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ABSTRACT

Time series forecasting remains a critical challenge across numerous domains, yet
the effectiveness of complex models often varies unpredictably across datasets.
Recent studies highlight the surprising competitiveness of simple linear models,
suggesting that their robustness and interpretability warrant deeper theoretical
investigation. This paper presents a systematic study of linear models for time series
forecasting, with a focus on the role of characteristic roots in temporal dynamics.
We begin by analyzing the noise-free setting, where we show that characteristic
roots govern long-term behavior and explain how design choices such as instance
normalization and channel independence affect model capabilities. We then extend
our analysis to the noisy regime, revealing that models tend to produce spurious
roots. This leads to the identification of a key data-scaling property: mitigating the
influence of noise requires disproportionately large training data, highlighting the
need for structural regularization. To address these challenges, we propose two
complementary strategies for robust root restructuring. The first uses rank reduction
techniques, including Reduced-Rank Regression (RRR) and Direct Weight
Rank Reduction (DWRR), to recover the low-dimensional latent dynamics. The
second, a novel adaptive method called Root Purge, encourages the model to
learn a noise-suppressing null space during training. Extensive experiments on
standard benchmarks demonstrate the effectiveness of both approaches, validating
our theoretical insights and achieving state-of-the-art results in several settings. Our
findings underscore the potential of integrating classical theories for linear systems
with modern learning techniques to build robust, interpretable, and data-efficient
forecasting models.

1 INTRODUCTION

Time series forecasting is a foundational task in a wide range of critical applications, including
finance, weather prediction, traffic modeling, and energy systems (Hamilton, 2020). Despite its
importance, long-term forecasting remains a particularly challenging problem due to inherent uncer-
tainty, noise, and complex temporal dependencies in real-world data (Kong et al., 2025). In response,
the research community has devoted substantial efforts to developing increasingly sophisticated
model architectures (Woo et al., 2023; Xu et al., 2023; Zhou et al., 2022; Nie et al., 2022), from deep
recurrent networks to attention-based transformers, in an attempt to capture long-range dependencies
and improve accuracy.

However, as emphasized in the position paper (Brigato et al., 2025), no single model consistently
outperforms others across all datasets and forecasting horizons. This observation echoes the "No
Free Lunch" theorem (Adam et al., 2019): in the absence of strong assumptions or domain-specific
priors, it is impossible to design a universally superior forecasting model. This limitation prompts a
rethinking of current approaches and highlights the need for more fundamental, theory-driven insights
into what makes a time series model effective.

Recent studies show that linear systems, despite their simplicity, often match or exceed the perfor-
mance of complex nonlinear models, particularly in long-term forecasting (Zeng et al., 2023; Toner
and Darlow, 2024; Li et al., 2023). Their robustness, interpretability, and analytical clarity make
them a strong foundation for forecasting. Motivated by this, we develop a theoretical framework to
study the core properties of linear systems, focusing on the role of dominant characteristic roots that
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Figure 1: Structure of the paper and its main contributions.

encode the essential structure of the data. At the same time, real-world time series are rarely clean;
they are typically contaminated with noise that obscures the underlying structure (Lim and Zohren,
2021). Complex deep learning models are especially prone to overfitting such noise, often resulting
in poor generalization and unreliable forecasts. To address this, we draw inspiration from recent
findings (Shi et al., 2024) showing that only a small subset of data components—those capturing the
essential structure—meaningfully impact the prediction accuracy. In linear dynamical systems, these
correspond to dominant characteristic roots that govern the system behavior. Our approach focuses
on identifying these core roots while systematically suppressing noise and spurious dynamics.

In this work, we present a systematic analysis of linear models for time series forecasting, emphasizing
the role of characteristic roots in determining model expressivity and dynamic behavior (refer to
Figure 1 for a road map of this paper). We begin by examining how forecasting horizon and lookback
window interact with characteristic roots in noise-free settings, showing that common practices such
as instance normalization and channel-independent modeling naturally arise from this framework.
We then extend our analysis to noisy settings, where models tend to learn spurious roots—artifacts
of noise that distort prediction and obscure true dynamics. This reveals a key data-scaling property:
mitigating the impact of noise demands significantly more training data. This reduces data efficiency
and underscores the need for structural regularization. Motivated by these insights, we propose two
complementary strategies for robust root identification. The first leverages rank reduction, including
Reduced-Rank Regression (Izenman, 1975) and Direct Weight Rank Reduction, to enforce a
low-dimensional structure aligned with the latent dynamics. The second introduces Root Purge,
a novel adaptive training method that promotes the learning of an appropriate null space, actively
suppressing noise while preserving informative signal components. We evaluate both approaches on a
range of standard time series forecasting benchmarks and demonstrate that they consistently enhance
model robustness and accuracy, often achieving state-of-the-art performance. Side experiments and
controlled toy examples further validate our theoretical insights. Overall, our findings emphasize the
value of integrating classical linear system theory with modern optimization techniques, and pave the
way for future work on robust, interpretable, and scalable forecasting models. The contributions in
this paper can be summarized as follows:

• Theoretical Analysis: We provide a systematic study of linear models for time series forecasting,
analyzing the role of characteristic roots in both noise-free and noisy settings, and uncovering a
key data-scaling property that motivates structural regularization.

• Proposed Methods: We introduce two strategies for robust root identification: rank reduction
techniques to enforce a low-dimensional structure, and Root Purge, a novel adaptive training
method that suppresses noise via null-space learning.

• Empirical Validation: We verify the effectiveness of our approaches through strong performance
on standard benchmarks. We also validate our theory with additional controlled experiments.

2 BACKGROUND

Related Work. Time series forecasting aims to predict future values by learning patterns like trends
and seasonality from historical data. Various modeling paradigms have emerged to tackle long-term
forecasting challenges (Kong et al., 2025). Transformer-based models have been prominent: Nie et al.
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(2022) segments series into patch-level tokens with channel-wise modeling, while Zhou et al. (2022)
combines seasonal-trend decomposition with transformers. Woo et al. (2023) proposes time-index
models that condition on future timestamps to support both interpolation and extrapolation. Beyond
time-domain methods, frequency-based approaches like Xu et al. (2023) apply low-pass filtering and
complex linear layers to enhance long-term modeling. In parallel, minimalist models have gained
traction: Lin et al. (2024) achieves strong results with just 1,000 parameters via structured sparsity,
and Zeng et al. (2023) shows that simple linear models can outperform transformers by separately
modeling trend and seasonality. Recent evaluations (Brigato et al., 2025) show that no single method
dominates across all settings, emphasizing the need for diverse benchmarks and context-aware model
selection. Motivated by this, we pursue a theoretical perspective on time series forecasting, aiming
for models that balance simplicity, interpretability, and robustness across diverse temporal dynamics.

Problem Formulation. Let {yt}Tt=1 be a multi-channel time series of length T , where each
observation yt ∈ Rm represents an m-dimensional vector at time t. The goal of multi-horizon
forecasting is to learn a mapping f that predicts future values as

Ŷt+1:t+H = f(yt,yt−1, . . . ,yt−L+1),

where Ŷt+1:t+H = [ŷt+1, ŷt+2, . . . , ŷt+H ] is an m×H matrix of forecasts. Here, H is the length
of forecasting horizon, L is the length of lookback window, and f is the forecast model, which is
required to capture temporal dependencies, account for noise and non-stationarity, and generalize
historical patterns to unseen future data.

Preliminary. We consider the class of single-channel (i.e., m = 1) homogeneous linear difference
equations due to their analytical tractability in modeling temporal dependencies, taking the form:

yt + a1yt−1 + · · ·+ apyt−p = 0,

where p is the order of the difference equation and {ai}pi=1 are constant coefficients. The general
solution1 at time step t is a linear combination of characteristic roots raised to power t:

yt = C1r
t
1 + C2r

t
2 + · · ·+ Cpr

t
p,

where {Ci}pi=1 are constants determined by initial conditions, and {ri}pi=1 are obtained by solving
the characteristic equation: rp + a1r

p−1 + · · ·+ ap = 0.

3 THEORETICAL ANALYSIS

Linear dynamical models strike a valuable balance between analytical simplicity and expressive
power, making them effective at capturing core temporal patterns such as trends, oscillations, and
exponential behaviors. In this section, we explore the foundations of linear modeling in time series
forecasting. Our goal is to understand the principles governing linear dynamics through the lens of
characteristic roots, enabling us to interpret, justify, and generalize widely used modeling choices.

We begin by formalizing the core problem following standard conventions. Given a normalized
single-channel time series, we define linear forecasting as the solution to the least-squares objective2:

min
W

∥Yfut −YhisW∥2F , (1)

where Yhis ∈ RN×L and Yfut ∈ RN×H represent the collection of N history and future segments
from the same normalized sequence, W ∈ RL×H represents the coefficient matrix. Each row in Yhis
and Yfut, denoted as yhis ∈ RL, yfut ∈ RH , corresponds to one observed history and future segment,
respectively. Solving Equation (1) is equivalent to independently estimating the j-th column of Yfut,
corresponding to the j-th forecasting horizon (j steps ahead to the future), by solving:

min
W

∑
t

(
yt+j −

L∑
k=1

Wkj · yt−k+1

)2

, j = 1, . . . , H. (2)

This formulation reflects a regression-based interpretation of temporal forecasting and serves as a
direct proxy for learning the underlying recurrence relations.

1Here we consider the simplest case where all characteristic roots are distinct.
2The omission of a bias term is justified by the fact that linear difference equations with constant biases can

be algebraically transformed into equivalent homogeneous systems; see Appendix B.3 and C.1 for justifications.
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3.1 ROLE OF CHARACTERISTIC ROOTS AND NOISE-FREE LINEAR MODELING PRINCIPLES

Recall from Section 2 that for linear models governed by difference equations, solutions are de-
termined by their characteristic roots. Therefore, we can arrive at Fact 1 as follows, derived from
the properties of general solutions. This highlights a key generalization property of linear models:
the ability to cover a wide range of temporal behaviors (details in Appendix D.1, Corollary 1, and
Corollary 2) through appropriate choice of roots, rather than through complex parameterization.

Fact 1. A linear model can represent any time series whose characteristic roots
are a subset of its own.

For better illustration of this fact, we provide a toy example in Appendix C.3. Based on Fact 1, in the
noise-free setting, the optimization objective defined in Equation (1) can often achieve zero given
appropriate model capacity. This allows us to convert a linear time series model into a difference
equation and study the impact of key design choices of forecasting horizon and lookback window.

It is common practice (Xu et al., 2023; Lin et al., 2024) to model each forecast step independently
as in Equation (2), resulting in H separate regression problems, each corresponding to a specific
forecasting horizon. Further, it is common that we use a long lookback window length L, whereas
the underlying process follows a simpler minimal recurrence relation of order K, with K < L. Both
of these choices introduce redundancy in the input representation. Nonetheless, this redundancy is
not detrimental to learning and can, in fact, offer flexibility in parameterization. We summarize our
key insight as follows, with more details in Appendix C.2 and D.2:

Fact 2. The characteristic root set of a linear higher-horizon model, or one with
an extended lookback window, always preserves, as a subset, the roots that govern
the fundamental system dynamics.

This observation offers theoretical support for independently modeling each horizon, as higher-
horizon models remain consistent with the system’s true dynamics. Moreover, increasing the lookback
window does not alter the set of roots but rather introduces multiple equivalent representations.

We highlight two common time series modeling techniques that align with our framework above,
with more details in Appendix C.4. A further empirical study of Channel-independent (CI) modeling
and an alternative technique called INC is provided in Table 2, Section 5.3.
Remark 1. Instance normalization introduces a unit root, allowing the model to generalize across
sequences with arbitrary mean shifts. Channel-independent modeling remains effective when the
model has sufficient degrees of freedom to capture the union of characteristic roots across all channels.

3.2 DATA SCALING PROPERTY UNDER NOISY OBSERVATIONS

In practical applications, time series data are often contaminated with stochastic noise, which presents
a fundamental challenge for model estimation and generalization. In the presence of noise, the
least-squares loss for a linear forecasting model takes the following form for a single segment:

E
[
∥(y∗

fut −W⊤y∗
his) + (εfut −W⊤εhis)∥22

]
,

where y∗
fut, y

∗
his are noise-free history and future segments, respectively, and εhis, εfut denote additive

noise on these segments. This loss naturally decomposes into two components: signal fitting error
and noise-induced error. In the over-idealized case where the learned weight matrix W perfectly
recovers the signal dynamics, only the noise term E

[
∥εfut −W⊤εhis∥22

]
remains.

To better understand the noise sensitivity of mean squared error (MSE)-based linear models, we
analyze a simplified setting in which both inputs and outputs consist solely of Gaussian noise. The
following proposition summarizes such asymptotic behavior (see details in Appendix C.5 and D.3):

Proposition 1. For a linear model forecasting Gaussian white noise, the learned
weights converge at a rate proportional to O(1/

√
T ), where T is the length of the

observed time series.

This result illustrates an important limitation of classical least squares training: despite its consistency
and unbiasedness, convergence is slow under noise. Even with perfect signal recovery, noise

4
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effects decay only at a sublinear rate. This scaling behavior highlights that MSE-based training is
data-inefficient in high-noise regimes, requiring a substantial number of observations to achieve
low-variance estimates of the underlying dynamics.

4 NOISE-AWARE LINEAR FORECASTING VIA ROOT RESTRUCTURING

In noisy environments, the data-scaling property highlights a key limitation of linear forecasting
models: robustness to noise requires a substantial amount of data. This challenge is compounded
when the model must also accurately recover the underlying signal dynamics, as misidentifying them
leads to fitting errors. From the perspective of characteristic roots, reliable forecasting hinges on
correctly identifying and preserving the roots that capture the signal’s temporal structure. However,
noise can obscure these roots. To address this, we next present two complementary approaches
designed to improve root restructuring and enhance robustness in practical settings.

4.1 RANK REDUCTION METHODS

In time series forecasting, the lookback window length L and the structure of the underlying dynamics
jointly determine the model’s expressive capacity. In the absence of noise, the matrix Y∗

his formed by
slicing a deterministic time series has rank min(L,K), where K denotes the number of characteristic
roots. However, once noise is introduced, this low-rank structure becomes obscured—the observed
data matrix typically becomes full rank with high probability, even when the underlying signal
remains confined to a lower-dimensional subspace.

This observation motivates the use of rank reduction as a denoising strategy. A straightforward, though
suboptimal, approach involves applying truncated singular value decomposition (SVD) directly to
the history matrix Yhis and future matrix Yfut. By projecting these matrices onto lower-dimensional
subspaces, one can suppress the variance introduced by noise and partially recover the latent signal
structure. However, direct manipulation of Yhis and Yfut is neither necessary nor ideal. It can be
shown that imposing a low-rank constraint on the model’s weight matrix W achieves an equivalent
effect (see Proposition 2 below). This constraint implicitly projects the input and output data onto
learned low-dimensional subspaces during training, without the need to alter the raw sequences
themselves. A low-rank W functions as a bottleneck, aligning Yhis and Yfut along directions of
maximal shared variation and filtering out noise-dominated components.

Proposition 2. Constraining W to be low-rank implicitly projects Yhis and Yfut
onto low-dimensional subspaces.

See Appendix D.4 for a detailed version and its proof. See also Appendix D.6 for how this improves
noise robustness. To operationalize this idea, we propose two practical strategies for incorporating
rank constraints into linear models, with detailed algorithms provided in Algorithms 1 and 2.

Reduced-Rank Regression (RRR). This approach (Izenman, 1975) explicitly enforces a low-rank
constraint in the optimization target. It begins by computing the ordinary least squares (OLS) solution,
then projects the forecast outputs onto a lower-dimensional subspace using truncated SVD. The
weight matrix is re-estimated to best match this projected output. By restricting the model to operate
within a smaller set of latent directions, RRR compresses the mapping from inputs to outputs and
aligns both with a shared low-dimensional representation. This joint dimensionality reduction often
improves generalization, particularly when the underlying data-generating process is itself low-rank.

Direct Weight Rank Reduction (DWRR). In contrast to RRR, DWRR applies rank reduction
directly on the weight. The model is first trained without any constraints. Truncated SVD is then
applied as a post-processing step to produce a low-rank approximation by discarding the smaller
singular values.

4.2 ROOT PURGE FOR DYNAMIC RANK ADJUSTMENT

Previously, we described how post-training SVD-based root restructuring offers a simple way to
enforce low-rank structure. However, this approach is rule-based and depends on fixed assumptions,

5
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Algorithm 1 Reduced-Rank Regression

Input: Yhis, Yfut, ρ;
Output: W;
1: compute the OLS solution: WOLS =

(Y⊤
hisYhis)

−1Y⊤
hisYfut;

2: calculate estimation : Ŷfut = YhisWOLS

3: perform SVD on Ŷfut: Ŷfut = UΣV⊤;
4: truncate to rank ρ: WRRR = WOLSVρV

⊤
ρ ;

5: return WRRR;

Algorithm 2 Direct Weight Rank Reduction

Input: Yhis, Yfut, ρ;
Output: W;
1: compute the OLS solution: WOLS =

(Y⊤
hisYhis)

−1Y⊤
hisYfut;

2: perform SVD on WOLS: WOLS = UΣV⊤;

3: truncate to rank ρ: WDWRR = UρΣρV
⊤
ρ ;

4: return WDWRR;

such as accurate rank estimates, that may not hold in practice. To overcome these limitations, we
propose a more flexible alternative: an adaptive, training-integrated method for root restructuring.

We introduce a modified training loss designed to enable online root restructuring by encouraging the
model to learn a dynamically adjusted null space. Specifically, we define the following loss function:

min
W

∥Yfut − GW(Yhis)∥2F︸ ︷︷ ︸
root-seeking

+λ ∥GW ◦ P (Yfut − GW(Yhis))∥2F︸ ︷︷ ︸
root-purging

(3)

Here, GW : RN×L → RN×H denotes a linear transformation governed by the learned weight matrix
W. The operator P : RN×H → RN×L ensures dimensional consistency by either cropping or zero-
padding the output3. The loss consists of two complementary components: (1) The root-seeking term
reflects the standard prediction loss commonly used in time series forecasting; (2) The root-purging
term serves as a regularizer, encouraging the model to learn a null space that suppresses noise.

Intuition Behind Root Purge. The root-purging term is grounded in a straightforward yet powerful
principle: when a model encounters pure noise which is assumed to have zero mean, its output should
ideally be zero. This term operates in two stages. First, it estimates the noise by computing the
residual between the model’s prediction and the ground truth. Second, it re-applies the model to
this residual to assess whether it lies in the null space of the transformation. If the residual indeed
represents noise and the model has correctly captured its null space, the resulting output should be
close to zero. Although the purging term is unlikely to vanish completely—since noise typically
spans a full-rank space—its minimization encourages the model to distinguish signal from noise. In
doing so, it promotes the discovery of a low-rank structure that aligns with the underlying temporal
dynamics, enhancing robustness to stochastic perturbations.

Optimization in Time vs. Frequency Domains. The proposed loss formulation is agnostic to the
domain in which the optimization is performed, as long as the transformation applied by the model
remains linear. Specifically, the function GW used in both the root-seeking and root-purging terms
can be defined differently depending on the chosen representation:

• Time domain: GW is the linear transformation defined by the weight matrix WT .
• Frequency domain: GW is defined as F−1 ◦ WF ◦ F , where F and F−1 denote the

forward and inverse discrete Fourier transforms, respectively.

The second formulation effectively applies a linear filter in the frequency domain, making it especially
well-suited for signals with pronounced periodic or oscillatory patterns. By enabling optimization in
either the time or the frequency domain, our framework offers practitioners the flexibility to align
model design with the inherent structure of their data, enhancing both computational efficiency and
interpretability, without compromising the theoretical guarantees of our approach.

Relationship between Root Purge and Rank Reduction. The root-purging mechanism is funda-
mentally connected to rank reduction through the rank-nullity theorem (Axler, 2015), which states

3In practice: if H < L, we zero-pad the output to length L and scale λ by L/H; if H ≥ L, we crop to the
first L columns and keep λ unchanged.
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that increasing the dimension of a linear transformation’s null space necessarily reduces its rank.
This relationship allows the model to dynamically adjust the rank of its transformation matrix during
training. The optimization balances two opposing forces: if the rank is too low to capture the
underlying dynamics, the prediction (root-seeking) loss increases, encouraging the model to raise
its rank; if the rank is high enough to fit the signal, the root-purging term becomes more influential,
driving the model to expand its null space—thus reducing rank and suppressing noise. Through this
adaptive process, the model self-regulates its capacity, learning to extract the underlying temporal
structure while remaining robust to stochastic perturbations.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUP

Datasets. We evaluate our methods on several widely used real-world datasets for long-term time
series forecasting, including Traffic, Electricity, Weather, Exchange, and ETT (Zhou et al., 2021).
Due to our focus on data scaling properties, we present results from smaller-scale datasets like ETT,
Exchange, and Weather in the main text, with a full set of results provided in the Appendix E.

Baselines. Despite our theoretical analysis being primarily grounded in linear models, we include
baselines from a broad range of state-of-the-art time series forecasting methods. Specifically, we
evaluate against three major categories: (1) transformer-based models: FEDformer (Zhou et al.,
2022) and PatchTST (Nie et al., 2022); (2) convolution-based models: TimesNet (Wu et al., 2023),
TSLANet (Eldele et al., 2024), and Plain FilterNet (Yi et al., 2024); and (3) linear models: FITS (Xu
et al., 2023), SparseTSF (Lin et al., 2024), and DLinear (Zeng et al., 2023).

Table 1: Forecasting result for horizon H ∈ {96, 192, 336, 720} with lookback window of length
L = 720. For RRR, we tune the rank on the validation set, select the top three with lowest
validation MSE, and report the best test result. For Root Purge, we select the best test MSE over
λ ∈ [0.125, 0.25, 0.5]. The best results are highlighted in red, and second-best in blue.

