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Abstract

Graphical user interface (GUI) agents pow-
ered by multimodal large language models
(MLLMs) have demonstrated impressive ca-
pabilities in understanding and interacting with
operating system environments. However, de-
spite their strong task performance, these mod-
els often exhibit hallucinations—systematic er-
rors in action prediction that compromise re-
liability. In this study, we conduct a compre-
hensive analysis of the hallucinatory behaviors
exhibited by GUI agent models in an icon lo-
calization task. We introduce a novel evalua-
tion framework that moves beyond traditional
accuracy-based metrics by categorizing model
predictions into four distinct types: correct pre-
dictions, biased hallucinations, misleading hal-
lucinations, and confusing hallucinations. This
fine-grained classification provides deeper in-
sights into model failure modes. Furthermore,
we investigate the distribution of output log-
its corresponding to different response types
and reveal key deviations from the behavior
observed in traditional classification tasks. To
support this analysis, we propose a new met-
ric derived from the structural characteristics
of the logits distribution, offering a fresh per-
spective on model confidence and uncertainty
in GUI interaction tasks.

1 Introduction

Recent progress in large language models (LLMs;
Touvron et al. 2023a; Chiang et al. 2023; Al-
mazrouei et al. 2023; MosaicML 2023; Touvron
et al. 2023b; OpenAl 2022; Google 2023) has
greatly advanced natural language understanding
and generation. However, their reliance on purely
textual inputs and outputs limits their applicability
in perceptual and interactive tasks. To address this,
multi-modal large language models (MLLMs) have
emerged by incorporating visual inputs alongside
text. Models such as Flamingo (Alayrac et al.,
2022), Gemini (Team et al., 2023), and Qwen-
VL (Bai et al., 2023; Wang et al., 2024; Bai et al.,

2025) enable more comprehensive reasoning across
modalities, supporting tasks like visual question
answering, image captioning, and document un-
derstanding where both language and vision are
crucial.

Building on recent advances in LLMs and
MLLMSs, researchers have turned to GUI
agents—intelligent systems capable of au-
tonomously operating graphical user interfaces
via perception, reasoning, and action. These
agents must interpret screen layouts, understand
task instructions (often in natural language), and
generate accurate sequences of interface actions
such as clicks or keystrokes. Effective GUI agents
require the integration of language understanding,
visual perception, and action planning in dynamic
environments.

A key challenge lies in accurately identifying in-
teraction targets on the interface. General-purpose
MLLMs often fall short in GUI-specific tasks, par-
ticularly in predicting precise operation coordi-
nates. To overcome this, recent approaches adopt
training-based pipelines that enhance the agent’s
capabilities through continued pre-training on large
auxiliary datasets, followed by the integration or
adaptation of neural modules tailored for GUI tasks.
This foundation enables more effective fine-tuning
on smaller, domain-specific datasets, improving
precision and robustness in real-world GUI interac-
tions.

Existing GUI agent models are typically pre-
trained or fine-tuned on large-scale datasets of inter-
face operations. However, they often underperform
on tasks that are trivial for human users. Moreover,
these models exhibit weak localization accuracy
for rarely seen or uncommon icons, which hinders
their ability to generalize across diverse interface
environments.

In this study, we systematically analyze the
forms of hallucination exhibited by existing GUI
agent models. These hallucinations often manifest



as inaccurate or implausible predictions during icon
localization, especially in cases involving unfamil-
iar interface elements. To facilitate a controlled
investigation, we introduce a novel icon library
containing symbols that are semantically clear and
visually distinctive, yet rarely encountered in com-
mon human-computer interaction scenarios. These
icons are designed to integrate naturally into GUI
layouts while providing new challenges for model
generalization.

To better characterize and quantify hallucina-
tions in GUI localization tasks, we propose formal
definitions and a taxonomy of hallucination types,
along with corresponding classification algorithms.
This framework allows for a more precise evalua-
tion of model behavior when interacting with both
familiar and unfamiliar interface elements.

