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Abstract

The ability to make targeted updates to models, whether for unlearning, debiasing,1

model editing, or safety alignment, is central to AI safety. While these interven-2

tions aim to modify specific knowledge (e.g., removing virology content), their3

effects often propagate to related but unintended areas (e.g., allergies). Due to4

lack of standardized tools, existing evaluations typically compare performance on5

targeted versus unrelated general tasks, overlooking this broader collateral impact6

called the “ripple effect”. We introduce RippleBench, a benchmark for systemati-7

cally measuring how interventions affect semantically related knowledge. Using8

RippleBench, built on top of a Wikipedia-RAG pipeline for generating multiple-9

choice questions, we evaluate eight state-of-the-art unlearning methods. We find10

that all methods exhibit non-trivial accuracy drops on topics increasingly distant11

from the unlearned knowledge, each with distinct propagation profiles. We release12

our codebase for on-the-fly ripple evaluation as well as RippleBench-WMDP-Bio,13

a dataset derived from WMDP biology, containing 9,888 unique topics and 49,24714

questions.15

1 Introduction16

AI safety methods often seek to modify models’ knowledge, whether to unlearn harmful behaviors,17

update facts, or debias outputs, but such interventions rarely remain isolated. Edits can spill over18

to semantically relevant concepts and even those that are seemingly unrelated, this behaviour was19

termed as “ripple effect” [1]. As noted in [2], even when specific capabilities (e.g., chemical synthesis20

pathways or cybersecurity exploits) are removed, models can reconstruct them by recombining21

fragments of benign knowledge. This stems from the compositional, interconnected nature of large22

models: complex concepts are built from simpler components that often serve innocuous purposes, a23

phenomenon sometimes described as “dual use.” Consequently, attempts to fully “unlearn” harmful24

capabilities may also degrade otherwise safe information.25

Standard evaluations of unlearning, model editing, or debiasing typically adopt a binary split between26

the forget set (concepts to erase or edit) and the retain set (everything else) [3]. This framing overlooks27

the continuum of semantic relationships, for example, the gradation between “bird flu” and “weapons28

of mass destruction.” While prior work has highlighted the need to consider related knowledge [4],29

comprehensive benchmarks for capturing these ripple effects are lacking.30

We introduce RippleBench, a pipeline for systematically measuring the broader impact of targeted31

interventions. By leveraging knowledge repositories to generate multiple-choice questions across a32

spectrum of semantic proximity, RippleBench quantifies model performance not only on directly33

unlearned information but also on neighboring concepts, offering insight into when interventions34

cannot be treated independently.35
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We use RippleBench to develop a benchmark for unlearning, RippleBench-WMDP-Bio, which we36

use to evaluate eight popular unlearning methods applied to Llama3-8b-Instruct to unlearn dual-use37

biology knowledge from the WMDP-Bio benchmark. While prior reports [5] show minimal utility38

loss on unrelated benchmarks such as MMLU [6], we find consistent non-trivial degradation on39

semantically distant topics, with most methods showing gradual decay as distance increases.40

Finally, we release our code and a Wikipedia-RAG pipeline for generating ripple-effect evaluations41

on arbitrary topics. We hope RippleBench enables more rigorous, topic-specific assessment of42

ripple effects, fostering broader evaluation of unlearning and knowledge-editing methods. We also43

release RippleBench-WMDP-Bio on Huggingface.44

2 Related Work45

Datasets and benchmarks. The two most widely used benchmarks for unlearning are the Weapons46

of Mass Destruction Proxy (WMDP) [7] and the Task of Fictitious Unlearning (TOFU) [8]. WMDP47

tests models’ ability to generate content about hazardous topics in biosecurity, cybersecurity, and48

chemical security. TOFU provides synthetic data about fictitious authors, where the goal is to unlearn49

subsets of these authors while retaining generic knowledge. However, both benchmarks are limited:50

WMDP focuses narrowly on safety-critical topics, while TOFU evaluates only one synthetic task.51

Neither captures fine-grained collateral effects across a broad range of concepts.52

Unlearning methods. The primary approach to mitigating harmful behaviors in models has been to53

teach refusal through fine-tuning ([9, 10, 11, 12]). This method, while effective in many scenarios,54

trains the model to avoid certain outputs but does not necessarily remove the underlying capability. In55

contrast, machine unlearning aims to selectively erase knowledge from models ([2, 13]). Approaches56

include fine-tuning to induce forgetting [14, 15, 16, 17, 18] and mechanistic interventions that directly57

ablate concepts [19, 20, 21, 22]. Recent work by [5] systematically compared eight unlearning58

methods against eleven attack strategies, releasing 64 checkpoints that we leverage for evaluation.59