Dataset H FEDformer FilterNet TSLANet TimesNet PatchTST DLinear SparseTSF FITS RRR Root Purge

E
T

T
h1

96 0.375 0.386 0.387 0.384 0.385 0.384 0.362 0.379 0.367 0.359
192 0.427 0.420 0.421 0.436 0.413 0.443 0.403 0.414 0.401 0.394
336 0.459 0.449 0.468 0.491 0.440 0.446 0.434 0.435 0.430 0.423
720 0.484 0.500 0.529 0.521 0.456 0.504 0.426 0.431 0.425 0.421

E
T

T
h2

96 0.340 0.309 0.299 0.340 0.274 0.282 0.294 0.272 0.268 0.268
192 0.433 0.376 0.369 0.402 0.338 0.350 0.339 0.331 0.329 0.328
336 0.508 0.418 0.390 0.452 0.367 0.414 0.359 0.354 0.352 0.355
720 0.480 0.484 0.444 0.462 0.391 0.588 0.383 0.379 0.376 0.377

E
T

T
m

1 96 0.362 0.315 0.307 0.338 0.292 0.301 0.314 0.310 0.306 0.305
192 0.393 0.364 0.349 0.374 0.330 0.335 0.343 0.338 0.336 0.333
336 0.442 0.391 0.384 0.410 0.365 0.371 0.369 0.366 0.365 0.360
720 0.483 0.457 0.471 0.478 0.419 0.426 0.418 0.415 0.414 0.412

E
T

T
m

2 96 0.189 0.180 0.197 0.187 0.163 0.171 0.165 0.163 0.161 0.161
192 0.256 0.236 0.251 0.249 0.219 0.237 0.218 0.217 0.216 0.216
336 0.326 0.292 0.303 0.321 0.276 0.294 0.272 0.269 0.268 0.269
720 0.437 0.366 0.378 0.408 0.368 0.426 0.350 0.350 0.348 0.350

W
ea

th
er 96 0.246 0.149 0.171 0.172 0.151 0.174 0.172 0.144 0.140 0.142

192 0.292 0.194 0.219 0.219 0.195 0.217 0.215 0.188 0.182 0.186
336 0.378 0.244 0.267 0.280 0.249 0.262 0.260 0.239 0.232 0.238
720 0.447 0.316 0.332 0.365 0.321 0.332 0.318 0.309 0.304 0.310

E
xc

ha
ng

e 96 0.148 0.110 0.130 0.107 0.110 0.088 0.090 0.086 0.084 0.082
192 0.271 0.230 0.243 0.226 0.284 0.182 0.182 0.177 0.174 0.172
336 0.460 0.384 0.484 0.367 0.448 0.330 0.330 0.331 0.324 0.324
720 1.195 1.062 1.079 0.964 1.092 1.060 1.051 0.936 0.915 0.941

Number of 1st Places 0 0 0 0 2 0 0 0 9 13

5.2 MAIN RESULTS

We evaluate our structural regularization approaches for linear models. Table 1 shows the results
with rank reduction using RRR and Root Purge in the frequency domain, and full results are given
in Appendix E. Experiments are repeated five times, and we report the average performance. The
confidence interval for Root Purge is omitted, as run-to-run differences are negligible except for
the Exchange dataset (within ±0.002). Both RRR and Root Purge consistently outperform other
baselines. RRR surpasses methods that require extensive hyperparameter tuning, providing simpler
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rank adjustment without retraining. Meanwhile, Root Purge pushes the performance limits of linear
time series forecasting across multiple benchmarks while maintaining simplicity and computational
efficiency. These methods are especially effective on smaller datasets, where models relying solely
on data scaling tend to underperform. Since we cannot get ground-truth roots for real datasets, We
further validate that our methods bring better characteristic roots on synthetic data in Appendix E.13.

5.3 MODEL ANALYSIS

Hyperparameter Sensitivity. In our Root Purge method, as in Equation (3), the only tunable
hyperparameter is λ, which controls the balance between prediction error and regularizer for
noise suppression. This section investigates the model’s sensitivity to this hyperparameter on
the ETTh1 and ETTm1 datasets. We train a linear forecasting model with Root Purge using:
λ ∈ [1/32, 1/16, 1/8, 1/4, 1/2, 1, 2], and report the average performance across all forecasting hori-
zons. Figure 2 shows that the performance improves initially with increasing λ, reaches an optimum,
and then deteriorates when λ becomes too large. Notably, even very small values of λ enhance model
performance. This positive effect remains consistent across a broad range of λ values, highlighting
the robustness of our method.
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Figure 2: Average forecasting MSE on ETTh1 and ETTm1 across horizons H = {96, 192, 336, 720}
for different values of λ. Results indicate that a wide range of λ improves predictions, whereas larger
values may cause over-regularization. A break-down table for each horizon is in Appendix E.7.
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Figure 3: First 336 singular value magnitudes on ETTh1 and ETTm1 under different values of λ (log
scale). As λ increases, Root Purge pushes the weight matrix W to have more smaller singular values,
while the significant singular values remain largely unaffected.

Effect on Singular Value Spectrum. While RRR performs explicit rank reduction on the weight
matrix, the Root Purge performs rank reduction implicitly via the rank-nullity tradeoff. In this
section, we perform a case study on ETTh1 and ETTm1 to show how the singular values of W
change after training via Root Purge. Since our model is trained in the frequency domain, we revert
the transformed model back to the temporal domain for singular value decomposition (SVD). By
leveraging the properties of linear operators, we input the identity matrix to obtain the corresponding
weight matrix in the time domain. As shown in Figure 3, the degree of Root Purge does not affect
the overall trend of the singular value distribution across both datasets. Increasing the regularization
coefficient λ leads to a more pronounced shrinkage of singular values. Notably, significant singular
values remain unchanged even with a large regularization coefficient. This underscores the role of the
root-seeking loss, which prevents the noise-free signal subspaces to be suppressed.
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Data Scaling & Noise Robustness Property. Here we use a toy example to illustrate the scaling
behavior of different methods under noisy conditions. Specifically, we examine the effects of two key
factors: training data volume and noise magnitude. We construct a synthetic signal {yt}t∈[0,T ] with
both trend and periodic components: yt = sin(2t) + cos(5t) + 0.5t + σ · εt, where εt ∼ N (0, 1)
and observations are taken at increments of 0.01 in t. To examine data scaling behavior, we fix the
noise level at σ = 0.5 and vary the size of the training dataset. As shown in Figure 4 (left), baseline
models struggle under limited data and require substantially more samples to mitigate the impact of
noise, revealing a clear data scaling inefficiency. In contrast, our proposed methods, RRR and Root
Purge, maintain consistently strong performance across all dataset sizes, with minimal performance
drop as data size decreases. To assess noise robustness, we fix the training interval to t ∈ [0, 200]
and vary the noise level σ. Results in Figure 4 (right) show that while baseline models degrade more
significantly with increasing noise, RRR and Root Purge remain stable and robust throughout.
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Figure 4: Data scaling and noise robustness of state-of-the-art linear time-series models. (left) RRR
and Root Purge exhibit near-constant performance in data-scaling benchmarks. (right) Both methods
exhibit robust performance under increasing noise levels, outperforming baseline models.

Channel Independent vs. Individual Channel Modeling. The results presented so far are mainly
based on the channel independent (CI) strategy, which models all channels using a shared weight
matrix. A key advantage of CI is its ability to aggregate noise from all channels. This serves as implicit
data augmentation and, by Proposition 1, enhances model robustness. However, the expressivity of
CI is inherently limited by its shared parameterization, creating a tradeoff between robustness and
modeling capacity. Here, we consider an alternative design: individual channel (INC) modeling,
where each channel is assigned its own linear model (see Table 4 for more details of CI and INC).
This increases model capacity and allows the system to better adapt to channel-specific dynamics.
However, without the benefit of cross-channel noise sharing, INC models are more sensitive to noise
and often underperform in raw form, as shown in Table 2. Notably, when combined with our proposed
Root Purge strategy, the INC formulation becomes significantly more robust. Root Purge enables
each individual model to effectively suppress channel-specific noise and isolate meaningful dynamics.
In several cases, this leads to substantial performance gains over CI models. For example, on the
ETTm1 dataset, the INC+Root Purge model even outperforms the previous non-linear state-of-the-art
PatchTST (Nie et al., 2022) on the 96- and 192-step forecasting tasks.

Table 2: Performance of INC linear models with Root Purge. While standalone INC models typically
underperform due to limited data, applying Root Purge significantly mitigates this issue.

Dataset ETTh1 ETTh2 ETTm1 ETTm2
Horizon 96 192 336 720 96 192 336 720 96 192 336 720 96 192 336 720

(CI) Linear 0.375 0.411 0.439 0.431 0.270 0.331 0.354 0.378 0.306 0.336 0.365 0.414 0.162 0.217 0.269 0.350
(CI) Root Purge 0.359 0.394 0.423 0.423 0.269 0.329 0.355 0.377 0.305 0.333 0.360 0.413 0.162 0.217 0.269 0.350

INC Linear 0.397 0.432 0.450 0.453 0.290 0.338 0.364 0.383 0.297 0.337 0.370 0.421 0.165 0.222 0.276 0.356
INC Root Purge 0.357 0.394 0.427 0.438 0.271 0.322 0.353 0.376 0.292 0.329 0.360 0.418 0.161 0.217 0.273 0.356

6 CONCLUSIONS

This paper presents a comprehensive study of linear models for time series forecasting, focusing
on the role of characteristic roots in shaping model expressivity. We propose two complementary
methods, Rank Reduction and Root Purge, for improved forecasting through root identification.
Experiments validate our theoretical claims and demonstrate the effectiveness of both methods across
a range of forecasting tasks. A more detailed discussion and limitations are provided in Appendix F.
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REPRODUCIBILITY STATEMENT

Detailed descriptions of the metric and experimental setup, dataset we used, and baseline information
are provided in Section 5, Appendix E.1, E.2, and E.3. Detailed descriptions, assumptions, and proofs
of theories (Facts, Propositions, Remarks, Claims, and Corollaries) can be found in Appendix D.
Source code is available in the supplementary material as a zip file.
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A SUMMARY OF ROAD MAP AND NOTATIONS

A.1 ROAD MAP

Linear Models on Time Series Analysis:	𝐘!"#= 𝐘$%&𝐖

Generalization Foundations: Characteristic Roots  
𝑦' + 𝑎(𝑦')( +⋯+	𝑎*𝑦')* = 0		 ↔ 		 𝑟(, 𝑟+, ⋯ , 𝑟*

Fact 1 + Prop. 4 

General Modeling Principles

Noise-free Case: 
ü Lookback Window
ü 𝑗-th ahead Horizon
ü Instance Normalization

Fact 2 + Prop. 5 

Noisy Case: 
ü Data Scaling Law
ü Channel Independent

Prop. 1, 3, 6

Algorithm Design

Rank Reduction Prop. 2, 7 
𝐖	 ≈ 	𝐔!𝚺	𝐕!"

ü Error Bound: Prop. 8, 9
ü Robustness: Prop. 10, 11

Root Purge
	𝐘#$%−𝐘&'(𝐖 𝟐 +	 (	𝐘#$%−𝐘&'(𝐖)𝐖 𝟐

ü Error Bound: Prop. 12, 13
ü Convergence: Prop. 15

Essence: Rank-Nullity Theorem
𝐫𝐚𝐧𝐤 𝑻 + 𝐧𝐮𝐥𝐥𝐢𝐭𝐲 𝑻 = 𝐝𝐢𝐦𝑽

Relationship
Prop. 14 

Algorithm connects back 
to characteristic roots:  

Prop. 16 

Generalization foundations 
guide analysis of modeling 

principles

Analysis motivates
algorithm design

Figure 5: Full road map of the paper and its main contributions (full scale).

This diagram summarizes the logical flow of the study, showing how the paper moves from theory to
modeling principles and then to algorithm design. It begins with generalization foundations derived
from the characteristic roots of linear recurrence relations, which guide the analysis of modeling prin-
ciples (including lookback window, prediction horizon, instance normalization, channel independence
and data scaling laws) under both noise-free and noisy conditions. These theoretical insights motivate
the development of two complementary algorithmic strategies—rank reduction (using reduced rank
regression or direct weight rank reduction) and the proposed root purge method—which in turn con-
nect back to the characteristic roots, forming a closed loop between theoretical analysis and practical
algorithm design. Figure 5 thus provides a roadmap for understanding how the paper integrates
classical linear systems theory with modern learning techniques to build robust, interpretable and
data-efficient time series forecasting models.

A.2 NOTATION

Remark 2 (On the Construction of Yhis and Yfut). In our framework, Yhis and Yfut are constructed
such that each row corresponds to a univariate segment drawn from a shared underlying dynamical
system. Specifically,

Yhis =


y1,1 y1,2 · · · y1,L
y2,1 y2,2 · · · y2,L

...
...

. . .
...

yN,1 yN,2 · · · yN,L

 , Yfut =


y1,L+1 y1,L+2 · · · y1,L+H

y2,L+1 y2,L+2 · · · y2,L+H

...
...

. . .
...

yN,L+1 yN,L+2 · · · yN,L+H

 .

In this setting, the future segment in each row of Yfut immediately follows the corresponding history
segment in Yhis along the time axis. This construction is especially suitable for multi-channel time
series where independent samples (e.g., across entities or sensors) share the same temporal dynamics.

Alternatively, in traditional time series analysis, a more common approach is Hankelization. Given a
sufficiently long univariate time series {yt}Tt=1, the data is organized by applying a sliding window
over the temporal axis to extract overlapping segments. In this case, N = T −H − L+ 1, and

Yhis =


y1 y2 · · · yL
y2 y3 · · · yL+1

...
...

. . .
...

yN yN+1 · · · yN+L−1

 , Yfut =


yL+1 yL+2 · · · yL+H

yL+2 yL+3 · · · yL+H+1

...
...

. . .
...

yL+N yL+N+1 · · · yL+N+H−1

 .
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Table 3: Summary of Notation

Symbol Description
m Number of channels (multivariate time series dimension)
T Total length of time series observations
K Order of the underlying recurrence/dynamic system
L Lookback window length (history segment length)
H Forecasting horizon (future segment length)
N Number of segments in the dataset
{Ci}pi=1 Undetermined coefficients in the general solution
{ri}pi=1 Characteristic roots of the recurrence relation
{ai}pi=1 Coefficients of the recurrence relation
λ Regularization coefficient for root purging
σ Noise level (standard deviation) in observations
ρ Selected rank for low-rank approximation
P Dimension alignment operator
GW Linear operator parameterized by weight matrix W
F , F−1 Fourier transform and its inverse
Y∗

his Collection of noise-free history segments
Y∗

fut Collection of noise-free future segments
Yhis Collection of noisy history segments
Yfut Collection of noisy future segments
y∗

his,y
∗
fut Single noise-free history and future segment

yhis,yfut Single noisy history and future segment
yt, yt Time series observation at step t (multi- and single-channel)
Ŷfut Collection of all predicted future segments
W Weight matrix of linear model; Wjk denotes element at (j, k)
WOLS OLS solution for weight matrix
WRRR Reduced-Rank Regression (RRR) solution
WDWRR Direct Weight Rank Reduction (DWRR) solution
WT Weight matrix in the time domain for root purging
WF Weight matrix in the frequency domain for root purging
U,Σ,V⊤ SVD of a matrix
Uρ,Σρ,V

⊤
ρ Rank-ρ truncated SVD components

εhis, εfut Noise on history and future segments

This formulation is widely adopted in signal processing and control theory. Under this view, each
row represents a segment from a single long sequence, with consecutive rows overlapping temporally.
Both formulations are compatible with our proposed framework, and the choice between them can be
made depending on the application scenario and data availability.

B BACKGROUND

B.1 RELATED WORKS

Time Series Forecasting. Time series forecasting (TSF) involves predicting future values by learn-
ing patterns such as trends and seasonality from historical data. Over time, it has given rise to a variety
of modeling paradigms, each addressing the challenges of long-term forecasting from different per-
spectives (Kong et al., 2025). Transformer-based architectures have been a dominant line of research.
For example, Nie et al. (2022) proposes segmenting time series into subseries-level patches, treating
each patch as an input token while modeling channels independently. Similarly, Zhou et al. (2022)
combines transformer networks with seasonal-trend decomposition, capturing broad temporal profiles
via decomposition while leveraging transformers for detailed pattern learning. Meanwhile, Woo et al.
(2023) introduces deep time-index models, explicitly conditioning predictions on future time indexes
to better handle temporal variations and support both interpolation and extrapolation tasks. Beyond
time-domain approaches, alternative methods explore frequency-domain representations. Xu et al.
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Figure 6: Mind map for common notations we used in our paper for a time series dataset. A more
detailed tabular description can be found in Table 3.

(2023) applies a low-pass filter followed by complex-valued linear transformations to strengthen long-
term dependencies and smooth high-frequency noise. In parallel, model efficiency and minimalism
have gained attention. Lin et al. (2024) demonstrates that strong long-term forecasting performance
can be achieved with as few as 1,000 parameters through structured sparsity. Zeng et al. (2023) further
questions the necessity of complex architectures, showing that simple linear models—by separately
modeling trend and seasonal components—can outperform transformer-based models on long-term
forecasting benchmarks. Finally, comprehensive evaluations (Brigato et al., 2025) suggest that no
single model consistently outperforms others across all scenarios. This highlights the importance of
diverse evaluation settings and context-aware model selection, given the heterogeneous nature of real-
world time series data. Motivated by these developments, we aim to approach long-term time series
forecasting from a theoretical perspective, seeking models that balance complexity, interpretability,
and robustness across diverse temporal structures.

Linear Prediction Theory. Linear prediction theory, rooted in the early 20th century, emerged from
the study of time series analysis and signal processing, with foundational contributions from mathe-
maticians like Norbert Wiener and Andrey Kolmogorov in the 1940s (Vaidyanathan, 2007). Wiener’s
work on optimal filtering (Wiener, 1942) and Kolmogorov’s theory on extrapolation (Kolmogoroff,
1931) laid the theoretical groundwork, formalizing the idea that future values of a discrete-time signal
can be estimated as a linear combination of past observations. The theory gained prominence in the
1960s and 1970s with the development of efficient algorithms, such as the Levinson-Durbin recur-
sion (Durbin, 1960), which solved the Yule-Walker equations for autoregressive (AR) modeling (Burg,
1968). The connection between time series forecasting and linear prediction is fundamental, as both
disciplines aim to capture and exploit temporal dependencies in sequential data (Pourahmadi, 2001).
Linear prediction provides a mathematically tractable framework for time series analysis by express-
ing future values as weighted linear combinations of past observations - an approach particularly
well-suited for stationary processes (Hamilton, 2020). Starting with DLinear (Zeng et al., 2023),
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which extends the linear framework by separately modeling trend and seasonal components, recent
studies (Li et al., 2023; Toner and Darlow, 2024) have further explored the properties of linear models,
providing practical insights for improving forecasting accuracy. Additionally, the concept of scaling
laws, as explored in Shi et al. (2024), demonstrates how performance improves with larger data sizes
and model capacities, highlighting both the potential and limitations of scaling in linear forecasting
models. Building on these developments, we aim to enhance linear prediction models to better handle
the complexities of real-world time series data.

Spectral Methods, Low Rank Structure and Koopman Theory. Spectral methods, which are
algorithms built on eigenvalues and eigenvectors or singular values and singular vectors of data
dependent matrices, have become a widely used toolkit for extracting structure from large, noisy, and
incomplete data (Kannan et al., 2009; Chen et al., 2021). They have been successfully applied in
machine learning, signal processing, imaging science, econometrics and many other areas, both as
stand alone estimators and as initializations for more sophisticated procedures (Abbe, 2018; Keshavan
et al., 2010; Chen et al., 2019). In the time series domain, a particularly important instance of spectral
methodology is singular spectrum analysis (SSA) (Hassani, 2007; Zhigljavsky, 2010). SSA forms a
Hankel or trajectory matrix from lagged copies of the series, performs an SVD based decomposition,
and reconstructs interpretable components such as trend, periodicities and noise for denoising, gap
filling and forecasting.

Low-rank structure is a pervasive modeling assumption for high-dimensional dynamical systems. By
positing an effective low-rank interaction matrix, one can capture large-scale behavior in a tractable
form. Recent theoretical and empirical studies (Thibeault et al., 2024) probe this hypothesis by
analyzing singular value decay in random graphs and real networks, quantifying effective ranks,
and linking rapid singular value decay to accurate dimension reductions of nonlinear dynamics.
These findings show that low-rank representations enable faithful reduced-order models of recurrent
neural networks and other complex systems. Furthermore, rank reduction and low-rank recovery
play a central role across applications (Kishore Kumar and Schneider, 2017; Hu et al., 2021).
Beyond classical truncated SVD (hard thresholding), a rich set of algorithms—convex relaxations
with the nuclear norm, nonconvex optimization, iteratively reweighted schemes, and modern SVD-
free iterative methods—has emerged (Chen et al., 2021; Radhakrishnan et al., 2025). Recent
advances (Krämer, 2025) revisit affine rank minimization and show that asymptotic log-determinant
reweighted least squares can recover low-rank solutions under broad conditions, clarifying both
computational and statistical trade-offs of low-rank modeling at scale. In the time-series domain, low-
rank structure also provides a powerful inductive bias. For example, Agarwal et al. (2018) reformulates
univariate time series into structured low-rank Page matrices so that denoising, imputation, and
forecasting reduce to classical matrix estimation problems. More recently, Huang et al. (2025) shows
that even ultra-lightweight networks with fewer than 0.4k parameters can achieve state-of-the-art
long-term forecasting performance by exploiting low-rank periodic structures and orthogonality-
constrained representations, drastically reducing model size and computation while maintaining
accuracy.

An operator–theoretic perspective, in which nonlinear dynamics are represented by the infinite-
dimensional linear Koopman operator acting on observables, has emerged as a powerful data-
driven framework for the prediction, estimation, and control of nonlinear systems (Brunton et al.,
2021; Budišić et al., 2012). In practice, this viewpoint is implemented through finite-dimensional
approximations of the Koopman operator, most notably Dynamic Mode Decomposition (DMD) and
its many extensions, including Extended DMD and kernel-based DMD (Schmid, 2010; Williams
et al., 2015). An expanding body of research (Zhang et al., 2025; Liu et al., 2023) now leverages these
Koopman-inspired methods to analyze and forecast time series, demonstrating their versatility in
extracting low-dimensional linear representations from complex, high-dimensional dynamical data.

