.01

Table 5: Reward weights for engineered proxy rewards on highway for the two labelers mentioned
in Table 4.

Labeler-CL

Proxy Rewards PRExp PR1 PR2 PR3 PR4

Evnets

Change lane action 0.2 0 0.2 0 0
Normalized lane index 0 0 0 0 0
High speed 1.5 2 0.8 0 0
Low speed -0.5 -1 0 0 0
Crash -1.7 -1 -1 -1 -1

Normalize [-1,1] [-1,1] [-1,1] [-1,1] None
Labeler-RL

Proxy Rewards PRExp PR1 PR2 PR3 PR4

Evnets

Change lane action 0.2 0 0 0 0
Normalized lane index 0.5 0.5 0.2 0 0
High speed 1.7 1.5 0.8 0 0
Low speed -0.5 -0.5 0 0 0
Crash -1.9 -1.5 -1 -1 -1

Normalize [-1,1] [-1,1] [-1,1] [-1,1] None
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Proxy Rewards Methods

(a) Compare agent’s performance learned from ICoPro and Rainbow.
Methods

(b) Compare ICoProwith other baselines. The learning curves are averaged over the set of proxy rewards
mentioned in Table 5.

Figure 8: Experiments on highway with Labeler-RL using the set of proxy rewards mentioned in
Table 5. Each plot compares the performance with respect to one representative performance metric.
Compared with Figure 2, the different performance metric is LanePosition-Avg in the 4th subplot.
|DL|=1.5K at the end.

A.2.3 EXTRA RESULTS FOR DIFFRAND

In Figure 9 we show the whole detailed plots for the averaged ones mentioned in Figure 3a. ICo-
Pro overcome such non-optimality inside the non-optimal corrective actions no matter which proxy
reward is applied.

B IMPLEMENTATION DETAILS FOR ICOPRO

B.1 PSEUDO-CODE FOR ICOPRO

Algorithm 1 show the concrete learning procedure of ICoPro.

B.2 HYPER-PARAMETERS

The basic hyper-parameters for ICoPro in all environments are listed in Table 6.

In Table 7, we list hyper-parameters with slight differences in different environments. The reasons
that we do not use a same configuration is:

• Choices of n in Equation (3) are the same one as training the Rainbow labeler. We find that
in Boxing and Enduro we can not obtain meaningful checkpoints with the default value 20
and therefore using smaller values.

• E defaults to 2, except for the 3 hard Atari games with 18 actions. We observed that setting
E = 2 will be hard to let ICoPro and DQfD-I reach labelers’ performance, but setting
E = 1 performs better.

• Since Enduro’s episode length can reach 25K when the performance approach to our la-
belers’. In this case, set H as the default 5K can introduce bias in our iterative feedback
schedule. Therefore we set H = 20K in this game.

Moreover, we compare the design elements between ICoPro and the original Rainbow’s (Hessel
et al., 2018) in Table 8.
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(a) PRExp: �̃� 𝐶𝑟𝑎𝑠ℎ = −1.7, �̃� 𝐻𝑖𝑔ℎ𝑆𝑝𝑒𝑒𝑑 = 1.5, �̃� 𝐿𝑜𝑤𝑆𝑝𝑒𝑒𝑑 = −0.5, �̃� 𝐶ℎ𝑎𝑛𝑔𝑒𝐿𝑎𝑛𝑒 = 0.2, Norm-[−1,1]

(b) PR1: �̃� 𝐶𝑟𝑎𝑠ℎ = −1, �̃� 𝐻𝑖𝑔ℎ𝑆𝑝𝑒𝑒𝑑 = 2, �̃� 𝐿𝑜𝑤𝑆𝑝𝑒𝑒𝑑 = −1, �̃� 𝐶ℎ𝑎𝑛𝑔𝑒𝐿𝑎𝑛𝑒 = 0, Norm-[−1,1]

