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Abstract

Graphical user interface (GUI) agents pow-001
ered by multimodal large language models002
(MLLMs) have demonstrated impressive ca-003
pabilities in understanding and interacting with004
operating system environments. However, de-005
spite their strong task performance, these mod-006
els often exhibit hallucinations—systematic er-007
rors in action prediction that compromise re-008
liability. In this study, we conduct a compre-009
hensive analysis of the hallucinatory behaviors010
exhibited by GUI agent models in an icon lo-011
calization task. We introduce a novel evalua-012
tion framework that moves beyond traditional013
accuracy-based metrics by categorizing model014
predictions into four distinct types: correct pre-015
dictions, biased hallucinations, misleading hal-016
lucinations, and confusing hallucinations. This017
fine-grained classification provides deeper in-018
sights into model failure modes. Furthermore,019
we investigate the distribution of output log-020
its corresponding to different response types021
and reveal key deviations from the behavior022
observed in traditional classification tasks. To023
support this analysis, we propose a new met-024
ric derived from the structural characteristics025
of the logits distribution, offering a fresh per-026
spective on model confidence and uncertainty027
in GUI interaction tasks.028

1 Introduction029

Recent progress in large language models (LLMs;030

Touvron et al. 2023a; Chiang et al. 2023; Al-031

mazrouei et al. 2023; MosaicML 2023; Touvron032

et al. 2023b; OpenAI 2022; Google 2023) has033

greatly advanced natural language understanding034

and generation. However, their reliance on purely035

textual inputs and outputs limits their applicability036

in perceptual and interactive tasks. To address this,037

multi-modal large language models (MLLMs) have038

emerged by incorporating visual inputs alongside039

text. Models such as Flamingo (Alayrac et al.,040

2022), Gemini (Team et al., 2023), and Qwen-041

VL (Bai et al., 2023; Wang et al., 2024; Bai et al.,042

2025) enable more comprehensive reasoning across 043

modalities, supporting tasks like visual question 044

answering, image captioning, and document un- 045

derstanding where both language and vision are 046

crucial. 047

Building on recent advances in LLMs and 048

MLLMs, researchers have turned to GUI 049

agents—intelligent systems capable of au- 050

tonomously operating graphical user interfaces 051

via perception, reasoning, and action. These 052

agents must interpret screen layouts, understand 053

task instructions (often in natural language), and 054

generate accurate sequences of interface actions 055

such as clicks or keystrokes. Effective GUI agents 056

require the integration of language understanding, 057

visual perception, and action planning in dynamic 058

environments. 059

A key challenge lies in accurately identifying in- 060

teraction targets on the interface. General-purpose 061

MLLMs often fall short in GUI-specific tasks, par- 062

ticularly in predicting precise operation coordi- 063

nates. To overcome this, recent approaches adopt 064

training-based pipelines that enhance the agent’s 065

capabilities through continued pre-training on large 066

auxiliary datasets, followed by the integration or 067

adaptation of neural modules tailored for GUI tasks. 068

This foundation enables more effective fine-tuning 069

on smaller, domain-specific datasets, improving 070

precision and robustness in real-world GUI interac- 071

tions. 072

Existing GUI agent models are typically pre- 073

trained or fine-tuned on large-scale datasets of inter- 074

face operations. However, they often underperform 075

on tasks that are trivial for human users. Moreover, 076

these models exhibit weak localization accuracy 077

for rarely seen or uncommon icons, which hinders 078

their ability to generalize across diverse interface 079

environments. 080

In this study, we systematically analyze the 081

forms of hallucination exhibited by existing GUI 082

agent models. These hallucinations often manifest 083
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as inaccurate or implausible predictions during icon084

