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ABSTRACT

The training process of ranking models involves two key data selection decisions:
a sampling strategy (which selects the data to train on), and a labeling strategy
(which provides the supervision signal over the sampled data). Modern ranking
systems, especially those for performing semantic search, typically use a “hard
negative” sampling strategy to identify challenging items using heuristics and a
distillation labeling strategy to transfer ranking “knowledge” from a more capable
model. In practice, these approaches have grown increasingly expensive and
complex—for instance, popular pretrained rankers from SentenceTransformers
involve 12 models in an ensemble with data provenance hampering reproducibility.
Despite their complexity, modern sampling and labeling strategies have not been
fully ablated, leaving the underlying source of effectiveness gains unclear. Thus,
to better understand why models improve and potentially reduce the expense of
training effective models, we conduct a broad ablation of sampling and distillation
processes in neural ranking. We frame and theoretically derive the orthogonal
nature of model geometry affected by example selection and the effect of teacher
ranking entropy on ranking model optimization, establishing conditions in which
data augmentation can effectively improve bias in a ranking model. Empirically,
our investigation on established benchmarks and common architectures shows
that sampling processes that were once highly effective in contrastive objectives
may be spurious or harmful under distillation. We further investigate how data
augmentation—in terms of inputs and targets—can affect effectiveness and the
intrinsic behavior of models in ranking. Through this work, we aim to encourage
more computationally efficient approaches that reduce focus on contrastive pairs
and instead directly understand training dynamics under rankings, which better
represent real-world settings.

1 INTRODUCTION

Pre-trained language Models (PLMs) (Vaswani et al., 2017; Devlin et al., 2019) have been shown to be
effective in ad-hoc ranking tasks (Lin et al., 2021). By training on large labeled datasets (Nguyen et al.,
2016), they can often outperform classical term-weighting models (Nogueira & Cho, 2019). Since
these early works, a key direction in improving PLM-based ranking models has been improving their
data augmentation pipelines, which typically now combine “hard” negative mining (Karpukhin et al.,
2020; Qu et al., 2021) (the deliberate selection of challenging non-relevant texts), and distillation of
relevance estimation from an existing teacher model (Hinton et al., 2015; Lin et al., 2020; Hofstätter
et al., 2020). While these techniques have independently demonstrated clear gains in representation
learning (Hsu et al., 2021), their interaction in ranking distillation settings where there is no explicit
notion of a negative is poorly understood and is applied in several works with little or no ablation (Xiao
et al., 2022; Ren et al., 2021; Song et al., 2023; Wang et al., 2024).

In Information Retrieval (IR), hard negatives are typically sampled from candidate sets scored
by one or more initial models (Karpukhin et al., 2020; Gao et al., 2021). In contrastive objec-
tives, increasing the locality of (reducing the distance between) the candidate set creates a more
challenging classification task (Gutmann & Hyvärinen, 2010; Ceylan & Gutmann, 2018) as illus-
trated in Figure 1, often improving downstream effectiveness. Distillation, in turn, replaces binary
labels with soft targets from a teacher (Bucila et al., 2006; Ba & Caruana, 2014; Hinton et al.,
2015), allowing students to match or surpass larger estimators (Pradeep et al., 2022; Xiao et al.,
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2022; Pradeep et al., 2023). Contemporary systems couple the two: teachers are employed both to
score and to label documents, producing multistage cascades of models that must be trained and
queried at scale to collect training data. A common example is the five-stage SentenceTransformers
pipeline whose twelve cross-trained models are further filtered by a classifier (Reimers & Gurevych,
2019), sometimes upon previous iterations of each other. Such complexity is problematic. Each
additional model inflates computational cost and CO2 footprint (Scells et al., 2022) and hinders
reproducibility (Wang et al., 2022). From a theoretical standpoint, negative-selection heuristics
influence only which instances are labelled, not the Lipschitz-geometry or teacher-entropy terms
that influence generalization (cf. 2.1), thus the case illustrated in Figure 1 often does not occur.

Contrastive Learning

Teacher Distillation

Query-Specific Relevance Space

Figure 1: Illustration of the requirement of
different learning paradigms to improve ef-
fectiveness. Crucially, if the choice of X (in-
cluding negatives) does not tighten the metric-
measure space over the given query, effective-
ness will not improve.

Furthermore, existing work on increasing the “hard-
ness” of negatives often focuses solely on the do-
main of a ranking (Karpukhin et al., 2020; Gao et al.,
2021; Qu et al., 2021), either using expensive en-
sembling approaches or iteratively choosing chal-
lenging domains based on heuristics such as model
uncertainty (Xiong et al., 2021; Zhan et al., 2021).
Thus, much focus is on reducing epistemic uncer-
tainty, which may lead to a highly confident model
while neglecting the irreducible aleatoric uncertainty
inherent in relevance labels. Such is the appeal of
distillation that multiple relevant documents may be
present and optimised within a single instance, as
illustrated in Figure 1.

The notion of negative mining in ranking tasks is
largely an artifact of contrastive objectives, often
applied in representation learning. This nomencla-
ture can be extended to functions such as ad-hoc
search and reinforcement learning from human feed-
back (Christiano et al., 2017; Rafailov et al., 2023);
however, the increasing use of distillation or explicit
annotation means that we operate over explicit rank-
ings instead of solely positive-negative pairs. Thus,
both theoretically and empirically, we investigate
common training settings controlling for heuristics
governing example locality and the entropy of target
distributions. We underpin empirical ablations with a
generalisation bound over ranking distillation (Sec. 3) whose bias term depends exclusively on (i)
the intrinsic diameter of the query manifold and (ii) the teacher’s pairwise entropy—two quantities
unchanged by additional negative-mining stages.

In isolating the contributions of ranking domains and target distributions in training settings, our pri-
mary contributions are two-fold: 1) We show complex pipelines to be largely identical in effectiveness
to naive approaches under semi-supervision. 2) We provide clear empirical evidence of the causal
factors in model effectiveness when applying data augmentation.

In investigating these factors, we aim to focus research on factors of effectiveness that are appropriate
given a particular search setting and reduce the spurious training and inference of multiple models.

1.1 RELATED WORK

Data Selection in Ranking Neural ranking models based on PLMs often apply contrastive objectives
which benefit from the selection of similar instances, as these objectives become more challenging
when examples are more similar in a geometric space but are different in terms of the target ob-
jective. Gao et al. (2021) argued that greater locality and a greater number of samples inspired by
NCE (Gutmann & Hyvärinen, 2010) could further enhance the benefit of localized negatives, finding
that negatives sampled from more precise rankings yielded greater effectiveness, which scales with
the number of samples. Additionally, several approaches have been proposed to apply active learning
to select negative examples which are most challenging to the model, which, while being quite
effective, require a sufficient number of annotated queries to yield significant results (Althammer
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et al., 2023). Several works propose that the flaw in negative mining is that as we produce an ever
stronger source of negatives, due to label sparsity, we inevitably sample false negatives; as such,
the notion of de-noised negatives has been proposed (Qu et al., 2021) and has become increasingly
complex (Reimers & Gurevych, 2019).