Ripple effects. Editing knowledge in LLMs can produce unintended propagation, known as the ripple60

effect [1]. Because knowledge is stored in interconnected representations, changing one fact (e.g.,61

“Canberra is Australia’s capital”) requires consistent updates to related facts. Failure to do so often62

yields contradictions and degraded multi-hop reasoning. Similar ripple effects appear in unlearning:63

removing unsafe concepts (e.g., “WMDP bio threat”) can inadvertently degrade performance on64

benign, related concepts (e.g., “biology”) [7, 23].65

3 Method66

Traditional evaluation of unlearning methods often relies on synthetic or limited test sets that fail67

to capture the full spectrum of a model’s knowledge. To address this limitation, we ground our68

evaluation in factual information extracted from authoritative sources by creating a pipeline to69

automatically generate test sets from individual facts taken from Wikipedia. By leveraging Wikipedia70

as a comprehensive knowledge repository, we can systematically evaluate a model’s understanding71

across diverse topics and varying semantic distances from the unlearning target. Furthermore, this72

pipeline circumvents the need to manually craft evaluation questions for the topic of interest and73

other semantically relevant concepts, thus scaling to thousands of topics and hundreds of thousands74

of questions while maintaining quality and consistency.75

3.1 Benchmark Generation via Wikipedia76

To efficiently navigate Wikipedia’s vast knowledge repository and identify semantically related77

topics, we developed Wiki-RAG (Wikipedia Retrieval-Augmented Generation), a specialized retrieval78

system optimized for semantic neighbor discovery. Wiki-RAG combines dense retrieval with efficient79

indexing to enable rapid identification of related topics across millions of Wikipedia articles. The80

pipeline consists of the following parts:81

Topic Extraction: We start by mapping questions from source materials, such as a question about82

"the mechanism of anthrax toxin production" from the WMDP dataset, to topics, such as "Bacillus83

anthracis" with a large language model. This extraction process must balance specificity (to maintain84

precision in retrieval) with generality (to ensure adequate coverage in Wikipedia). We then map these85

target topics to relevant Wikipedia articles.86
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Figure 1: The RippleBench pipeline. Starting from an unlearned topic (e.g., Viral Evolution),
Wiki-RAG retrieves related topics, factual statements are extracted, and language models generate
multiple-choice questions. While we focus on WMDP-Bio in this work, the pipeline applies to any
model-editing or unlearning task.

Semantic Expansion: Using a FAISS index [24] containing dense semantic embeddings produced87

by SentenceTransformers for over 10 million Wikipedia articles, our Wiki-RAG system retrieves88

topics spanning a spectrum of semantic similarity to the originals, capturing both closely and distantly89

related knowledge. Wiki-RAG’s architecture is specifically designed to support the iterative expansion90

process required for RippleBench generation, where each topic serves as a seed for discovering91

additional neighbors.92

Fact and Question Generation: For each topic, we extract key factual statements and employ93

language models to convert these into multiple-choice questions with plausible distractors.94

This process creates a scalable, up-to-date benchmark that can assess ripple effects for arbitrary topics95

and unlearning interventions.96

3.2 Quantifying Ripple Effects97

Central to measuring ripple effects is the notion of semantic distance between the unlearned knowl-98

edge and potentially affected information. We define this distance using a topic’s rank within a99

Wikipedia-based RAG system. To build intuition, we provide an empirical example of this ranking100

function in Section A.1. By evaluating model accuracy across questions at varying distances from the101

unlearning target, we can assess both intended and unintended knowledge changes.102

This distance metric serves three purposes: (1) it organizes evaluation topics along a continuum from103

directly targeted to unrelated, (2) it enables quantitative analysis of how unlearning effects decay with104

distance, and (3) it supports controlled experiments that measure the relationship between semantic105

proximity and unlearning impact.106

4 Experiments107

We apply the RippleBench pipeline to construct RippleBench-WMDP-Bio, an evaluation set derived108

from WMDP-Bio. Our experiments measure how unlearning harmful knowledge about biological109

and chemical agents impacts performance on related topics at varying semantic distances.110