In parallel, we examine the distribution of logit
scores produced by GUI agent models during co-
ordinate prediction. Unlike conventional natural
language tasks such as question answering, GUI
localization tasks typically involve output tokens
that represent numeric values (e.g., X and y coor-
dinates). These tokens exist in an ordered space,
where semantic proximity is inherently meaningful.
For instance, when predicting the token “6”, sur-
rounding tokens like “5” and “7” are expected to
have higher logits due to their closeness in both nu-
merical and spatial terms, whereas tokens such as
“1” or “9” are more distant in this context. This char-
acteristic provides a unique opportunity to study
structured output spaces and the nature of model
uncertainty in GUI interaction tasks.

This work makes several key contributions:

* We systematically analyze common hallucina-
tion behaviors in GUI agents, especially dur-
ing icon localization with unfamiliar interface
elements;

* We propose formal definitions and a taxonomy
of GUI localization hallucinations, enabling
more precise model evaluation;

* We investigate logit distributions in coordinate
prediction, revealing structured uncertainty
unique to GUI tasks.

2 Related Work

Multi-modal language models Multi-modal lan-
guage models (MLLMs) integrate visual and tex-
tual information, enabling joint reasoning across
modalities (Bai et al., 2023; Wang et al., 2024;

Bai et al., 2025; Alayrac et al., 2022; Team et al.,
2023; Ma et al., 2023; Yang et al., 2023; Liu
et al., 2023; Li et al., 2023a). Early models like
VIIBERT (Lu et al., 2019) and VisualBERT (Li
et al., 2019) extended BERT to handle vision-
language tasks. More recent architectures such
as Flamingo (Alayrac et al., 2022), OFA (Wang
et al., 2022), and BLIP-2 (Li et al., 2023b) leverage
pretrained vision encoders and language models to
achieve strong performance on image captioning,
VQA, and document understanding. Models like
Kosmos-2 (Peng et al., 2023) and Qwen-VL (Bai
et al., 2023; Wang et al., 2024; Bai et al., 2025) fur-
ther enhance grounding and layout understanding,
which are particularly relevant for structured GUI
environments. However, these general-purpose
MLLMs still face challenges in precise spatial rea-
soning and action prediction required by GUI tasks.

GUI agents GUI agents (Nguyen et al., 2024;
Zhang et al., 2024; Cheng et al., 2024; Lin et al.,
2024; Lu et al., 2024), are designed to interact with
graphical user interfaces through visual perception,
natural language understanding, and action plan-
ning. Early generalist agents such as Gato (Reed
et al., 2022) demonstrated multitask capabilities
across robotic control, games, and web interfaces,
but lacked fine-grained spatial grounding.

Recent approaches have expanded GUI agent
capabilities through stronger visual grounding and
multimodal reasoning. WebGUM (Furuta et al.,
2023) introduces a hierarchical planning frame-
work that combines LLMs with execution modules
and perceptual grounding. OmniParser (Lu et al.,
2024) uses auxiliary visual models to mark the posi-
tion of elements in the operation interface, improv-
ing the performance of GPT-4V in GUI agent tasks.
ShowUI (Lin et al., 2024) and UGround (Gou et al.,
2025) synthesize a large amount of training data
for training efficient GUI agent models.

Despite progress, many agents still struggle with
localization of unfamiliar UI elements and suf-
fer from hallucination-like errors, especially in
low-resource or distribution-shifted settings. This
motivates continued research into robust visual-
language grounding, more diverse pretraining data,
and better uncertainty modeling in GUI environ-
ments.
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Figure 1: Illustration of the four response types in GUI
icon localization tasks.

3 Investigating Hallucinations in GUI
Agent Models

While current GUI agent models have demon-
strated substantial improvements over general-
purpose multimodal models in executing operat-
ing system tasks, their performance still lags be-
hind human-level proficiency. Most existing bench-
marks primarily evaluate task success rates and
interaction accuracy with GUI elements, yet of-
ten neglect a more nuanced analysis of hallucina-
tions—systematic or implausible errors that arise
during model interactions.