Distillation in some form has been applied both as weak supervision Dehghani et al. (2017) and
more commonly from a larger model in ranking (Lin et al., 2020; Hofstätter et al., 2020; Qu et al.,
2021; Xiao et al., 2022). For distillation minimal investigation has occurred to our knowledge to
select an appropriate domain. Initial approaches adopted similar negative mining strategies those in
contrastive settings (Lin et al., 2020; Hofstätter et al., 2020), increasingly selection moves towards
top-k elements (Pradeep et al., 2023; Schlatt et al., 2025) as opposed to sampling due to both
computational expense of large teacher models (Sun et al., 2023a) where a larger number of elements
would not be ranked without being utilised and due to the ever increasing precision of PLM-based
approaches (Sun et al., 2023b). For parity with contrastive objectives and analysis, we investigate the
sampling of elements instead of top-k.

Understanding Distillation Knowledge distillation aims to transfer task effectiveness from one
model to another. In ranking this approach has been applied extensively both as a weak-supervision
signal for bootstrapping early attempts at PLM-based ranking and for efficiently training lightweight
ranking models. Though some investigations provided qualitative explanations for the effectiveness
of knowledge distillation (Ba & Caruana, 2014; Hinton et al., 2015), recent work has focused on more
principled justifications of distillation and divergence-based learning objectives. The effectiveness
of a teacher-student distillation setting have been examined in terms of intrinsic task difficulty (Ji
& Zhu, 2020) and the degree to which a student follows a teacher distribution (Nagarajan & Kolter,
2019) suggesting that divergence from a teacher distribution is not a problem in model generalisation
as shown empirically by methods in retrieval which ignore the exact densities of discrete ranking
distributions (Pradeep et al., 2023; Schlatt et al., 2025). In terms of explicit generalisation bounds,
Hsu et al. (2021) provide a bound under uniform convergence, using distillation as a vector for
understanding the original teacher model, we diverge from this setting as in downstream Information
Retrieval we focus on trading off effectiveness for reduced latency. In terms of representation learning,
the theoretical implications of data selection by an existing model have been explored (Lin et al.,
2024) however this work does not extend to divergence-based losses explored in this work.

2 THEORETICAL ANALYSIS

We now formalise the contribution of data augmentation to ranking model optimisation. We provide
a generalisation bound in terms of sample locality and target entropy towards understanding where
data selection can improve effectiveness.1

2.1 PRELIMINARIES

The Ranking Problem Given a corpus of texts, C = {Di}|C|1 and a query Q, a top-k rankingR =
[Di]

k
1 (where k ≪ |C|) ordered by estimated relevance to q determined by estimates some model f :

X → R where X ≡ (Q,D). A learned ranking model is often modeled as an unnormalized estimator
of p(D|Q) (Robertson et al., 1995),2 modeling the likelihood of D being relevant to Q. We focus
on two common architectures, cross-encoders (Nogueira et al., 2020) and bi-encoders (Karpukhin
et al., 2020). A cross-encoder treats ranking as a regression over the joint representation of a query
and document encoded by a PLM from which a relevance score is estimated. A bi-encoder instead
separately encodes queries and documents, treating ranking as a maximum inner-product search
problem over pooled latent representations.

Training Ranking Models Let Q denote a set of training queries. For each Q ∈ Q we observe a
finite candidate list DQ commonly treated as pairs XQ = {(Q,Di) : ∀Di ∈ DQ}. Each element of
XQ can be assigned a binary relevance label YQ = {yi}

|XQ|
1 , y ∈ {0, 1}. Commonly, solely ‘positive’

candidates are explicitly annotated (i.e., y ← 1) (Nguyen et al., 2016), forming a labelled set L. All
other elements are sampled from a larger set of similar documents chosen by a heuristic, forming

1A full notation table can be found in Appendix A
2D may be one or more texts depending on architecture
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a pseudo-negative set U . In distillation settings, targets YQ are instead determined by an existing
teacher model g such that YQ = {g(Q,D), ∀(Q,D) ∈ XQ}.
Choosing Pairs It is common to condition the sampling of pseudo-negative examples on some
existing scorer (Karpukhin et al., 2020; Qu et al., 2021). Formally, let µQ define a query-specific
measure over X , and let νQ denote a biased measure derived from some existing model for data
selection. Recent approaches use an ensemble of systems (Qu et al., 2021; Song et al., 2023)
inducing νQ, which, in contrastive settings, can be further filtered by a model g to ensure that
d(Xi,Xj) > ϵ,∀Xj,i̸=j ∈ X . This assumes that Xi can be a labeled positive for the contrastive
objective. This step, given its expense and implied confidence in the discriminative ability of g, would
imply that one should learn an approximation of the teacher model g in a semi-supervised setting as
opposed to solely filtering a candidate distribution. Nevertheless, this approach of ensembling and
filtering is frequently employed, and thus we consider it for completeness.

Problem Setting The subjectivity of relevance and the scale of modern web-scale corpora make
estimation of a ranking intrinsically subjective (Voorhees, 1998; Parry et al., 2025): for most queries,
we neither observe a complete ordering of candidates nor can we assume perfect recall in finding
relevant documents, thus there can be many relevant documents beyond the single-relevant document
constraint of contrastive learning. We therefore often work with a) a sparse set of human judgements
and noisy negative examples, or b) a teacher model g : X →R trained on auxiliary data. The objective
of student f : X → R is to rank elements from a structured space X equipped with metric d. Given a
query Q, the goal is to learn a scoring function that produces rankings aligned with a teacher model g.

Recall that for each query Q ∈ Q we have a candidate pairs XQ = {(Q,D1), . . . , (Q,DmQ
)}

together with labels YQ ∈ {y0, y1, . . . , ymQ
}∪{∅}. A student ranker f : X →R outputs real-valued

scores whose descending order defines the predicted ranking. Our loss criteria will contrast query-
document pairs such that we look to minimise the pair-wise risk of misordering two pairs compared
to their order under model g. Metric structure matters fundamentally because our student learns in a
setting where available training data represents a limited and often biased sample from the true space
of relevant elements around an anchor query. The geometry constrains how knowledge can transfer
between observed pairs.

Thus, our problem lies in the contribution of data augmentation to the effectiveness of ranking models.
Distillation through criteria such as RankNet (Burges, 2010) blurs the boundary between classical
notions of contrastive learning and knowledge distillation. No score values are used, and technically,
contrastive objectives do the same, albeit with arbitrary negative ordering, both conditioned on
some teacher (or negative miner) g. Negative sampling and knowledge distillation can be seen as
orthogonal; sampling provides suitable observations given a downstream task and requires some
labeling process for optimization; distillation provides the labeling process for optimization, but does
not provide an explicit selection process for observations.

2.2 NOTATION AND DEFINITIONS

Assuming student model f and teacher model g, we use the output of model g as targets Y . We define
locality in terms of a query-specific measure µQ over our input space X modelling the geometry
of relevant elements conditioned on q. Formally, let (X , µQ, d) be a metric–measure space with
complete space X , measure µQ conditional on Q and distance d (we use cosine distance over latent
representations), define the essential diameter of this space as

∆Q = ess sup
(x,x′)∈X 2

d(x, x′) with respect to µQ ⊗ µQ. (1)

Hypothesising that higher-entropy ranking targets encode additional useful information, similarly to
the propositions of Hinton et al. (2015), we model the entropy of a teacher ranking under pair-wise
preferences. We investigate losses that can be seen as Bregman divergences as they are prevalent
in the empirical ranking literature (RankNet (Burges, 2010), MarginMSE (Hofstätter et al., 2020),
KL-divergence (Kullback & Leibler, 1951)) and admit clean theoretical analysis. Define the pair-wise
risk of f as:
Definition 2.1 (Pair-wise Risk). For a scorer f and query measure µQ, the pair-wise risk is the
probability of mis-ordering:

RµQ
(f) = Pr

(x,x′)∼µ⊗2
Q

[f(x) < f(x′)] = Eµ⊗2
Q

[
1{f(x) < f(x′)}

]
. (2)
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To minimise this risk, we use a distillation loss in the form of a Bregman divergence.