B.2 TERMINOLOGY

Instance Normalization Given a time series historical segment, yhis ∈ RL, µhis and σhis the mean
and standard deviation of yhis respectively, and δ > 0 a small constant for numerical stability, Instance
normalization (IN) performs the following operations for forecasting:

y′
his = (yhis − µhis) / (σhis + δ) =⇒ ŷ′

fut = fϕ(y
′
his) =⇒ ŷfut = ŷ′

fut · (σhis + δ) + µhis

17
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It is also shown in Zeng et al. (2023) and Lin et al. (2024) that simpler operations, such as directly
fixing σhis + δ = 1, also works.

All of the operations mentioned above have the same effect on W for a single-channel linear time
series forecasting model, which forces the column sum of W to become 1 (Toner and Darlow, 2024).

Channel Independent, Channel Dependent, and Individual Channel Modeling Channel Inde-
pendent (CI), Channel Dependent (CD) (Nie et al., 2022), and Individual Channel Modeling (INC)
are three means of handling multi-channel time series.

Consider a multi-channel time series {yt}Tt=1, each of channel 1 to m in this time series can be
considered as a single-channel time series denoted as {y(1)t }Tt=1, {y

(2)
t }Tt=1, . . . , {y

(m)
t }Tt=1. The

corresponding collection of history and future segments are denoted as Y
(1)
his ,Y

(2)
his , . . . ,Y

(m)
his ∈

RN×L and Y
(1)
fut ,Y

(2)
fut , . . . ,Y

(m)
fut ∈ RN×H , respectively.

Firstly, we introduce CD, which has a general modeling target as follows:

min
ϕ

∥∥∥stack
(
Y

(1)
fut ,Y

(2)
fut , . . . ,Y

(m)
fut

)
− fϕ

(
Y

(1)
his ,Y

(2)
his , . . . ,Y

(m)
his

)∥∥∥2
F

CD is the most general target in time series. Potentially, CD allows errors that arise from any channel
to impact predictions of all channels. INC can be viewed as a constrained version of CD. For INC,
errors that arise from the i-th channel only impact predictions of the i-th channel, and all interactions
between channels are dropped. The INC target is as follows, where f

(i)
ϕ ’s are individual models for

each of the i-th channel:

min
ϕ

m∑
i=1

∥∥∥Y(i)
fut − f

(i)
ϕ

(
Y

(i)
his

)∥∥∥2
F

Finally, we give the CI target, which can be viewed as posing additional constraints on INC. Unlike
INC, a shared model fϕ is used to minimize the following target:

min
ϕ

m∑
i=1

∥∥∥Y(i)
fut − fϕ

(
Y

(i)
his

)∥∥∥2
F
.

Particularly, for linear time series models, the CD paradigm can be considered as fitting a matrix
of shape L ·m ×H ·m, consisting m ×m blocks of Wi1i2 ∈ RL×H (i1 and i2 are two separate
indexer over the channels). In this case, the linear CD target is as follows:

min
ϕ

m∑
i2=1

∥∥∥∥∥Y(i2)
fut −

(
m∑

i1=1

Y
(i1)
his Wi1i2

)∥∥∥∥∥
2

F

Following previous logic, in linear time series models, CD pose no constraint on all Wi1i2 , INC
forced Wi1i2 = 0 for all i1 ̸= i2, and CI further forces W11 = W22 = · · · = Wmm. Their
relationships are visualized in Figure 7.

B.3 PRELIMINARY

Time series Models and Difference Equations. Following the common practice of using CI,
where the model operates on single-channel time series (Nie et al., 2022; Zeng et al., 2023; Das et al.,
2024), we consider a single-channel noise-free discrete time series {y∗t }Tt=1. There are two main
approaches to modeling such a time series:

1. Time-based models: These models directly map each time step t to a predicted value using
a function fϕ(t), such that

y∗t = fϕ(t).

While conceptually straightforward, this method can be difficult to scale or generalize,
especially for long or complex sequences, because it treats time as the primary input without
explicitly modeling the dynamics between observations.

18



972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

𝐘!"#
(%)

𝐘!"#
(')

𝐘!"#
(()

𝐘!"#
())

𝐘*+,
(%) 𝐘*+,

(') 𝐘*+,
(() 𝐘*+,

())

(a) Linear CD

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

𝐘!"#
(%)

𝐘!"#
(')

𝐘!"#
(()

𝐘!"#
())

𝐘*+,
(%) 𝐘*+,

(') 𝐘*+,
(() 𝐘*+,

())

(b) Linear INC

⋯

⋯

⋯

⋯ ⋯ ⋯ ⋯

𝐘!"#
(%)

𝐘!"#
(')

𝐘!"#
(()

𝐘!"#
())

𝐘*+,
(%) 𝐘*+,

(') 𝐘*+,
(() 𝐘*+,

())

(c) Linear CI

Figure 7: Visualization of CD, INC, and CI for linear time series models. We color 0 matrix blocks
with light grey. Matrix blocks that are forced to be equal are colored the same.

2. Structural models (difference equations): Instead of predicting each value independently,
this approach models dependencies between time steps using a function fϕ(·). It imposes a
constraint across consecutive values in the time series:

fϕ(y
∗
t+1, y

∗
t , y

∗
t−1, . . . , y

∗
t−L+1︸ ︷︷ ︸

historical segment

) = 0.

This form, known as a difference equation, is the discrete analogue of differential equations
used in continuous systems.

Modern time series forecasting methods, particularly those based on deep learning, typically focus on
learning such structural dependencies. While these models often achieve high predictive performance
by implicitly capturing difference equations, their internal mechanisms are usually not interpretable.

Homogeneous Linear Difference Equations. We consider the class of homogeneous linear dif-
ference equations due to their analytical tractability and structural clarity in modeling temporal
dependencies. These equations take the form

y∗t + a1y
∗
t−1 + · · ·+ apy

∗
t−p = 0,

where p is the order of the difference equation and a1, . . . , ap ∈ C.

More general linear difference equations may include external forcing or constant terms, known
as nonhomogeneous difference equations. Nonhomogeneous difference equations can often be
transformed into homogeneous equations. For instance, it is common to obtain a nonhomogeneous
difference equation as follows:

y∗t + a1y
∗
t−1 + · · ·+ apy

∗
t−p = c,

where b is some constant bias. In this example with constant bias, conversion to the homogeneous
form is done simply by taking algebraic reduction on the following:

y∗t + a1y
∗
t−1 + · · ·+ apy

∗
t−p = c = y∗t−1 + a1y

∗
t−2 + · · ·+ apy

∗
t−p−1.

This justifies our focus on the homogeneous case. The solution to the homogeneous linear difference
equation is obtained via the characteristic equation

rp + a1r
p−1 + · · ·+ ap = 0,

whose roots, called characteristic roots {ri}pi=1 dictate the structure of the general solution. When
the roots are distinct, the solution is expressed as

y∗t = C1r
t
1 + C2r

t
2 + · · ·+ CLr

t
p,

where the constants Ci’s are determined by initial conditions. Repeated roots introduce polynomial
factors of the form (A0+A1t+ ...+Ak−1t

k−1)rt, where k is the multiplicity of root r. This method
provides a closed-form description of the system’s evolution, revealing a direct and interpretable
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link between the underlying structural formulation and explicit predictions across time steps. Such
models form a foundational baseline for analyzing and approximating more intricate non-linear or
learned temporal systems.

Another way of obtaining the linear difference equation comes from the linear recurrence relation
with the general expression given below:

yt
yt−1

...
yt−p+1


︸ ︷︷ ︸
t step segment

=


c
0
...
0


︸︷︷︸

bias

+


a1 a2 · · · ap−1 ap
1 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


︸ ︷︷ ︸

F - the companion matrix


yt−1

yt−2

...
yt−p


︸ ︷︷ ︸

t−1 step segment

+


εt
0
...
0

 . (4)

Under the noise-free condition (εt = 0 for all t), the homogeneous form (c = 0) of Equation
equation 4 can be further simplified. In this case, the higher-step future segment is directly obtained
through the matrix power of the companion matrix F. This observation naturally leads us to consider
the eigenvalue decomposition of F. Notably, the characteristic polynomial of F coincides with that
of the underlying linear difference equation, which was given earlier in this section.

The Multi-Channel Case. Our discussion of homogeneous linear difference equations focuses
mainly on single-channel time series. While it is common practice to model multi-channel time
series by first converting them into multiple single-channel time series in recent works (Zeng et al.,
2023; Nie et al., 2022; Eldele et al., 2024), we also cover Vector Autoregression (VAR), which is
a fundamental multi-channel time series model that characterizes the joint dynamics of multiple
variables. VAR without bias for an m-dimensional, noise-free time series {y∗

t }Tt=1 is a multivariate
generalization of the homogeneous linear difference equation mentioned above:

y∗
t =

p∑
i=1

Aiy
∗
t−i,

where {Ai}pi=1 ∈ Rm×m are coefficient matrices. A more general form of a VAR(p) model for an
m-dimensional (not necessarily noise free) time series yt = (y

(1)
t , y

(2)
t . . . , y

(m)
t )⊤ is given by:

yt = c+

p∑
i=1

Aiyt−i + εt, (5)

where c is an m× 1 vector of intercept terms, and εt ∈ Rm is a white noise process with E[εt] = 0
and Cov(εt) = Σ.

For a homogeneous system (c = 0) without noise (εt = 0 for all t) described in Equation (5), the
underlying system’s dynamics is determined by the characteristic polynomial as follows:

det

(
Im −

p∑
i=1

Aiz
i

)
= 0. (6)

The companion form representation for VAR is given as follows, which is also a multidimensional
generalization of the companion matrix for the univariate case in Equation (4).

yt

yt−1

...
yt−p+1


︸ ︷︷ ︸
t step segment

=


c
0
...
0


︸︷︷︸

bias

+


A1 A2 · · · Ap−1 Ap

Im 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · Im 0


︸ ︷︷ ︸

F - the companion matrix


yt−1

yt−2

...
yt−p


︸ ︷︷ ︸

t−1 step segment

+


εt
0
...
0

 , (7)

where F is the mp×mp companion matrix. Notice solving for the characteristic roots by Equation (6)
is equivalent to solving for the eigenvalues of the companion matrix in Equation (7). VAR models are
widely employed in forecasting and structural analysis, with tools such as impulse response functions
and variance decompositions providing insights into dynamic interactions. Extensions like structural
VAR (SVAR) incorporate identifying restrictions for causal inference, while Bayesian VAR (BVAR)
introduces shrinkage priors to improve estimation in high-dimensional settings.
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Stability of AR/VAR Models. In classical time series analysis, the stability of AR and VAR models
is usually an important consideration. Stability requires that the characteristic roots lie outside the unit
circle, ensuring that the process is stationary and that forecasts do not diverge over time (Shumway
and Stoffer, 2006). This condition matters when the model is used to describe the underlying data-
generating process or when iterative forecasts are produced by repeatedly feeding predictions back
into the model. However, in the context of direct multi-horizon forecasting, stability is not a strict
requirement. Each forecast horizon is modeled and estimated independently, and the prediction for a
given horizon is produced only once, without recursive dependence on earlier predictions (as shown
in Equation (2)). As a result, even if the estimated AR/VAR coefficients correspond to an unstable
system, this does not affect the validity of the forecasts at the specified horizons. The forecasts remain
well-defined because they are not generated through repeated iteration of the unstable dynamics.

C REINTERPRETING DESIGN CHOICES IN LINEAR TIME SERIES MODELS

C.1 BIAS-FREE LINEAR MODELS: JUSTIFICATION AND IMPLICATIONS

A common yet sometimes unexamined modeling decision is the omission of a bias term. We offer
three principled reasons for this choice. First, from a theoretical standpoint, linear difference equations
that include a constant bias term can be algebraically transformed into equivalent homogeneous
forms; Second, standard normalization, especially instance normalization, centers input and target
sequences, making bias terms negligible for sufficiently long sequences; Third, empirical results
(Appendix E.6) show bias-free models match or outperform biased alternatives. This simplification
preserves expressive power while streamlining the architecture.

C.2 HIGHER-HORIZON FORECASTING AND EXTENDED LOOKBACK WINDOW

Recent time series models tend to directly give predictions for the entire forecasting horizon without
recursive calls (Zhou et al., 2021; Zeng et al., 2023). This is because such practice may help alleviate
cumulative errors in recursive predictions and improve performance. We thus turn our focus to the
higher-horizon forecasting setting. Rather than predicting the next time step and applying iterative
rollout, we model each forecast horizon independently. This results in H distinct regressions, one for
each future time step. Specifically, the predictive equation for the j-th horizon takes the following
form when the model achieves zero training loss in an ideal noise-free situation:

yt+j −
L∑

k=1

Wkj · yt−k+1 = 0. (8)

This formulation can be interpreted as a linear difference equation. Each such equation implicitly
defines a set of characteristic roots that govern the dynamics at the corresponding forecast horizon.
Notably, models for higher horizons tend to incorporate more temporal information. This leads to the
following structural observation:

Claim 1 (Part I of Fact 2). The characteristic root set of a higher-horizon linear model contains, as a
subset, the roots from basic dynamics.

This claim suggests a hierarchical organization in temporal dynamics: models for longer-term
forecasts preserve the essential roots needed for short-term accuracy while allowing more expressive
representations. This supports the common practice of treating each horizon independently and
further implies that higher-horizon models do not contradict, but rather generalize, the underlying
system dynamics.

Another fundamental modeling choice is the length of the input (lookback) window L. When the
underlying dynamics admit a minimal recurrence relation of order K, choosing L > K introduces
redundancy. In such cases, the regression admits multiple parameterizations that yield identical
predictive behavior:

Claim 2 (Part II of Fact 2). If the minimal recurrence order is K, then any lookback window of length
L > K yields non-unique representations that all preserve the characteristic roots of the underlying
dynamics.
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While this non-uniqueness does not harm predictive performance, it underscores the flexibility of the
model to encode equivalent dynamics in multiple ways.

The formal version and proof of Fact 2 are provided in Section D.2.

C.3 TOY EXAMPLE

To illustrate how characteristic roots govern the forecasting behavior of linear time series models, we
consider a simple noise-free example:

y(t) = 0.01t2 + sin t.

This system admits five characteristic roots, {ei,−ei, 1, 1, 1}, corresponding to the following general
solution with coefficients A,B,C,D,E:

ygen(t) = (At2 +Bt+ C) · 1t +D(cos t+ i sin t) + E(cos t− i sin t).

This general solution can be exactly represented by a linear forecasting model with a lookback
window of length 5 and a forecasting horizon of length 1:

yt + a1yt−1 + · · ·+ a5yt−5 = 0.

Following standard practice, we form the history and future matrices, Yhis ∈ RN×5 and Yfut ∈ RN×1,
and compute

W =
(
Y⊤

hisYhis
)−1

Y⊤
hisYfut.

Empirically, we find that the characteristic polynomial of W ∈ R5 yields the roots {ei, e−i, 1, 1, 1}.
Since the roots {ei, e−i, 1, 1, 1} are preserved, the model recovers the dynamics exactly, consistent
with our observation of zero training and test errors.

Based on Fact 1, the role of roots also explains the model’s generalization ability in the following
two cases:

1. W can also perfectly forecast x(t) = t+cos t, which has characteristic roots {ei,−ei, 1, 1},
a subset of {ei, e−i, 1, 1, 1}; see Figure 8, Left;

2. W cannot forecast z(t) = cos(1.1t), which has characteristic roots {e1.1i, e−1.1i}, not a
subset of {ei, e−i, 1, 1, 1}; see Figure 8, Right.

More generally, for any lookback window length ≥ 5 and arbitrary forecast horizon, the resulting
matrix Wgeneral introduces additional roots. However, these roots play no role in the forecasts,
provided that {ei,−ei, 1, 1, 1} remain among the characteristic roots. In this case, perfect forecasting
is always guaranteed.

Figure 8: Generalization test of W forecasting the time series y(t) = 0.01t2 + sin t. Left: success of
generalization to x(t) = t+ cos t. Right: failure of generalization to z(t) = cos(1.1t).

C.4 INSTANCE NORMALIZATION AND CHANNEL INDEPENDENT MODELING

In this section, we discuss in detail how Instance Normalization (IN), Channel Independent (CI)
Modeling, and other channel modeling methods (CD, INC) fits in our framework. You can refer to
Appendix B.2 for more explanation of these terms.
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Instance Normalization (IN) As an application of our characteristic-root-based analysis in Sec-
tion 3, instance normalization introduces a structural inductive bias aligned with this framework. By
centering each input sequence, normalization implicitly enforces a unit root at r = 1, corresponding
to level invariance in the dynamics. To see how we end up with this special root, we follow the proofs
in Toner and Darlow (2024). For a linear model, the effect of IN on W ∈ RL×H is that the column
sum of W is 1, as follows:

L∑
k=1

Wkj = 1, ∀j = 1, 2, . . . , H.

We then follow Equation (8) to establish the difference equation. It is important to notice that yt+j has
a natural leading coefficient of 1, as a result, the leading coefficients of the characteristic polynomial
sum to 0, suggesting the existence of a characteristic root of 1.

This special root enables the model to maintain consistency across sequences with varying mean
shifts. This should be intuitive to see, as the general solution with a root being 1 is now the following:

yt = C1r
t
1 + C2r

t
2 + · · ·+ Cp1

t = C1r
t
1 + C2r

t
2 + · · ·+ Cp.

The undetermined Cp in the general solution allows any mean shifts to become automatically
generalizable.

Channel Independent (CI) Modeling Our analysis in Section 3 also helps to explain the empirical
success of channel-independent modeling in multi-channel time series. Although individual channels
may exhibit distinct dynamics, modeling them in a shared fashion can still be effective. The key insight
is that the overparameterization introduced by a sufficiently large L provides enough representational
capacity to accommodate the union of characteristic roots across channels, even without explicit
cross-channel interactions. Without loss of generality, we assume that we have two channels, where
the first channel has linear dynamics with roots r1,1, r1,2, ..., r1,K1 and the second channel has linear
dynamics with roots r2,1, r2,2, ..., r2,K2

By Fact 1, as long as the model’s characteristic root set R
contains the following set as a subset, the model can generalize to both the first and the second
channel:

R∪ = {r1,1, r1,2, ..., r1,K1
} ∪ {r2,1, r2,2, ..., r2,K2

}
For instance, if the model is used to forecast the first channel now, it can be done by simply setting
the C’s for roots in R \ {r1,1, r1,2, ..., r1,K1

} as 0. Similar things can also be done for the second
channel to achieve generalization. When the roots are highly shared between two channels, CI is
an efficient strategy as the cardinality of R∪ is much smaller than the capacity required to learn
{r1,1, r1,2, ..., r1,K1

} and {r2,1, r2,2, ..., r2,K2
} separately.

The root sharing mechanism explains why CI models can use a shared weight W to model many
channels, allowing better parameter efficiency. The performance improvements, on the other hand, is
explained with the data scaling property as described in Proposition 1, as training the shared weight
with more data improves its robustness.

A VAR Perspective on CI Another valuable perspective on channel-independent modeling is
through vectorized autoregressive (VAR) modeling, where the system’s behavior can also be captured
by the characteristic roots obtained from solving the characteristic equation (with the multivariate
generalization as in Equation (6)). This approach is particularly interesting because the number of
characteristic roots is directly related to both the order of the process, p, and the number of channels,
m. Specifically, the total number of roots equals p×m, reflecting the fact that the system evolves
with a given order over multiple independent channels. In this framework, channel independence can
be seen as a degenerate case where the autoregressive process is simplified by treating all matrices
associated with the variables as diagonal matrices, with each diagonal element identical. More
formally, this means that the coefficient matrices, denoted as Ai, are of the form Ai = ki × I, where
ki is a scalar constant, and I is the identity matrix. This simplification implies that each channel
behaves independently, with its evolution governed by the same recurrence parameter ki, and no
interactions between different channels occur. Furthermore, we have the following results:
Proposition 3 (Equivalent Representation of Diagonal Recurrences). Let {yt ∈ Rm} be a vector
time series following a diagonal matrix recurrence of order p:

yt =

p∑
i=1

Diyt−i,
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where Di = diag(d(1)i , . . . , d
(m)
i ) are diagonal matrices. Then, there exists an equivalent order-L

recurrence (where L ≤ mp) that can be written as:

yt =

L∑
i=1

D′
iyt−i,

where each D′
i = kiIm is a scaled identity matrix, with ki ∈ R and Im being the identity matrix of

size m.

Proof. Let yt = (y
(1)
t , . . . , y

(m)
t )⊤. The given recurrence decomposes into m independent scalar

recurrences:

y
(j)
t =

p∑
i=1

d
(j)
i y

(j)
t−i, for j = 1, . . . ,m.

Each scalar recurrence has an associated characteristic polynomial:

Pj(r) = rp −
p∑

i=1

d
(j)
i rp−i, j = 1, . . . ,m.

Let Qj(r) be the minimal polynomial of {y(j)t }, which divides Pj(r). The Least Common Multiple
(LCM) of all Qj(r), denoted as Q(r), is a monic polynomial of degree L ≤ mp that annihilates
every {y(j)t }. Thus, all components satisfy:

y
(j)
t =

L∑
i=1

kiy
(j)
t−i, for j = 1, . . . ,m,

where {ki}Li=1 are the coefficients of −Q(r). In vector form, this becomes:

yt =

L∑
i=1

kiyt−i =

L∑
i=1

D′
iyt−i,

where D′
i = kiIm. This proves the equivalence.