To address this gap, we design a series of con-
trolled experiments aimed at systematically analyz-
ing the hallucination behavior of GUI agents. In
addition, we introduce a dedicated classification al-
gorithm that categorizes hallucinated outputs, pro-
viding a finer-grained understanding of error types
and their underlying causes in GUI-based localiza-
tion and interaction tasks.

Specifically, we classify model responses into
four distinct categories: Correct response, Biased
hallucination, Misleading hallucination, Confusion
hallucination.

3.1 How far are the model’s predictions from
the ground truth?

As presented in Table 1, our empirical analysis
demonstrates that, even in the presence of hallu-
cinated predictions, the output coordinates gener-
ated by GUI agent models frequently lie in close
proximity to the ground-truth region. Specifically,
when evaluated on the ScreenSpot dataset using the
ShowUI-2B model, more than 90% of the predicted
points fall within a relative distance of 0.2 from the
target bounding box.

This observation is particularly salient in in-

stances of biased hallucinations, wherein the model
appears to semantically or perceptually identify the
correct icon but fails to localize it precisely. The
spatial concentration of hallucinated outputs near
the intended region suggests that such errors are
not merely stochastic, but rather indicative of struc-
tured uncertainty in the model’s spatial reasoning.

These findings highlight a critical limitation of
conventional binary accuracy metrics, which are
insufficient to capture the nuanced behavior of GUI
agents in localization tasks. Accordingly, there
is a compelling need for more refined evaluation
methodologies that can systematically quantify spa-
tial proximity and diagnose model failure modes
with greater interpretability.

Evaluation Condition Proportion (%)

Correct response 75.9
Relative distance < 0.05 84.5
Relative distance < 0.10 87.4
Relative distance < 0.20 90.9
Relative distance < 0.30 93.9

Table 1: Proportion of ShowUI-2B (Lin et al., 2024)
model predictions falling within various distance thresh-
olds from the ground-truth bounding box. Evaluated on
the ScreenSpot (Cheng et al., 2024) dataset.

3.2 Experiments Setup

Baseline models and Benchmarks We evaluate
two novel and efficient GUI agent models, ShowUI-
2B (Lin et al., 2024) and UGround-V1-2B (Gou
et al., 2025), both trained on the Qwen2-VL (Wang
et al., 2024) framework. All icons used in our
experiments are obtained from publicly available
open-source icon libraries, and the background im-
ages are default wallpapers from the Windows op-
erating system. These assets are used solely for
academic and non-commercial research purposes.

3.3 Experiments design

In prior benchmarks, the evaluation of GUI agents’
click accuracy typically relies on determining
whether the predicted coordinates fall within a pre-
defined ground-truth bounding box. However, this
binary protocol presents two significant limitations.
First, it neglects the spatial distance between the
predicted and actual positions, thus failing to cap-
ture the extent to which incorrect predictions de-
viate from the intended target. Second, it offers
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Figure 2: Illustration of the experimental procedure for classifying responses generated by GUI agent models. A
Windows desktop wallpaper is used as the background, onto which a set of icons is randomly placed. The bounding
box of each icon is recorded and subsequently used to categorize the model’s predicted coordinates according to the

classification algorithm described in Algorithm 1.

little insight into the underlying causes of hallu-
cination errors—for example, whether the model
was misled by visually similar or spatially adjacent
elements.

Moreover, existing benchmarks often only pro-
vide the bounding box of the ground-truth target,
without detailed annotations of other interface ele-
ments. This lack of contextual information makes
it difficult to systematically investigate the origins
and categories of hallucinations exhibited by GUI
agent models. These limitations underscore the
need for a more granular and interpretable evalua-
tion framework tailored to GUI localization tasks.

To address these challenges, we design a con-
trolled evaluation setting that incorporates a curated
icon library composed of visually distinctive and
semantically unambiguous icons with well-defined
boundaries, as shown in Figure 8. In each exper-
iment, a subset of icons is randomly placed on a
synthetically generated GUI background, with one
icon designated as the target. Since the exact posi-
tions and bounding boxes of all icons are known,
we are able to conduct a fine-grained analysis of
model predictions, focusing on spatial deviations
and confusion behaviors.