Definition 2.2 (Bregman Distillation Loss). For convex potential ϕ, student f and teacher g, the
distillation loss on pair (x, x′) is

ℓ(f, g;x, x′) = Dϕ(f(x)− f(x′) ∥ g(x)− g(x′)) , (3)

where Dϕ(a∥b) = ϕ(a)− ϕ(b)− ϕ′(b)(a− b) is the Bregman divergence.

Under this pair-wise setting, we define:

Definition 2.3 (Query Entropy). For teacher g and query measure µQ, let px,x′ = Pr[g(x) > g(x′)].
The query entropy is

H(g) = E(x,x′)∼µ⊗2
Q
[−px,x′ log px,x′ − (1− px,x′) log(1− px,x′)] . (4)

When entropy is too low, this can be seen as a trivial setting under a Bregman divergence criterion,
empirically leading to collapse as the optimisation task is too easy. As elements become more difficult
to distinguish as entropy increases, we seek to understand how the domain over which a ranking is
calculated affects optimisation in settings where entropy is high. To measure the contribution of this
entropy to the optimisation of a student we follow Painsky & Wornell (2020), we use the misordering
probability of model g via Pinsker’s inequality:

Definition 2.4 (Misordering probability under entropy (Proof in Appendix B)). Following Painsky &
Wornell (2020), For teacher g with pair-wise entropy H(g), the misordering probability satisfies

η
(
H(g)

)
=

1

2
−

√
log 2−H(g)

2
. (5)

2.3 GENERALISATION UNDER DATA AUGMENTATION

We look to understand the contribution of these data selection factors to model optimisation in
tandem. Thus, we establish a generalization bound for the special case of ranking distillation through
the excess risk of learning from a teacher under a particular sampling policy. We apply a PAC
bound; these bounds affect a model’s preference for a particular hypothesis within a hypothesis class,
effectively governing how a model will generalise, with our key novelty being the derivation of a bias
term conditioned on data augmentation factors.

Theorem 2.1 (Ranking Distillation Generalisation Bound (Proof in Appendix C)). Let (X , d, µQ) be
a metric-measure space for Q and let H be a hypothesis class of VC dimension d such that every
h ∈ H is L-Lipschitz. Let f⋆ = argminh∈HRµQ

(h) and let f̂ minimise an empirical Bregman loss
with convex potential ϕ. Then for every confidence level δ ∈ (0, 1), with probability at least 1− δ,

RµQ
(f̂)−RµQ

(f⋆) ≤ ζ L∆Q η
(
H(g)

)
+ C

√
d log(1/δ)

n
, (6)

where ζ depends only on divergence potential ϕ, C > 0 is an absolute constant, and n is the number
of observed pairs.

Implications. This bound indicates that in order to optimise a tighter query-specific measure space
(akin to "harder" negatives), an increasingly confident (and accurate) teacher is required. Additionally,
if "harder" negatives do not tighten the diameter ∆Q, they will not yield greater generalization.
Incorporating unlabeled data through distillation can improve performance by yielding more accurate
estimates of the class diameter, and although the choice of Bregman loss affects the constant ζ in the
bound, it does not alter the fundamental scaling behavior. The metric structure manifests through
the essential diameter ∆Q, which captures how spread out the relevant items are around each query.
This geometric constraint affects generalization in biased sampling scenarios such as negative mining.
Consequently, a biased sampler, where pairs are not drawn under the true measure µQ, should be
explicitly accounted for.
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2.4 EFFECT OF BIASED SAMPLING: DENSITY-RATIO ADJUSTMENT

In practice, we often use biased sampling strategies to select training examples. Let πQ denote the
mining/retrieval policy with suppπQ ⊆ suppµQ. Following Hsu et al. (2021), define the density
ratio bridging to µQ by

κQ = ess sup
x∈suppπQ

dµQ

dπQ
(x) <∞. (7)

Corollary 2.1 (Fixed-miner density–ratio bound (Proof in Appendix D)). Under a biased sampling
policy with density ratio κQ relative to µQ, the excess risk bound in Theorem 2.1 becomes

RµQ
(f̂)−RµQ

(f⋆) ≤ ζ L∆Q η
(
H(g)

)
+ C κQ

√
d log(1/δ)

n
. (8)

When the pool is in-domain (κQ ≈ 1), the rate matches the unbiased case; off-domain pools inflate
the bound linearly, adding risk as a chosen sampling policy diverges from the ideal policy. Empirical
values of H(g), ∆Q, and κQ are reported in Table 2.

3 EMPIRICAL INVESTIGATION

Having established theoretical factors in ranking distillation, we now investigate common settings
from literature.

3.1 EXPERIMENTAL SETUP

Datasets and Metrics We assess in-domain effectiveness on the TREC Deep Learning 2019 (Craswell
et al., 2020b) and 2020 (Craswell et al., 2020a) test collections, retrieving from the MSMARCO
passage collection (Nguyen et al., 2016). To assess out-of-domain effectiveness, we use all public test
collections comprising the BEIR benchmark (Thakur et al., 2021). We report dataset statistics and
full out-of-domain results in Appendix F. All reported test collections apply normalized discounted
cumulative gain (nDCG) (Järvelin & Kekäläinen, 2002) as their primary measure and we report this
value at a rank cutoff of 10 as is standard, to provide insight at greater recall values, we also report
mean averaged precision (MAP) over full rankings. We use a TOST (Two One-Sided T-test) to assess
statistical equivalence with α = 0.05 and means bounded at 1%. Further details are provided in
Appendix E.

Models We train both cross-encoders and bi-encoders to assess how representation capacity affects
investigated training settings. All cross-encoders are initialised from an ELECTRA checkpoint (Clark
et al., 2020), as this model has been shown empirically to yield greater effectiveness than a standard
BERT model for cross-encoder initialisation (Pradeep et al., 2022). We initialise all bi-encoders
from the original BERT checkpoint (Devlin et al., 2019). Each model is a standard transformer
encoder with twelve layers and six attention heads per layer. To ensure reproducibility and clear
attribution of effectiveness, we train a cross-encoder following (Pradeep et al., 2022) using the
ELECTRA architecture trained for one epoch with BM25 localised negatives on the MSMARCO-
passage training set. Under distillation, it is generally unnecessary (Althammer et al., 2023; Schlatt
et al., 2025) and computationally infeasible in our study to train all model variants at this scale; thus,
this model acts as a teacher trained in a data-rich environment.