4.1 Experimental Setup111

Unlearning Methods and Model. We use Llama3-8b-Instruct [25], a fine-tuned version of Llama112

3 optimized for helpful assistant behavior. We evaluate eight approaches: Gradient Difference113

(GradDiff) [26], Random Misdirection for Unlearning (RMU) [27], RMU with Latent Adversarial114

Training (RMU+LAT) [16], Representation Noising (RepNoise) [18], Erasure of Language Memory115

(ELM) [28], Representation Rerouting (RR) [15], Tamper Attack Resistance (TAR) [17], and PullBack116

& proJect (PB&J) [29].117
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Figure 2: Ripple effects of unlearning methods on model performance across semantic distances. The
base model (black) maintains consistently high accuracy, while unlearning methods show varying
degrees of collateral degradation. ELM exhibits a smooth recovery with distance, whereas methods
like TAR and GradDiff cause steep and persistent drops across all distances.

Evaluation. Models are evaluated on the full RippleBench dataset of 229,648 questions across 46,351118

topics. When multiple unlearned questions map to the same higher-level topic (e.g., Vaccines and119

Anthrax under Biology), regenerated items can yield near-duplicates. A deduplicated version contains120

9,888 topics and 49,247 questions.1121

4.2 Main Results: The Ripple Effect122

Figure 2 shows how performance varies across semantic distances. As a sanity check, the base model,123

Llama3, maintains consistently high accuracy, while unlearning methods display clear ripple effects,124

impacting nearby topics. In this evaluation, no method came out clearly ahead, as methods generally125

tradeoff better unlearning on WMDP against a stronger ripple effect (i.e., more effect on topics126

semantically further from the unlearned dataset).127

At the directly unlearned topics (distance 0), GRADDIFF and TAR show the steepest drops (over 25%128

below baseline), with measurable degradation persisting well beyond distance 50. These patterns129

highlight the importance of evaluating collateral effects when designing unlearning strategies.130

We also see that reported unlearned accuracies on WMDP-Bio, as shown by the stars on the left-hand131

side of Figure 2, differ significantly from accuracies on similar questions (distance 0 on RippleBench-132

WMDP-Bio). This highlights that the evaluated unlearning methods do not generalize beyond the133

distribution of questions in WMDP-Bio to the actual underlying topics.134

5 Conclusion135

We introduced RippleBench, a general-purpose evaluation framework, together with RippleBench-136

WMDP-Bio, a dataset of 9,888 unique topics across 49,247 unique questions for measuring ripple137

effects in machine unlearning. Our analysis shows that current unlearning methods often create sharp138

discontinuities rather than smooth gradients, where unlearning is more strongly correlated with the139

binary “Is WMDP Topic” label rather than with any continuous notion of semantic distance.140

This reveals two challenges: defining semantic distance in a way that aligns with model behavior,141

and designing methods that prevent blunt collateral damage to related concepts. By combining142

a systematic evaluation pipeline with a Wikipedia-RAG infrastructure, RippleBench provides a143

foundation for developing unlearning techniques that achieve precise, predictable forgetting while144

mitigating unintended ripple effects.145

1Dataset size is reduced by natural filtering: starting from 1,273 WMDP questions, we extracted 586 unique
topics after deduplication. Further attrition occurred during fact extraction, where topics with insufficient
Wikipedia content or API failures were excluded.

4



References146

[1] Roi Cohen, Eden Biran, Ori Yoran, Amir Globerson, and Mor Geva. Evaluating the ripple147

effects of knowledge editing in language models, 2023.148

[2] Fazl Barez, Tingchen Fu, Ameya Prabhu, Stephen Casper, Amartya Sanyal, Adel Bibi, Aidan149

O’Gara, Robert Kirk, Ben Bucknall, Tim Fist, et al. Open problems in machine unlearning for150

ai safety. arXiv preprint arXiv:2501.04952, 2025.151

[3] Eleni Triantafillou, Peter Kairouz, Fabian Pedregosa, Jamie Hayes, Meghdad Kurmanji, Kairan152

Zhao, Vincent Dumoulin, Julio Jacques Junior, Ioannis Mitliagkas, Jun Wan, Lisheng Sun153

Hosoya, Sergio Escalera, Gintare Karolina Dziugaite, Peter Triantafillou, and Isabelle Guyon.154

Are we making progress in unlearning? findings from the first neurips unlearning competition,155