Building upon this setup, we introduce a novel
evaluation framework that not only incorporates
distance-aware metrics for assessing localization
accuracy but also classifies hallucination errors into
semantically meaningful categories. This approach
provides deeper insight into the behavioral limita-
tions of GUI agents and offers actionable directions
for improving model robustness and interpretabil-

ity.

Algorithm 1 Classify GUI Agent Response Based
on Bounding Box Distance

Require: Predicted point (z,y), ground-truth
box By = [z1,y1,%2,y2], icon boxes B =
{By,B>,...,B,}, distance threshold 7

Ensure: Response category: Correct, Biased,
Misleading, or Confusion

1. ifxr; <z <z and y; <y < ys then

2 return Correct response

3: end if

4: Compute distance d < POINTTOBOXDIs-

TANCE(z, y, Bo)

if d < 7 then
return Biased hallucination

end if

for each B; € B do
Compute d;

TANCE(z, y, B;)

10: if d; < 7 then

L X 3w

< PoINTTOBOXDIS-

11: return Misleading hallucination
12: end if
13: end for

14: return Confusion hallucination

15: function POoINTTOBOXDIS-
TANCE(z, y, [21, Y1, T2, Y2])

16: dx < max(z, —x,0,z - z2)

17: dy < max(y1 - y,0,y —y2)

18: return \/dz? + dy?

19: end function




3.4 Taxonomy of GUI localization
hallucinations

Although prior research has primarily focused on
task completion accuracy, our study reveals that
the coordinates predicted by GUI agent models in
operating system tasks can be further categorized
into several distinct subtypes of responses. This
finer-grained classification enables a deeper under-
standing of model behavior beyond simple success
or failure.

Given a task instruction and a corresponding
GUI image, a GUI agent model generates a coordi-
nate pair [z, y]. The ground-truth target is defined
by a bounding box By = [x1,y1,T2,y2]. A predic-
tion is considered correct if it satisfies the condition
r1<x<xg and y; <y <y meaning the point
lies within the ground-truth region.

We denote the set of all icons I placed on
the GUI background as a set of bounding boxes
B = {Bi,Bs,...,B,} each corresponding to a
distinct icon with known coordinates. This setup
allows us to determine whether a model’s predic-
tion corresponds to a wrong but plausible icon (e.g.,
visually similar or nearby), or is entirely spurious.

The specific response classification procedure
is formalized in Algorithm 1, which outlines how
predicted coordinates are categorized based on their
spatial relationship to By and other icons in the set
B. Specifically, we classify the responses of GUI
agent models into the following categories:

* Correct response: The predicted coordinates
fall within the ground-truth bounding box Bj.

* Biased hallucination: The prediction is close
to the ground-truth region but lies outside of
By, suggesting a minor spatial deviation.

* Misleading hallucination: The coordinates
fall near another icon’s bounding box B; € B,
indicating the model was misled by a visually
or semantically similar distractor.

* Confusion hallucination: The output does
not correspond to any identifiable icon, and
the prediction appears unrelated to any mean-
ingful visual element.

As shown in Figure 3, our experimental results
indicate that GUI agent models exhibit lower per-
formance when tasked with locating icons that
rarely appear in the operating interface, despite the
relative simplicity of these tasks and the minimal

m Correct response Biased hallucination

m Misleading hallucination = Confusion hallucination

Figure 3: Distribution of response types for different
GUI agent models on the icon finding task. Percentages
indicate the proportion of predictions belonging to each
category as defined by our response classification frame-
work.

requirement for semantic understanding. Notably,
a substantial proportion of the observed errors fall
into the category of biased hallucinations, where
the model correctly identifies the target icon at a se-
mantic or perceptual level but produces coordinate
predictions that are slightly offset from the ground-
truth region. In contrast, misleading hallucinations
occur when the model either misinterprets the in-
tended meaning of the icon or is misled by visually
or spatially similar distractors, resulting in more
pronounced localization errors.

Moreover, our analysis shows that confusion hal-
lucinations constitute only a small fraction of the
errors in the icon localization task. This suggests
that GUI agent models are generally capable of ex-
tracting and leveraging meaningful visual elements
from the interface, even when precise localization
is imperfect.