(c) PR2: �̃� 𝐶𝑟𝑎𝑠ℎ = −1, �̃� 𝐻𝑖𝑔ℎ𝑆𝑝𝑒𝑒𝑑 = 0.8, �̃� 𝐿𝑜𝑤𝑆𝑝𝑒𝑒𝑑 = 0, �̃� 𝐶ℎ𝑎𝑛𝑔𝑒𝐿𝑎𝑛𝑒 = 0.2, Norm-[−1,1]

(d) PR3: �̃� 𝐶𝑟𝑎𝑠ℎ = −1, �̃� 𝐻𝑖𝑔ℎ𝑆𝑝𝑒𝑒𝑑 = 0, �̃� 𝐿𝑜𝑤𝑆𝑝𝑒𝑒𝑑 = 0, �̃� 𝐶ℎ𝑎𝑛𝑔𝑒𝐿𝑎𝑛𝑒 = 0, Norm-[−1,1]

(e) PR4: �̃� 𝐶𝑟𝑎𝑠ℎ = −1, �̃� 𝐻𝑖𝑔ℎ𝑆𝑝𝑒𝑒𝑑 = 0, �̃� 𝐿𝑜𝑤𝑆𝑝𝑒𝑒𝑑 = 0, �̃� 𝐶ℎ𝑎𝑛𝑔𝑒𝐿𝑎𝑛𝑒 = 0, Norm-𝑁𝑜𝑛𝑒

Ratio of Random Actions Policy

Figure 9: Detailed performance for each proxy rewards that used to show the average performance
in Figure 3a.

B.3 EXPERIMENTS COMPUTE RESOURCES

For experiments in Atari, we only need one GPU card to launch experiments, including GPUs
GeForce RTX 3060 12G GPU + 48GB memory + Intel Core i7-10700F, GeForce RTX 3060 12G
GPU + 64GB memory + Intel Core i7-12700, GeForce RTX 2070 SUPER + 32GB memory + In-
tel Core i7-9700, GeForce RTX 2060 + 64GB memory + Intel Core i7-8700. For experiments in
highway, we use CPUs.
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Algorithm 1 ICoPro

Require: Initial policy πθ
1 with randomly initialized Qθ

1, oracle policy πL with QL

Require: # training iteration NItr, # rollout steps H per iteration, # queries per iteration Nq

Require: In finetune-phase: Target Accuracy δacc
Require: In propagation-phase: # update epochs E, data from the recent I iterations
Require: DL ← ∅

1: for i← 1 to NItr do
2: Collect a rollout Denv

i = {(sit, ait, r̃t)}Ht=1 with ait = Gϵ(argmaxa∈A Qθ
i (s

i
t, ·))

3: Sample segments Dq
i = {qk}

Nq

k=1 from Denv
i

4: for each q ∈ Dq
i do ▷ Data Collection-phase

5: Give corrective actions DL
i = {(sit, aiE,t)k}

NCF

k=1

6: DL ← DL ∪ DL
i

7: end for
8: Reset optimizer’s 1st and 2nd order moment
9: while Es∼DL

[
I
[
aE = argmaxa Q

θ
k(s, ·)

]]
< δacc do ▷ Finetune-phase

10: Update Qθ
i with LMG

L (Equation (1)) on minibatch from DL

11: end while
12: Reset optimizer’s 1st and 2nd order moment
13: for j ← 1 to E do ▷ Propagation-phase
14: Q̄← Qθ

i

15: for minibatchs Denv in Denv
[i−I,i] do

16: Calculate LRL
1 , LRL

n , and LMG
TGT on Denv

17: Calculate LMG
L in DL ∼ DL, |DL| = |Denv|

18: Update Qθ
i with LProp (Equation (5))

19: end for
20: end for
21: Qθ

i+1 ← Qθ
i

22: end for
23: return Qθ

NItr

Table 6: Default hyper-parameters.