2024.156

[4] Aengus Lynch, Phillip Guo, Aidan Ewart, Stephen Casper, and Dylan Hadfield-Menell. Eight157

methods to evaluate robust unlearning in llms. arXiv preprint arXiv:2402.16835, 2024.158

[5] Zora Che, Stephen Casper, Robert Kirk, Anirudh Satheesh, Stewart Slocum, Lev E McKinney,159

Rohit Gandikota, Aidan Ewart, Domenic Rosati, Zichu Wu, et al. Model tampering attacks160

enable more rigorous evaluations of llm capabilities. arXiv preprint arXiv:2502.05209, 2025.161

[6] Dan Hendrycks, Collin Burns, Steven Basart, Andy Zou, Mantas Mazeika, Dawn Song, and162

Jacob Steinhardt. Measuring massive multitask language understanding, 2021.163

[7] Nathaniel Li, Alexander Patel, Elham Sidani, Maheshan Sooriyabandara, Melody Wen, Cameron164

Allan, Silas Watts, Shrimai Gupte, Evan Smith, Kiera Kelley, et al. The wmdp benchmark:165

Measuring and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.166

[8] Pratyush Maini, Zhili Feng, Avi Schwarzschild, Zachary C Lipton, and J Zico Kolter. Tofu: A167

task of fictitious unlearning for llms. arXiv preprint arXiv:2401.06121, 2024.168

[9] Mantas Mazeika, Long Phan, Xuwang Yin, Andy Zou, Zifan Wang, Norman Mu, Elham169

Sakhaee, Nathaniel Li, Steven Basart, Bo Li, et al. Harmbench: A standardized evaluation170

framework for automated red teaming and robust refusal. arXiv preprint arXiv:2402.04249,171

2024.172

[10] Fan Liu, Zhao Xu, and Hao Liu. Adversarial tuning: Defending against jailbreak attacks for173

llms. arXiv preprint arXiv:2406.06622, 2024.174

[11] Lei Yu, Virginie Do, Karen Hambardzumyan, and Nicola Cancedda. Robust llm safeguarding175

via refusal feature adversarial training. arXiv preprint arXiv:2409.20089, 2024.176

[12] Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell. Defending against177

unforeseen failure modes with latent adversarial training. arXiv preprint arXiv:2403.05030,178

2024.179

[13] Sijia Liu, Yuanshun Yao, Jinghan Jia, Stephen Casper, Nathalie Baracaldo, Peter Hase, Yuguang180

Yao, Chris Yuhao Liu, Xiaojun Xu, Hang Li, et al. Rethinking machine unlearning for large181

language models. Nature Machine Intelligence, pages 1–14, 2025.182

[14] Ronen Eldan and Mark Russinovich. Who’s harry potter? approximate unlearning in llms. URL183

https://arxiv. org/abs/2310.02238, 1(2):8, 2023.184

[15] Andy Zou, Long Phan, Justin Wang, Derek Duenas, Maxwell Lin, Maksym Andriushchenko,185

J Zico Kolter, Matt Fredrikson, and Dan Hendrycks. Improving alignment and robustness with186

circuit breakers. Advances in Neural Information Processing Systems, 37:83345–83373, 2024.187

[16] Abhay Sheshadri, Aidan Ewart, Phillip Guo, Aengus Lynch, Cindy Wu, Vivek Hebbar, Henry188

Sleight, Asa Cooper Stickland, Ethan Perez, Dylan Hadfield-Menell, et al. Latent adver-189

sarial training improves robustness to persistent harmful behaviors in llms. arXiv preprint190

arXiv:2407.15549, 2024.191

5



[17] Rishub Tamirisa, Bhrugu Bharathi, Long Phan, Andy Zhou, Alice Gatti, Tarun Suresh, Maxwell192

Lin, Justin Wang, Rowan Wang, Ron Arel, et al. Tamper-resistant safeguards for open-weight193

llms. URL https://arxiv. org/abs/2408.00761, 2024.194

[18] Domenic Rosati, Jan Wehner, Kai Williams, Lukasz Bartoszcze, David Atanasov, Robie Gonza-195

les, Subhabrata Majumdar, Carsten Maple, Hassan Sajjad, and Frank Rudzicz. Representation196

noising effectively prevents harmful fine-tuning on llms. CoRR, 2024.197

[19] Phillip Guo, Aaquib Syed, Abhay Sheshadri, Aidan Ewart, and Gintare Karolina Dziugaite.198