Loss Criteria As a supervised criterion, we employ localized contrastive estimation (LCE) (Gao et al.,
2021), similar to infoNCE (Gutmann & Hyvärinen, 2010) and more generally model-conditioned
NCE (Ceylan & Gutmann, 2018). This criterion, assuming Xi is a known positive, is defined as:

ℓLCE(X ; f) = − log
exp

(
f(Xi)/τ

)
exp

(
Xi/τ

)
+

∑m−1
j=1,j ̸=i exp

(
Xj/τ

) . (9)

We employ three semi-supervised criteria prevalent in neural ranking literature. The first marginMSE
aims to reduce the effect of differences in ranking modes by optimising the margin between positive
(Xi) and negative (Xj) elements instead of pointwise scores (Hofstätter et al., 2020).

ℓmarginMSE(X ; f, g) =

m∑
j=1
j ̸=i

[
f(Xi)− f(Xj)

)
− g(Xi) + g(Xj)

)]2
(10)

6
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The second, RankNet, is common in learning-to-rank literature (Burges, 2010). It sees increasing
application with increasing precision of modern ranking models as it optimizes all x, x′ interactions
agnostic of human labels.

ℓRankNet(f) =

|X|∑
i=1

|X|∑
j=1
j ̸=i

−
[
yij log σ(sij) + (1− yij) log

(
1− σ(sij)

)]
, (11)

where sij = f(Xi)− f(Xj), σ(z) = 1
1+e−z , and yij ∈ {0, 1}.

Finally, KL divergence is commonly used as a loss criterion in several settings beyond ranking (Lin
et al., 2020; Kingma & Welling, 2014). It assumes, much like RankNet, that a reference distribution,
in this case [g(Xi)]

m
1 , represents the absolute ground truth.

ℓKL(X ; f, g) =

m∑
j=1

f(X )j log
f(X )j
g(X )j

(12)

We show these semi-supervised criteria can be expressed as Bregman divergences in Appendix A.

Implementation Details All models observe a total of 12M documents from the MSMARCO-
passage collection(Nguyen et al., 2016), providing approximately equal computational budget across
all training settings with a fixed batch size of 128 pairs. We follow (Pradeep et al., 2022) in setting
the learning rate of cross-encoder runs to 1e−5 and (Hofstätter et al., 2020) for bi-encoders, setting
the learning rate to 7e−6. We apply a learning rate warmup for 0.1 epochs and then linear decay with
an AdamW optimizer using default hyperparameter settings (Loshchilov & Hutter, 2019). We use the
Transformers library (Wolf et al., 2020) with a PyTorch backend (Paszke et al., 2019) for all training
processes. We use PyTerrier for inference and evaluation (Macdonald & Tonellotto, 2020).

Negative Sampling Sources We consider four sampling sources in our investigation, aligning with
those applied in literature. The first is uniform selection from the training corpus (Random). The sec-
ond is a lexical heuristic BM25 (k1 = 1.2, b = 0.75) (Robertson et al., 1995), a lightweight retrieval
model. The third is our teacher model, a cross-encoder (CE). Finally, we apply the ensemble pipeline
shown in Figure 1 (Ensemble). We use the rankings supplied, but filter them by our teacher model to
ensure fairness across settings. We outline all models contained within this ensemble in Appendix E.

3.2 DISCUSSION

Effectiveness under Different Empirical Distributions Our ablation of sampling distributions under
semi-supervision shows multiple cases where investing computational budget in a strong estimator
is unnecessary to improve generalisation both in- and out-of-domain. In Table 1, rows 1-4 show
effectiveness in a supervised setting using a contrastive objective. In-domain, it is clear that localised
sampling by heuristics can be effective as there is a clear trend in effectiveness as “hardness” and thus
computation is expended. Out-of-domain, observe that generally, where a single estimator-induced
distribution is insufficient to cover the query manifold, a random or ensemble sample yields greater
robustness. We find that, though in explicit contrastive learning, there is a clear trend that the tighter
a sampling distribution is, the more model effectiveness can continue to improve; we find that under
all semi-supervision settings, effectiveness plateaus once a minimal locality is enforced (BM25) with
inconsistent effectiveness improvements suggesting that heuristics such as mining from rankings
are insufficient to explain effectiveness gains. Though bias induced by sampling is indeed reduced
by ensembling approaches, empirical values of the query-specific diameter show that the query
space does not become more compact. This is shown in Table 2, explaining minimal change in
out-of-domain effectiveness as our bias term is largely unchanged across domains. However, aligning
with corollary 3.1.1, we see that when density ratios are minimised across our settings under an
ensembling approach, a Bi-Encoder continues to improve, suggesting this term can have a larger
effect; nevertheless, we do not find settings where a statistically differentiable positive effect is found
across multiple domains (e.g helping both in and out-of-domain) when applying computationally
expense data selection strategies.

Effectiveness under Different Entropy Having controlled for entropy in different training settings,
we now fix the sampling domain νQ, choosing BM25 and select rankings based on where they lie
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Table 1: Ranking effectiveness across loss criteria and sampling domains. In-domain effectiveness is evaluated
on TREC Deep Learning test collections, and out-of-domain effectiveness is evaluated on the BEIR benchmark
(per-dataset effectiveness is shown in Appendix F). Superscripts denote statistical equivalence via TOST (1%
bound, α = 0.05).

TREC DL’19 TREC DL’20 BEIR

BE CE BE CE BE CE

Loss Domain nDCG MAP nDCG MAP nDCG MAP nDCG MAP nDCG nDCG

LCE Random 0.546 0.333 0.628bcd 0.407bcd 0.523 0.360 0.615 0.406 0.459bc 0.507d

LCE BM25 0.642cd 0.385cd 0.681acd 0.459acd 0.622cd 0.425cd 0.686cd 0.488cd 0.462ac 0.472
LCE CE 0.634bd 0.389bd 0.675abd 0.454abd 0.632bd 0.424bd 0.689bd 0.482bd 0.456ab 0.478
LCE Ensemble 0.658bc 0.397bc 0.730abc 0.501abc 0.655bc 0.448bc 0.738bc 0.520bc 0.459 0.502a

RankNet Random 0.336 0.199 0.616 0.409 0.273 0.185 0.578 0.404 0.323 0.445
RankNet BM25 0.653cd 0.410cd 0.731cd 0.485cd 0.659cd 0.424cd 0.739cd 0.498cd 0.468 0.527c

RankNet CE 0.657bd 0.409bd 0.721bd 0.489bd 0.651bd 0.432bd 0.734bd 0.496bd 0.475 0.526b

RankNet Ensemble 0.679bc 0.413bc 0.719bc 0.483bc 0.689bc 0.459bc 0.747bc 0.508bc 0.494 0.488

mMSE Random 0.602bcd 0.374bcd 0.693bcd 0.433bcd 0.637bcd 0.415bcd 0.685bcd 0.470bcd 0.459 0.477
mMSE BM25 0.662acd 0.411acd 0.601acd 0.390acd 0.666acd 0.450acd 0.607acd 0.400acd 0.467 0.520cd

mMSE CE 0.676abd 0.422abd 0.724abd 0.484abd 0.668abd 0.448abd 0.737abd 0.511abd 0.473 0.523bd

mMSE Ensemble 0.683abc 0.414abc 0.717abc 0.482abc 0.661abc 0.458abc 0.736abc 0.516abc 0.492 0.523bc

KL Random 0.571 0.361 0.661bcd 0.428bcd 0.529 0.356 0.625 0.416 0.447 0.511c

KL BM25 0.655cd 0.401cd 0.698acd 0.471acd 0.637cd 0.430cd 0.726cd 0.508cd 0.466c 0.504d

KL CE 0.660bd 0.401bd 0.712abd 0.477abd 0.633bd 0.434bd 0.728bd 0.509bd 0.467b 0.513a

KL Ensemble 0.660bc 0.402bc 0.727abc 0.494abc 0.670bc 0.455bc 0.733bc 0.519bc 0.485 0.463b

Table 2: Empirical Values of teacher entropy, the relative density ratio of each sampling domain and empirical
measures of the query diameter. Each is taken at the 95th percentile (either max or mean) for robust estimates.
Entropy is measured in Nats via Shannon entropy over each ranking. We note that these are approximations of
the theoretical aspects discussed in this work.