localization, especially in cases involving unfamil-085

iar interface elements. To facilitate a controlled086

investigation, we introduce a novel icon library087

containing symbols that are semantically clear and088

visually distinctive, yet rarely encountered in com-089

mon human-computer interaction scenarios. These090

icons are designed to integrate naturally into GUI091

layouts while providing new challenges for model092

generalization.093

To better characterize and quantify hallucina-094

tions in GUI localization tasks, we propose formal095

definitions and a taxonomy of hallucination types,096

along with corresponding classification algorithms.097

This framework allows for a more precise evalua-098

tion of model behavior when interacting with both099

familiar and unfamiliar interface elements.100

In parallel, we examine the distribution of logit101

scores produced by GUI agent models during co-102

ordinate prediction. Unlike conventional natural103

language tasks such as question answering, GUI104

localization tasks typically involve output tokens105

that represent numeric values (e.g., x and y coor-106

dinates). These tokens exist in an ordered space,107

where semantic proximity is inherently meaningful.108

For instance, when predicting the token “6”, sur-109

rounding tokens like “5” and “7” are expected to110

have higher logits due to their closeness in both nu-111

merical and spatial terms, whereas tokens such as112

“1” or “9” are more distant in this context. This char-113

acteristic provides a unique opportunity to study114

structured output spaces and the nature of model115

uncertainty in GUI interaction tasks.116

This work makes several key contributions:117

• We systematically analyze common hallucina-118

tion behaviors in GUI agents, especially dur-119

ing icon localization with unfamiliar interface120

elements;121

• We propose formal definitions and a taxonomy122

of GUI localization hallucinations, enabling123

more precise model evaluation;124

• We investigate logit distributions in coordinate125

prediction, revealing structured uncertainty126

unique to GUI tasks.127

2 Related Work128

Multi-modal language models Multi-modal lan-129

guage models (MLLMs) integrate visual and tex-130

tual information, enabling joint reasoning across131

modalities (Bai et al., 2023; Wang et al., 2024;132

Bai et al., 2025; Alayrac et al., 2022; Team et al., 133

2023; Ma et al., 2023; Yang et al., 2023; Liu 134

et al., 2023; Li et al., 2023a). Early models like 135

VilBERT (Lu et al., 2019) and VisualBERT (Li 136

et al., 2019) extended BERT to handle vision- 137

language tasks. More recent architectures such 138

as Flamingo (Alayrac et al., 2022), OFA (Wang 139

et al., 2022), and BLIP-2 (Li et al., 2023b) leverage 140

pretrained vision encoders and language models to 141

achieve strong performance on image captioning, 142

VQA, and document understanding. Models like 143

Kosmos-2 (Peng et al., 2023) and Qwen-VL (Bai 144

et al., 2023; Wang et al., 2024; Bai et al., 2025) fur- 145

ther enhance grounding and layout understanding, 146

which are particularly relevant for structured GUI 147

environments. However, these general-purpose 148

MLLMs still face challenges in precise spatial rea- 149

soning and action prediction required by GUI tasks. 150

GUI agents GUI agents (Nguyen et al., 2024; 151

Zhang et al., 2024; Cheng et al., 2024; Lin et al., 152

2024; Lu et al., 2024), are designed to interact with 153

graphical user interfaces through visual perception, 154

natural language understanding, and action plan- 155

ning. Early generalist agents such as Gato (Reed 156

et al., 2022) demonstrated multitask capabilities 157

across robotic control, games, and web interfaces, 158

but lacked fine-grained spatial grounding. 159

Recent approaches have expanded GUI agent 160

capabilities through stronger visual grounding and 161

multimodal reasoning. WebGUM (Furuta et al., 162

2023) introduces a hierarchical planning frame- 163

work that combines LLMs with execution modules 164

and perceptual grounding. OmniParser (Lu et al., 165

2024) uses auxiliary visual models to mark the posi- 166

tion of elements in the operation interface, improv- 167

ing the performance of GPT-4V in GUI agent tasks. 168

ShowUI (Lin et al., 2024) and UGround (Gou et al., 169

2025) synthesize a large amount of training data 170

for training efficient GUI agent models. 171

Despite progress, many agents still struggle with 172

localization of unfamiliar UI elements and suf- 173

fer from hallucination-like errors, especially in 174

low-resource or distribution-shifted settings. This 175

motivates continued research into robust visual- 176

language grounding, more diverse pretraining data, 177

and better uncertainty modeling in GUI environ- 178

ments. 179
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Task: Find the computer iconFour types of responses

Correct response Biased hallucination

Misleading hallucination Confusion hallucination

Figure 1: Illustration of the four response types in GUI
icon localization tasks.