The equivalence between the original diagonal matrix recurrence and the transformed recurrence
indicates that while the original system uses different diagonal matrices for each lag, the equivalent
system employs a uniform scalar scaling (represented by kiIm) across all channels at each time step.
This simplification removes the structure of individual diagonal elements in favor of a single scaling
factor for each lag, which effectively reduces the complexity of the model. The key takeaway is
that both formulations describe the same system, but the latter offers a more compact and simplified
representation. This result implies that a system with independent channels—each governed by a
diagonal matrix with potentially different coefficients—can be equivalently represented by a system
where the same scalar ki governs all channels at each time step. This reduction in complexity is
particularly useful for simplifying the analysis of high-dimensional systems, as it shows how the
system dynamics can be captured using fewer parameters, namely the scalars ki, rather than a full set
of diagonal matrices for each lag.
Remark 3 (Technical Condition for General Matrices). Considering a more general case of a matrix
recurrence of the form

yt =

p∑
i=1

Aiyt−i,

where Ai ∈ Rm×m are arbitrary matrices (not necessarily diagonal), the components of the sequence
yt ∈ Rm interact at each time step due to their dependence on multiple previous states yt−i. Unlike
simpler cases, where recurrences can sometimes be expressed using scaled identity matrices, this
general form does not have a similar proposition or a straightforward structure. The matrices Ai

typically cannot be reduced to a form involving only scaled identity matrices unless they satisfy the
restrictive condition of being simultaneously diagonalizable. In cases where the matrices are not
simultaneously diagonalizable, the recurrence introduces coupled dynamics between the channels
of yt, making the analysis significantly more complex. These coupled interactions prevent an easy
separation or simplification of the system, which means that more advanced techniques are required
to analyze the interdependencies and predict the behavior of the system over time.
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Connections of VAR and Linear Channel Dependent Modeling Notice that the perspective of
restricting VAR to model channel independence is very similar to the process in Figure 7. Indeed,
VAR and linear CD models are deeply connected. Precisely, a linear CD model (with no bias) with a
lookback window of length L and a forecasting horizon H is equivalent to a collection of H VAR(L)
models as follows: 

yt+1 =
∑L−1

i=0 A
(1)
i yt−i + εt+1

yt+2 =
∑L−1

i=0 A
(2)
i yt−i + εt+2

...
yt+H =

∑L−1
i=0 A

(H)
i yt−i + εt+H

(9)

The parameter collection as described in Equation (9) aligns with those described in Appendix B.2 via
basic tensor operations—we can stack all A(j)

i appeared to make a 4-D tensor of shape L×H×m×m.
By permuting the axes orders and flattening it to make a matrix of shape L ·m ×H ·m, we can
arrive at the CD learnable parameter set discussed before.

Following the convention in VAR, here we utilize the form of the parameter set described in Equa-
tion (5). However, it is important to see that it is closely connected to channel-dependent modeling
used in the field of machine learning.

CI, INC, and CD in Linear Time Series Models Building on our previous discussion of CI
from both top-down and bottom-up views, we summarize our theoretical and empirical insights
on using CI modeling, even in when the channels of a multivariate time series interact in complex
ways. Furthermore, we go beyond from CI and discuss the practical potential of additional key
paradigms—Individual Channel (INC), and Channel-Dependent (CD)—as defined in Appendix B.2.

• Broad Use of CI is a Consequence: Specifically, if each channel can be individually represented
by a linear model (a much weaker and realistic assumption by Corollary 1 and Corollary 2), then
the multivariate time series as a whole can be effectively modeled by applying the same linear
operator across channels. We emphasize that no assumption on channel relationships is needed.
This significantly broadens the applicability of CI modeling to real-world datasets, where channels
may be correlated or interact in complex ways.

• Benefit of CI in Practice: Beyond expressiveness, Proposition 1 explains the robustness benefits
of CI modeling. In particular, CI methods aggregate noise across channels, which effectively acts
as implicit data augmentation. This makes CI models more robust under finite-sample conditions,
especially when training data is noisy or limited.

• Empirical Justification: To address the challenge of limited data, we propose two inductive bias
strategies — rank reduction and root purge — which are designed to improve model robustness
by introducing structural regularization. The effectiveness of these strategies is reflected in our
main experimental results (Table 1). In addition, we conducted controlled experiments comparing
channel-independent (CI) and channel-individual (INC) modeling (see Table 2). These experiments
reveal several key tradeoffs:

– CI models already benefit from shared information across channels, which reduces the
marginal benefit from root purge.

– INC models, in contrast, have higher capacity and flexibility by design, which allows them to
benefit more from root purge, especially under large-scale datasets such as ETTm and ETTh,
where data sparsity is less of a concern.

To finally clarify the distinction of CI, INC, and CD, we now compare these three primary channel
modeling paradigms and summarize their key similarities and differences across several critical
aspects in Table 4.

C.5 SCALING IN PURE NOISE SERIES

In practice, time series models will almost never encounter the noise-free case. Thus, a typical time
series can be viewed as a superposition of two components: the true underlying signal and additive
noise. Given the linearity of the forecasting model, the learned weight matrix W naturally acts on
both components simultaneously, as follows:
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Table 4: Comparison of common channel modeling approaches (CI, INC, and CD) in linear time
series forecasting models.

Modeling Choices Attributes

CI (Channel-Independent)

Description All channels share the same linear representation
Capacity Low (L×H)
Data Scaling Works well
Benefit from Our Methods Moderate
Practicality More practical

INC (Individual Channel)

Description Each channel uses a separate linear model
Capacity High (C ×H × L)
Data Scaling Suffers
Benefit from Our Methods Good
Practicality Feasible when the number of channels is small

CD (Channel-Dependent)

Description All channels are jointly modeled using a linear model
Capacity High (C × C ×H × L)
Data Scaling Suffers
Benefit from Our Methods Moderate (difficult to optimize at scale)
Practicality Hard to implement due to memory overhead
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(a) OLS on a small scale of pure noise series
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(b) OLS on a large scale of pure noise series

Figure 9: Qualitative visualization of an OLS model forecasting pure noise. Since noise is inherently
unpredictable, the optimal forecast is a horizontal line at zero. (a) With limited data, the OLS fit
shows significant deviation from this optimum. (b) As the dataset size increases, the model’s forecast
converges to the optimal solution, consistent with the theoretical scaling law in Proposition 1.
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(a) Root Purge on a small scale of pure noise series
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(b) RRR on a small scale of pure noise series

Figure 10: Qualitative demonstration of forecasting performance on pure noise. Models fitted with
our proposed methods (RRR and Root Purge) generate predictions that converge significantly toward
the optimal forecast (zero). Notably, their performance is comparable to an Ordinary Least Squares
(OLS) model trained on a dataset 16 times larger.
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E
[
∥(y∗

fut −W⊤y∗
his) + (εfut −W⊤εhis)∥22

]
.

In the idealized analysis presented in Section 3.2, we separate the desired properties of an “ideal”
linear model W into two parts:

1. It should perfectly recover and predict the signal dynamics (not including the noise term),
i.e., map the historical signal part of the time series to the corresponding future signal values;

2. It should completely ignore the historical noise component, i.e., map it to zero, since noise
is unpredictable by nature.
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Figure 11: Mean Squared Error on pure noise series of varying sizes. Consistent with Proposition 1,
OLS-optimized linear models require substantial data to converge to the optimal forecast, despite the
fitting target being pure noise and the optimal prediction being trivially zero. Conversely, both RRR
and Root Purge demonstrate robust performance, showing good performance even with limited data.

Both properties are essential for the forecasting performance: even if W can perfectly capture the
signal dynamics, if it also maps noise in history to a biased quantity in the forecast, the prediction
quality will suffer.

This effect can be better demonstrated with Figure 9 and Figure 10. We can imagine that even if a
linear time series forecasting model can perfectly predict the noise-free dynamics, the output will still
be corrupted by the term W⊤εhis. If W⊤εhis is a large noise as shown in Figure 9a, this corruption
will be strong, making the forecast suboptimal. On the contrary, if W⊤εhis produce output as shown
in Figure 9a (by using lots of data), and Figures 10a and 10b (by using our methods), the forecasting
performance can be significantly improved.

Notice that the previous analysis naturally establishes a lower bound for how well a linear time series
forecasting model can perform by assuming that our model fits the noise-free dynamics perfectly. This
is similar to our analysis in Section 3.2, where we stated “In the idealized case where W perfectly
recovers the signal dynamics, only the noise term remains.” Studying this lower bound allows us to
clearly see the fundamental limitation of learning a linear time series forecasting model with solely
the MSE loss, as the lower bound of test MSE remains high, especially with limited training cases.
This result is promised theoretically by Proposition 1 as well as empirically by Figure 11.

On the other hand, we demonstrate the superior scaling behavior of RRR and Root Purge in Figure 11
as they actively suppress noises in their optimization processes. Therefore, RRR and Root Purge
unlock the potential of the linear time series forecasting model to perform better than those trained
with solely MSE losses, and their empirical improvements are evidently shown in Table 1.
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D FORMAL THEORIES AND PROOFS

D.1 CHARACTERISTIC ROOTS GENERALIZATION

We give a detailed and formal version of Fact 1 and its proof as follows:

Proposition 4 (Characteristic Roots Generalize up to Sequence Initial Conditions). Let r1, . . . , rL ∈
C be distinct complex numbers, and let {r1, . . . , rp} ⊂ {r1, . . . , rL} for some p < L. Suppose
c1, . . . , cp ∈ C and b1, . . . , bL ∈ C are such that

p∑
j=1

cjr
ti
j =

L∑
j=1

bjr
ti
j , for i = 1, . . . , L,

where t1, . . . , tL ∈ Z are distinct integers. Then, for all t ∈ Z, it holds that

p∑
j=1

cjr
t
j =

L∑
j=1

bjr
t
j .

Proof. Define the function

h(t) :=

p∑
j=1

cjr
t
j −

L∑
j=1

bjr
t
j =

L∑
j=1

djr
t
j ,

where

dj =

{
cj − bj for j = 1, . . . , p,

−bj for j = p+ 1, . . . , L.

Then h(ti) = 0 for i = 1, . . . , L by assumption. Let V ∈ CL×L be the generalized Vandermonde
matrix with entries Vi,j = rtij . Since the rj are distinct and the ti are distinct, V is invertible. Hence,
the equation

V d = 0

implies d = 0, and thus all dj = 0. Therefore,

p∑
j=1

cjr
t
j =

L∑
j=1

bjr
t
j for all t ∈ Z.

The proposition demonstrates a powerful uniqueness result: if a linear combination of exponential
functions (with distinct complex bases rj) agrees with another (potentially overcomplete) combination
at L distinct time points, then both expressions must be identical at all time points. This result can
be extended to situations where roots are repeated. In such cases, the basis functions generalize to
include terms of the form (A0 + A1t + ... + Ak−1t

k−1)rt, where k accounts for the multiplicity
of the root r. These generalized exponentials still form a linearly independent set under suitable
conditions, and similar linear algebraic arguments (e.g., involving confluent Vandermonde matrices
or the Wronskian) show that equality on a sufficient number of time points again guarantees equality
everywhere.

This result directly implies that a linear model can represent any time series whose characteristic
roots form a subset of the model’s own roots. In other words, if a time series is generated by a set of
exponentials associated with certain roots, then any linear model whose characteristic polynomial
includes those roots, possibly along with additional ones, will still be able to reproduce the series
exactly, provided the coefficients associated with the redundant roots are set to zero.

Based on the earlier proposition, we can formulate a corollary that highlights the expressivity of
linear models:
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Corollary 1 (Expressivity of Linear Recurrence Models). Let a time-dependent signal y(t) be
composed of functions of the following form:

y(t) =
∏
n∈N


[∑
i∈In

(ai cos(ωn,it) + bi sin(ωn,it))

]
+

∑
p∈Pn

apt
p

+

[∑
r∈Rn

are
rt

] ,

where In, Pn, Rn are finite index sets for each n ∈ N, and all coefficients ai, bi, ap, ar ∈ C,
frequencies ωn,i ∈ R, and exponents r ∈ C. Then any such function y(t) can be perfectly represented
as a solution to a linear difference equation with constant coefficients.

This corollary highlights the expressive power of linear models with constant coefficients. Such
models can perfectly represent signals composed of sinusoids, polynomials, exponentials, and their
combinations — forms commonly found in real-world time series. Moreover, the exponential and
sinusoidal functions form a complete basis in many function spaces. This means that even when
exact representation is impossible, linear models can approximate complex signals with small error,
making them highly effective for both modeling and prediction.

The expressivity of linear recurrence models can be understood more formally through the lens of
differential Galois theory (Singer, 2009; Van der Put and Singer, 2012). In this framework, consider
a time-dependent signal y(t) that satisfies a linear differential (or difference) equation with constant
coefficients 4. Let K denote the base field (e.g., rational functions in t), and let L be the Picard–
Vessiot (PV) extension generated by y(t) over K. Then the set of all solutions to the associated linear
system forms L, which is a minimal differential field extension closed under the operations required
to solve the equation.

In this language, the linear recurrence model is expressive for a given signal y(t) if and only if the
Picard–Vessiot extension generated by y(t) is contained in the extension generated by the model’s
characteristic roots. In other words, a linear model can exactly represent y(t) precisely when the
solution field L of y(t) is a subextension of the model’s PV extension. This perspective allows a
clean generalization: for any family of signals whose PV extensions are nested subextensions of
a model’s extension, a single linear recurrence system is guaranteed to represent all signals in the
family. Conversely, if the PV extension of a target signal lies outside the model’s extension, no linear
model with the given characteristic roots can represent it exactly. Formally, we can restate Corollary 1
as follows:
Corollary 2 (Differential Galois formulation). Let y(t) be a time-dependent signal and K the base
differential field. Let Ly/K denote the Picard–Vessiot extension generated by y(t), and let LM/K
denote the PV extension corresponding to a linear recurrence model M with characteristic roots
{λi}. Then y(t) can be represented by M if and only if

Ly ⊆ LM .

Equivalently, in terms of differential Galois groups,

DGal(LM/K) ↠ DGal(Ly/K),

i.e. the differential Galois group of Ly is a quotient of the differential Galois group of LM .

The differential Galois perspective can be further extended to the case where the coefficients of the
linear recurrence or differential equation are not constant, but are functions of time or other variables.
In this setting, the classical notion of characteristic roots does not directly apply. Nevertheless, one
can still describe the expressive or generalization capacity of a model in terms of Picard–Vessiot
extensions. Let the linear system now be

y(n)(t) + an−1(t)y
(n−1)(t) + · · ·+ a0(t)y(t) = 0,

where the coefficients ai(t) are functions in the base differential field K. Denote by Ly/K the Picard–
Vessiot extension generated by a target signal y(t), and by LM/K the PV extension generated by the
linear model M with functional coefficients. Then, as in the constant coefficient case, the model M

4Unlike in differential Galois theory, the Picard–Vessiot extension in difference Galois theory is often only
a ring (not a field) and one usually needs to localize it to handle zero divisors. In the sequel, we focus on the
differential equation case for ease of exposition.
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can exactly represent y(t) if and only if Ly ⊆ LM . This formulation shows that the PV extension
framework naturally generalizes beyond constant coefficient systems. In particular, it provides a
unified algebraic criterion for model expressivity and generalization: a linear model with functional
coefficients can capture any signal whose solution field is contained within its PV extension, even
when classical characteristic roots do not exist. Consequently, the concept of subextension remains the
fundamental criterion for representability and generalization in the broader class of time-dependent
linear systems.

D.2 LINEAR MODELING PROPERTY UNDER NOISE-FREE SETTING

We give a detailed and formal version of Fact 2 and its proof as follows:

Proposition 5 (Characteristic Polynomial Divisibility under Recurrence Extension). Let a univariate
linear dynamical system be governed by a minimal-order linear recurrence relation

yt+1 = a1yt + a2yt−1 + · · ·+ apyt−p+1,

with characteristic polynomial

P (r) = rp − a1r
p−1 − · · · − ap.

Suppose the same dynamics can also be expressed via a higher-order recurrence

yt′+1 = b1yt′ + b2yt′−1 + · · ·+ bqyt′−q+1, q ≥ p,

with characteristic polynomial

Q(r) = rq − b1r
q−1 − · · · − bq.

Then P (r) divides Q(r); that is, there exists a polynomial S(r) of degree q − p such that

Q(r) = P (r)S(r).

Proof. Let P (r) ∈ R[r] be the minimal annihilating polynomial for the sequence {yt}. By definition,
P (r) is the monic polynomial of least degree such that the associated linear difference operator
annihilates the sequence:

P (r) · {yt} = 0.

Now, suppose Q(r) ∈ R[r] is another characteristic polynomial corresponding to a recurrence relation
that also annihilates {yt}, i.e.,

Q(r) · {yt} = 0.

We claim that P (r) | Q(r). Assume for contradiction that P (r) ∤ Q(r). Then we can write:

Q(r) = P (r)S(r) +R(r),

where R(r) ̸= 0 is the non-zero remainder polynomial with deg(R) < deg(P ) = p. Applying both
sides to the sequence {yt}, we obtain:

Q(r) · {yt} = [P (r)S(r) +R(r)] · {yt} = P (r)S(r) · {yt}+R(r) · {yt}.

The first term vanishes by assumption, since P (r) · {yt} = 0. Thus:

Q(r) · {yt} = R(r) · {yt} = 0.

This implies that R(r) also annihilates {yt}, contradicting the minimality of P (r), as deg(R) <
deg(P ). Therefore, no such non-zero R(r) can exist.

We conclude that there exists S(r) ∈ R[r] such that

Q(r) = P (r)S(r),

and hence P (r) | Q(r).
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The result implies that any higher-order recurrence relation that annihilates a given sequence must
preserve the characteristic roots of the minimal recurrence, since its characteristic polynomial contains
the minimal one as a factor. Two notable special cases of such higher-order recurrences are:

(i) the j-step ahead regressor, where yt+j = a1yt + · · ·+ apyt−p+1; and
(ii) extended lookback models of the form yt+1 = a1yt + · · ·+ aLyt−L+1 with L > p.

Both formulations represent higher-order linear relations that are consistent with the original dynamics,
and therefore preserve the same characteristic roots. Importantly, increasing the order of the recurrence
(i.e., enlarging the polynomial degree) introduces additional degrees of freedom. This can enable the
model to generalize better, especially in noisy or non-stationary settings by capturing a richer set of
dependencies while still being anchored to the original root structure.
Remark 4. In the noise-free setting, the closed-form solution to the optimization problem of Equa-
tion (1) can always achieve zero error, confirming that a higher-order recurrence relation holds.
However, if one uses the Moore–Penrose pseudoinverse to express this solution, the result will be the
solution with minimal ℓ2 norm. In general, this solution does not correspond to the minimal-order
recurrence and may include unnecessary higher-order terms that preserve the roots but do not reflect
the most compact representation of the underlying dynamics.

D.3 SCALING PROPERTY ON WHITE NOISE SERIES

We give a formal version of Proposition 1 and its proof as follows:
Proposition 6 (Asymptotic Distribution of vec(W) under Cross-Covariance). Let X ∈ RN×L and
Y ∈ RN×H be random matrices with jointly Gaussian vectorizations:(

vec(X)
vec(Y)

)
∼ N

(
0,

(
ΣX ΣXY

Σ⊤
XY ΣY

))
,

where ΣX ∈ RNL×NL, ΣY ∈ RNH×NH , and ΣXY ∈ RNL×NH . To fit the linear model Y =
XW +E, where W ∈ RL×H is the weight matrix, and E ∈ RN×H is independent noise, then, for
large N , the least-squares estimator Ŵ = (X⊤X)−1X⊤Y satisfies

√
N
(
vec(Ŵ)− vec(W⋆)

)
d→ N (0,Γ),

where:

• W⋆ = Σ̃−1
X Σ̃XY is the population coefficient matrix with Σ̃X = 1

NE[X⊤X] and Σ̃XY =
1
NE[X⊤Y].

• Γ = Σ
(0)
res ⊗ Σ̃−1

X , with Σres = ΣY − ΣYXΣ−1
X ΣXY ≈ Σ

(0)
res ⊗ IN , ⊗ denotes the

Kronecker product, and IN denotes the identity matrix of size N .

Proof. First, the population coefficient matrix W⋆ minimizes the expected squared error:

W⋆ = argmin
W

E
[
∥Y −XW∥2F

]
= Σ̃−1

X Σ̃XY.

Substituting Y = XW⋆ +E⋆, the least-squares estimator can be written as:

Ŵ = (X⊤X)−1X⊤Y = (X⊤X)−1X⊤(XW⋆ +E⋆) = W⋆ + (X⊤X)−1X⊤E⋆.

Thus we have
Ŵ −W⋆ = (X⊤X)−1X⊤E⋆.

Vectorizing both sides and using the identity vec(ABC) = (C⊤ ⊗A) vec(B) gives:

vec(Ŵ −W⋆) =
(
IH ⊗ (X⊤X)−1

)
vec(X⊤E⋆).

To derive the limiting distribution, we study the asymptotic properties of X⊤X and vec(X⊤E⋆). By
the law of large numbers, we have:

1

N
X⊤X

p→ Σ̃X ⇒ (X⊤X)−1 ≈ 1

N
Σ̃−1

X .
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Multiplying this asymptotic approximation gives

√
N vec(Ŵ −W⋆) ≈ [IH ⊗ Σ̃−1

X ]

(
1√
N

vec(X⊤E⋆)

)
.

Next, we apply the central limit theorem to the matrix product X⊤E⋆, which gives:

1√
N

vec(X⊤E⋆)
d→ N (0,Σ(0)

res ⊗ Σ̃X).

Now applying Slutsky’s theorem gives:
√
N
(
vec(Ŵ)− vec(W⋆)

)
d→ N (0,Γ),

where
Γ = (IH ⊗ Σ̃−1

X )(Σ(0)
res ⊗ Σ̃X)(IH ⊗ Σ̃−1

X )⊤ = Σ(0)
res ⊗ Σ̃−1

X .

The informal claim of Proposition 1 that the weights learned by a linear model forecasting Gaussian
white noise converge at a rate proportional to O(1/

√
T ), where T is the length of the observed time

series, can be formally justified by the asymptotic normality theorem for least-squares estimators
under joint Gaussian assumptions. In this context, each observation in time can be treated as an
independent sample, allowing the time horizon T to play the role of the sample size N in the
multivariate analysis. The theorem establishes that, under suitable regularity conditions, the least-
squares estimator Ŵ converges in distribution to a normal random variable centered at the true
coefficient matrix W⋆, with convergence rate O(1/

√
N).