Source Ĥν(g) κ̂Q ∆̂Q

Random 6.62±0.127 14.202±556.251 10.448±0.044

BM25 4.973±1.978 12.747±461.588 9.862±0.205

Cross-Encoder 4.068±0.930 11.116±353.018 9.593±0.251

Ensemble 3.973±0.838 8.276±165.234 9.546±0.233

within the sampled teacher entropy distribution by quartile. In Table 3, we see that once locality is
established, one can further improve effectiveness in-domain by selecting examples conditioned on
ranking entropy. Even under a constrastive setting we find that sub-selection by some teacher (signifi-
cantly less expensive then ensembling before similarly filtering) can further improve performance
reducing the gap observed in our main results under a contrastive objective. We see that choosing
the central mass of the entropy distribution (inner quartiles) is most effective and can be contrasted
with selection in the outlier quartiles in which effectiveness degrades. Generally we observe that
the upper quartile will yield greater effectiveness over the lower quartile, coupled with the reduced
effectiveness of selection via outlier quartiles we consider that a balance must be struck between
capturing high entropy examples for the purposes of generalisation. We note that all cases degrade
out-of-domain potentially suggesting that choosing examples by these criteria induce overfitting to
the particular cases within the training domain. We observe that increased mean entropy leads to
reduced effectiveness, considering Table 2, we can infer that in cases where entropy is high, the
representation space is insufficiently tight to compensate for this entropy. Out-of-domain correlation
is minimal as the density ratio κQ will inflate the VC term, bounding generalisation under this setting,
thus any attempt to improve locality will fail to improve effectiveness.

Differences in Model Behaviour Even under densely annotated (> 6 relevant texts per
query (Craswell et al., 2020b;a)) test collections, variations in in-domain effectiveness between
operational settings are minimal; this is expected via our bound. However, when observing intrinsic
model behaviour, we observe that the chosen domain can greatly affect score distributions under
otherwise identical optimization settings. In Figure 2, observe how different settings align with a
power law; this can be considered alignment with a Zipfian distribution. See how optimization criteria
lead to a vastly different score distribution from the teacher in Figure 2a, the original teacher has high
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Table 3: IR effectiveness across domain subsets by quartiles (Q) of the teacher entropy distribution over training
examples. Effectiveness is measured and evaluated as noted in Table 1. Shannon Entropy is denoted Ĥν(g).

TREC DL’19 TREC DL’20 BEIR

Loss Transform Ĥν(g) nDCG MAP nDCG MAP nDCG

LCE Original 4.973±1.978 0.681 0.459 0.686 0.488 0.472
LCE Lower Q 5.814±1.483 0.690 0.469 0.720 0.506 0.454
LCE Inner Qs 5.344±1.527 0.723 0.491 0.742 0.520 0.465
LCE Upper Q 5.106±1.027 0.716 0.482 0.739 0.518 0.460
LCE Outlier Qs 6.807±1.278 0.638 0.412 0.636 0.425 0.357

mMSE Original 4.973±1.978 0.601 0.390 0.607 0.400 0.520
mMSE Lower Q 5.814±1.483 0.720 0.485 0.729 0.511 0.484
mMSE Inner Qs 5.344±1.527 0.727 0.492 0.729 0.505 0.490
mMSE Upper Q 5.106±1.027 0.724 0.491 0.737 0.504 0.491
mMSE Outlier Qs 6.807±1.278 0.712 0.473 0.732 0.501 0.469

confidence within the top-10 ranks, and scores reach an elbow point at rank 218. However, depending
on the sampling domain, we observe collapse when applying a random distribution in Figure 2b as
both entropy and the relative density ratio, as outlined in Table 2, are insufficiently tight, leading to
collapse. Conversely, we observe power law behaviour when applying an ensemble with an elbow at
rank 12. Given the weak performance of ensemble approaches out-of-domain when this behaviour is
present, we posit that this highly confident behaviour may be overfitting to an in-domain setting and
may not be desirable. Though we leave any causal analysis to future work, we observe this behavior
in several settings as shown in Appendix G.
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(b) RankNet - Random
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(c) RankNet - Ensemble

Figure 2: Score versus rank ratio comparing the teacher (LCE) and two RankNet-trained students
with different sampling distributions evaluated on TREC DL‘19. Note the log-log scale and alignment
with power laws plotted in grey.

4 CONCLUSION

In this work, we have provided a systematic analysis of two core components in modern neural ranking
pipelines—example locality (negative sampling) and target entropy (distillation)—both theoretically
and empirically. Our analysis establishes a novel generalisation bound for ranking distillation in
terms of locality and entropy, accounting for biased sampling strategies. This bound shows that
overly “hard” or overly uniform teacher distributions can both degrade student performance, and
that geometry-driven sampling impacts only the bias term, not the entropy term. Empirically, across
both in-domain (TREC Deep Learning 2019/2020) and out-of-domain (BEIR) benchmarks, we
demonstrate that complex, multi-stage hard-negative pipelines yield minimal gains over simpler
sampling strategies under distillation and theoretically justify cases where it is valuable to expend
such computation. Furthermore, by stratifying examples according to teacher ranking entropy,
we observe consistent in-domain improvements at intermediate entropy levels, while high-entropy
“outlier” subsets degrade performance, confirming the bound’s prediction. Moving forward, our
findings encourage a shift away from computationally intensive ensemble and cascade architectures.
By focusing on the two orthogonal dimensions we have identified, tangible improvements can be
made in ranking effectiveness without excessive computational expense.
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5 REPRODUCIBILITY STATEMENT

We have made several efforts to facilitate the reproducibility of our work, including the use of open
models, training processes from the literature, and commonly available benchmarks. Parameter and
training decisions were primarily motivated by well-known prior art as noted in Section 3.1. All data
is publicly available with further details and licenses stated in Appendix E.1. Assumptions and full
formal definitions and proofs for all theoretical discussions are described in Appendix A, B and C.
Finally, our source code is provided in supplementary materials attached to this submission.
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Table 4: Unified notation (evaluation under µQ; training under πQ).

Symbol Type Domain Meaning

µQ measure X Reference/evaluation query measure.
πQ measure X Training policy (unbiased if πQ = µQ).
wQ weight (0,∞) Importance ratio dµQ/dπQ.
w

(2)
Q weight (0,∞) Pairwise importance ratio wQ(x)wQ(x

′) =
dµ⊗2

Q /dπ⊗2
Q .