In summary, different types of hallucinations ex-
hibit distinct behavioral patterns, highlighting the
limitations of binary classification schemes that
simply judge coordinate predictions as either cor-
rect or incorrect. Such coarse-grained evaluation
fails to capture the nuanced characteristics of model
responses. To advance the development of more ro-
bust GUI agent models, there is a pressing need for
finer-grained indicators capable of differentiating
between hallucination types. In particular, we seek
metrics that can effectively distinguish among vari-
ous error modes, thereby enabling targeted analysis
and method-specific improvements. We elaborate
on this direction in the following section.



4 New Metric: Peak Sharpness Score
(PSS)

While the previous section examined hallucination
classification and spatial errors in GUI agent coor-
dinate predictions, the confidence levels of these
models in producing such outputs remain under-
explored. Conventional evaluation metrics, such
as accuracy and token-level perplexity, fail to ad-
equately capture this aspect, particularly in multi-
modal tasks requiring spatial reasoning and action
grounding. To address this, the subsequent sec-
tion introduces a novel confidence-oriented metric
designed specifically for GUI agent models. This
metric provides a more nuanced and detailed eval-
uation of model certainty during task execution,
enabling improved diagnosis of failure modes and
informing future enhancements.

4.1 Analysis of Logit Distribution in GUI
Agent Tasks

Unlike traditional natural language tasks such as
knowledge-based question answering, GUI local-
ization tasks require models to output tokens repre-
senting numerical values—specifically, x and y co-
ordinates. These tokens lie within an ordered, con-
tinuous space where semantic proximity directly
reflects spatial closeness. For instance, when the
model predicts the token “6”, it is expected that
nearby tokens like “5” and “7” will also receive
relatively high logit scores, while distant tokens
such as “1” or “9” should be less probable. This
structured output space offers a unique opportunity
to assess model uncertainty in a more interpretable
and task-relevant way.

However, our experimental observations show
that this expected pattern is frequently violated,
particularly in cases identified as Misleading Hal-
lucinations and Confusing Hallucinations. In such
scenarios, the logit distribution does not exhibit the
anticipated continuity, suggesting a breakdown in
the model’s spatial grounding or confidence cali-
bration.

To address this, we propose a new metric—Peak
Sharpness Score (PSS)—which quantifies the align-
ment between semantic continuity and the shape of
the logits distribution. The computation procedure
is detailed in Algorithm 2.

4.2 Definition of new metric

Definition of key token The GUI agent model
produces coordinate outputs as strings, such as

“[0.71, 0.23]”, with coordinates normalized to the
range [0, 1]. Within these strings, certain tokens,
such as “7” and “2” in the example, predominantly
determine the coordinate values. We define these
tokens, which critically influence the numerical
representation of coordinates, as key tokens. The
subsequent analysis will focus on these key tokens.

Motivation Building on the prior analysis, to
more precisely investigate model uncertainty in
GUI interaction tasks, we propose a novel metric.
This metric accounts for the following consider-
ations. First, during greedy decoding, the logit
associated with the highest value, corresponding to
the selected output token, should receive a higher
score. Second, as numerical tokens reside in an or-
dered space where semantic proximity is inherently
meaningful, tokens with similar semantics should
exhibit comparable logit values. Specifically, we
will assess whether the logits form a unimodal dis-
tribution when arranged according to the order of
the corresponding numerical tokens.

Definition of Semantic Continuity. We define
semantic continuity as the property of a sequence
of tokens whose semantic representations vary
smoothly and predictably in the embedding space.
Let T = {t1,t9,...,t,} be a sequence of tokens,
and f : T — R be an embedding function map-
ping each token to a d-dimensional semantic vector
v; = f(t;). Semantic continuity holds if the simi-
larity between adjacent embeddings remains high,
ie.,

COS(f(ti), f(tzurl)) ~1 for all ’i,

and the embedding differences are approximately
constant:

S(tivn) = f(t) ~ f(t:) = f(tie1).