Mechanistic unlearning: Robust knowledge unlearning and editing via mechanistic localization.199

arXiv preprint arXiv:2410.12949, 2024.200

[20] Stefan Schoepf, Michael Curtis Mozer, Nicole Elyse Mitchell, Alexandra Brintrup, Georgios201

Kaissis, Peter Kairouz, and Eleni Triantafillou. Redirection for erasing memory (rem): Towards202

a universal unlearning method for corrupted data. arXiv preprint arXiv:2505.17730, 2025.203

[21] Aashiq Muhamed, Jacopo Bonato, Mona T Diab, and Virginia Smith. Saes can improve204

unlearning: Dynamic sparse autoencoder guardrails for precision unlearning in llms. In ICML205

2025 Workshop on Reliable and Responsible Foundation Models, 2025.206

[22] Xu Wang, Zihao Li, Benyou Wang, Yan Hu, and Difan Zou. Model unlearning via sparse207

autoencoder subspace guided projections. arXiv preprint arXiv:2505.24428, 2025.208

[23] Rohit Gandikota, Sheridan Feucht, Samuel Marks, and David Bau. Erasing conceptual knowl-209

edge from language models. arXiv preprint arXiv:2410.02760, 2024.210

[24] Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff Johnson, Gergely Szilvasy, Pierre-211

Emmanuel Mazaré, Maria Lomeli, Lucas Hosseini, and Hervé Jégou. The faiss library. 2024.212

[25] Aaron Grattafiori, Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ah-213

mad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex Vaughan, Amy Yang, Angela214

Fan, Anirudh Goyal, Anthony Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem215

Korenev, Arthur Hinsvark, Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson,216

Ava Spataru, Baptiste Roziere, Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux,217

Chaya Nayak, Chloe Bi, Chris Marra, Chris McConnell, Christian Keller, Christophe Touret,218

Chunyang Wu, Corinne Wong, Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius,219

Daniel Song, Danielle Pintz, Danny Livshits, Danny Wyatt, David Esiobu, Dhruv Choudhary,220

Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes, Egor Lakomkin, Ehab221

AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip Radenovic, Francisco222

Guzmán, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Govind223

Thattai, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah224

Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan225

Misra, Ivan Evtimov, Jack Zhang, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason226

Park, Jay Mahadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya227

Lee, Jeremy Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton,228

Joe Spisak, Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Va-229

suden Alwala, Karthik Prasad, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield,230

Kevin Stone, Khalid El-Arini, Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Kushal231

Lakhotia, Lauren Rantala-Yeary, Laurens van der Maaten, Lawrence Chen, Liang Tan, Liz232

Jenkins, Louis Martin, Lovish Madaan, Lubo Malo, Lukas Blecher, Lukas Landzaat, Luke233

de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Mannat Singh, Manohar Paluri, Marcin234

Kardas, Maria Tsimpoukelli, Mathew Oldham, Mathieu Rita, Maya Pavlova, Melanie Kam-235

badur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal, Narjes Torabi,236

Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Ning Zhang, Olivier Duchenne,237

Onur Çelebi, Patrick Alrassy, Pengchuan Zhang, Pengwei Li, Petar Vasic, Peter Weng, Prajjwal238

Bhargava, Pratik Dubal, Praveen Krishnan, Punit Singh Koura, Puxin Xu, Qing He, Qingxiao239

Dong, Ragavan Srinivasan, Raj Ganapathy, Ramon Calderer, Ricardo Silveira Cabral, Robert240

Stojnic, Roberta Raileanu, Rohan Maheswari, Rohit Girdhar, Rohit Patel, Romain Sauvestre,241

Ronnie Polidoro, Roshan Sumbaly, Ross Taylor, Ruan Silva, Rui Hou, Rui Wang, Saghar Hos-242

seini, Sahana Chennabasappa, Sanjay Singh, Sean Bell, Seohyun Sonia Kim, Sergey Edunov,243

Shaoliang Nie, Sharan Narang, Sharath Raparthy, Sheng Shen, Shengye Wan, Shruti Bhosale,244

Shun Zhang, Simon Vandenhende, Soumya Batra, Spencer Whitman, Sten Sootla, Stephane245

6



Collot, Suchin Gururangan, Sydney Borodinsky, Tamar Herman, Tara Fowler, Tarek Sheasha,246