κ
(2)
Q scalar [1,∞) ess supw

(2)
Q = κ2

Q.
κQ scalar [1,∞) ess supwQ.
d(·, ·) metric X 2 → R≥0 Ground metric.
∆Q scalar [0,∞) Essential diameter under µ⊗2

Q .
f, g, f⋆, f̂ scorers X → R Student, teacher, target, ERM.
δx,x′(h) diff. R h(x)− h(x′).
Dϕ divergence R≥0 Bregman divergence from potential ϕ.
Zh surrogate R≥0 Dϕ(δ(h)∥δ(g)).
H(g) entropy [0, log 2] Pairwise entropy under µ⊗2

Q .
η function [0, log 2] → [0, 1

2
] η(h) = 1

2
−

√
(log 2− h)/2.

d capacity N VC dim. of {1[Zh > τ ]}.
n, δ scalars – Sample size; confidence level.
L scalar (0,∞) Lipschitz constant of f⋆.
ζ scalar (0,∞) Calibration constant (e.g.

√
2 for RankNet).

A PRELIMINARIES AND DEFINITIONS

For completeness, we collect all loss functions used in the main text and show that each can be
expressed as a Bregman divergence (Bregman, 1967). We recall the definition first.

Definition A.1 (Bregman divergence). Let ϕ : R → R be strictly convex and C1. The Bregman
divergence between a, b ∈ R is

Dϕ(a∥b) = ϕ(a)− ϕ(b)− ϕ′(b)(a− b).

A.1 RANKNET AS A BREGMAN DIVERGENCE

Let sij = f(Xi)−f(Xj) and pij(f) = σ(sij) with σ(z) = 1/(1+e−z). For pair labels yij ∈ {0, 1}
the RankNet loss is

LRankNet(f) = −
[
yij log pij(f) + (1− yij) log(1− pij(f))

]
.

Let ϕ(u) = u log u+ (1− u) log(1− u) on u ∈ (0, 1) (negative binary entropy). See also Banerjee
et al. (2005) for the connection between Bregman divergences and exponential families. Its Bregman
divergence equals the Bernoulli KL:

Dϕ(a∥b) = a log
a

b
+ (1− a) log

1− a

1− b
.

For yij ∈ {0, 1} this reduces to the negative log-likelihood above. Hence

LRankNet(f) = Dϕ

(
yij ∥ pij(f)

)
.

A.2 MARGINMSE AS A BREGMAN DIVERGENCE

Let the student/teacher margins be mij(f) = f(Xi) − f(Xj) and mij(g) = g(Xi) − g(Xj). For
ϕ(u) = u2, the Bregman divergence is Dϕ(a∥b) = (a− b)2, so

LMarginMSE(f) = Dϕ

(
mij(f) ∥mij(g)

)
.
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A.3 DEFINITIONS

Definition A.2 (Lipschitz continuity (Weaver, 1999)). A function h : (X , d)→ R is L-Lipschitz if
there exists L > 0 such that

|h(x)− h(x′)| ≤ L · d(x, x′) for all x, x′ ∈ X .
Definition A.3 (Pair-wise risk under a reference measure). For a scorer f and reference query
measure µQ,

RµQ
(f) := Pr

(x,x′)∼µ⊗2
Q

[
f(x) < f(x′)

]
= Eµ⊗2

Q

[
1{f(x) < f(x′)}

]
.

Definition A.4 (Sampling policy, importance weights, and condition numbers). Training pairs are
drawn from a (possibly biased) policy πQ as (x, x′) ∼ π⊗2

Q ; risk is always evaluated under µQ.
Define the single-point Radon–Nikodym ratio and its essential supremum

wQ(x) =
dµQ

dπQ
(x), κQ = ess sup

x∈suppπQ

wQ(x) ∈ [1,∞),

and the pairwise ratio

w
(2)
Q (x, x′) =

dµ⊗2
Q

dπ⊗2
Q

(x, x′) = wQ(x)wQ(x
′), κ

(2)
Q = ess sup

(x,x′)∈suppπ⊗2
Q

w
(2)
Q (x, x′) = κ2

Q.

When πQ = µQ (unbiased sampling), wQ ≡ 1 so κQ = 1 and κ
(2)
Q = 1.

Definition A.5 (VC dimension for function classes). For a hypothesis classH ⊆ RX , Consider the
induced thresholded classes {x 7→ 1[h(x) > t] : h ∈ H, t ∈ R}. The VC dimension ofH is the VC
dimension of this induced class of indicator functions.
Definition A.6 (Essential diameter). For a probability space (X , µQ) with metric d, the essential
diameter is

∆Q = inf{M ≥ 0 : µ⊗2
Q ({(x, x′) : d(x, x′) > M}) = 0}.

Definition A.7 (Pair-wise entropy). For a scorer g : X → R and measure µQ, let px,x′ := Pr[g(x) >
g(x′)]. The pair-wise entropy is

H(g) = −E(x,x′)∼µ⊗2
Q

[
px,x′ log px,x′ + (1− px,x′) log(1− px,x′)

]
.

B BOUNDING MISORDERING UNDER TEACHER TARGETS

Lemma B.1 (Pinsker bound from pairwise entropy to misordering). Fix a pair (x, x′) and let
Z = 1{g(x) > g(x′)}, p = Pr[Z = 1], P = (p, 1− p), and U = (12 ,

1
2 ). Then

ϵ(p) := Pr[g(x) < g(x′)] = min(p, 1− p) ≥ η
(
H(p)

)
:=

1

2
−

√
log 2−H(p)

2
,

where H(p) = −p log p− (1− p) log(1− p) (nats). Averaging over (x, x′) ∼ µ⊗2
Q gives

E(x,x′) Pr{g misorders (x, x′)} ≥ η
(
H(g)

)
, H(g) := E(x,x′)H

(
px,x′

)
.

Proof. By Pinsker following Painsky & Wornell (2020), ∥P − U∥TV ≤
√

1
2DKL(P∥U). Explicitly,

DKL(P∥U) = p log
p

1/2
+ (1− p) log

1− p

1/2
= −H(p) + log 2.

Moreover, ∥P − U∥TV = |p− 1
2 |. Hence |p− 1

2 | ≤
√

(log 2−H(p))/2. Since ϵ(p) = min(p, 1−
p) = 1

2 − |p−
1
2 |, we have

ϵ(p) ≥ 1

2
−

√
log 2−H(p)

2
= η

(
H(p)

)
.

For the population statement, write px,x′ = Pr[Z = 1 | x, x′] and use the concavity of H and
convexity of η ◦H:

E ϵ(px,x′) ≥ E η(H(px,x′)) ≥ η
(
EH(px,x′)

)
= η

(
H(g)

)
.
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Lemma B.2 (Uniform deviation for bounded surrogate class). LetH ⊆ RX and define Zh(x, x
′) :=

Dϕ(δx,x′(h)∥δx,x′(g)) ∈ [0, B] for all (x, x′) under µ⊗2
Q , with B = L∆Q. Assume the thresholded

class {(x, x′, τ) 7→ 1[Zh(x, x
′) > τ ] : h ∈ H} has VC dimension d <∞ in (x, x′) uniformly over

τ . For i.i.d. (xs, x
′
s) ∼ µ⊗2

Q , any δ ∈ (0, 1), with probability ≥ 1− δ,

sup
h∈H

∣∣∣ 1n n∑
s=1

Zh(xs, x
′
s)− EZh

∣∣∣ ≤ B

√
2

n

(
d log

2en

d
+ log

4

δ

)
.