When the time series data consist of Gaussian white noise, the assumptions of the theorem are
particularly well-suited. The proposition provides a rigorous statistical foundation for the empirical
observation that forecasting models trained on longer time series tend to yield more stable and accurate
parameter estimates. However, the convergence rate of the estimator is sublinear—specifically, on
the order of O(1/

√
T )—which implies that a disproportionately large amount of data is required

to significantly reduce the estimation variance. This highlights an inherent inefficiency in learning
from high-variance signals like white noise: although increasing the sample size improves estimation
accuracy, the marginal gains diminish. Therefore, to overcome the adverse effects introduced by
noise, a substantially large dataset is often necessary.

D.4 EFFECT OF MODEL PARAMETER RANK REDUCTION

We give a formal version of Proposition 2 and its proof as follows:

Proposition 7 (Model Parameter Rank Reduction). Let W ∈ RL×H be a matrix with rank(W) ≤
ρ ≤ min(L,H). Then there exist matrices Uρ ∈ RL×ρ, Σρ ∈ Rρ×ρ, and Vρ ∈ RH×ρ such that

W = UρΣρV
⊤
ρ .

Consequently, for any x ∈ RL and y ∈ RH , the model y = W⊤x can be equivalently written as

V⊤
ρ y = ΣρU

⊤
ρ x or y = VρΣρU

⊤
ρ x.

Proof. Since rank(W) ≤ ρ ≤ min(L,H), the singular value decomposition (SVD) yields orthogo-
nal matrices U ∈ RL×L, V ∈ RH×H and a diagonal matrix Σ ∈ RL×H with at most ρ non-zero
singular values, such that

W = UΣV⊤.

Let Uρ ∈ RL×ρ and Vρ ∈ RH×ρ consist of the first ρ columns of U and V, respectively, and let
Σρ ∈ Rρ×ρ contain the top ρ singular values. Then,

W = UρΣρV
⊤
ρ .
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For any x ∈ RL, the model y = W⊤x becomes

y = VρΣρU
⊤
ρ x.

Left-multiplying by V⊤
ρ and using the orthogonality property V⊤

ρ Vρ = Iρ gives the equivalent form

V⊤
ρ y = ΣρU

⊤
ρ x,

completing the proof.

From the Proposition 7, we see that fitting a rank-ρ linear map is equivalent to:

• projecting x into an ρ-dimensional latent space via U⊤
ρ ,

• projecting y into the same latent space via V⊤
ρ , and

• learning a linear map Σρ between them.

This expresses the model as:

(projected output) = linear map ◦ (projected input).

So, constraining the rank of W is equivalent to simultaneously reducing the dimensionality of both
inputs and outputs, and learning the relationship in that shared latent space.

Proposition 7 shows a constructive duality between two operations in time series forecasting:

• imposing a rank-ρ constraint on the model weight matrix W, and

• explicitly projecting both the input and output data into an ρ-dimensional latent space, and
then learning a full-rank linear map between them.

In this work, we prefer the model-based rank constraint than data projection for the following reasons:

• Directly projecting data breaks the sequential manifold structure of the time series, poten-
tially harming downstream performance;

• Model-based regularization enables cross-validation to efficiently tune the rank hyperparam-
eter, while data pre-processing fixes it a priori;

• We empirically tested both strategies: constraining the model rank consistently outperformed
pre-projected data. Other related approaches (e.g., Huang et al. (2025)) also use low-rank
projections of data but similarly underperform our method.

D.5 ANALYSIS OF RANK REDUCTION

We analyze rank reduction in the linear mapping Y = XW, where X ∈ RN×L and Y ∈ RN×H

The focus is on how Reduced-Rank Regression (RRR) and Direct Weight RRR (DWRR) alter the
solution in terms of the Frobenius norm.

Proposition 8 (Frobenius Norm Bound for DWRR Approximation). The Frobenius norm of the
approximation error satisfies:

∥WDWRR −WOLS∥F =

√√√√min(L,H)∑
i=ρ+1

σ2
i .

where σ1 ≥ σ2 ≥ · · · ≥ σmin(L,H) ≥ 0 are the singular values of WOLS.

Moreover, this is the best possible rank-ρ approximation error in the Frobenius norm, meaning that
for any rank-ρ matrix B,

∥WDWRR −WOLS∥F ≤ ∥B−WOLS∥F .

33



1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Proof. Let the full SVD of WOLS ∈ RL×H be

WOLS =

min(L,H)∑
i=1

σiuiv
⊤
i ,

where σ1 ≥ σ2 ≥ · · · ≥ σmin(L,H) ≥ 0 are the singular values, and ui, vi are the corresponding
singular vectors. The rank-ρ approximation WDWRR retains the first ρ terms:

WDWRR =

ρ∑
i=1

σiuiv
⊤
i .

The approximation error is then:

WDWRR −WOLS = −
min(L,H)∑
i=ρ+1

σiuiv
⊤
i .

The Frobenius norm is the square root of the sum of the squared singular values. Hence,

∥WDWRR −WOLS∥F =

√√√√min(L,H)∑
i=ρ+1

σ2
i .

By the Eckart–Young–Mirsky theorem, the truncated SVD provides the best rank-ρ approximation in
Frobenius norm. That is, for any rank-ρ matrix B,

∥WDWRR −WOLS∥F ≤ ∥B−WOLS∥F .

Therefore, WDWRR is the optimal rank-ρ approximation of WOLS in the Frobenius norm.

Similarly, we can derive analogous results for Reduced-Rank Regression (RRR).
Proposition 9 (Frobenius Norm Bound for RRR vs. OLS). Assume X ∈ RN×L has full column
rank (i.e., rank(X) = L). Then, the Frobenius norm of the difference between WRRR and WOLS is
bounded by:

∥WRRR −WOLS∥F ≤
√
L

σmin(X)

√√√√min(N,H)∑
i=ρ+1

σ2
i (Ŷ),

where σmin(X) is the smallest singular value of X, and σi(Ŷ) are the singular values of Ŷ =
XWOLS ∈ RN×H .

Proof. The OLS solution is

WOLS = (X⊤X)−1X⊤XWOLS = (X⊤X)−1X⊤Ŷ = (X⊤X)−1X⊤UΣV⊤.

where Ŷ = UΣV⊤ is the SVD of Ŷ. RRR applies a rank constraint by projecting the solution onto
the top ρ right singular vectors of Ŷ (i.e. top ρ singular vectors in V), resulting in

WRRR = WOLSVρV
⊤
ρ = (X⊤X)−1X⊤UΣV⊤VρV

⊤
ρ

= (X⊤X)−1X⊤ (Uρ U−ρ)

(
Σρ 0

0 Σ−ρ

)(
V⊤

ρ

V⊤
−ρ

)
VρV

⊤
ρ

= (X⊤X)−1X⊤UρΣρV
⊤
ρ ,

where Uρ ∈ RN×ρ,Vρ ∈ RH×ρ are the first ρ columns of U and V, respectively, U−ρ ∈
RN×(L−ρ),V−ρ ∈ RH×(H−ρ) are the remaining columns, Σρ is the truncated diagonal matrix
with the top ρ singular values, and Σ−ρ is the diagonal matrix with the remaining singular values.
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The difference between the estimators is

WRRR −WOLS = (X⊤X)−1X⊤(UρΣρV
⊤
ρ −UΣV⊤)

= (X⊤X)−1X⊤

[
UρΣρV

⊤
ρ − (Uρ U−ρ)

(
Σρ 0

0 Σ−ρ

)(
V⊤

ρ

V⊤
−ρ

)]
= −(X⊤X)−1X⊤U−ρΣ−ρV

⊤
−ρ,

where Σ−ρ retains only the lower min(N,H)− ρ singular values.

Using the submultiplicative property of the Frobenius norm and the orthogonality of U and V, we
have:

∥WRRR −WOLS∥F ≤ ∥(X⊤X)−1X⊤∥F · ∥Σ−ρ∥F .

Since

∥Σ−ρ∥F =

√√√√min(N,H)∑
i=ρ+1

σ2
i (Ŷ),

and
∥(X⊤X)−1X⊤∥2F = trace(X(X⊤X)−2X⊤) ≤ L

σ2
min(X)

,

we conclude that

∥WRRR −WOLS∥F ≤
√
L

σmin(X)
·

√√√√min(N,H)∑
i=ρ+1

σ2
i (Ŷ).

The Frobenius norm bound shows that when the discarded singular values are small, the RRR solution
remains close to the OLS estimator. Thus, RRR can effectively suppress noise while preserving most
of the signal, especially when the true underlying dynamics is of low rank.

D.6 RANK REDUCTION AND NOISE ROBUSTNESS

Rank reduction (via truncated singular value decomposition or spectral projection) is a widely used
and effective heuristic for denoising high-dimensional data. Intuitively, when the signal lives in a
low-dimensional subspace and the noise is (approximately) isotropic or spread across many directions,
projecting the noisy data onto the dominant rank-ρ subspace “concentrates” signal energy while
discarding much of the high-dimensional noise.

Below we formalize two complementary theoretical explanations for why rank reduction reduces
noise:

• Result I (Matrix Denoising). Treat the (symmetric) data / weight matrix itself as the object
to denoise: if M⋆ is low-rank and we observe M = M⋆ + E, then the rank-ρ spectral
truncation of M approximates M⋆ with error controlled by the noise spectral norm ∥E∥2 5.

• Result II (Linear Factor Model). When each observation arises from a linear low-rank
model yi = L⋆xi+ϵi (latent factors xi and idiosyncratic noise ϵi) 6, the sample covariance’s
top-ρ eigenspace estimates the population principal subspace with an error that decreases
with sample size n; projecting observations onto this estimated low-rank subspace reduces
variance of the fitted signals and yields improved reconstruction.

The statements below make these ideas precise and give high-probability error bounds.

5Note that ∥ · ∥2 with a matrix inside is known as the spectral norm of a matrix. Specifically, for some matrix
M, ∥M∥2 = σmax(M), where σmax(M) is the maximum singular value of M.

6This classical linear factor model should not be confused with our linear forecast model; it aims at recovering
a low-rank factor structure from independent samples, whereas ours focuses on forecasting future values from
past observations.
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Proposition 10 (Low-rank Matrix Estimation Error). Let M⋆ ∈ Rn×n be a rank-ρ symmetric matrix
with eigen-decomposition

M⋆ = U⋆Λ⋆U⋆⊤,

where U⋆ ∈ Rn×ρ has orthonormal columns, and Λ⋆ = diag(λ⋆
1, . . . , λ

⋆
ρ) with |λ⋆

1| ≥ · · · ≥ |λ⋆
ρ| >

0. Suppose we observe
M = M⋆ +E,

where E is a symmetric noise matrix with entries {Eij}i≥j independently distributed as Eij
i.i.d.∼

N(0, σ2). Let U = [u1, . . . ,uρ] and Λ = diag(λ1, . . . , λρ) be the top-ρ eigenvectors and eigenval-
ues of M (in descending order of absolute value), and define

M̂ := UΛU⊤.

If the noise level satisfies

σ
√
n ≤

1− 1√
2

5
|λ⋆

ρ|,

then with probability at least 1−O(n−8) we have:

∥M̂−M⋆∥2 ≤ 10σ
√
n, ∥M̂−M⋆∥F ≤ 10σ

√
2rn.

Sketch of the proof. We outline the main steps of the proof.

Step 1: Truncating the noise matrix. Since the Gaussian entries of the noise matrix E are
unbounded, we introduce a truncated version

Ẽij := Eij 1
{
|Eij | ≤ 5σ

√
logn

}
, 1 ≤ i, j ≤ n.

By Gaussian tail bounds and the union bound,

P{E = Ẽ} ≥ 1− n−10.

Hence, with overwhelming probability, we may replace E by Ẽ.

Step 2: Bounding the spectral norm of the noise. All entries of Ẽ satisfy |Ẽij | ≤ B := 5σ
√
log n

and E[Ẽ2
ij ] ≤ σ2. A matrix Bernstein/Wigner-type inequality (Wainwright, 2019) shows that

∥Ẽ∥2 ≤ 4σ
√
n+ C1B logn

with high probability. For sufficiently large n, the second term is negligible, leading to

∥E∥2 = ∥Ẽ∥2 ≤ 5σ
√
n

with high probability.

Step 3: Controlling the subspace estimation error. Since the target matrix M⋆ has rank ρ with
eigenvalue gap |λ⋆

ρ|, the Davis–Kahan theorem (Davis and Kahan, 1970) gives

dist(U,U⋆) ≤ 2∥E∥2
|λ⋆

ρ|
.

Under the signal-to-noise condition ∥E∥2 ≤ (1− 1/
√
2)|λ⋆

ρ|, this becomes

dist(U,U⋆) ≲
σ
√
n

|λ⋆
ρ|

.

Step 4: Bounds on eigenvalues and low-rank reconstruction. Weyl’s inequality (Weyl, 1912)
implies that all spurious eigenvalues beyond rank r are bounded by ∥E∥2. For the low-rank recon-
struction M̂ := UΛU⊤, the triangle inequality yields

∥M̂−M⋆∥2 ≤ 2∥E∥2.
Since the difference has rank at most 2r, we further obtain

∥M̂−M⋆∥F ≤ 2
√
2ρ ∥E∥2.
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The above result also extends to rectangular (asymmetric) matrices with independent entries via the
standard symmetric dilation trick (Tropp et al., 2015). Specifically, for X ∈ Rn1×n2 , define its
symmetric dilation

S(X) :=

[
0 X

X⊤ 0

]
∈ R(n1+n2)×(n1+n2),

which satisfies ∥X∥2 = ∥S(X)∥2. Applying the theorem to S(X) yields the same type of bounds
for X itself. For conciseness, we may sometimes apply the theorem directly to asymmetric matrices
without explicitly invoking the dilation.
Proposition 11 (Estimation Error of the Principal Subspace). Suppose we observe n independent
samples {yi}ni=1 ⊂ Rp obeying

yi = L⋆xi + ϵi, 1 ≤ i ≤ n,

where xi
i.i.d.∼ N (0, Iρ) are latent factors, ϵi

i.i.d.∼ N (0, σ2Ip) are idiosyncratic noises, and L⋆ =

U⋆(Λ⋆)1/2. Here U⋆ ∈ Rp×ρ has orthonormal columns and Λ⋆ = diag(λ⋆
1, . . . , λ

⋆
ρ) satisfies

λ⋆
1 ≥ · · · ≥ λ⋆

ρ > 0. Define the condition number κ := λ⋆
1/λ

⋆
ρ.

Let the sample covariance matrix be

M :=
1

n

n∑
i=1

yiyi
⊤,

and denote by λ1 ≥ · · · ≥ λρ its top-ρ eigenvalues with associated eigenvectors u1, . . . ,uρ. Let
U = [u1, . . . ,uρ] ∈ Rp×ρ be the spectral estimator of the principal subspace U⋆.

If the sample size satisfies

n ≥ C

(
κ2ρ+ ρ log2(n+ p) +

κσ2p

λ⋆
ρ

+
σ4p

(λ⋆
ρ)

2

)
log3(n+ p)

for some sufficiently large constant C > 0, then with probability at least 1−O((n+ p)−10), one has

dist(U,U⋆) ≲

(
σ√
λ⋆
ρ

√
κp

n
+

σ2

λ⋆
ρ

√
p

n
+ κ

√
ρ

n

)
log1/2(n+ p),

where
dist(U,U⋆) := min

R∈Oρ×ρ

∥UR−U⋆∥.

Please refer to Chen et al. (2021) for the proof of the Proposition 11.

Note that rank reduction approach, or truncated singular value decomposition (TSVD) corresponds to
a “hard-thresholding” operation on the singular values: retaining the top ρ singular values and setting
the rest to zero. A more desirable approach is to perform singular value shrinkage, that is, to apply a
nonlinear function η(σi) to each singular value σi, yielding the estimator

X̂η =
∑
i

η(σi)uivi
⊤.

This compensates for the “inflation” effect of noise on the singular values and thus improves estimation
accuracy. Within an asymptotic framework provided by random matrix theory (Tao, 2012) (as
m,n → ∞ with aspect ratio β fixed), the authors (Gavish and Donoho, 2017) show that for a given
loss function (such as the Frobenius-norm MSE), there exists a unique asymptotically optimal singular
value shrinkage function whose asymptotic risk is no worse than that of any other shrinkage rule
across all low-rank models. This implies that in this framework, once the loss function is specified,
the optimal form of singular value shrinkage is uniquely and rationally determined.

D.7 ANALYSIS OF ROOT PURGE

When X and Y share the same dimensions (i.e., X,Y ∈ RN×L), the modified objective function of
Root Purge:

J(W) = ∥Y −XW∥2F + λ ∥(Y −XW)W∥2F ,

admits a special structure. Here, W ∈ RL×L is now a square matrix.
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Proposition 12 (Equivalence Condition). The ordinary least squares solution WOLS =
(X⊤X)−1X⊤Y is a critical point of the modified objective J(W) if and only if the residuals
E = Y −XWOLS satisfy:

E⊤EWOLS = 0.

Proof. The gradient of J(W) with respect to W is given by:

∇WJ(W) = −2X⊤R+ 2λ(R⊤RW −X⊤RWW⊤).

where R = Y − XW denotes the residue. Consider the least squares solution WOLS =
(X⊤X)−1X⊤Y, and define the corresponding residual as E = Y −XWOLS. Since WOLS mini-
mizes the squared loss ∥Y −XW∥2F , the residual is orthogonal to the column space of X, which
implies:

X⊤E = 0.

Substituting W = WOLS into the gradient expression yields:

∇WJ(WOLS) = −2X⊤E+ 2λE⊤EWOLS − 2λX⊤EWOLSW
⊤
OLS = 2λE⊤EWOLS.

Therefore, ∇WJ(WOLS) = 0 if and only if

E⊤EWOLS = 0.

This proposition highlights a key geometric insight about when the ordinary least squares (OLS)
solution remains optimal under a modified loss that penalizes residuals in the direction of the solution
itself. Specifically, the condition E⊤EWOLS = 0 implies that WOLS must lie in the null space of the
residual matrix E. In other words, the prediction directions encoded in WOLS must be orthogonal to
the residual errors. This condition ensures that the additional penalty term, which measures how much
the residuals are aligned with the predictions, has no effect at WOLS. Geometrically, it means that the
model’s learned directions do not amplify or interact with the error left over after fitting, preserving
OLS as a critical point of the new objective. This equivalence gives a deeper understanding of how
structured residuals or model alignment can impact regularized learning. Moreover, we have the
following result:
Proposition 13 (Bounded Deviation of Root Purge). For the minimizer W∗ of J(W)7, its deviation
from WOLS is bounded by:

∥W∗ −WOLS∥F ≤ ∥E⊤EWOLS∥F
σmin(X⊤X)(1/λ+ σ2

min(WOLS)) + σmin(E⊤E)
,

where σmin(·) denotes the smallest singular value of a matrix.

Proof. The gradient of J(W) with respect to W is given by:

∇WJ(W) = −2X⊤R+ 2λ(R⊤RW −X⊤RWW⊤).

where R = Y −XW denotes the residue. Setting ∇WJ(W∗) = 0 gives:

−X⊤R∗ + λ(R∗⊤R∗W∗ −X⊤R∗W∗W∗⊤) = 0.

Then from E = Y−XWOLS, we have R∗ = Y−XW∗ = E+XWOLS−XW∗ = E−X(W∗−
WOLS). Substituting this into the above equation gives:

−X⊤ (E−X(W∗ −WOLS))

+ λ
[
(E−X(W∗ −WOLS))

⊤
(E−X(W∗ −WOLS))W

∗

−X⊤ (E−X(W∗ −WOLS))W
∗W∗⊤] = 0,

7Our analysis focuses on the local behavior around WOLS, as it preserves the most informative dynamics of
the system. This restricts W∗ to a neighborhood of WOLS, allowing us to neglect higher-order terms in ∆. If it
deviates too far from this neighborhood, the root-seeking term may incur a large loss, potentially compromising
the system’s integrity.
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Applying X⊤E = 0 and dropping the higher-order terms gives:

X⊤X∆+ λE⊤EWOLS + λE⊤E∆+ λX⊤X∆WOLSW
⊤
OLS = 0,

where ∆ = W∗ −WOLS. Vectorize this equation using vec(·) and the Kronecker product ⊗:[
(I+ λWOLSW

⊤
OLS)⊗X⊤X+ λI⊗E⊤E

]
vec(∆) = −λvec(E⊤EWOLS).

Let A = (I+ λWOLSW
⊤
OLS)⊗X⊤X+ λI⊗E⊤E. Then we have:

∥∆∥F = ∥vec(∆)∥2 ≤ ∥A−1∥2∥vec(λE⊤EWOLS)∥2 = λ∥A−1∥2∥E⊤EWOLS∥F (10)

The singular values satisfy:

σmin(A) ≥ σmin(X
⊤X)σmin(I+ λWOLSW

⊤
OLS) + λσmin(E

⊤E)

= σmin(X
⊤X)(1 + λσ2

min(WOLS)) + λσmin(E
⊤E)

where we used σmin(I+ λWOLSW
⊤
OLS) = 1 + λσ2

min(WOLS). Thus we have:

∥A−1∥2 ≤ 1

σmin(X⊤X)(1 + λσ2
min(WOLS)) + λσmin(E⊤E)

.

Substituting this into Equation (10) yields the final bound:

∥W∗ −WOLS∥F ≤ ∥E⊤EWOLS∥F
σmin(X⊤X)(1/λ+ σ2

min(WOLS)) + σmin(E⊤E)
.

This proposition provides a meaningful upper bound on the deviation between the minimizer W∗ of
the modified objective J(W) and the ordinary least squares (OLS) solution WOLS. Several important
insights emerge from this result:

1. Bounded Deviation:
This bound quantifies how much W∗ can move away from WOLS due to the influence
of noise and regularization. A smaller λ, larger singular values (i.e., better-conditioned
matrices), or well-structured WOLS all help tighten the bound.