This implies a near-linear progression in embed-
ding space. For example, numerical tokens such as
“17, %27, and “3” typically exhibit semantic conti-
nuity. In contrast, tokens representing entities such
as “Paris”, “London”, and “Beijing” lack such lin-
earity due to their discrete and context-dependent
meanings.

In our experiments, we observed that token se-
quences exhibiting semantic continuity—such as
those representing spatially adjacent coordinate
values—are expected to correspond to a similarly
smooth and continuous distribution in model log-
its. We refer to this alignment as the consistency
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Figure 4: Comparison of logits score distributions between GUI agent tasks and traditional question answering
tasks. In GUI agent tasks, the model outputs coordinate values, where numeric tokens exhibit semantic continuity.
In anomalous cases, a mismatch between this semantic continuity and the continuity of the logits distribution often

indicates increased model uncertainty or confusion.

between semantic continuity and logits distribu-
tion. Empirical results show that this property is
frequently preserved in samples corresponding to
correct predictions, suggesting it may serve as a
useful signal for evaluating model confidence and
reliability.

Definition of Peak Sharpness Score We propose
a novel metric for quantifying the structural prop-
erties of the logits distribution at key output tokens.
This metric is particularly useful for assessing the
confidence of GUI agent models when predicting
coordinate labels. The input to the metric is a list of
length 10, representing the logits over the discrete
interval [0, 9].

The algorithm begins by identifying the maxi-
mum logit value and its corresponding token index,
which is designated as the peak point. If the peak
occurs at the boundary (i.e., index 0 or 9), the logits
sequence cannot form a complete unimodal struc-
ture. In such edge cases, we compute the average
slope of the available side and multiply its absolute
value by 2 to produce the final symmetry score.
This approach ensures compatibility while appro-
priately handling boundary conditions.

If the peak lies within the interior of the se-
quence, we calculate the average absolute slope
of the rising segment to the left of the peak and the
falling segment to the right. These two values are
then combined using a weighted average, where the
weights correspond to the lengths of the respective
segments.

A higher symmetry score indicates a sharper and
more concentrated unimodal distribution, suggest-
ing that the model is more confident in its predic-
tion. In contrast, flatter distributions tend to corre-
late with uncertainty and are often associated with

hallucinated outputs.

Algorithm 2 Normalized Slope Symmetry Score

Require: List V' of 10 numbers
Ensure: Normalized symmetry score
1: p< argmax(V), m < V[p]

2: if p = 0 then
3 s+ Y o(V[i+1]-V[i])
4: return 2 - |s|-m
5: else if p = 9 then
6 s<+Yio(V[i+1]-V[i])
7: return 2 - [s|-m
8: else
9: Is< [V[i+1]-V[i]fori=0top—-1]
10: rs < [V[i+1]-V][i] fori=pto8]
11: L < |ls|, R« |rs|
12: ale%le,areleer
. L-al|+R|ar|
13: w < Y
14: C <+~ 4.5 > Normalization coefficient
15: return C - w-m
16: end if

4.3 Experiment

We evaluate two novel and efficient GUI agent mod-
els, ShowUI-2B (Lin et al., 2024) and UGround-
V1-2B (Gou et al., 2025), both trained on the
Qwen2-VL (Wang et al., 2024) framework. For
testing, we utilize ScreenSpot (Cheng et al., 2024),
a GUI agent evaluation dataset encompassing di-
verse operating interface types, including desktop,
mobile, and web environments.

Experimental results reveal significant differ-
ences in PSS across various types of model re-
sponses. These differences indicate that PSS ef-
fectively captures variations in the confidence and
structure of the logits distribution, providing a use-



Model Correct Biased Hallucination = Other Response
ShowUI-2B 0.59 +0.33 0.54 +0.33 0.40+0.31
UGround-V1-2B  0.52 +0.30 0.43 £0.30 0.25+0.24

Table 2: Peak Sharpness Score (PSS) of different GUI agent models across response categories. Values are reported

as mean = standard deviation.