Proof. By symmetrisation for bounded real-valued classes, for i.i.d. samples and i.i.d. Rademacher
signs ϵs,

E sup
h

∣∣∣ 1n ∑
s

(Zh − EZh)
∣∣∣ ≤ 2E sup

h

∣∣∣ 1n ∑
s

ϵsZh(xs, x
′
s)
∣∣∣.

Since Zh ∈ [0, B], apply the standard contraction via integration over thresholds:

Zh(x, x
′) =

∫ B

0

1{Zh(x, x
′) > τ} dτ,

so

sup
h

∣∣∣ 1n ∑
s

ϵsZh(xs, x
′
s)
∣∣∣ ≤ ∫ B

0

sup
h

∣∣∣ 1n ∑
s

ϵs1{Zh(xs, x
′
s) > τ}

∣∣∣dτ.
For each fixed τ , Cτ := {1[Zh(·, ·) > τ ] : h ∈ H} is a class of {0, 1}-valued functions
with VC dimension ≤ d by assumption; hence its empirical Rademacher average is bounded by√

2
n logN(2n, d) ≤

√
2
n d log

(
2en
d

)
using the growth function bound

∑d
k=0

(
n
k

)
≤ (en/d)d via

Sauer’s lemma (Sauer, 1972)). Therefore,

E sup
h

∣∣∣ 1n ∑
s

ϵsZh(xs, x
′
s)
∣∣∣ ≤ ∫ B

0

√
2
n d log

(
2en
d

)
dτ = B

√
2
n d log

(
2en
d

)
.

Combining with symmetrisation yields

E sup
h

∣∣∣ 1n ∑
s

(Zh − EZh)
∣∣∣ ≤ 2B

√
2
n d log

(
2en
d

)
.

A bounded-difference concentration (McDiarmid) or Bernstein then upgrades expectation to high
probability: for any δ ∈ (0, 1), with probability ≥ 1− δ,

sup
h

∣∣∣ 1n ∑
s

(Zh − EZh)
∣∣∣ ≤ B

√
2

n

(
d log

2en

d
+ log

4

δ

)
.

Lemma B.3 (Calibration of RankNet to pairwise 0–1 risk). Let p⋆(x, x′) := Pr{Y = 1 | x, x′} with
Y = 1{f⋆(x) < f⋆(x′)}, and let pf (x, x′) := σ(f(x) − f(x′)). Define the (conditional) logistic
excess ∆log(x, x

′) := KL(Bern(p⋆)∥Bern(pf )). Then the pairwise 0–1 excess risk satisfies

Pr{f(x) < f(x′)} − Pr{f⋆(x) < f⋆(x′)} ≤
√

2∆log(x, x′).

Consequently,

RµQ
(f)−RµQ

(f⋆) ≤
√

2Eµ⊗2
Q
∆log(x, x′) ≤

√
2Eµ⊗2

Q
Dϕ

(
Y ∥pf

)
,

so for RankNet we can take ζ =
√
2 in the main theorems.

Proof. Fix (x, x′) and abbreviate p⋆ = p⋆(x, x′), q = pf (x, x
′), U = ( 12 ,

1
2 ). The Bayes optimal de-

cision minimises 0–1 error by predicting 1[p⋆ ≥ 1
2 ]; the 0–1 excess at (x, x′) equals |p⋆− 1

2 |−1[p
⋆ ≥

1
2 ](p

⋆ − 1
2 ) = |p

⋆ − q⋆| evaluated at the sign boundary and is upper bounded by the total variation

∥Bern(p⋆)−Bern(q)∥TV = |p⋆ − q|. Pinsker gives |p⋆ − q| ≤
√

1
2KL(Bern(p⋆)∥Bern(q)). Thus

the conditional 0–1 excess is ≤
√
2∆log(x, x′). Apply Jensen to move the square root outside the

expectation:
E|p⋆ − q| ≤ E

√
2∆log ≤

√
2E∆log.

Finally, note ∆log = Dϕ(Y ∥q) when Y ∈ {0, 1} and ϕ(u) = u log u + (1 − u) log(1 − u) as in
RankNet.
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C GENERALISATION UNDER RISK FROM TEACHER ENTROPY AND LOCALITY

Theorem C.1 (Locality–Entropy excess risk under a unified sampling policy). Assume: (i) f⋆ is
L-Lipschitz on (X , d) and ∆Q := ess sup(x,x′)∼µ⊗2

Q
d(x, x′) < ∞; (ii) teacher g induces pairwise

entropy H(g) as in Lemma B.1; (iii) the surrogate Zh(x, x
′) := Dϕ(δx,x′(h)∥δx,x′(g)) is bounded

by L∆Q and h 7→ Zh is 1–Lipschitz in the score difference; (iv) f̂ minimises the empirical (possibly
importance-weighted) surrogate over n pairs drawn i.i.d. from π⊗2

Q and we denote wQ = dµQ/dπQ,
κQ = ess supwQ. Then, for any δ ∈ (0, 1), with probability at least 1− δ,

RµQ
(f̂)−RµQ

(f⋆) ≤ ζ L∆Q η
(
H(g)

)
+ C κQ

√
d log(1/δ)

n
.

For RankNet (logistic surrogate), one may set ζ =
√
2 by Lemma B.3. In the unbiased case (πQ = µQ)

we have κQ = 1.

Proof. Step 1 (Teacher–Bayes gap via entropy and locality). By Lipschitzness of f⋆, |f⋆(x)−
f⋆(x′)| ≤ Ld(x, x′) ≤ L∆Q. Lemma B.1 yields a lower bound on the teacher’s misordering rate in
terms of H(g); thus deviations of g from the Bayes order contribute at most L∆Q η(H(g)) to the
risk gap (the geometry scales score separations, entropy controls sign errors).

Step 2 (Calibration of surrogate to 0–1 pairwise risk). By classification calibration, there exists
ζ > 0 such that

RµQ
(h)−RµQ

(g) ≤ ζ Eµ⊗2
Q
Zh for all h ∈ H.

For RankNet this holds with ζ =
√
2 by Lemma B.3; for other Dϕ one may use standard compos-

ite/proper loss calibration (constant absorbed into ζ).

Step 3 (Population envelope and Lipschitz control). By assumption (iii), 0 ≤ Zh ≤ L∆Q for all
(x, x′) and |Zh − Zf⋆ | ≤ |δ(h)− δ(f⋆)| ≤ 2Ld(x, x′) ≤ 2L∆Q, so EZf⋆ ≤ L∆Q.

Step 4 (Weighted uniform deviation under πQ). Consider the weighted empirical process
1
n

∑n
s=1 w

(2)
Q (xs, x

′
s)Zh(xs, x

′
s) with (xs, x

′
s) ∼ π⊗2

Q . Because 0 < w
(2)
Q ≤ κ

(2)
Q = κ2

Q a.s.
and Zh ∈ [0, L∆Q], the envelope is bounded by κ2

QL∆Q. Applying Lemma B.2 with B = κ2
QL∆Q

and using
√

κ
(2)
Q = κQ in the resulting rate gives, with probability ≥ 1− δ,

sup
h

∣∣∣Eµ⊗2
Q
Zh − 1

n

∑
s

w
(2)
Q (xs, x

′
s)Zh(xs, x

′
s)
∣∣∣ ≤ C1 L∆Q κQ

√
d log(1/δ)

n
.