3 Investigating Hallucinations in GUI180

Agent Models181

While current GUI agent models have demon-182

strated substantial improvements over general-183

purpose multimodal models in executing operat-184

ing system tasks, their performance still lags be-185

hind human-level proficiency. Most existing bench-186

marks primarily evaluate task success rates and187

interaction accuracy with GUI elements, yet of-188

ten neglect a more nuanced analysis of hallucina-189

tions—systematic or implausible errors that arise190

during model interactions.191

To address this gap, we design a series of con-192

trolled experiments aimed at systematically analyz-193

ing the hallucination behavior of GUI agents. In194

addition, we introduce a dedicated classification al-195

gorithm that categorizes hallucinated outputs, pro-196

viding a finer-grained understanding of error types197

and their underlying causes in GUI-based localiza-198

tion and interaction tasks.199

Specifically, we classify model responses into200

four distinct categories: Correct response, Biased201

hallucination, Misleading hallucination, Confusion202

hallucination.203

3.1 How far are the model’s predictions from204

the ground truth?205

As presented in Table 1, our empirical analysis206

demonstrates that, even in the presence of hallu-207

cinated predictions, the output coordinates gener-208

ated by GUI agent models frequently lie in close209

proximity to the ground-truth region. Specifically,210

when evaluated on the ScreenSpot dataset using the211

ShowUI-2B model, more than 90% of the predicted212

points fall within a relative distance of 0.2 from the213

target bounding box.214

This observation is particularly salient in in-215

stances of biased hallucinations, wherein the model 216

appears to semantically or perceptually identify the 217

correct icon but fails to localize it precisely. The 218

spatial concentration of hallucinated outputs near 219

the intended region suggests that such errors are 220

not merely stochastic, but rather indicative of struc- 221

tured uncertainty in the model’s spatial reasoning. 222

These findings highlight a critical limitation of 223

conventional binary accuracy metrics, which are 224

insufficient to capture the nuanced behavior of GUI 225

agents in localization tasks. Accordingly, there 226

is a compelling need for more refined evaluation 227

methodologies that can systematically quantify spa- 228

tial proximity and diagnose model failure modes 229

with greater interpretability. 230

Evaluation Condition Proportion (%)

Correct response 75.9
Relative distance < 0.05 84.5
Relative distance < 0.10 87.4
Relative distance < 0.20 90.9
Relative distance < 0.30 93.9

Table 1: Proportion of ShowUI-2B (Lin et al., 2024)
model predictions falling within various distance thresh-
olds from the ground-truth bounding box. Evaluated on
the ScreenSpot (Cheng et al., 2024) dataset.

3.2 Experiments Setup 231

Baseline models and Benchmarks We evaluate 232

two novel and efficient GUI agent models, ShowUI- 233

2B (Lin et al., 2024) and UGround-V1-2B (Gou 234

et al., 2025), both trained on the Qwen2-VL (Wang 235

et al., 2024) framework. All icons used in our 236

experiments are obtained from publicly available 237

open-source icon libraries, and the background im- 238

ages are default wallpapers from the Windows op- 239

erating system. These assets are used solely for 240

academic and non-commercial research purposes. 241

3.3 Experiments design 242

In prior benchmarks, the evaluation of GUI agents’ 243

click accuracy typically relies on determining 244

whether the predicted coordinates fall within a pre- 245

defined ground-truth bounding box. However, this 246

binary protocol presents two significant limitations. 247

First, it neglects the spatial distance between the 248

predicted and actual positions, thus failing to cap- 249

ture the extent to which incorrect predictions de- 250

viate from the intended target. Second, it offers 251
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Ground truth bounding box