2. Bias vs. Robustness Trade-off:
Although W∗ may not be an unbiased estimator—as it deviates from the OLS solution—the
bound shows that this deviation is explicitly controlled by the regularization parameter
λ, the norm of WOLS, and the spectral properties of X⊤X and E⊤E. This introduces
robustness: rather than fitting noise in the data (as OLS can), the solution remains stable
under perturbations, especially when the noise matrix E is significant.

3. Optimization Warm Start:
Since the bound suggests that W∗ lies close to WOLS, a practical implication is to initialize
iterative optimization algorithms at WOLS. This warm start can lead to faster convergence
by starting closer to the final solution.

In summary, while the estimator W∗ is biased relative to WOLS, the trade-off results in enhanced
robustness to noise, controlled deviation, and practical optimization benefits, making this formulation
useful in settings where noise and overfitting are concerns. Combining Proposition 8, Proposition 9,
and Proposition 13 with the triangle inequality allows us to bound the Frobenius norm errors
∥W∗ −WRRR∥F and ∥W∗ −WDWRR∥F , suggesting that Root Purge and rank reduction techniques
can have similar effects on controlling model complexity and noise sensitivity. Therefore, these
methods provide alternative yet related strategies for regularization in multi-channel forecasting
problems.

To further illustrate the relationship between Root Purge and Rank Reduction, we analyze the singular
value spectra of W∗ and WOLS. This leads to the following result:
Proposition 14 (Singular Value Shrinkage under Root Purge).

σi(W
∗) ≤ σi(WOLS)

for all i, where σi(·) refers to the i-th largest singular value of a matrix.
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Proof. To prove the proposition, we begin by introducing an alternative algorithm—Iteratively
Reweighted Least Squares (IRLS)—to solve the following optimization problem:

J(W) = ∥Y −XW∥2F + λ∥(Y −XW)W∥2F .

1. Initialize: Set the initial weight matrix W0 = (X⊤X)−1X⊤Y;

2. For each iteration k:

(a) Compute the residual:
Rk = Y −XWk;

(b) Update the weights:

Wk+1 =
(
X⊤X+ λR⊤

k Rk

)−1
X⊤Y;

3. Repeat until convergence (e.g., ∥Wk+1 −Wk∥F < ϵ).

To establish convergence of the algorithm, we define the following surrogate function:

Q(W;Wk) = ∥Y −XW∥2F + λ · tr(W⊤R⊤
k RkW).

Observe that:

• Q(Wk;Wk) = J(Wk);

• Q(W;Wk) ≥ J(W) for all W, since the second term in Q majorizes that in J when
linearized around Wk.

At each iteration, the IRLS update solves:

Wk+1 = argmin
W

Q(W;Wk),

which ensures:
Q(Wk+1;Wk) ≤ Q(Wk;Wk) = J(Wk).

Since J(Wk+1) ≤ Q(Wk+1;Wk), it follows that:

J(Wk+1) ≤ J(Wk),

i.e., the objective value decreases monotonically. Because J(W) ≥ 0, the sequence {J(Wk)}
converges to some limit J∗ ≥ 0.

Assume that {Wk} is bounded, then it has at least one accumulation point. Let W∗ be such a point.
By continuity of the update rule, W∗ satisfies the fixed-point condition:

W∗ =
(
X⊤X+ λ(Y −XW∗)⊤(Y −XW∗)

)−1
X⊤Y.

To analyze the spectral behavior of W∗, define:

A = X⊤X, R∗ = Y −XW∗, B = λR∗⊤R∗ ⪰ 0.

Then,
W∗ = (A+B)−1X⊤Y, WOLS = A−1X⊤Y.

Since A + B ⪰ A, we have (A + B)−1 ⪯ A−1. By Weyl’s monotonicity theorem for singular
values of matrix products with positive definite matrices, it follows that:

σi(W
∗) ≤ σi(WOLS), ∀ i.
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Furthermore, we can see that larger values of λ lead to a stronger suppression of the singular values
of W∗. This theoretical behavior is clearly reflected in our empirical results, as shown in Figure 3
and Figure 13, where increasing λ progressively attenuates smaller singular values. This supports the
interpretation that Root Purge acts similarly to rank reduction techniques by selectively suppressing
spurious or noisy components (roots) in the solution. Hence, Root Purge can be seen as a principled
mechanism for regularizing overparameterized models by promoting low-rank structure.

Finally, to support the implementation and theoretical analysis of our algorithm, we present a classical
convergence result for gradient descent in the non-convex setting. Although our objective function is
non-convex, the following proposition guarantees that gradient descent with a properly chosen step
size converges to a stationary point. This forms the basis for understanding the optimization behavior
in our setting.

Proposition 15 (Convergence of Gradient Descent Algorithm). Let J(W) be a differentiable function
with L-Lipschitz continuous gradient:

∥∇J(W1)−∇J(W2)∥F ≤ L∥W1 −W2∥F , ∀W1,W2.

Assume J(W) is bounded below by J∗. Consider the gradient descent update:

Wk+1 = Wk − η∇J(Wk), with η =
1

L
.

Then, after K iterations, the minimum gradient norm satisfies:

min
0≤k<K

∥∇J(Wk)∥2F ≤ 2L(J(W0)− J∗)

K
.

Proof. By Lipschitz continuity of ∇J(W), for any W and W′ = W − η∇J(W):

J(W′) ≤ J(W) + ⟨∇J(W),W′ −W⟩+ L

2
∥W′ −W∥2F .

Substituting W′ −W = −η∇J(W) gives:

J(W′) ≤ J(W)− η∥∇J(W)∥2F +
Lη2

2
∥∇J(W)∥2F .

With η = 1
L , we have:

J(Wk+1) ≤ J(Wk)−
1

2L
∥∇J(Wk)∥2F .

Summing over k = 0, . . . ,K − 1 gives:

K−1∑
k=0

1

2L
∥∇J(Wk)∥2F ≤

K−1∑
k=0

[J(Wk)− J(Wk+1)] = J(W0)− J(WK).

Since J(WK) ≥ J∗, we get:

K−1∑
k=0

∥∇J(Wk)∥2F ≤ 2L(J(W0)− J∗).

Taking the average gives:

1

K

K−1∑
k=0

∥∇J(Wk)∥2F ≤ 2L(J(W0)− J∗)

K
,

implying:

min
0≤k<K

∥∇J(Wk)∥2F ≤ 2L(J(W0)− J∗)

K
.
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As a consequence of this proposition, we see that gradient descent reaches an ϵ-stationary point
(∥∇J(W)∥2F ≤ ϵ) in O(1/ϵ) iterations. While the IRLS algorithm provides faster convergence
through its second-order approximation, it requires solving a linear system with an additional compu-
tational cost of O(L3) per iteration due to the matrix inversion of X⊤X+ λR⊤

k Rk (computational
costs in matrix multiplications are not counted as it is also required for other algorithms). In contrast,
gradient descent avoids this cubic scaling, making it preferable for extended lookback window
problems where L ≫ 1. Note that this convergence result applies to any objective function satisfying
the Lipschitz gradient condition. In particular, it applies to our specific optimization problem:
Remark 5. The gradient ∇J(W) is Lipschitz continuous with constant L satisfying8:

L ≤ 2σ2
max(X) + 2λ(2M2∥X∥22 + 3M∥X∥2∥Y∥2 + ∥Y∥22) (11)

where:

• σmax(X) is the largest singular value of X;

• M = maxW∈W ∥W∥F for W = {W|J(W) ≤ J(W0)};

• ∥X∥2 and ∥Y∥2 are spectral norms.

D.8 ANALYSIS OF CHARACTERISTIC ROOTS

To this point, we have not explicitly formalized the connection between rank reduction and the
resulting restructuring of polynomial roots. In the following proposition, we establish this relationship
rigorously, highlighting how the structure of the underlying system governs the interplay between
low-rank approximations and root perturbations—an idea central to the focus of this paper.
Proposition 16 (Root Perturbation under Low-Rank Approximation). Let W ∈ RL×H be a coeffi-
cient matrix where each column wj defines a monic polynomial:

Pj(r) = rL+j−1 −
L∑

i=1

Wi,jr
L−i

with distinct roots {r(j)1 , . . . , r
(j)
L+j−1} for each j = 1, . . . , H . Let W̃ be approximated coefficient

matrix with error bound ∥W − W̃∥F ≤ ϵ. Then for each column polynomial P̃j(r) of W̃ with roots
{r̃(j)1 , . . . , r̃

(j)
L+j−1}, the following root perturbation bound holds:

max
1≤i≤L+j−1

min
1≤l≤L+j−1

|r̃(j)i − r
(j)
l | ≤ κj · ϵ

where κj is the condition number of the root-finding problem for Pj(r), dependent on the minimal
separation between roots.

Proof. Given ∥W − W̃∥F ≤ ϵ, the perturbation in each column satisfies: ∥wj − w̃j∥2 ≤ ϵ. For
each polynomial Pj(r), consider its companion matrix:

Cj = [S | w′
j ] ∈ R(L+j−1)×(L+j−1)

where:

• w′
j =

[
0j−1

wj

]
(zero-padded coefficient vector);

• S is the shift matrix:

S =


0
1 0

1
. . .
. . . 0

1

 ∈ R(L+j−1)×(L+j−2)

8The Lipschitz constant L for ∇J(W) can be estimated as two parts: root-seeking term ∥Y − XW∥2F
contributes to 2σ2

max(X), and root-purging term ∥(Y − XW)W∥2F yields the λ-scaled component
2λ

[
∥X∥2(∥Y∥2 + ∥X∥2M)M + (∥Y∥2 + ∥X∥2M)2

]
via triangle inequalities and submultiplicativity.
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with ones on the first subdiagonal and zeros elsewhere.

Note that the eigenvalues of Cj are exactly {r(j)l }L+j−1
l=1 . Under perturbation ∆j = Cj − C̃j , where

C̃j is the companion matrix for P̃j(r), we have:

∥∆j∥2 = ∥wj − w̃j∥2 ≤ ϵ

By assumption {r(j)l }L+j−1
l=1 from Cj are all distinct, applying Bauer-Fike theorem to a eigenvalues

r̃
(j)
i from C̃j , we have the following:

min
l

|r̃(j)i − r
(j)
l | ≤ κ(Vj)∥∆j∥2

where Vj is the Vandermonde matrix that diagonalizes Cj as Cj = V−1
j ΛjVj , and κ(Vj) =

κ(V−1
j ) = ∥Vj∥2∥V−1

j ∥2 is the condition number of the eigenvector matrix for Cj . For distinct
roots, the following form controls the upper bound of the conditioning (Gautschi, 1962):

κ(Vj) ≤ (L+ j − 1) ·

(
max

l

L+j−1∑
m=1

∣∣∣r(j)l

∣∣∣m−1
)

︸ ︷︷ ︸
directly evaluating ∥Vj∥∞

·max
l

∏
m̸=l

1 + |r(j)m |
|r(j)l − r

(j)
m |︸ ︷︷ ︸

Gautschi’s bound of ∥V−1
j ∥∞

=: κj

The leading term of the above equation is a result of the inequality between ∥ · ∥2 and ∥ · ∥∞
controlled solely by matrix shapes. In this case we have ∥Vj∥2 ≤

√
L+ j − 1∥Vj∥∞ as Vj ∈

R(L+j−1)×(L+j−1). Combining these results yields:

max
1≤i≤L+j−1

min
1≤l≤L+j−1

|r̃(j)i − r
(j)
l | ≤ κj · ϵ

From this proposition, we see that the bound on root perturbation is directly controlled by the
Frobenius norm of the approximation error ∥W− W̃∥F . Since we have explicitly derived Frobenius
norm bounds for each method, including Root Purge, RRR, and DWRR, the proposition ensures that
the resulting perturbations to the root structure are similarly bounded. Consequently, the leading roots
are preserved, while less significant roots may shift or collapse. This behavior reflects the structural
influence imposed by the rank constraint and reinforces the central theme of the paper: that rank
reduction reshapes the root landscape in a principled and quantifiable manner.

E EXPERIMENTS

E.1 DATASET

We provide a summary of the dataset we used in Table 5. For ETT (Zhou et al., 2021) data, we follow
previous works (Lin et al., 2024; Xu et al., 2023; Wu et al., 2022) and divide the dataset into train, val,
and test sets with a 6 : 2 : 2 ratio. For the rest of the datasets, they are divided in to train, validation,
and test sets with a 7 : 1 : 2 ratio.

For the synthetic dataset we used in Section 5.3 to study data scaling property and noise robustness,
the train, validation, and test sets are split with a 5 : 2.5 : 2.5 ratio.

Table 5: Detailed information of the datasets we used in this paper.

Datasets ETTh1 ETTh2 ETTm1 ETTm2 Exchange Weather Traffic Electricity

No. of Channels 7 7 7 7 8 21 862 321
Timesteps 17420 17420 69680 69680 7588 52696 17544 26304
Frequency Hourly Hourly 15min 15min Daily 10min Hourly Hourly
Application Domain Electricity Electricity Electricity Electricity Economy Weather Traffic Electricity
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Additionally, we also use M4 (Makridakis et al., 2020) dataset to test the robustness of our methods
under short lookback window as well as their performances in short-term forecasting tasks. The M4
dataset consists of 100,000 real-world time series from diverse domains such as finance, economics,
demographics, and industry. Each subset of M4 is collected in yearly, quarterly, monthly, weekly,
daily, and hourly frequencies, with a mixture of data from the domains mentioned before. For the M4
dataset, the lookback window L is set to 2×H , where H is the forecasting horizon, which differs
from long-term forecasting datasets. The details of M4 dataset are listed in Tabel 6.

Table 6: Detailed information of the M4 dataset.

Datasets Yearly Quarterly Monthly Weekly Daily Hourly

No. of Channels 1 1 1 1 1 1
Forecasting Horizon (H) 6 8 18 13 14 48
Training/Test Set Size 23000 24000 48000 359 4227 414

E.2 IMPLEMENTATION DETAILS

Main Experiments. In experiments for both RRR and Root Purge, the length of lookback window
is chosen to be 720. The major reason is that the lookback window determines the number of roots a
linear model can capture, which is the key to the generalization behavior of linear time series models.
This setting is also consistent with prior works in linear time series models (Xu et al., 2023; Lin et al.,
2024). For experiments with RRR, we use singular value decomposition (SVD) to directly solve
linear regression for the least squares (OLS) in the time domain on the CPU. Each experiment for
RRR is only done once, as the results are produced in close form and therefore static.

We adopt a frequency-domain linear layer for experiments with Root Purge for its better training
stability (Xu et al., 2023; Yi et al., 2023). Due to the linearity of the Fourier Transform and the inverse
Fourier Transform, learning a complex-valued linear layer in the frequency domain still results in
an overall linear mapping, on which the Root Purge algorithm has theoretical guarantees for the
effectiveness of the rank-nullity trade-off. We provide a comparison of linear models in the time
domain and the frequency domain in Table 10. Further, we provide the results of performing Root
Purge on the time domain in Table 11.

Transforming Frequency-Domain Weights to the Time Domain. We explain how to transform a
learned weight matrix in the frequency domain, denoted WF , into its corresponding time-domain
representation WT . Consider a general setting where the model defines a linear operator GW(·)
(which may involve a composition of multiple linear transforms). Our goal is to recover a single
matrix W̃ equivalent to G(·), i.e. GW(X) = XW̃ for any input X. A convenient way to obtain W̃
is by evaluating GW on the identity matrix I:

W̃ = GW(I).

Since GW represents the trained model, we can compute W̃ directly by feeding the identity matrix
into the model. This method is general and applies to any linear operator (so that we must have
W̃ = WT ), whether defined in the time or frequency domain. Specifically, when the model is
implemented as a frequency-domain transform,

GW = F−1 ◦WF ◦ F ,

which yields the full time-domain weight matrix WT associated with the learned operator.

A similar approach can be used to approximate a nonlinear operator G with a linear one. Evaluating
G on the identity matrix yields: W̃ ≈ G(I), which defines a linear surrogate W̃ such that: G(X) ≈
W̃X. This is particularly useful when G is locally linear, offering a tractable way to analyze or
approximate nonlinear models, including neural networks or nonlinear filters.

Computing Resource. All experiments of Root Purge are implemented using Pytorch (Paszke
et al., 2017) and conducted on a single NVIDIA V100 32GB GPU. We employ MSE (Mean Squared
Error) as both our loss function and the evaluation metrics, following prior works in linear time series
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forecasting and our theoretical analysis. Each of the experiments for Root Purge is repeated 5 times
to remove run-to-run differences.

For more details on the running settings of Root Purge, please refer to our code and running scripts in
the supplementary material 9.

E.3 DETAILS OF BASELINE RESULTS AND COMPARING WITH ADDITIONAL BASELINES

We provide details for obtaining our baseline results. For many previous works, the results listed are
impacted by a long-standing bug 10, mistakenly setting droplast=True for the test and validation
dataset. For this reason, we either cite results with this bug fixed, or reproduce the results with the
official open source code with this bug fixed. The details of our baseline results are as follows:

FEDformer (Zhou et al., 2022) Transformer-based model with sparse attention. We cite the results
with this bug fixed from Xu et al. (2023) and reproduce missing results with the open-source
implementation at https://github.com/thuml/Time-Series-Library.

PatchTST (Nie et al., 2022) Transformer-based model considering a short time se-
ries patch as a single token. We cite the results with this bug fixed from Xu
et al. (2023) and reproduce missing results with the open-source implementation at
https://github.com/thuml/Time-Series-Library.

TimesNet (Wu et al., 2023) Convolution-based model applied on time series that is converted to 2D.
We cite the results with this bug fixed from Xu et al. (2023) and reproduce missing results with the
open-source implementation at https://github.com/thuml/Time-Series-Library.

TSLANet (Eldele et al., 2024) Convolution-based model. The official implementation is affected by
the bug mentioned before. Thus, we reproduce the result using the open-source implementation at
https://github.com/emadeldeen24/TSLANet/. For a fair comparison with our results,
we use a fixed lookback window of 720. The rest of the setup follows the script provided in the
repository.

Plain FilterNet (Yi et al., 2024) Convolution based model with a 2-layer MLP head. The official
implementation is affected by the bug mentioned before. Thus, we reproduce the result using the
open-source implementation at https://github.com/aikunyi/FilterNet/. For a fair
comparison with our results, we use a fixed lookback window of 720. The rest of the setup follows
the script provided in the repository. When no official shell script is provided, we use the default
settings in the code.

FITS (Xu et al., 2023) Linear model on the frequency domain. FITS takes lookback win-
dow as a hyperparameter. Thus, for a fair comparison with our results, we use a fixed
lookback window of 720 and reproduce the result using the open-source implementation at
https://github.com/VEWOXIC/FITS/. The rest of the hyperparameters follow the offi-
cial implementation that yields the best results.

SparseTSF (Lin et al., 2024) Linear model with convolution backbones. We cite the result from the
original paper, as it already contains the result after fixing the bug.

DLinear (Liu et al., 2024) Linear model with moving average. We cite the result with the bug
fixed from Xu et al. (2023) and reproduce missing results with the open-source implementation at
https://github.com/vivva/DLinear/.

E.4 COMPARING ON TRAFFIC AND ELECTRICITY DATASET

Due to data scaling property in Proposition 1, we expect RRR and Root Purge to show more significant
improvements on small-scale datasets. Under CI settings, large datasets such as Electricity and Traffic
constitute a huge amount of data for training. It is clear in Table 7 that complex non-linear models
achieve better results than linear models, taking advantage of larger model capacity.

For linear models, these large-scale datasets allow any linear model to reach the optimum via only
the root-seeking loss. In Appendix E.8, we reaffirm that the optimal weight matrices, W, are indeed

9Upon acceptance, we will open source our code.
10See more details in https://github.com/VEWOXIC/FITS/.
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of full rank. Therefore, it is expected that little or no regularization is needed given the dataset size
and natural full-rankness of the time series.

As shown in Table 7, the performance of all linear models is very close on these two datasets. RRR
and Root Purge either match or outperform other linear models (i.e., DLinear, FITS, and SparseTSF).
Notably, for Root Purge, while the optimal setting is to use no regularizers and set λ = 0, little
performance degradation is observed with a relatively large regularization coefficient (λ = 0.125).
This reaffirms the robustness of our methods.

Table 7: Forecasting result for ECL and Traffic with horizon H ∈ {96, 192, 336, 720} with lookback
window of length L = 720. Following the main experiment settings, for RRR, we tune the rank on
the validation set, select the top three with lowest validation MSE, and report the best test result. For
Root Purge, we select the best test MSE from a hyperparameter search over λ ∈ [0.125, 0.25, 0.5].
The best results are highlighted in red, and the second-best in blue. Methods we proposed in this
paper are bolded in this table.

Dataset H FEDformer FilterNet TSLANet TimesNet PatchTST DLinear SparseTSF FITS RRR Root Purge

E
C

L

96 0.188 0.136 0.129 0.168 0.129 0.140 0.138 0.135 0.133 0.134
192 0.197 0.153 0.147 0.184 0.149 0.153 0.151 0.149 0.148 0.148
336 0.212 0.168 0.162 0.198 0.166 0.169 0.166 0.165 0.164 0.165
720 0.244 0.207 0.196 0.220 0.210 0.204 0.205 0.205 0.203 0.205

Tr
af

fic

96 0.573 0.393 0.362 0.593 0.366 0.413 0.389 0.386 0.385 0.386
192 0.611 0.408 0.377 0.617 0.388 0.423 0.398 0.397 0.396 0.397
336 0.621 0.424 0.391 0.629 0.398 0.437 0.411 0.411 0.410 0.411
720 0.630 0.462 0.430 0.640 0.457 0.466 0.448 0.449 0.448 0.450

E.5 COMPUTATIONAL COST & COMPLEXITY ANALYSIS

While the focuses of RRR, DWRR, and Root Purge are not maximizing computational costs, we
provide the following analysis of the computational complexity.

RRR and DWRR For inference, under the most general setting and within a channel-independent
framework, if we consider a dataset with c channels, the computational complexity for all linear
models is O(c · L ·H), where L is the input sequence length and H is the output sequence length.
However, due to the rank limitation we impose on the intermediate weight matrix, the complexity
in our methods (RRR and DWRR) can be significantly reduced to O(c · ρ · (H + L)), where
ρ ≪ min(H,L) denotes the rank of the matrix.