Thomas Georgiou, Thomas Scialom, Tobias Speckbacher, Todor Mihaylov, Tong Xiao, Ujjwal247

Karn, Vedanuj Goswami, Vibhor Gupta, Vignesh Ramanathan, Viktor Kerkez, Vincent Gonguet,248

Virginie Do, Vish Vogeti, Vítor Albiero, Vladan Petrovic, Weiwei Chu, Wenhan Xiong, Wenyin249

Fu, Whitney Meers, Xavier Martinet, Xiaodong Wang, Xiaofang Wang, Xiaoqing Ellen Tan,250

Xide Xia, Xinfeng Xie, Xuchao Jia, Xuewei Wang, Yaelle Goldschlag, Yashesh Gaur, Yasmine251

Babaei, Yi Wen, Yiwen Song, Yuchen Zhang, Yue Li, Yuning Mao, Zacharie Delpierre Coudert,252

Zheng Yan, Zhengxing Chen, Zoe Papakipos, Aaditya Singh, Aayushi Srivastava, Abha Jain,253

Adam Kelsey, Adam Shajnfeld, Adithya Gangidi, Adolfo Victoria, Ahuva Goldstand, Ajay254

Menon, Ajay Sharma, Alex Boesenberg, Alexei Baevski, Allie Feinstein, Amanda Kallet, Amit255

Sangani, Amos Teo, Anam Yunus, Andrei Lupu, Andres Alvarado, Andrew Caples, Andrew Gu,256

Andrew Ho, Andrew Poulton, Andrew Ryan, Ankit Ramchandani, Annie Dong, Annie Franco,257

Anuj Goyal, Aparajita Saraf, Arkabandhu Chowdhury, Ashley Gabriel, Ashwin Bharambe,258

Assaf Eisenman, Azadeh Yazdan, Beau James, Ben Maurer, Benjamin Leonhardi, Bernie Huang,259

Beth Loyd, Beto De Paola, Bhargavi Paranjape, Bing Liu, Bo Wu, Boyu Ni, Braden Hancock,260

Bram Wasti, Brandon Spence, Brani Stojkovic, Brian Gamido, Britt Montalvo, Carl Parker,261

Carly Burton, Catalina Mejia, Ce Liu, Changhan Wang, Changkyu Kim, Chao Zhou, Chester262

Hu, Ching-Hsiang Chu, Chris Cai, Chris Tindal, Christoph Feichtenhofer, Cynthia Gao, Damon263

Civin, Dana Beaty, Daniel Kreymer, Daniel Li, David Adkins, David Xu, Davide Testuggine,264

Delia David, Devi Parikh, Diana Liskovich, Didem Foss, Dingkang Wang, Duc Le, Dustin265

Holland, Edward Dowling, Eissa Jamil, Elaine Montgomery, Eleonora Presani, Emily Hahn,266

Emily Wood, Eric-Tuan Le, Erik Brinkman, Esteban Arcaute, Evan Dunbar, Evan Smothers,267

Fei Sun, Felix Kreuk, Feng Tian, Filippos Kokkinos, Firat Ozgenel, Francesco Caggioni, Frank268

Kanayet, Frank Seide, Gabriela Medina Florez, Gabriella Schwarz, Gada Badeer, Georgia Swee,269

Gil Halpern, Grant Herman, Grigory Sizov, Guangyi, Zhang, Guna Lakshminarayanan, Hakan270

Inan, Hamid Shojanazeri, Han Zou, Hannah Wang, Hanwen Zha, Haroun Habeeb, Harrison271

Rudolph, Helen Suk, Henry Aspegren, Hunter Goldman, Hongyuan Zhan, Ibrahim Damlaj,272

Igor Molybog, Igor Tufanov, Ilias Leontiadis, Irina-Elena Veliche, Itai Gat, Jake Weissman,273

James Geboski, James Kohli, Janice Lam, Japhet Asher, Jean-Baptiste Gaya, Jeff Marcus, Jeff274

Tang, Jennifer Chan, Jenny Zhen, Jeremy Reizenstein, Jeremy Teboul, Jessica Zhong, Jian Jin,275

Jingyi Yang, Joe Cummings, Jon Carvill, Jon Shepard, Jonathan McPhie, Jonathan Torres, Josh276

Ginsburg, Junjie Wang, Kai Wu, Kam Hou U, Karan Saxena, Kartikay Khandelwal, Katayoun277