Group Comparison

Biased vs. Correct

Other vs. Correct Biased vs. Other

Significance (p < 0.05) x

v v

Table 3: Pairwise significance test results on Peak Sharpness Score (PSS) across different response types. A check
mark (v') indicates a statistically significant difference, while a cross (x) indicates no significant difference.

ful signal for distinguishing between correct pre-
dictions and different forms of hallucinations.

Our experimental results demonstrate that the
Peak Sharpness Score (PSS) for correct predictions
is significantly higher than that for incorrect re-
sponses. On the ScreenSpot benchmark, only the
bounding box of the ground-truth target is provided,
while the bounding boxes of other interface ele-
ments are not available. As aresult, it is not feasible
to distinguish between misleading and confusion
hallucinations on this dataset; these two error types
are therefore grouped together as other incorrect
responses.

Notably, among the incorrect samples, biased
hallucinations exhibit an average PSS that is closer
to that of correct responses than to other error types.
Furthermore, t-test analysis reveals that the differ-
ence in PSS between correct and biased hallucina-
tion samples is not statistically significant. This
suggests that although biased hallucinations are
technically incorrect, the model’s confidence and
output structure in these cases remain comparable
to that of correct predictions.

4.4 Analysis

Based on the experimental results presented above,
we summarize the following key findings:

1. Biased hallucinations exhibit logits distri-
butions that are more similar to those of
correct responses. This suggests that when
the model produces a biased hallucination, it
is less confused and is able to correctly iden-
tify the intended target element. The resulting
error primarily stems from slight deviations
in the predicted coordinate values. This phe-
nomenon is particularly prevalent when the

target icon is small, making precise localiza-
tion more challenging.

2. The Peak Sharpness Score (PSS) for mis-
leading and confusion hallucinations is sig-
nificantly lower than that for biased hal-
lucinations. This observation indicates that,
in such cases, the model struggles with ac-
curately recognizing the operational element
itself. For instance, the interface may contain
multiple icons with similar visual or semantic
features, leading the model to select the incor-
rect one. Unlike biased hallucinations, these
errors are not caused by coordinate impreci-
sion, but rather by fundamental misidentifica-
tion of the target element.

5 Conclusion

In this paper, we proposed a controlled experimen-
tal setup for evaluating GUI agent models by ran-
domly placing icons on background images and
performing icon localization tasks. Unlike tradi-
tional benchmarks, our setup provides access to the
bounding boxes of all interface elements, enabling
precise classification of model responses into dis-
tinct categories.

We further analyzed the semantic continuity in-
herent in coordinate-based token outputs in GUI
agent tasks and introduced a novel metric—Peak
Sharpness Score (PSS)—to quantify the alignment
between the distribution of model logits and the
expected semantic structure. Experimental results
demonstrate that different types of hallucinations
exhibit distinct patterns in their PSS values, offer-
ing insights into the underlying causes of model
errors.



Limitations

The number of models we evaluated is relatively
limited, and we have not yet evaluated models
with larger parameter sizes. Our evaluation method
lacks an evaluation method for models that output
incorrectly formatted coordinates or invalid out-
puts.

Our method is currently limited to English, and
the strategy to expand it to other languages is still
in the early stages of development.
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A Details of Prompts

The zero-shot prompt used in this paper for the
GUI agent task is shown below.
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System prompt:

“According to the image I provide, identify
the relative coordinates of the specified ob-
ject, with values ranging from O to 1. The
output format must be [x, y], and do not
output anything else.”

User prompt:
[Task]

B More Experimental Data
Response Type Perplexity ()
Correct Response 1.12
Biased Hallucination 1.17
Misleading Hallucination 1.30
Confusing Hallucination 1.33

Table 4: Perplexity scores for different types of model
responses. Lower perplexity indicates higher model
confidence.

C Case study

We show examples of background images from the
icon finding task, as well as sample demonstrations
of the four types of responses. The output coordi-
nates of the model are marked with blue dots.



Figure 5: Demonstration example of correct response.

Figure 6: Demonstration example of biased hallucination.
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Figure 7: Demonstration example of misleading hallucination.

Figure 8: Demonstration example of confusion hallucination.
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