𝐵0 = 𝑥01, 𝑦01, 𝑥02, 𝑦02

BackgroundIcon library

Random 
Placement

Computer Map Lightbulb Cursor

Home Letter-A

Task: 
Find the red 
cursor

Other icons’ bounding box

𝐵1 = 𝑥11, 𝑦11, 𝑥12, 𝑦12

𝐵2 = 𝑥21, 𝑦21, 𝑥22, 𝑦22

𝐵𝑛 = 𝑥𝑛1, 𝑦𝑛1, 𝑥𝑛2, 𝑦𝑛2

Classifier

Figure 2: Illustration of the experimental procedure for classifying responses generated by GUI agent models. A
Windows desktop wallpaper is used as the background, onto which a set of icons is randomly placed. The bounding
box of each icon is recorded and subsequently used to categorize the model’s predicted coordinates according to the
classification algorithm described in Algorithm 1.

little insight into the underlying causes of hallu-252

cination errors—for example, whether the model253

was misled by visually similar or spatially adjacent254

elements.255

Moreover, existing benchmarks often only pro-256

vide the bounding box of the ground-truth target,257

without detailed annotations of other interface ele-258

ments. This lack of contextual information makes259

it difficult to systematically investigate the origins260

and categories of hallucinations exhibited by GUI261

agent models. These limitations underscore the262

need for a more granular and interpretable evalua-263

tion framework tailored to GUI localization tasks.264

To address these challenges, we design a con-265

trolled evaluation setting that incorporates a curated266

icon library composed of visually distinctive and267

semantically unambiguous icons with well-defined268

boundaries, as shown in Figure 8. In each exper-269

iment, a subset of icons is randomly placed on a270

synthetically generated GUI background, with one271

icon designated as the target. Since the exact posi-272

tions and bounding boxes of all icons are known,273

we are able to conduct a fine-grained analysis of274

model predictions, focusing on spatial deviations275

and confusion behaviors.276

Building upon this setup, we introduce a novel277

evaluation framework that not only incorporates278

distance-aware metrics for assessing localization279

accuracy but also classifies hallucination errors into280

semantically meaningful categories. This approach281

provides deeper insight into the behavioral limita-282

tions of GUI agents and offers actionable directions283

for improving model robustness and interpretabil-284

ity.285

Algorithm 1 Classify GUI Agent Response Based
on Bounding Box Distance

Require: Predicted point (x, y), ground-truth
box B0 = [x1, y1, x2, y2], icon boxes B =
{B1,B2, . . . ,Bn}, distance threshold τ

Ensure: Response category: Correct, Biased,
Misleading, or Confusion

1: if x1 < x < x2 and y1 < y < y2 then
2: return Correct response
3: end if
4: Compute distance d ← POINTTOBOXDIS-

TANCE(x, y,B0)
5: if d < τ then
6: return Biased hallucination
7: end if
8: for each Bi ∈ B do
9: Compute di ← POINTTOBOXDIS-

TANCE(x, y,Bi)
10: if di < τ then
11: return Misleading hallucination
12: end if
13: end for
14: return Confusion hallucination

15: function POINTTOBOXDIS-
TANCE(x, y, [x1, y1, x2, y2])

16: dx←max(x1 − x,0, x − x2)
17: dy ←max(y1 − y,0, y − y2)
18: return

√
dx2 + dy2

19: end function
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3.4 Taxonomy of GUI localization286