Hyper-parameter Value

General
training batch size B 128
margin C 0.05
Architecture for Neural Network same with DERainbow(Van Hasselt et al., 2019)

Optimizer

type Adam(Diederik, 2014)
learning rate α 0.0001
eps 0.01/B
betas (0.9, 0.999)

DataCollection-phase

NCF 1
ϵ 0.01
T Atari: 25, highway: 10
query sampling uniformly sample segments without overlap

Finetune-phase Accuracy target δacc 0.98

Propagation-phase
discount factor γ 0.99
weight for LMG

TGT : w̄ 0.5
weight for LMG

L : 1− w̄ 0.5
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Table 7: Specific configurations and hyper-parameters for each environment. Checkpoint-step is
the timestep to obtain our simulated labelers (i.e., policy checkpoints). Meanings for other config-
urations are consistent with Algorithm 1. The total environmental steps equals to NItr ×H , |DL|
equals to NItr ×Nq ×NCF , |Denv

[i−I,i]| equals to I ×H .

Configuration Atari-Games Highway-Labelers
Seaquest Boxing Battlezone Frostbite Alien Hero MsPacman Freeway Pong Enduro Labeler-CL Labeler-RL

Checkpoint-step 4.6M 10M 4.6M 4.6M 5M 5M 4M 2M 1.8M 4.8M 330K 990K
Step n 20 10 20 20 20 20 20 20 20 3 20
E 1 2 1 1 2 2 2 2 2 2 2
I 64 64 64 64 64 64 64 64 64 16 100
H 5K 5K 5K 5K 5K 5K 5K 5K 5K 20K 1K
|Denv

[i−I,i]| 32K 32K 32K 32K 32K 32K 32K 32K 32K 32K 100K
NCF 1 1
Small Nq (|DL|) 5 (2K) 5 (500) 5 (2K) 5 (2K) 5 (2K) 20 (8K) 5 (2K) 5 (750) 5 (750) 80 (8k) 10
Large Nq (|DL|) 20 (8K) 20 (2K) 20 (8K) 20 (8K) 20 (8K) 40 (16K) 20 (8K) 20 (8K) 20 (3K) 160 (16K) 10
NItr 400 100 400 400 400 400 400 150 150 100 150
Total Env Steps 2M 500k 2M 2M 2M 2M 2M 750K 750K 2M 150K

C MORE DISCUSSIONS ABOUT RELATED WORKS AND BASELINES

C.1 MAIN BASELINES AND ABLATIONS

BC-L. For BC, we ran 1 seed for the replay buffer obtained at the end of training of ICoPro,
therefore the performance is averaged over 5 different label buffers. In Atari, we select the best
result during training with respect to during training the accuracy to reach δacc = 0.999. In highway,
since we have multiple performance metrics and it’s not easy to measure which one is the best, we
present the performance when it reaches our default δacc = 0.98.

Rainbow. We compare ICoPro with Rainbow in Table 8. See Table 12 for hyper-parameters of
Rainbow. We use the same setting with a data-efficient version of Rainbow, except for the step n
and the training timesteps (see Table 7).

Table 8: Compare the different component between ICoPro and Rainbow (Hessel et al., 2018).

Method Components
1-step N-step Duel Double Q Replay Distrib Exploration

ICoPro Yes Yes Yes No Uniform Yes Feedback guided
Rainbow Yes Yes Yes Yes Prioritized Yes Noisy-net

Compare design choices with baselines and ablations. DQfD (Hester et al., 2018) is a method
that learns from human demonstrations, and PVP (Peng et al., 2023) learns from human interven-
tional control. Both of the two methods are designed by augmenting the standard RL loss with their
extra IL loss into normal RL methods like DQN (Mnih et al., 2015) and TD3 (Fujimoto et al., 2018).
We compare the learning scheme and corresponding losses for each baselines and ablation settings
in Table 9, other hyper-parameters keep the same with Table 6 to have a fair comparison.

C.2 OTHER POTENTIAL BASELINES

C.2.1 RLIF

Besides baselines mentioned in the main text, RLIF (Luo et al., 2024) is another potential baseline
for comparison. However, adapting RLIF’s design to learn from offline corrective actions instead of
the original intervention feedback leads to unsatisfactory performance. Therefore, it is not consid-
ered a primary baseline for comparison, and the results are only included in this appendix.