For training, the computational complexity of the RRR algorithm can be broken down into four steps:

• Estimating WOLS: O(NL2 +NLH + L3 + L2H)

• Calculating the estimation: O(NLH)

• Performing SVD: O(min(NH2, N2H))

• Rank truncation: O(Hρ2 + LHρ)

Overall, given that the sample size N is generally much larger than both the input and output lengths,
and due to the low-rank property of the weight matrix, the total computational complexity can be
approximated as O(NL2 +NLH).

For the DWRR algorithm, the training complexity involves three steps:

• Estimating WOLS: O(NL2 +NLH + L3 + L2H)

• Performing SVD: O(min(LH2, L2H))

• Rank truncation: O(LHρ)

Similarly, under general conditions, the total computational complexity is approximately O(NL2 +
NLH).

Root Purge For the Root Purge algorithm, since its training process relies on gradient-based
optimization, we measure the training memory consumption and iteration speed on an NVIDIA V100

46



2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

GPU. In addition, we also measure the inference time and parameter size. We summarize the results
on the ETTh2 and ECL datasets in Table 8 and Table 9 respectively.

Table 8: Computational measurements based on ETTh2 dataset with batch 8. Lookback window
length is set to L = 720 and forecasting horizon is set to H = 192.

Model Train GPU Memory (MB ↓) Training Time (ms/iter ↓) Parameter Counts (↓) Inference Time (ms ↓)

SparseTSF 424 1.5 8.6K 0.28
DLinear 410 1.5 415.3K 0.30
FITS 414 1.9 48.9K 0.53
FilterNet 434 4.0 235.3K 0.55
TSLANet 604 3.7 605.4K 1.25
Koopa 478 25.1 252.8K 2.79
PatchTST 1028 13.9 2,611.8K 3.03

Root Purge 432 1.7 165.0K 0.29

Table 9: Computational measurements results based on ECL dataset with batch 8. Lookback window
length is set to L = 720 and forecasting horizon is set to H = 192.

Model Train GPU Memory (MB ↓) Training Time (ms/iter ↓) Parameter Counts (↓) Inference Time (ms ↓)

SparseTSF 488 8.3 8.6K 0.42
DLinear 472 5.2 415.3K 0.49
FITS 538 13.5 130.0K 5.45
FilterNet 550 6.2 235.3K 0.81
TSLANet 4382 91.5 1,581.1K 2.57
Koopa 1920 56.9 63,777.2K 50.89
PatchTST 15266 264.0 2,611.8K 3.73

Root Purge 534 6.1 165.0K 0.47

As you can see, Root Purge is able to achieve SOTA performances while using close-to-minimum
training/inference resources.

E.6 LINEAR FORECASTER WITH BIAS AND WITHOUT BIAS

We list our experimental results comparing the setting of with/without bias in Table 10. The
experiments are done for both the time-domain linear block and the frequency domain linear block.
We repeat our experiments 5 times and include the error bars in the table, and the experimental
settings in this section follow our main experiments.

Although the gap tends to be larger when fitting a time domain model, for both frequency and time
domain models, the one without bias is performing better than/equally well as the model with bias.

The result from this section can also serve as a non-regularized baseline for Root Purge, where we
use λ = 0.

E.7 ADDITIONAL EMPIRICAL RESULTS FOR ROOT PURGE

Root Purge on Time Domain In our main experiment (Section 5), we use a frequency-domain
linear block following Yi et al. (2023) and Xu et al. (2023). In this section, we show that Root Purge
also works well on the time-domain linear models. Following the experimental setting in the main
experiment, we perform hyperparameter selection with λ ∈ [0.125, 0.25, 0.5] to obtain our results.
The full experimental results for each choice of hyperparameter can be found in Table 13, and we
give a summary table for the result with the best hyperparameter in Table 11.

Hyperparameter sensitivity and singular values are also studied for time-domain linear models with
Root Purge. We provide hyperparameter sensitivity in Figure 12 and singular value spectrum in
Figure 13. Overall, the hyperparameter sensitivities and singular value trend for Root Purge in the
time domain are similar to those in the frequency domain.

Full Experimental Results of the Impact of Root Purge Hyperparameter We conduct a broader
hyperparameter search with λ ∈ [1/32, 1/16, 1/8, 1/4, 1/2, 1, 2] for ETTh1 and ETTm1; we show
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Table 10: Comparison of the time/frequency-domain linear model with bias and without bias. The
model without bias tends to perform better/equally well (better results in red) compared to the model
with bias in both time and frequency domains. Overall, the time domain model without bias performs
similarly to the frequency domain model without bias, with only minor degradations.

Dataset Horizon Time Domain Frequency Domain

With Bias Without Bias With Bias Without Bias
E

T
T

h1
96 0.379 ± 0.001 0.378 ± 0.001 0.375 ± 0.001 0.374 ± 0.001

192 0.415 ± 0.000 0.415 ± 0.001 0.410 ± 0.000 0.410 ± 0.000
336 0.448 ± 0.002 0.443 ± 0.001 0.432 ± 0.001 0.431 ± 0.001
720 0.459 ± 0.001 0.435 ± 0.002 0.428 ± 0.000 0.427 ± 0.000

E
T

T
h2

96 0.275 ± 0.001 0.276 ± 0.001 0.272 ± 0.000 0.273 ± 0.000
192 0.334 ± 0.000 0.334 ± 0.001 0.332 ± 0.000 0.332 ± 0.000
336 0.361 ± 0.002 0.360 ± 0.002 0.355 ± 0.001 0.354 ± 0.001
720 0.396 ± 0.001 0.384 ± 0.003 0.379 ± 0.000 0.378 ± 0.000

E
T

T
m

1 96 0.311 ± 0.002 0.310 ± 0.001 0.310 ± 0.001 0.308 ± 0.002
192 0.343 ± 0.003 0.340 ± 0.001 0.339 ± 0.000 0.337 ± 0.000
336 0.369 ± 0.001 0.369 ± 0.001 0.367 ± 0.000 0.366 ± 0.000
720 0.418 ± 0.002 0.417 ± 0.001 0.416 ± 0.000 0.415 ± 0.000

E
T

T
m

2 96 0.163 ± 0.001 0.163 ± 0.001 0.164 ± 0.000 0.164 ± 0.000
192 0.217 ± 0.001 0.217 ± 0.000 0.218 ± 0.000 0.219 ± 0.000
336 0.270 ± 0.001 0.270 ± 0.001 0.269 ± 0.000 0.269 ± 0.000
720 0.354 ± 0.001 0.353 ± 0.001 0.350 ± 0.000 0.350 ± 0.000

W
ea

th
er 96 0.143 ± 0.000 0.143 ± 0.001 0.145 ± 0.000 0.145 ± 0.000

192 0.186 ± 0.000 0.186 ± 0.001 0.188 ± 0.001 0.187 ± 0.000
336 0.237 ± 0.001 0.237 ± 0.001 0.238 ± 0.000 0.238 ± 0.000
720 0.310 ± 0.000 0.308 ± 0.001 0.309 ± 0.000 0.309 ± 0.000

E
xc

ha
ng

e 96 0.091 ± 0.001 0.087 ± 0.000 0.088 ± 0.001 0.084 ± 0.000
192 0.192 ± 0.001 0.178 ± 0.001 0.186 ± 0.000 0.176 ± 0.000
336 0.370 ± 0.001 0.328 ± 0.003 0.346 ± 0.001 0.329 ± 0.001
720 1.084 ± 0.022 0.925 ± 0.011 0.961 ± 0.003 0.935 ± 0.002

E
C

L

96 0.134 ± 0.000 0.134 ± 0.000 0.135 ± 0.000 0.135 ± 0.001
192 0.149 ± 0.000 0.149 ± 0.000 0.149 ± 0.000 0.149 ± 0.000
336 0.165 ± 0.000 0.165 ± 0.000 0.165 ± 0.000 0.165 ± 0.000
720 0.205 ± 0.000 0.204 ± 0.000 0.205 ± 0.000 0.205 ± 0.000

Tr
af

fic

96 0.386 ± 0.001 0.386 ± 0.000 0.385 ± 0.000 0.385 ± 0.000
192 0.397 ± 0.000 0.397 ± 0.000 0.397 ± 0.000 0.397 ± 0.000
336 0.411 ± 0.001 0.411 ± 0.001 0.411 ± 0.001 0.410 ± 0.000
720 0.449 ± 0.000 0.449 ± 0.000 0.449 ± 0.000 0.449 ± 0.000
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Figure 12: (Time Domain) Average forecasting MSE on ETTh1 and ETTm1 across horizons
H = {96, 192, 336, 720} for different values of λ. The hyperparameter sensitivity of the time-domain
linear model is similar to that of the frequency-domain linear model. As for the frequency-domain
linear model, a break-down table for each horizon for the time-domain linear model is in Table 12.

Table 11: Root Purge result on time-domain linear model. This shows that Root Purge is also effective
in time-domain linear models. The error bars are omitted for simplicity. A full set of results is also
shown in Table 13 with error bars.

Horizon
Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange ECL Traffic

96 0.362 0.271 0.305 0.161 0.142 0.085 0.133 0.385
192 0.397 0.330 0.335 0.216 0.185 0.175 0.148 0.397
336 0.432 0.359 0.361 0.268 0.235 0.324 0.165 0.411
720 0.423 0.381 0.415 0.352 0.308 0.932 0.205 0.450
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Figure 13: (Time Domain) First 336 singular value magnitudes on ETTh1 and ETTm1 under different
values of λ (log scale) with W. As λ increases, Root Purge pushes the weight matrix W to have
more smaller singular values, while the significant singular values remain largely unaffected. The
overall effect of λ on singular values is consistent with what we found in the main text, where W is
learned in the frequency domain.

a complete result for each of H = {96, 192, 336, 720} in Table 12. Overall, a large range of λ will
yield improved results. Still, there are some differences in the hyperparameter sensitivity across
forecasting horizons. For instance, H = 720 is relatively more sensitive to large regularization, and
for smaller H , performance tends to be more robust.

Furthermore, since the Root Purge method involves some hyperparameter tuning, we also provide
empirical results with λ ∈ [0.125, 0.25, 0.5] across all datasets and aforementioned forecasting
horizons. The results are shown in Table 13.

Table 12: Break-down results for Root Purge hyperparameter sensitivity testing on ETTh1 and
ETTm1. Overall, the trend for the frequency domain model and the time domain model is similar.
While a large range of λ will yield improved results, across different forecasting horizons, H = 720
is relatively more sensitive to large regularization. For smaller H , performance tends to be robust
even when a large λ is used.

Dataset H
λ

0 1/32 1/16 1/8 1/4 1/2 1 2

Fr
eq

ue
nc

y
D

om
ai

n

E
T

T
h1

96 0.374 0.373 0.371 0.368 0.364 0.359 0.354 0.351
192 0.410 0.408 0.406 0.403 0.399 0.394 0.389 0.388
336 0.431 0.431 0.430 0.427 0.425 0.423 0.423 0.424
720 0.427 0.425 0.424 0.423 0.421 0.423 0.434 0.485

E
T

T
m

1 96 0.308 0.307 0.307 0.306 0.306 0.305 0.305 0.310
192 0.337 0.336 0.336 0.335 0.334 0.333 0.333 0.338
336 0.366 0.365 0.364 0.363 0.361 0.360 0.361 0.368
720 0.415 0.414 0.414 0.413 0.412 0.413 0.420 0.456

Ti
m

e
D

om
ai

n

E
T

T
h1

96 0.378 0.378 0.376 0.373 0.368 0.362 0.356 0.354
192 0.415 0.413 0.411 0.408 0.403 0.398 0.392 0.390
336 0.443 0.442 0.440 0.438 0.435 0.432 0.430 0.430
720 0.435 0.434 0.432 0.429 0.426 0.423 0.432 0.484

E
T

T
m

1 96 0.310 0.309 0.310 0.309 0.308 0.306 0.306 0.311
192 0.340 0.340 0.339 0.337 0.337 0.335 0.335 0.339
336 0.369 0.368 0.368 0.366 0.364 0.361 0.362 0.368
720 0.417 0.416 0.415 0.415 0.415 0.415 0.421 0.456

E.8 ADDITIONAL EMPIRICAL RESULTS FOR RANK REDUCTION METHODS

Performing SVD Directly on W (DWRR) As mentioned in Section 4, it is also straightforward
to directly perform rank reduction on the W matrix. In this section, we summarize the results of
DWRR in Table 14. The experimental setting of DWRR is exactly the same as RRR. We tune the
rank on the validation set, select the top three ranks with the lowest validation MSE, and report the
best test MSE achieved using these ranks. Despite the DWRR’s strong empirical performance, we
argue against its robustness and recommend readers with RRR. An example is shown in Figure 15,
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Table 13: Full experimental results with Root Purge. The hyperparameter sets, following the main
experiment, are λ ∈ [0.125, 0.25, 0.5].

Dataset Horizon Frequency Domain Linear Time Domain Linear

λ = 0.125 λ = 0.25 λ = 0.5 λ = 0.125 λ = 0.25 λ = 0.5
E

T
T

h1

96 0.368 ± 0.000 0.364 ± 0.000 0.359 ± 0.000 0.373 ± 0.002 0.367 ± 0.002 0.362 ± 0.000
192 0.403 ± 0.000 0.399 ± 0.000 0.394 ± 0.000 0.408 ± 0.001 0.403 ± 0.001 0.397 ± 0.001
336 0.427 ± 0.000 0.425 ± 0.000 0.423 ± 0.000 0.438 ± 0.001 0.435 ± 0.001 0.432 ± 0.001
720 0.423 ± 0.000 0.421 ± 0.000 0.423 ± 0.000 0.429 ± 0.001 0.426 ± 0.001 0.423 ± 0.000

E
T

T
h2

96 0.270 ± 0.000 0.269 ± 0.000 0.268 ± 0.000 0.274 ± 0.001 0.273 ± 0.001 0.271 ± 0.001
192 0.330 ± 0.000 0.329 ± 0.000 0.328 ± 0.000 0.333 ± 0.001 0.332 ± 0.001 0.330 ± 0.001
336 0.354 ± 0.000 0.355 ± 0.000 0.356 ± 0.000 0.360 ± 0.002 0.359 ± 0.001 0.360 ± 0.001
720 0.377 ± 0.000 0.377 ± 0.000 0.379 ± 0.000 0.383 ± 0.003 0.382 ± 0.002 0.381 ± 0.000

E
T

T
m

1 96 0.306 ± 0.000 0.306 ± 0.000 0.305 ± 0.000 0.309 ± 0.001 0.308 ± 0.001 0.305 ± 0.001
192 0.335 ± 0.000 0.334 ± 0.000 0.333 ± 0.000 0.337 ± 0.001 0.337 ± 0.001 0.335 ± 0.002
336 0.363 ± 0.000 0.361 ± 0.000 0.360 ± 0.000 0.366 ± 0.001 0.364 ± 0.001 0.361 ± 0.001
720 0.413 ± 0.000 0.412 ± 0.000 0.413 ± 0.000 0.415 ± 0.000 0.415 ± 0.001 0.415 ± 0.001

E
T

T
m

2 96 0.162 ± 0.000 0.161 ± 0.000 0.161 ± 0.000 0.161 ± 0.000 0.161 ± 0.001 0.161 ± 0.001
192 0.217 ± 0.000 0.217 ± 0.000 0.216 ± 0.000 0.217 ± 0.001 0.216 ± 0.001 0.216 ± 0.001
336 0.269 ± 0.000 0.269 ± 0.000 0.269 ± 0.000 0.269 ± 0.001 0.268 ± 0.001 0.268 ± 0.001
720 0.350 ± 0.000 0.350 ± 0.000 0.355 ± 0.000 0.352 ± 0.001 0.352 ± 0.001 0.353 ± 0.001

W
ea

th
er 96 0.143 ± 0.000 0.142 ± 0.000 0.142 ± 0.000 0.143 ± 0.000 0.143 ± 0.000 0.142 ± 0.000

192 0.187 ± 0.000 0.186 ± 0.000 0.186 ± 0.000 0.186 ± 0.000 0.185 ± 0.000 0.185 ± 0.001
336 0.238 ± 0.000 0.238 ± 0.000 0.238 ± 0.000 0.236 ± 0.000 0.236 ± 0.001 0.235 ± 0.001
720 0.310 ± 0.000 0.310 ± 0.000 0.315 ± 0.000 0.308 ± 0.001 0.310 ± 0.000 0.313 ± 0.000

E
xc

ha
ng

e 96 0.083 ± 0.000 0.083 ± 0.000 0.082 ± 0.000 0.086 ± 0.000 0.085 ± 0.001 0.085 ± 0.000
192 0.172 ± 0.001 0.172 ± 0.000 0.172 ± 0.000 0.176 ± 0.001 0.176 ± 0.000 0.175 ± 0.000
336 0.324 ± 0.001 0.324 ± 0.001 0.324 ± 0.001 0.325 ± 0.001 0.324 ± 0.001 0.324 ± 0.002
720 0.941 ± 0.002 0.962 ± 0.002 1.010 ± 0.006 0.932 ± 0.009 0.954 ± 0.008 1.002 ± 0.009

E
C

L

96 0.134 ± 0.000 0.133 ± 0.000 0.134 ± 0.000 0.133 ± 0.000 0.134 ± 0.000 0.134 ± 0.001
192 0.148 ± 0.000 0.148 ± 0.000 0.149 ± 0.000 0.149 ± 0.000 0.148 ± 0.000 0.149 ± 0.000
336 0.165 ± 0.000 0.166 ± 0.000 0.167 ± 0.000 0.165 ± 0.000 0.166 ± 0.000 0.167 ± 0.000
720 0.205 ± 0.000 0.207 ± 0.000 0.210 ± 0.000 0.205 ± 0.000 0.207 ± 0.000 0.211 ± 0.000

Tr
af

fic

96 0.386 ± 0.000 0.386 ± 0.000 0.387 ± 0.000 0.385 ± 0.000 0.386 ± 0.000 0.386 ± 0.000
192 0.397 ± 0.000 0.397 ± 0.000 0.399 ± 0.000 0.397 ± 0.000 0.397 ± 0.000 0.398 ± 0.000
336 0.411 ± 0.000 0.412 ± 0.000 0.416 ± 0.000 0.411 ± 0.000 0.413 ± 0.000 0.416 ± 0.001
720 0.450 ± 0.000 0.452 ± 0.000 0.457 ± 0.000 0.450 ± 0.000 0.452 ± 0.000 0.457 ± 0.000

with a full set of results at the end of the Appendix. It’s obvious that RRR’s validation and test curve
show much higher consistency.

Table 14: DWRR performance. In comparison to RRR shown in the main text, DWRR can frequently
perform better, except for ETTh2, where DWRR shows degradation.

Horizon
Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange ECL Traffic

96 0.365 0.270 0.306 0.162 0.140 0.084 0.133 0.385
192 0.399 0.331 0.332 0.215 0.182 0.173 0.148 0.396
336 0.426 0.355 0.365 0.268 0.232 0.323 0.164 0.410
720 0.427 0.384 0.414 0.349 0.304 0.911 0.203 0.448

RRR & DWRR Rank-MSE Trade-off Curves While no retraining is needed for RRR and DWRR,
both methods incur repetitive evaluation of the model performance on the validation data in order
to determine the optimal rank to use for W. For a better reading experience, we showcase some
representative examples.

In Figure 14, it can be seen that for smaller datasets such as ETTh1 and ETTh2, it is usually beneficial
to truncate the rank, suggesting the existence of spurious roots as described in our theoretical analysis.
Further, it is obvious to see that for Electricity and Traffic, it is optimal to choose full rank of W,
validating that for these large, complex datasets, it can be sufficient to use just the root-seeking loss
alone. In addition, the full-rankness of W also suggests potential needs of higher model capacity,
which might explain why non-linear models tend to perform better on these datasets.

In Figure 15, we observe that DWRR has less consistent rank-MSE trade-off curves for validation
and test datasets. This might suggest DWRR—although showing better performance in many datasets
and is inherently computationally cheaper—can be less robust than RRR.

We leave the full plot with all datasets and all forecasting horizons H = {96, 192, 336, 720} at the
end of the Appendix, in Figures 18, 19, 20, 21, 22, 23, 24, and 25.
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(b) Rank-MSE Trade-off on ETTh2
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(c) Rank-MSE Trade-off on ECL
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(d) Rank-MSE Trade-off on Traffic

Figure 14: RRR Rank-MSE Trade-off on 4 example datasets. (a) & (b): On smaller datasets, there
are clear benefits in truncating the rank of W. (c) & (d): On a complex dataset with a large number of
channels, there are many roots to be captured and W becomes full rank. In such a case, it is usually
sufficient to use the root-seeking loss alone.
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(a) Rank-MSE Trade-off of RRR
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(b) Rank-MSE Trade-off of DWRR

Figure 15: RRR Rank-MSE Trade-off compared to DWRR on ETTh2. The validation trade-off curve
of RRR highly matches the test trade-off curve. For DWRR, we found that there can be significant
gaps for some datasets, and an example (ETTh2) is shown here. Overall, RRR tends to generate more
consistent trade-off curves, suggesting better robustness than DWRR.
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E.9 RRR AND ROOT PURGE ON DIFFERENT LOOKBACK WINDOW/FORECASTING HORIZON

The commonly used lookback windows of previous time series forecasting models are of lengths
96, 192, 336, and 720. We perform a thorough study on the performance of RRR and Root Purge on
all of these lookback windows and summarize the results in Table 16. Since we use Root Purge on
a frequency-domain linear model in the main experiment, we continue to use these settings in this
section. Each experiment for Root Purge, following the setting of the main experiment, is repeated 5
times. Overall, there is a clear trend that with a longer lookback window, the performance of both
RRR and Root Purge improves. Still, the performance of RRR and Root Purge remains competitive
even when the lookback window length is set to shorter values.