hallucinations287

Although prior research has primarily focused on288

task completion accuracy, our study reveals that289

the coordinates predicted by GUI agent models in290

operating system tasks can be further categorized291

into several distinct subtypes of responses. This292

finer-grained classification enables a deeper under-293

standing of model behavior beyond simple success294

or failure.295

Given a task instruction and a corresponding296

GUI image, a GUI agent model generates a coordi-297

nate pair [x, y]. The ground-truth target is defined298

by a bounding box B0 = [x1, y1, x2, y2]. A predic-299

tion is considered correct if it satisfies the condition300

x1 < x < x2 and y1 < y < y2 meaning the point301

lies within the ground-truth region.302

We denote the set of all icons I placed on303

the GUI background as a set of bounding boxes304

B = {B1,B2, . . . ,Bn} each corresponding to a305

distinct icon with known coordinates. This setup306

allows us to determine whether a model’s predic-307

tion corresponds to a wrong but plausible icon (e.g.,308

visually similar or nearby), or is entirely spurious.309

The specific response classification procedure310

is formalized in Algorithm 1, which outlines how311

predicted coordinates are categorized based on their312

spatial relationship to B0 and other icons in the set313

B. Specifically, we classify the responses of GUI314

agent models into the following categories:315

• Correct response: The predicted coordinates316

fall within the ground-truth bounding box B0.317

• Biased hallucination: The prediction is close318

to the ground-truth region but lies outside of319

B0, suggesting a minor spatial deviation.320

• Misleading hallucination: The coordinates321

fall near another icon’s bounding box Bi ∈ B,322

indicating the model was misled by a visually323

or semantically similar distractor.324

• Confusion hallucination: The output does325

not correspond to any identifiable icon, and326

the prediction appears unrelated to any mean-327

ingful visual element.328

As shown in Figure 3, our experimental results329

indicate that GUI agent models exhibit lower per-330

formance when tasked with locating icons that331

rarely appear in the operating interface, despite the332

relative simplicity of these tasks and the minimal333

59.1%
19.5%

20.0%

1.4%

Figure 3: Distribution of response types for different
GUI agent models on the icon finding task. Percentages
indicate the proportion of predictions belonging to each
category as defined by our response classification frame-
work.

requirement for semantic understanding. Notably, 334

a substantial proportion of the observed errors fall 335

into the category of biased hallucinations, where 336

the model correctly identifies the target icon at a se- 337

mantic or perceptual level but produces coordinate 338

predictions that are slightly offset from the ground- 339

truth region. In contrast, misleading hallucinations 340

occur when the model either misinterprets the in- 341

tended meaning of the icon or is misled by visually 342

or spatially similar distractors, resulting in more 343

pronounced localization errors. 344

Moreover, our analysis shows that confusion hal- 345

lucinations constitute only a small fraction of the 346

errors in the icon localization task. This suggests 347

that GUI agent models are generally capable of ex- 348

tracting and leveraging meaningful visual elements 349

from the interface, even when precise localization 350

is imperfect. 351

In summary, different types of hallucinations ex- 352

hibit distinct behavioral patterns, highlighting the 353

limitations of binary classification schemes that 354

simply judge coordinate predictions as either cor- 355

rect or incorrect. Such coarse-grained evaluation 356

fails to capture the nuanced characteristics of model 357

responses. To advance the development of more ro- 358

bust GUI agent models, there is a pressing need for 359

finer-grained indicators capable of differentiating 360

between hallucination types. In particular, we seek 361

metrics that can effectively distinguish among vari- 362

ous error modes, thereby enabling targeted analysis 363

and method-specific improvements. We elaborate 364

on this direction in the following section. 365
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4 New Metric: Peak Sharpness Score366