Recall RLIF’s method design. RLIF is a framework that lets humans oversee the training trajec-
tories in real time, intervene in unsatisfactory states and take over control from unsatisfactory states
to satisfactory ones. RLIF learns from these interventions by labeling the replay buffer with rewards
of -1 for intervened states and 0 otherwise.
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Table 9: Compare the design choices between ICoPro, different baselines, and extra ablation groups.
Backslashes mean there is no such phase.

Methods ICoPro DQfD-I

Phases Finetune LMG
L \

Propagation 0.5 · LMG
L + 0.5 · LMG

TGT + LRL
1 + LRL

n LMG
L + LRL

1 + LRL
n

Methods PVP-IR PVP-I

Phases Finetune \ \
Propagation LPV P

L + LRL
1 + LRL

n LPV P
L + LRL

1(r̃=0) + L
RL
n(r=0)

Methods DAgger w/o Finetune

Phases Finetune LMG
L \

Propagation \ 0.5 · LMG
L + 0.5 · LMG

TGT + LRL
1 + LRL

n

Methods w/o aTGT RLIF-I

Phases Finetune LMG
L \

Propagation LMG
L + LRL

1 + LRL
n LRL

1(r̃=−Ic{(s,aθ)}) + L
RL
1(r̃=−Ic{(s,aθ)})

Methods w/o Prop’s aL w/o Prop’s MG

Phases Finetune LMG
L LMG

L

Propagation LMG
TGT + LRL

1 + LRL
n LRL

1 + LRL
n

Experimental setups to compare with RLIF. Although the feedback type used in RLIF is not
the same as our corrective actions, we adapt their core idea (i.e., rewarding -1 for intervened states
and 0 otherwise) into our framework, named RLIF-I, to have a fair comparison with ICoPro and
other baselines. RLIF-I treats offline corrected states as RLIF’s online intervened states. Concretely,
RLIF-I is implemented by modifying ICoPro in three ways: (1) Disable the Finetune-phase in
ICoPro, (2) Remove the margin loss used in ICoPro’s Propagation-phase, and (3) Replacing
the proxy rewards used in ICoPro’s RL losses with r̃RLIF (s, a) = −Ic{(s, a)}, where a is the
action taken by the training agent, Ic{(s, a)} = 1 if (s, a) has been corrected (i.e., intervened) by
the labeler and 0 otherwise. We showcase this setting into Table 9 as well to provide a more clear
comparison with others.

Experimental results and analysis. As shown in Figure 10, under the same setting as ICoPro,
RLIF’s learning strategy can not learn anything. This result is reasonable since the offline cor-
rective actions setting in ICoPro is quite sparse compared with RLIF’s: note that there are up to
0.8% transitions being labeled under ICoPro’s labeling schedule, which can be calculated with
|DL|/TotalEnvSteps in Table 7, while RLIF requires to intervene all unsatisfied states. Such re-
sults indicate that making RLIF work requires intervening in many more states than ICoPro, which
is too label-intensive to be scaled for more complex and practical tasks.

C.3 OTHER POTENTIAL ABLATIONS

C.3.1 EXTRA ABLATIONS ON MARGIN LOSSES IN THE Propagation-PHASE

For the margin losses with aL (Equation (1)) and aTGT (Equation (4)) used in our propagation-
phase, we mainly focus on the ablation that removing Equation (4) with aTGT but keeping Equa-
tion (1) with aL in our main text. As discussed in Section 4, removing Equation (1) from the
propagation-phase is problematic since the corrective actions in DL are not executed in Denv;
that is, RL losses (Equations (2) and (3)) are optimized with off-policy trajectories and the newly
provided corrective actions aL from the labeler are never taken in those trajectories.

To make the ablation study more thorough, we show two extra ablations related to the margin loss
with aL used in the propagation-phase: (1) removing aL but keeping aTGT (denoted as w/o
Prop’s aL), or (2) removing both aL and aTGT (denoted as w/o Prop’s MG). Table 9 compares the
two ablation settings with other experimental ablations or baselines. As shown in Figure 11, both
the three ablations perform worse than ICoPro, indicating the necessity of keeping the margin loss
with both aL and aTGT in the propagation-phase.
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Proxy Rewards Methods

(a) Highway with the same setting as shown in the main text (e.g., Figure 2a).