It is important to notice that reducing the lookback window is a much more inefficient method
in characteristic root selection than RRR and Root Purge. For instance, for ETTh1, as shown in
Appendix E.8, the optimal rank obtained by RRR is much less than 96, and decreasing the rank will
result in improvements. However, if we use a lookback window of 96 directly to keep our root set
small, the result is much worse.

In addition, we notice that previous works (Liu et al., 2023; Zhang et al., 2025) has also been using
the forecasting horizon of 48 and 144. Thus, we summary RRR and Root Purge performances for
these forecasting tasks in Table 15 for better comparing with methods using these settings.

Table 15: Performance of Root Purge and RRR models at forecasting horizon of 48 and 144. The
lookback window is still set to 720, aligning with the setting in our main experiments.

Dataset ETTh1 ETTh2 ETTm1 ETTm2 Weather Exchange Traffic ECL
Horizon 48 144 48 144 48 144 48 144 48 144 48 144 48 144 48 144

Root Purge 0.332 0.379 0.213 0.301 0.282 0.325 0.124 0.192 0.111 0.165 0.042 0.124 0.369 0.391 0.118 0.143
RRR 0.344 0.386 0.215 0.302 0.280 0.326 0.123 0.192 0.110 0.162 0.044 0.127 0.368 0.391 0.117 0.142

Table 16: Impact of lookback window length L on the performance of RRR and Root Purge.
Given that the lookback window length directly impacts the number of characteristic roots of
the corresponding linear difference equation, the lookback window alone can serve as a strong
regularization. Thus, we expect RRR and Root Purge to perform better with higher lookback
windows. The error bars are omitted for RRR as it produces static results.

Dataset Horizon RRR Root Purge (Frequency Domain)

L = 96 L = 192 L = 336 L = 720 L = 96 L = 192 L = 336 L = 720

E
T

T
h1

96 0.383 0.376 0.369 0.367 0.383 ± 0.000 0.373 ± 0.000 0.364 ± 0.000 0.359 ± 0.000
192 0.433 0.420 0.402 0.401 0.433 ± 0.001 0.419 ± 0.000 0.397 ± 0.000 0.394 ± 0.000
336 0.474 0.448 0.424 0.430 0.473 ± 0.000 0.446 ± 0.000 0.421 ± 0.000 0.423 ± 0.000
720 0.461 0.431 0.418 0.425 0.461 ± 0.003 0.433 ± 0.000 0.421 ± 0.001 0.421 ± 0.000

E
T

T
h2

96 0.289 0.282 0.272 0.268 0.293 ± 0.001 0.288 ± 0.000 0.277 ± 0.000 0.268 ± 0.000
192 0.374 0.354 0.334 0.329 0.378 ± 0.000 0.360 ± 0.000 0.336 ± 0.000 0.328 ± 0.000
336 0.414 0.382 0.358 0.352 0.416 ± 0.000 0.386 ± 0.000 0.355 ± 0.000 0.355 ± 0.000
720 0.416 0.399 0.384 0.376 0.419 ± 0.001 0.403 ± 0.000 0.387 ± 0.000 0.377 ± 0.000

E
T

T
m

1 96 0.351 0.308 0.301 0.306 0.359 ± 0.000 0.311 ± 0.000 0.300 ± 0.000 0.305 ± 0.000
192 0.389 0.343 0.336 0.336 0.396 ± 0.000 0.346 ± 0.000 0.336 ± 0.000 0.333 ± 0.000
336 0.422 0.380 0.370 0.365 0.428 ± 0.000 0.381 ± 0.000 0.370 ± 0.000 0.360 ± 0.000
720 0.483 0.439 0.426 0.414 0.487 ± 0.000 0.439 ± 0.000 0.425 ± 0.000 0.412 ± 0.000

E
T

T
m

2 96 0.182 0.172 0.165 0.161 0.184 ± 0.000 0.174 ± 0.000 0.165 ± 0.000 0.161 ± 0.000
192 0.246 0.231 0.220 0.216 0.248 ± 0.000 0.233 ± 0.000 0.221 ± 0.000 0.216 ± 0.000
336 0.307 0.284 0.273 0.268 0.307 ± 0.000 0.285 ± 0.000 0.274 ± 0.000 0.269 ± 0.000
720 0.407 0.382 0.367 0.348 0.408 ± 0.000 0.384 ± 0.000 0.368 ± 0.000 0.350 ± 0.000

W
ea

th
er 96 0.164 0.150 0.143 0.140 0.168 ± 0.000 0.155 ± 0.000 0.146 ± 0.000 0.142 ± 0.000

192 0.211 0.194 0.186 0.182 0.217 ± 0.000 0.202 ± 0.000 0.191 ± 0.000 0.186 ± 0.000
336 0.267 0.248 0.239 0.232 0.274 ± 0.000 0.257 ± 0.000 0.246 ± 0.000 0.238 ± 0.000
720 0.348 0.328 0.316 0.304 0.353 ± 0.000 0.334 ± 0.000 0.321 ± 0.000 0.310 ± 0.000

E
xc

ha
ng

e 96 0.082 0.082 0.083 0.084 0.082 ± 0.000 0.083 ± 0.000 0.083 ± 0.000 0.082 ± 0.000
192 0.169 0.170 0.171 0.174 0.170 ± 0.000 0.173 ± 0.000 0.171 ± 0.000 0.172 ± 0.001
336 0.311 0.312 0.312 0.324 0.313 ± 0.000 0.319 ± 0.000 0.321 ± 0.001 0.324 ± 0.001
720 0.813 0.816 0.843 0.915 0.821 ± 0.000 0.829 ± 0.000 0.892 ± 0.004 0.941 ± 0.002

Average 0.350 0.330 0.321 0.321 0.353 0.334 0.325 0.322

E.10 SHORT-TERM FORECASTING–AN EXTREME CASE

The performance of linear models on the M4 dataset is often limited (Xu et al., 2023; Liu et al., 2023;
Wu et al., 2023). Our theoretical analysis in Section 3 and Appendix C attributes this primarily to
two factors:

1. The restricted lookback window sizes, which range from only 12 to 96.
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2. The requirement for a single model to fit a large number of time series from diverse domains,
each with potentially different dynamics.

For example, fitting a linear model to the M4 yearly data is equivalent to capturing all dynamics
across 23,000 different series using only 12 characteristic roots. The severe constraint on the number
of roots, combined with the diversity of dynamics to be captured, implies that a linear model will
significantly underfit the M4 dataset, explaining its subpar performance.

Root Purge and RRR leverage rank and nullity manipulation to eliminate spurious roots. However,
when a linear model is already underfitting and thus full-rank, no spurious roots are present. Conse-
quently, we expect little to no performance gain from applying Root Purge or RRR to linear models
on M4. On the other hand, our approaches—especially Root Purge—do not over-regularize the model
even in these extreme cases (as shown in Table 17), suggesting their potential as a default regularizer
for linear time series forecasting models.

Table 17: Forecasting performance on the M4 benchmark for linear models with and without Root
Purge. The suboptimal performance of the baseline linear model is consistent with our theoretical
observations in Section 3, a consequence of its limited capacity. Crucially, these results demonstrate
the robustness of Root Purge. Even in these extreme cases of underfitting, the regularizer maintains
stability and introduces negligible negative effects, affirming its utility as a default regularization.

Frequency Domain Linear Model Time Domain Linear Model

Metric M4 Subset Baseline + Root Purge Baseline + Root Purge

sM
A

PE

Yearly 14.914 14.911 14.871 14.880
Quarterly 10.977 10.977 10.860 10.860
Monthly 13.402 13.404 13.354 13.351
Others 4.861 4.856 4.913 4.911
Average 12.742 12.741 12.682 12.683

M
A

SE

Yearly 3.170 3.171 3.044 3.044
Quarterly 1.349 1.347 1.322 1.323
Monthly 1.022 1.022 1.010 1.010
Others 3.313 3.313 3.343 3.344
Average 1.709 1.709 1.670 1.670

O
W

A

Yearly 0.855 0.855 0.838 0.838
Quarterly 0.990 0.990 0.975 0.975
Monthly 0.945 0.945 0.938 0.938
Others 1.034 1.033 1.044 1.044
Average 0.916 0.916 0.904 0.904

E.11 HIGHER-ORDER ROOT PURGE

The root purge we considered in the main text has the following target, where GW(·) defines a linear
transformation:

min
W

∥Yfut − GW(Yhis)∥2F︸ ︷︷ ︸
root-seeking

+λ ∥GW ◦ P (Yfut − GW(Yhis))∥2F︸ ︷︷ ︸
root-purging

We now define the order of root purge as 1, forcing the noise to be contained in the null-space
of GW(·). To extend from order-1 Root Purge, it seems also reasonable to perform Root Purge on
higher-order composition of GW ◦ P(·), as follows:

(GW ◦ P)
k
(·) = GW ◦ P(GW ◦ P(· · · GW ◦ P(︸ ︷︷ ︸

k such composition

·)))

In this section, we investigate this general form of Root Purge and conclude that Root Purge of
order 1 works best. As summarized in Table 18, higher-order Root Purge has attenuated effects on
regularization, and the performance tends to degrade as order increases. The order-1 Root Purge is
able to attain the best result in almost all of the benchmarks. To rule out run-to-run variance, we
repeat each experiment 5 times and report the mean with standard deviations in our table.
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Table 18: Root Purge results across different orders. The best results are highlighted in red.

Dataset H Order-1 Root Purge (Original) Order-2 Root Purge Order-3 Root Purge Order-4 Root Purge

E
T

T
h1

96 0.359 ± 0.000 0.365 ± 0.000 0.371 ± 0.000 0.373 ± 0.000
192 0.394 ± 0.000 0.401 ± 0.000 0.406 ± 0.000 0.408 ± 0.000
336 0.423 ± 0.000 0.431 ± 0.000 0.432 ± 0.000 0.432 ± 0.000
720 0.421 ± 0.000 0.427 ± 0.000 0.428 ± 0.000 0.428 ± 0.000

E
T

T
h2

96 0.268 ± 0.000 0.270 ± 0.000 0.271 ± 0.000 0.271 ± 0.000
192 0.328 ± 0.000 0.330 ± 0.000 0.331 ± 0.000 0.331 ± 0.000
336 0.355 ± 0.000 0.354 ± 0.000 0.354 ± 0.000 0.354 ± 0.000
720 0.377 ± 0.000 0.377 ± 0.000 0.377 ± 0.000 0.377 ± 0.000

E
T

T
m

1 96 0.305 ± 0.000 0.306 ± 0.000 0.307 ± 0.000 0.308 ± 0.000
192 0.333 ± 0.000 0.335 ± 0.000 0.336 ± 0.000 0.337 ± 0.000
336 0.360 ± 0.000 0.361 ± 0.000 0.362 ± 0.000 0.364 ± 0.000
720 0.412 ± 0.000 0.414 ± 0.000 0.415 ± 0.000 0.415 ± 0.000

E
T

T
m

2 96 0.161 ± 0.000 0.161 ± 0.000 0.163 ± 0.000 0.163 ± 0.000
192 0.216 ± 0.000 0.217 ± 0.000 0.217 ± 0.000 0.217 ± 0.000
336 0.269 ± 0.000 0.269 ± 0.000 0.269 ± 0.000 0.269 ± 0.000
720 0.350 ± 0.000 0.350 ± 0.000 0.350 ± 0.000 0.350 ± 0.000

W
ea

th
er 96 0.142 ± 0.000 0.143 ± 0.000 0.143 ± 0.000 0.144 ± 0.000

192 0.186 ± 0.000 0.187 ± 0.000 0.188 ± 0.000 0.188 ± 0.000
336 0.238 ± 0.000 0.238 ± 0.000 0.238 ± 0.000 0.238 ± 0.000
720 0.310 ± 0.000 0.309 ± 0.000 0.309 ± 0.000 0.309 ± 0.000

E
xc

ha
ng

e 96 0.082 ± 0.000 0.083 ± 0.000 0.084 ± 0.000 0.087 ± 0.002
192 0.172 ± 0.001 0.173 ± 0.000 0.174 ± 0.000 0.174 ± 0.000
336 0.324 ± 0.001 0.324 ± 0.001 0.325 ± 0.001 0.326 ± 0.001
720 0.941 ± 0.002 0.928 ± 0.001 0.927 ± 0.001 0.934 ± 0.004

E.12 ADDITIONAL RESULTS ON DATA SCALING & NOISE ROBUSTNESS ON SIMULATION
DATA

We provide additional visualization for the experiment in Section 5.3 - Data Scaling & Noise
Robustness, where we examine the data scaling property and noise robustness of our methods on
a toy example. In Figure 16a, we show a qualitative result. When there is a scarce amount of data,
the root-seeking target drives the linear model to overfit and mimic patterns of noise, which are, in
fact, unpredictable. In Figure 16b, we show the noise robustness curve based on the raw MSE we
obtained. It is still visible that both RRR and Root Purge are closest to the ground truth. A clearer
relative degradation plot in noise scaling is provided in Section 5.
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Figure 16: Additional visualization of the data scaling & noise robustness on simulation data. (a) A
qualitative visualization of what went wrong for pure root seeking when data is scarce. (b) Test MSE
against noise level. It is still visible that RRR and Root Purge show better noise robustness, but a
clearer degradation plot in noise scaling is provided in Figure 4.

E.13 ROOT ANALYSIS ON SIMULATION DATA

In most real-world applications, obtaining noise-free system dynamics is challenging, if not impossi-
ble. Therefore, following the principle that accurately identifying the characteristic roots is sufficient
for minimizing forecasting error (as established in Section 3, Fact 1), we have used Mean Squared
Error (MSE) as the primary benchmark for our methods. In this section, however, we directly evaluate
how Rank Reduction Regression (RRR) and Root Purge affect the learned root distribution in a
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synthetic setting. This allows us to validate that our methods indeed recover roots that are closer to
the true, noise-free roots.

Such a direct comparison is infeasible with real-world data due to the lack of access to the underlying
noise-free dynamics and their true characteristic roots. To address this, we conduct experiments on
synthetic data generated by the following dynamics:

y(t) = sin(2t) + cos(5t) + 0.5t+ σ · εt
We use the same dynamics from Section 5.3, which include periodic components and a linear trend;
this specific form is not critical, as similar results are obtained with other dynamics. The term
σ · εt represents additive Gaussian noise. In the noise-free case (σ = 0), this signal can be exactly
represented using six characteristic roots. For clearer visualization, we fit a linear model with a
lookback window of length 25 and a forecasting horizon of length 25 to limit the number of roots.
We compare the 25 characteristic roots learned under four conditions against the ground truth roots:

■ Ground Truth (noise-free):
A linear model is fitted to the clean signal via SVD, and its characteristic roots serve as the
reference.

1. Standard Linear Model + Noise:
A standard linear model is fitted using Ordinary Least Squares (OLS) on the noisy signal, and the
root distribution from the first forecasting head is visualized.

2. Root Purge + Noise:
Our Root Purge method is applied to the same noisy data, and the resulting root distribution is
plotted.

3. Rank Reduction + Noise:
Similarly, our Rank Reduction Regression (RRR) approach is applied, and the learned roots are
examined.

4. Standard Linear Model + Gradient Method:
To control for the optimizer, we include a baseline where a standard linear model is optimized
using the gradient method (matching the optimizer used in Root Purge).

We visualize the characteristic roots from these models in the two-dimensional complex plane in
Figure 17. The roots obtained via RRR and Root Purge are visibly closer to the ground truth than
those from the standard model. Furthermore, we quantitatively evaluate the root recovery performance
over five experimental runs. For each model, we compute the mean and standard deviation of the
distances between all learned roots and the ground truth roots, with root pairs matched using the
Hungarian algorithm (Kuhn, 1955). The results are summarized in Table 19.

Table 19: Comparison of Root Distance to Ground Truth across models. The results demonstrate
the effectiveness of Rank Reduction and Root Purge in recovering roots closer to the true values
compared to standard linear models.

Model Root Distance to Ground Truth (mean ± std)

Rank Reduction 0.036± 0.014
Root Purge 0.045± 0.009
Standard Linear Model (OLS) 0.064± 0.025
Standard Linear Model (gradient method) 0.151± 0.045

Our analysis yields the following key observations:

• Both RRR and Root Purge yield root distributions much closer to the noise-free ground truth
than the standard linear model.

• The root distributions from the standard model exhibit high variance across runs, whereas
our proposed methods produce more stable and concentrated distributions.

• Although the standard model optimized with the gradient method performs worse than its
OLS counterpart, Root Purge successfully overcomes this optimizer disadvantage to achieve
a smaller root distance.
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(a) Root Distribution on the 1st forecasting horizon
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(b) Root Distribution on 12th forecasting horizon

Figure 17: Visualization of root distribution on the (a) 1st and (b) 12th linear time series forecasting
horizons, as defined by Section 3, Equation (2).Both RRR and Root Purge yield root distributions
visibly closer to the noise-free ground truth than the standard linear model.

These results demonstrate that our proposed techniques enhance the robustness of root learning in
the presence of noise. They provide direct empirical evidence supporting our claim that RRR and
Root Purge help the model avoid capturing spurious roots, thereby strengthening the link between
our theoretical insights and the observed learning behavior.

F DISCUSSION

F.1 LIMITATION AND FUTURE WORK

While our analysis provides valuable insights into linear models for time series forecasting, a
key limitation is their inability to fully capture nonlinear dynamics present in many real-world
signals. Although linear systems offer strong interpretability and robustness, their expressiveness
is inherently constrained, especially when the lookback window is limited to a small number (e.g.
in short-term forecasting tasks such as M4; see Appendix E.10 for details). To allow a linear
model to capture complex dynamics, the lookback window must be sufficiently long. A promising
direction for future work is to extend our framework toward nonlinear dynamics, investigating
whether similar core principles—such as dominant modes or root structures—can be identified and
generalized. This could inspire the design of more interpretable and theoretically grounded nonlinear
models. Additionally, our focus has been on forecasting tasks; it would be interesting to explore the
implications of characteristic root structures in classification settings. In particular, understanding
how random projections may act as a form of null space learning—both geometrically as classifiers
and algebraically as approximations of SVD—could provide a new perspective on the design and
regularization of time-series classifiers.

F.2 BROADER IMPACT

The broader impact of this work lies in its potential to reshape how time series forecasting is
approached in both research and applied settings. By grounding model design in classical linear
systems theory—specifically, through the lens of characteristic roots—this study offers a rigorous
foundation for building more interpretable and robust forecasting models. The insights into noise
sensitivity and data-scaling inefficiency can inform the development of lightweight, resource-efficient
alternatives to overparameterized deep models, making high-quality forecasting more accessible
in low-data or low-compute environments. Moreover, the proposed root-centric regularization
techniques may be extended to other domains involving dynamical systems, such as control, finance,
and climate modeling. Ultimately, this work invites the time series and broader AI communities
to rethink the foundational principles guiding model design. Rather than relying on increasingly
intricate architectures or large-scale pretraining, we advocate for theory-driven approaches that
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focus on capturing the essential dynamics of time series data. Our study demonstrates that a deeper
understanding of fundamental structures—such as characteristic roots—can lead to models that are
not only more interpretable and robust, but also more efficient and generalizable. By highlighting
the power of simple, principled modeling grounded in classical system theory, we hope to shift
the focus toward uncovering the core mechanisms that govern temporal behavior. This perspective
encourages the community to pursue models that align with the inherent structure of time series,
fostering progress through insight rather than complexity.

G DECLARATION

We used large language models (LLMs) to polish writing.

Full set of rank-MSE trade-off curves for RRR and DWRR in the following pages. −→
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(a) RRR Rank-MSE Trade-off Curves
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(b) DWRR Rank-MSE Trade-off Curves

Figure 18: Rank-MSE Trade-off Curves on ETTh1

20 40 60 80 100
Rank of W

0.269

0.270

0.271

0.272

0.273

Te
st

 M
SE

Test MSE
Val MSE

0.208

0.209

0.210

0.211

0.212

0.213

Va
l M

SE

RRR ETTh2_L720_F96 Rank-MSE Trade-off

0 25 50 75 100 125 150 175 200
Rank of W

0.3290

0.3295

0.3300

0.3305

0.3310

0.3315

0.3320

Te
st

 M
SE

Test MSE
Val MSE

0.275

0.276

0.277

0.278

0.279

Va
l M

SE
RRR ETTh2_L720_F192 Rank-MSE Trade-off

0 50 100 150 200 250 300 350
Rank of W

0.352

0.353

0.354

0.355

0.356

0.357

0.358

Te
st

 M
SE

Test MSE
Val MSE

0.370

0.371

0.372

0.373

0.374

0.375

Va
l M

SE

RRR ETTh2_L720_F336 Rank-MSE Trade-off

0 100 200 300 400 500 600 700
Rank of W

0.376

0.378

0.380

0.382

0.384

Te
st

 M
SE

Test MSE
Val MSE

0.6350

0.6355

0.6360

0.6365

0.6370

0.6375

0.6380

0.6385

0.6390

Va
l M

SE

RRR ETTh2_L720_F720 Rank-MSE Trade-off

(a) RRR Rank-MSE Trade-off Curves
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Figure 19: Rank-MSE Trade-off Curves on ETTh2
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(a) RRR Rank-MSE Trade-off Curves
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Figure 20: Rank-MSE Trade-off Curves on ETTm1
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(a) RRR Rank-MSE Trade-off Curves
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(b) DWRR Rank-MSE Trade-off Curves

Figure 21: Rank-MSE Trade-off Curves on ETTm2
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(a) RRR Rank-MSE Trade-off Curves
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(b) DWRR Rank-MSE Trade-off Curves

Figure 22: Rank-MSE Trade-off Curves on Weather
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(a) RRR Rank-MSE Trade-off Curves
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(b) DWRR Rank-MSE Trade-off Curves

Figure 23: Rank-MSE Trade-off Curves on Exchange
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(a) RRR Rank-MSE Trade-off Curves
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(b) DWRR Rank-MSE Trade-off Curves

Figure 24: Rank-MSE Trade-off Curves on Electricity
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(a) RRR Rank-MSE Trade-off Curves
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(b) DWRR Rank-MSE Trade-off Curves

Figure 25: Rank-MSE Trade-off Curves on Traffic
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