(PSS)367

While the previous section examined hallucination368

classification and spatial errors in GUI agent coor-369

dinate predictions, the confidence levels of these370

models in producing such outputs remain under-371

explored. Conventional evaluation metrics, such372

as accuracy and token-level perplexity, fail to ad-373

equately capture this aspect, particularly in multi-374

modal tasks requiring spatial reasoning and action375

grounding. To address this, the subsequent sec-376

tion introduces a novel confidence-oriented metric377

designed specifically for GUI agent models. This378

metric provides a more nuanced and detailed eval-379

uation of model certainty during task execution,380

enabling improved diagnosis of failure modes and381

informing future enhancements.382

4.1 Analysis of Logit Distribution in GUI383

Agent Tasks384

Unlike traditional natural language tasks such as385

knowledge-based question answering, GUI local-386

ization tasks require models to output tokens repre-387

senting numerical values—specifically, x and y co-388

ordinates. These tokens lie within an ordered, con-389

tinuous space where semantic proximity directly390

reflects spatial closeness. For instance, when the391

model predicts the token “6”, it is expected that392

nearby tokens like “5” and “7” will also receive393

relatively high logit scores, while distant tokens394

such as “1” or “9” should be less probable. This395

structured output space offers a unique opportunity396

to assess model uncertainty in a more interpretable397

and task-relevant way.398

However, our experimental observations show399

that this expected pattern is frequently violated,400

particularly in cases identified as Misleading Hal-401

lucinations and Confusing Hallucinations. In such402

scenarios, the logit distribution does not exhibit the403

anticipated continuity, suggesting a breakdown in404

the model’s spatial grounding or confidence cali-405

bration.406

To address this, we propose a new metric—Peak407

Sharpness Score (PSS)—which quantifies the align-408

ment between semantic continuity and the shape of409

the logits distribution. The computation procedure410

is detailed in Algorithm 2.411

4.2 Definition of new metric412

Definition of key token The GUI agent model413

produces coordinate outputs as strings, such as414

“[0.71, 0.23]”, with coordinates normalized to the 415

range [0, 1]. Within these strings, certain tokens, 416

such as “7” and “2” in the example, predominantly 417

determine the coordinate values. We define these 418

tokens, which critically influence the numerical 419

representation of coordinates, as key tokens. The 420

subsequent analysis will focus on these key tokens. 421

Motivation Building on the prior analysis, to 422

more precisely investigate model uncertainty in 423

GUI interaction tasks, we propose a novel metric. 424

This metric accounts for the following consider- 425

ations. First, during greedy decoding, the logit 426

associated with the highest value, corresponding to 427

the selected output token, should receive a higher 428

score. Second, as numerical tokens reside in an or- 429

dered space where semantic proximity is inherently 430

meaningful, tokens with similar semantics should 431

exhibit comparable logit values. Specifically, we 432

will assess whether the logits form a unimodal dis- 433

tribution when arranged according to the order of 434

the corresponding numerical tokens. 435

Definition of Semantic Continuity. We define 436

semantic continuity as the property of a sequence 437

of tokens whose semantic representations vary 438

smoothly and predictably in the embedding space. 439

Let T = {t1, t2, . . . , tn} be a sequence of tokens, 440

and f ∶ T → Rd be an embedding function map- 441

ping each token to a d-dimensional semantic vector 442

vi = f(ti). Semantic continuity holds if the simi- 443

larity between adjacent embeddings remains high, 444

i.e., 445

cos(f(ti), f(ti+1)) ≈ 1 for all i, 446

and the embedding differences are approximately 447

constant: 448

f(ti+1) − f(ti) ≈ f(ti) − f(ti−1). 449

This implies a near-linear progression in embed- 450

ding space. For example, numerical tokens such as 451

“1”, “2”, and “3” typically exhibit semantic conti- 452

nuity. In contrast, tokens representing entities such 453

as “Paris”, “London”, and “Beijing” lack such lin- 454

earity due to their discrete and context-dependent 455

meanings. 456

In our experiments, we observed that token se- 457

quences exhibiting semantic continuity—such as 458

those representing spatially adjacent coordinate 459

values—are expected to correspond to a similarly 460

smooth and continuous distribution in model log- 461

its. We refer to this alignment as the consistency 462
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Traditional QA task

Where is the 
capital of France? 

Paris

No semantic 

continuity

GUI agent task

Close the window

[0.52, 0.36]

Key Token

3         4        5        6        7

Has semantic 

continuity

Abnormal situations

3         4        5        6        7

Hesitating 

between "5" 

and "7"

Figure 4: Comparison of logits score distributions between GUI agent tasks and traditional question answering
tasks. In GUI agent tasks, the model outputs coordinate values, where numeric tokens exhibit semantic continuity.
In anomalous cases, a mismatch between this semantic continuity and the continuity of the logits distribution often
indicates increased model uncertainty or confusion.