(b) Two Atari games (Boxing and Seaquest) with the same setting as shown in the main text (e.g., Table 2).

Figure 10: Compare RLIF-I with ICoPro under the same setting (e.g., simulated labeler, feedback
schedule and budget).

Methods

(a) Highway with the same setting as shown in the main text (e.g., Figure 2a.)

(b) Two Atari games (Boxing and Seaquest) with the same setting as shown in the main text (e.g., Table 2).

Figure 11: Ablations with respect to the margin losses with aL and aTGT in the propagation-
phase. Compared with the default setting of ICoPro’s propagation-phase, w/o aTGT refers to
removing aTGT but keeping aL, w/o Prop’s aL refers to removing aL but keeping aTGT , w/o Prop’s
MG refers to removing both aL and aTGT . Note that as one of our main ablation settings, w/o aTGT

has been tested besides

D MORE DETAILS ABOUT EXPERIMENTAL SETTINGS

D.1 CONFIGURATIONS FOR EVALUATION

We use 5 seeds for ICoPro and baselines for evaluation, and 3 seeds for ablations. For all experiments
we perform, we use 50 episodes in each evaluation. When we ran experiments for ICoPro and
baselines, we used 5 seeds for each setting. For ablation studies, we use 3 seeds. Although ICoPro
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and its’ ablation w/o Finetune involve 2 separate phase in each iteration, their performance are still
evaluated at the end of each iteration, which is the propagation-phase.

D.2 HIGHWAY

Highway (Leurent, 2018) is an environment with state-based inputs in 35 dimensions and 5 available
action choices to control the vehicle’s speed and direction. The input states contain information
about both the controlled vehicles and the top 5 nearest vehicles’ positions, speeds, and directions.
The basic goal in this environment is to drive a car on a straight road with multiple lanes within a
limited time. One episode is terminated when the time is used up, or a crash happens.

We use the configuration listed in Table 10 in highway.

Table 10: Hyper-parameters for environment in highway.

Hyper-parameter Value

Env

Available speed range [19,30]
High speed range ≥21
Low speed range <21
Lanes count 5
Vehicles count 40
Time limit 50
Policy frequency 1

Observation
Type Kinematics matrix
Number of observed vehicles 5
Features for each vehicle [presence, x, y, vx, vy , cosheading , sinheading]

Action Type [Right, Left, Faster, Slower, IDLE]

D.3 ATARI

In Atari, we use the signed raw reward from the environment as the proxy reward in our setting:
r̃A = sign(rA), where rA is the raw reward in Atari and r̃A is the proxy reward. The average
cumulative rA of episodes serves as a performance metric.

Both rA and r̃A have different levels of imperfection. The imperfection of r̃A mainly comes from
two aspects: (1) Missing rewards, e.g. in Seaquest, rA(LooseLives) = 0, but give a negative reward
is better; (2) Numerical mismatch between r̃A and rA, e.g., in Hero, rA(RescueMiners) = 1K,
rA(ShootCritters) = 50 but r̃A = 1 for both the two cases. More information about the ground-
truth rA can be checked in the official website6.

Our environment configurations follow standard requirements Machado et al. (2018). Table 11 lists
the related details.

Table 11: Hyper-parameters for the Atari environment wrapper.

Hyper-parameter Value

Grey-scaling True
Observation down-sampling (84, 84)
Frame stacked 4
Frame skipped 4
Action repetitions 4
Max start no ops 30
Reward clipping [-1, 1]
Terminal on loss of life True
Max frames per episode 108K

6https://gymnasium.farama.org/environments/atari/
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D.4 SIMULATED LABELERS

We use Rainbow to train labelers for all environments, with the general hyper-parameters shown
in Table 12 and concrete training timesteps in Table 7. For highway, script labelers are trained
with PRExp mentioned in Tables 1 and 5. For Atari, script labelers are trained with the signed raw
rewards. Note that these script labelers are not necessarily perfect ones since their performance
could be improved further with longer training.

Table 12: Hyper-parameters for Rainbow.