Zand, Kathy Matosich, Kaushik Veeraraghavan, Kelly Michelena, Keqian Li, Kiran Jagadeesh,278

Kun Huang, Kunal Chawla, Kyle Huang, Lailin Chen, Lakshya Garg, Lavender A, Leandro279

Silva, Lee Bell, Lei Zhang, Liangpeng Guo, Licheng Yu, Liron Moshkovich, Luca Wehrstedt,280

Madian Khabsa, Manav Avalani, Manish Bhatt, Martynas Mankus, Matan Hasson, Matthew281

Lennie, Matthias Reso, Maxim Groshev, Maxim Naumov, Maya Lathi, Meghan Keneally, Miao282

Liu, Michael L. Seltzer, Michal Valko, Michelle Restrepo, Mihir Patel, Mik Vyatskov, Mikayel283

Samvelyan, Mike Clark, Mike Macey, Mike Wang, Miquel Jubert Hermoso, Mo Metanat,284

Mohammad Rastegari, Munish Bansal, Nandhini Santhanam, Natascha Parks, Natasha White,285

Navyata Bawa, Nayan Singhal, Nick Egebo, Nicolas Usunier, Nikhil Mehta, Nikolay Pavlovich286

Laptev, Ning Dong, Norman Cheng, Oleg Chernoguz, Olivia Hart, Omkar Salpekar, Ozlem287

Kalinli, Parkin Kent, Parth Parekh, Paul Saab, Pavan Balaji, Pedro Rittner, Philip Bontrager,288

Pierre Roux, Piotr Dollar, Polina Zvyagina, Prashant Ratanchandani, Pritish Yuvraj, Qian Liang,289

Rachad Alao, Rachel Rodriguez, Rafi Ayub, Raghotham Murthy, Raghu Nayani, Rahul Mitra,290

Rangaprabhu Parthasarathy, Raymond Li, Rebekkah Hogan, Robin Battey, Rocky Wang, Russ291

Howes, Ruty Rinott, Sachin Mehta, Sachin Siby, Sai Jayesh Bondu, Samyak Datta, Sara Chugh,292

Sara Hunt, Sargun Dhillon, Sasha Sidorov, Satadru Pan, Saurabh Mahajan, Saurabh Verma,293

Seiji Yamamoto, Sharadh Ramaswamy, Shaun Lindsay, Shaun Lindsay, Sheng Feng, Shenghao294

Lin, Shengxin Cindy Zha, Shishir Patil, Shiva Shankar, Shuqiang Zhang, Shuqiang Zhang,295

Sinong Wang, Sneha Agarwal, Soji Sajuyigbe, Soumith Chintala, Stephanie Max, Stephen296

Chen, Steve Kehoe, Steve Satterfield, Sudarshan Govindaprasad, Sumit Gupta, Summer Deng,297

Sungmin Cho, Sunny Virk, Suraj Subramanian, Sy Choudhury, Sydney Goldman, Tal Remez,298

Tamar Glaser, Tamara Best, Thilo Koehler, Thomas Robinson, Tianhe Li, Tianjun Zhang, Tim299

Matthews, Timothy Chou, Tzook Shaked, Varun Vontimitta, Victoria Ajayi, Victoria Montanez,300

Vijai Mohan, Vinay Satish Kumar, Vishal Mangla, Vlad Ionescu, Vlad Poenaru, Vlad Tiberiu301

Mihailescu, Vladimir Ivanov, Wei Li, Wenchen Wang, Wenwen Jiang, Wes Bouaziz, Will Con-302

stable, Xiaocheng Tang, Xiaojian Wu, Xiaolan Wang, Xilun Wu, Xinbo Gao, Yaniv Kleinman,303

Yanjun Chen, Ye Hu, Ye Jia, Ye Qi, Yenda Li, Yilin Zhang, Ying Zhang, Yossi Adi, Youngjin304

7



Nam, Yu, Wang, Yu Zhao, Yuchen Hao, Yundi Qian, Yunlu Li, Yuzi He, Zach Rait, Zachary305

DeVito, Zef Rosnbrick, Zhaoduo Wen, Zhenyu Yang, Zhiwei Zhao, and Zhiyu Ma. The llama 3306

herd of models, 2024.307

[26] Bo Liu, Qiang Liu, and Peter Stone. Continual learning and private unlearning. In Conference308

on Lifelong Learning Agents, pages 243–254. PMLR, 2022.309

[27] Nathaniel Li, Alexander Pan, Anjali Gopal, Summer Yue, Daniel Berrios, Alice Gatti, Justin D310