between semantic continuity and logits distribu-463

tion. Empirical results show that this property is464

frequently preserved in samples corresponding to465

correct predictions, suggesting it may serve as a466

useful signal for evaluating model confidence and467

reliability.468

Definition of Peak Sharpness Score We propose469

a novel metric for quantifying the structural prop-470

erties of the logits distribution at key output tokens.471

This metric is particularly useful for assessing the472

confidence of GUI agent models when predicting473

coordinate labels. The input to the metric is a list of474

length 10, representing the logits over the discrete475

interval [0, 9].476

The algorithm begins by identifying the maxi-477

mum logit value and its corresponding token index,478

which is designated as the peak point. If the peak479

occurs at the boundary (i.e., index 0 or 9), the logits480

sequence cannot form a complete unimodal struc-481

ture. In such edge cases, we compute the average482

slope of the available side and multiply its absolute483

value by 2 to produce the final symmetry score.484

This approach ensures compatibility while appro-485

priately handling boundary conditions.486

If the peak lies within the interior of the se-487

quence, we calculate the average absolute slope488

of the rising segment to the left of the peak and the489

falling segment to the right. These two values are490

then combined using a weighted average, where the491

weights correspond to the lengths of the respective492

segments.493

A higher symmetry score indicates a sharper and494

more concentrated unimodal distribution, suggest-495

ing that the model is more confident in its predic-496

tion. In contrast, flatter distributions tend to corre-497

late with uncertainty and are often associated with498

hallucinated outputs. 499

Algorithm 2 Normalized Slope Symmetry Score

Require: List V of 10 numbers
Ensure: Normalized symmetry score

1: p← argmax(V ), m← V [p]
2: if p = 0 then
3: s← 1

9 ∑
8
i=0(V [i + 1] − V [i])

4: return 2 ⋅ ∣s∣ ⋅m
5: else if p = 9 then
6: s← 1

9 ∑
8
i=0(V [i + 1] − V [i])

7: return 2 ⋅ ∣s∣ ⋅m
8: else
9: ls← [V [i + 1] − V [i] for i = 0 to p − 1]

10: rs← [V [i + 1] − V [i] for i = p to 8]
11: L← ∣ls∣, R ← ∣rs∣
12: al ← 1

L ∑ ls, ar ← 1
R ∑ rs

13: w ← L⋅∣al∣+R⋅∣ar∣
L+R

14: C ← 4.5 ▷ Normalization coefficient
15: return C ⋅w ⋅m
16: end if

4.3 Experiment 500

We evaluate two novel and efficient GUI agent mod- 501

els, ShowUI-2B (Lin et al., 2024) and UGround- 502

V1-2B (Gou et al., 2025), both trained on the 503

Qwen2-VL (Wang et al., 2024) framework. For 504

testing, we utilize ScreenSpot (Cheng et al., 2024), 505

a GUI agent evaluation dataset encompassing di- 506

verse operating interface types, including desktop, 507

mobile, and web environments. 508

Experimental results reveal significant differ- 509

ences in PSS across various types of model re- 510

sponses. These differences indicate that PSS ef- 511

fectively captures variations in the confidence and 512

structure of the logits distribution, providing a use- 513
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Model Correct Biased Hallucination Other Response

ShowUI-2B 0.59 ± 0.33 0.54 ± 0.33 0.40 ± 0.31
UGround-V1-2B 0.52 ± 0.30 0.43 ± 0.30 0.25 ± 0.24

Table 2: Peak Sharpness Score (PSS) of different GUI agent models across response categories. Values are reported
as mean ± standard deviation.