Hyper-parameter Value

Update period for target network per 2000 updates
Atoms of distribution 51
γ 0.99
Batch size 32
Optimizer Same with Table 6
Max gradient norm 10
Prioritized replay exponent: 0.5, correction: 0.4→1
Noisy nets parameter 0.1
Warm-up steps 1.6K
Replay buffer size 1M
step n Same with Table 7
Sample steps to update 1

Netowrk-Atari CNN encoder: channels [32, 64], kernel size & strides [5, 5], paddings [3, 1]
MLP policy: hidden size [128]

Netowrk-Highway MLP encoder: hidden size [128, 128]
MLP policy: hidden size [128]

E MORE DETAILS ABOUT USER STUDY

Appendix E.1 and Appendix E.2 demonstrate the detailed evaluation results of ICoPro-Human. Then
Appendix E.3 shows some examples of the corrective actions provided by humans. Finally, Ap-
pendix E.4 gives an introduction of tasks and corresponding user interface.

E.1 VISUALIZATION FOR AGENTS TRAINED WITH ICOPRO-HUMAN

In Figure 12 we visualize an action segment from Pong to validate the human-like performance
trained by ICoPro-Human comparing with the scripted labeler.

RIGHT FIRE FIRE FIRE FIRE
Scripted
Labeler

LEFTFIRE LEFTFIRE LEFTFIRE LEFTFIRE LEFTFIRE
ICoPro 

(Human)

Figure 12: Performances of the scripted labeler and ICoPro-Human in Pong. Each row shows a
sequence of state-action pairs.

Other evaluation videos for ICoPro-Human are sorted in SupplementaryMaterials/Videos
[Env]UserStudy, which learns to perform more like human players compared with evaluation
videos shown in SupplementaryMaterials/Videos[Env]Oracles.

E.2 TRAINING PLOTS

Figure 13 shows some statistics of ICoPro-Human during training.

• For highway, we show the two related performance metrics (i.e., %Crash and
Speed−Avg) following the instruction described in Table 15.
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• For the two Atari games, we can only show their game scores. However, the intentions
described in Table 13 are not entirely consistent with the game scores, as the human labeler
aims to teach additional performance aspects that are not captured by the proxy rewards.

Figure 13: Performance of ICoPro-Human during training. Solid lines (resp. dashed lines) are
the performance of ICoPro-Human (resp. BC-L), with shadows indicating the standard deviation
measured over 50 episodes.

E.3 EXAMPLES OF HUMAN CORRECTIVE ACTIONS

In Figure 14, we showcase some visualizations of the states that human labelers selected, the original
agent actions, and the provided corrective actions. Contextual information (i.e., what happens before
and after a state) is available to the human labelers (e.g., with our simple interface described in
Figure 15) to help them select state(s) and provide corrective action(s). For example:

• In Pong (Figure 14a): human labelers can judge if an agent action is reasonable or not by
knowing the movement of the ball.

• In Seaquest: the left-most example of Figure 14b shows that human labelers can deter-
mine which state to correct by assessing whether the agent’s actions will result in a fire
hitting a fish. The other three examples of Figure 14b demonstrate that human labelers can
effectively guide the agent by knowing the movement of fish and divers before a state.

• In Highway: the left two examples of Figure 14c show that human labellers can provide
corrective actions by knowing the movement of cars, while the right two examples show
that human labelers can provide corrective actions by knowing the consequences (e.g., car
crash in the two examples) of agent actions on those states.

𝑎: LEFTFIRE
𝑎!: RIGHTFIRE

𝑎: NOOP
𝑎!: LEFTFIRE

𝑎: FIRE
𝑎!: LEFTFIRE

𝑎: RIGHT
𝑎!: LEFTFIRE

(a) Pong. The agent controls the right paddle.

𝑎: UPFIRE
𝑎!: FIRE

𝑎: DOWNLEFT
𝑎!: UPLEFT

Diver

𝑎: DOWNLEFT
𝑎!: FIRE

Fish

Submarine

Fish

Submarine
Submarine

𝑎: DOWNRIGHT
𝑎!: LEFT

Submarine

Diver

Diver

Fire (from the submarine)

(b) Seaquest. The agent controls the yellow submarine.