Li, Ann-Kathrin Dombrowski, Shashwat Goel, Long Phan, et al. The wmdp benchmark:311

Measuring and reducing malicious use with unlearning. arXiv preprint arXiv:2403.03218, 2024.312

[28] Rohit Gandikota, Sheridan Feucht, Samuel Marks, and David Bau. Erasing conceptual knowl-313

edge from language models. arXiv preprint arXiv:2410.02760, 2024.314

[29] Anonymous. Unlearning in large language models via activation projections. 2025.315

[30] Phillip Li, Huiwen Li, and Alexander Patel. Representation misdirection for unlearning. arXiv316

preprint arXiv:2404.03233, 2024.317

[31] Lev E McKinney, Anvith Thudi, Juhan Bae, Tara Rezaei Kheirkhah, Nicolas Papernot, Sheila A318

McIlraith, and Roger Baker Grosse. Gauss-newton unlearning for the llm era. In ICML 2025319

Workshop on Machine Unlearning for Generative AI, 2025.320

A Supplementary Material321

The unlearning methods evaluated by Che et al. (2025) can be broadly categorized based on their322

underlying mechanism. Below, we briefly summarize each technique as described in their work.323

Gradient and Loss-Based Fine-Tuning These methods adapt the standard fine-tuning process by324

modifying the loss function to de-emphasize or penalize unwanted knowledge.325

• Gradient Difference (GradDiff): Inspired by [26], this approach trains the model to326

maximize the difference between the loss on the data to be forgotten and the loss on data to327

be retained.328

• Representation Noising (RepNoise): Proposed by [18], this method adds a noise-inducing329

loss term. It encourages the model’s internal representations for harmful inputs to match a330

simple Gaussian noise distribution.331

• Erasure of Language Memory (ELM): Introduced by [23], ELM trains a model to mimic332

the behavior of an "unknowledgeable" model on the target domain, effectively erasing the333

specific concepts.334

Representation and Activation Manipulation These techniques intervene more directly on the335

model’s internal activations to suppress or redirect information flow related to the unwanted concepts.336

• Random Misdirection for Unlearning (RMU): From [30], this technique involves perturb-337

ing model activations for harmful inputs while explicitly preserving activations for benign338

ones.339

• RMU with Latent Adversarial Training (RMU+LAT): An extension by [16], this method340

strengthens RMU by using adversarial attacks in the latent space during training on the341

forget set.342

• Representation Rerouting (RR): Also known as "circuit breaking" ([15]), this technique343

trains the model to map latent states associated with unwanted topics to orthogonal, unrelated344

representations.345

• K-FAC for Distribution Erasure (K-FADE): This approach from [31] learns a set of346

projections in the activation space that maximally degrade performance on the forget set347

while minimally impacting a broader retain distribution.348
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Meta-Learning for Robustness This category focuses on training the model to be inherently349

resistant to tampering attacks.350

• Tamper Attack Resistance (TAR): Proposed by [17], TAR is a meta-learning approach that351

preemptively trains a model to be robust against a fine-tuning adversary, making it harder to352

undo the unlearning.353

A.1 Translating RAG Scores into Semantic Distance354

To operationalize semantic distance, we rely on RAG rank. In this section we aim to build some355

intuition for how RAG ranks are constructed from underlying cosine similarity scores between356

Wikipedia article embeddings retrieved by Wiki-RAG. Figure 3 illustrates this process for the seed357

topic Anthrax. High-scoring neighbors such as Anthrax weaponization or Bacilli appear at low358

ranks, indicating close semantic proximity. As rank increases, retrieved topics gradually become less359

relevant (e.g., Lobar pneumonia) before eventually diverging to unrelated entries (e.g., List update360

problem, List of years in politics). This curve highlights the long tail of retrieval and motivates361

our bucketization of distances: low ranks capture tightly connected knowledge, while higher ranks362

provide semantically distant or noisy contexts.363
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Figure 3: Example of RAG similarity scores for the seed topic Anthrax. Closely related neighbors
(left) receive high similarity scores, while more distant or irrelevant topics (right) appear at lower
scores and higher ranks. This mapping provides intuition for how semantic distance is defined and
bucketized in RippleBench.
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