Group Comparison Biased vs. Correct Other vs. Correct Biased vs. Other

Significance (p < 0.05) × ✓ ✓

Table 3: Pairwise significance test results on Peak Sharpness Score (PSS) across different response types. A check
mark (✓) indicates a statistically significant difference, while a cross (×) indicates no significant difference.

ful signal for distinguishing between correct pre-514

dictions and different forms of hallucinations.515

Our experimental results demonstrate that the516

Peak Sharpness Score (PSS) for correct predictions517

is significantly higher than that for incorrect re-518

sponses. On the ScreenSpot benchmark, only the519

bounding box of the ground-truth target is provided,520

while the bounding boxes of other interface ele-521

ments are not available. As a result, it is not feasible522

to distinguish between misleading and confusion523

hallucinations on this dataset; these two error types524

are therefore grouped together as other incorrect525

responses.526

Notably, among the incorrect samples, biased527

hallucinations exhibit an average PSS that is closer528

to that of correct responses than to other error types.529

Furthermore, t-test analysis reveals that the differ-530

ence in PSS between correct and biased hallucina-531

tion samples is not statistically significant. This532

suggests that although biased hallucinations are533

technically incorrect, the model’s confidence and534

output structure in these cases remain comparable535

to that of correct predictions.536

4.4 Analysis537

Based on the experimental results presented above,538

we summarize the following key findings:539

1. Biased hallucinations exhibit logits distri-540

butions that are more similar to those of541

correct responses. This suggests that when542

the model produces a biased hallucination, it543

is less confused and is able to correctly iden-544

tify the intended target element. The resulting545

error primarily stems from slight deviations546

in the predicted coordinate values. This phe-547

nomenon is particularly prevalent when the548

target icon is small, making precise localiza- 549

tion more challenging. 550

2. The Peak Sharpness Score (PSS) for mis- 551

leading and confusion hallucinations is sig- 552

nificantly lower than that for biased hal- 553

lucinations. This observation indicates that, 554

in such cases, the model struggles with ac- 555

curately recognizing the operational element 556

itself. For instance, the interface may contain 557

multiple icons with similar visual or semantic 558

features, leading the model to select the incor- 559

rect one. Unlike biased hallucinations, these 560

errors are not caused by coordinate impreci- 561

sion, but rather by fundamental misidentifica- 562

tion of the target element. 563

5 Conclusion 564

In this paper, we proposed a controlled experimen- 565

tal setup for evaluating GUI agent models by ran- 566

domly placing icons on background images and 567

performing icon localization tasks. Unlike tradi- 568

tional benchmarks, our setup provides access to the 569

bounding boxes of all interface elements, enabling 570

precise classification of model responses into dis- 571

tinct categories. 572

We further analyzed the semantic continuity in- 573

herent in coordinate-based token outputs in GUI 574

agent tasks and introduced a novel metric—Peak 575

Sharpness Score (PSS)—to quantify the alignment 576

between the distribution of model logits and the 577

expected semantic structure. Experimental results 578

demonstrate that different types of hallucinations 579

exhibit distinct patterns in their PSS values, offer- 580

ing insights into the underlying causes of model 581

errors. 582
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Limitations583

The number of models we evaluated is relatively584

limited, and we have not yet evaluated models585

with larger parameter sizes. Our evaluation method586

lacks an evaluation method for models that output587

incorrectly formatted coordinates or invalid out-588

puts.589

Our method is currently limited to English, and590

the strategy to expand it to other languages is still591

in the early stages of development.592
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A Details of Prompts731

The zero-shot prompt used in this paper for the732

GUI agent task is shown below.733

System prompt:
“According to the image I provide, identify
the relative coordinates of the specified ob-
ject, with values ranging from 0 to 1. The
output format must be [x, y], and do not
output anything else.”
User prompt:
[Task]

734

B More Experimental Data 735

Response Type Perplexity (↓)

Correct Response 1.12
Biased Hallucination 1.17
Misleading Hallucination 1.30
Confusing Hallucination 1.33

Table 4: Perplexity scores for different types of model
responses. Lower perplexity indicates higher model
confidence.

C Case study 736

We show examples of background images from the 737

icon finding task, as well as sample demonstrations 738

of the four types of responses. The output coordi- 739

nates of the model are marked with blue dots. 740
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Figure 5: Demonstration example of correct response.

Figure 6: Demonstration example of biased hallucination.
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Figure 7: Demonstration example of misleading hallucination.

Figure 8: Demonstration example of confusion hallucination.
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