𝑎: SLOWER
𝑎!: FASTER

𝑎: SLOWER
𝑎!: LANE_RIGHT

𝑎: LANE_RIGHT
𝑎!: LANE_LEFT

𝑎: FASTER
𝑎!: SLOWER

(c) Highway. Cars are driving from left to right. The agent controls the green car.

Figure 14: Examples of human actions provided for ICoPro-Human. Each image indicates a state,
while a and aL refer to the agent action and human action in that state, respectively. In Figure 14a,
we add yellow dashed arrows to denote the movement direction of the ball to avoid confusion. In
Figure 14b, we add yellow text and dashed arrows to denote the role of objects.

27



Published as a conference paper at ICLR 2025

E.4 PROCEDURE OF USER STUDY

No need to let humans play the game by themselves before providing feed-
back. Before letting the human labelers give feedback, we show them an instruc-
tion about the task they will participate (see Tables 13 and 15), as well as an
example video to let them become familiar with the environment dynamics (see
PATH/TO/SupplementaryMaterial]/Video[EnvName]Oracles-Examples).

We show our simple interface used in our user study in Figure 15.

Table 13: User instruction for Pong.

User Instructions - Pong

Description:
• You control the right paddle, you compete against the left paddle.
• You each try to keep deflecting the ball away from your goal and into your oppo-

nent’s goal.

Reward:
• A player scores +1 when the opponent hits the ball out of bounds or misses a hit,

or -1 when you hits the ball out of bounds or misses a hit.
• The first player or team to score 21 points wins the game.

Actions:

Value Meaning Value Meaning Value Meaning

0 NOOP 1 FIRE 2 RIGHT
3 LEFT 4 RIGHTFIRE 5 LEFTFIRE

• NOOP: random action
• LEFT: move your paddle down
• RIGHT: move your paddle up
• FIRE: add some speed to the return ball or put sharper angles on your return hits

when the ball contacts with your paddle
• Other actions are combined effects as described above.
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Table 14: User instruction for Seaquest.

User Instructions - Seaquest

Description:
• You control a submarine to (1) save divers, and (2) shoot fish.
• Pay attention to the oxygen bar: you must float to the sea surface before using up

your oxygen, otherwise, you will lose a life.
– Each time you surface, you must bring at least one diver with you, or you will

lose a life.
– Get in touch with the divers then they will enter your submarine.

• Pay attention to the fish: you can shoot them, but if you touch them or are hit by
their fire, you will lose a life.

• You have three lives in total.

Reward:
• +1 for shooting a fish and 0 otherwise

Actions:
• NOOP: random action
• LEFT / RIGHT / UP / DOWN: control the frontal orientation of the submarine
• FIRE: shoot a fire from the front of the submarine
• Other actions (UPRIGHT / UPLEFT / DOWNRIGHT / DOWNLEFT / DOWNRIGHT

/ UPFIRE / DOWNFIRE / LEFTFIRE / RIGHTFIRE / UPRIGHTFIRE /
UPLEFTFIRE / DOWNRIGHTFIRE / DOWNLEFTFIRE) are combined effects as
described above.

Table 15: User instruction for highway.

User Instructions - highway

Description:
• You control the green vehicle. There are other blue vehicles around.
• You need to drive at a speed as large as you can while avoiding a crash.
• You need to take over other vehicles if possible.

Reward:
• -1 for collision and 0 otherwise

Actions:
• LANE_LEFT: Change lane to the left, no effect if already in the leftmost lane.
• LANE_RIGHT: Change lane to the right, no effect if already in the rightmost lane.
• IDLE: No action, keep the current speed and heading direction.
• FASTER: Faster.
• SLOWER: Slower.
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(a) User interface for Pong.

(b) User interface for Seaquest.

(c) User interface for highway.

Figure 15: User Interface. We put the video of that segment in the top left corner. If the labeler is
satisfied with the whole segment’s state-action pairs, they can choose to pass this segment with the
radio box at the top near the video window. Otherwise the labeler will give corrective actions on
other windows.
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