Step 5 (ERM inequality and cancellation). By empirical optimality of f̂ , 1
n

∑
s w

(2)
Q Zf̂ ≤

1
n

∑
s w

(2)
Q Zf⋆ . . . . hence

Eµ⊗2
Q
Zf̂ − Eµ⊗2

Q
Zf⋆ ≤ 2C1 L∆Q κQ

√
d log(1/δ)

n
.

Subtract the two deviations from Step 4 (once with h = f̂ , once with h = f⋆) and use the ERM
inequality to get

Eµ⊗2
Q
Zf̂ − Eµ⊗2

Q
Zf⋆ ≤ 2C1 L∆Q

√
κQ d log(1/δ)

n
.

Absorb the factor 2 into C := 2C1.

Step 6 (Assemble). Decompose

RµQ
(f̂)−RµQ

(f⋆) =
[
RµQ

(f̂)−RµQ
(g)

]
+

[
RµQ

(g)−RµQ
(f⋆)

]
.

Bound the first bracket by calibration (Step 2) and the second by locality–entropy (Step 1); replace
EZf̂ by EZf⋆ plus the deviation from Step 5 and use EZf⋆ ≤ L∆Q (Step 3). This yields

RµQ
(f̂)−RµQ

(f⋆) ≤ ζ L∆Q η(H(g)) + C L∆Q

√
κQ d log(1/δ)

n
,

and we absorb L∆Q into C in the statement if desired.
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If the teacher is not degenerate, i.e. η(H(g)) ≥ ε > 0, then ζL∆Q ≤ ζL∆Q ε−1η(H(g)) and the
first two bias terms merge, absorbing all numerical constants into a single C gives the form we
provide in the main body of this work, this reduced form is realistic given the nature of ranking model
teachers in which degenerate cases are rare due to the smooth estimations provided by neural models
through activation functions such as softmax.

D BIASED-SAMPLING UNDER NEGATIVE MINERS

Corollary D.1 (Biased sampling via importance weights). Let πQ be any retrieval/miner policy
with suppπQ ⊆ suppµQ and κQ = ess sup(dµQ/dπQ) < ∞. If f̂ minimises the importance-
weighted empirical surrogate built from n pairs drawn i.i.d. from π⊗2

Q , then the bound of Theorem C.1
holds with this κQ following importance-weighted risk under covariate shift (Hsu et al., 2021)”. In
particular,

RµQ
(f̂)−RµQ

(f⋆) ≤ ζ L∆Q η
(
H(g)

)
+ C κQ

√
d log(1/δ)

n
.

Proof. Repeat Steps 4–6 of Theorem C.1 with the weighted process w(2)
Q Zh; the only change is the

envelope B = κQL∆Q in Lemma B.2, which introduces the factor κQ in the rate. All other steps are
unchanged.

E ADDITIONAL EXPERIMENTAL DETAILS

E.1 DATASET DESCRIPTIONS

Table 5 describes all test collections in terms of their domain, queries and corpus size. In all cases we
rerank BM25 (k1 = 1.2, b = 0.75). We found in further experimentation that due to the point-wise
nature of models trained in this investigation, biases remained consistent under different re-rankers
thus for conciseness we solely present BM25.

Table 5: Descriptive statistics for all test collections, |Q| indicates the number of test queries, |D|
indicates the corpus size used in retrieval and ranking. In all cases, we re-rank BM25.

Dataset Domain |Q| |D|

TREC Deep-Learning 2019 Ad-Hoc Web Search 43 8E6TREC Deep-Learning 2020 Ad-Hoc Web Search 53

ArguAna Argument Retrieval 1406 8.67E3
Climate-Fever Environmental 1535 542E3
CQADupStack OpenQA 13145 457E3
DBPedia OpenQA 400 463E3
FiQA OpenQA 648 57E3
HotpotQA OpenQA 7405 523E3
NFCorpus Medical 323 36E2
NQ OpenQA 3452 268E3
Quora OpenQA 10000 523E3
SCIDOCS Academic 1000 25E3
SciFact Academic 300 5E3
TREC Covid Medical 50 171E3
Touche 2020 Argument Retrieval 49 382E3

E.2 EMPIRICAL APPROXIMATIONS

We apply Monte-Carlo sampling to provide empirical estimates of theoretical values outlined in
Section 2, our sample size is equal to our training corpus (maximising possible samples under our
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setting). We compute Hν(g) over teacher scores of training data observed during the training of each
model.

As our true measure µQ over X is latent (or infeasible to compute with standard benchmarks due to
query mismatch), we provide an approximation of κQ, the density ratio bridging our biased measure
νQ to our unbiased risk. We do so by assuming a uniform chance of sampling all documents as
opposed to a rank-biased sample taking 1/g(Q,D), ∀D ∈ XQ, κQ is then taken as the supremum of
these values.

To compute an empirical diameter ∆̂Q, we apply cosine distance over representation from an existing
embedding model (we use RetroMAE (Xiao et al., 2022), a strong embedding model based on MAE
pre-training) as our measure d and compute the supremum over Monte-Carlo samples from our
training data over each query.

E.3 TOST TEST

A two one-sided t-test (TOST) determines if the means of two populations are equivalent based on
independent samples from each population, in our case, the query-level effectiveness of two models.
For means µ1, µ2 and confidence bound θ = |µ2 − µ1| · ϵ (ϵ is a percentage bound parameter), we
assess two hypotheses, that µ2 − µ1 lies above θ and below θ using one-sided t-tests with confidence
1− 2α compensating for multiple hypothesis testing. Thus, within an ϵ bound with confidence 1−α,
we can say that µ1, µ2 are statistically equivalent.

F OUT-OF-DOMAIN EFFECTIVENESS

Table 6 shows all BEIR splits for bi-encoder models. Table 7 shows all splits for cross-encoder
models.

Table 6: Mean nDCG@10 for architecture BE across BEIR datasets

Loss Domain arguana climate-fever cqa-android cqa-english cqa-gaming cqa-gis cqa-mathematica cqa-physics cqa-programmers cqa-stats cqa-tex cqa-unix cqa-webmasters cqa-wordpress dbpedia-entity fiqa hotpotqa nfcorpus nq quora scidocs scifact trec-covid webis-touche2020

LCE Random 0.414 0.234 0.319BCD 0.295C 0.393BC 0.220BC 0.169BC 0.308 0.254BC 0.194BCD 0.182 0.230C 0.244BC 0.195BCD 0.318BC 0.241 0.547 0.296BCD 0.322 0.810 0.130 0.534BCD 0.628BCD 0.291BCD

LCE BM25 0.303 0.193 0.333ACD 0.307 0.398AC 0.215AC 0.163AC 0.284C 0.267AC 0.201ACD 0.201 0.241 0.254AC 0.217ACD 0.321AC 0.259CD 0.559 0.291ACD 0.407D 0.798 0.110 0.468ACD 0.671ACD 0.296ACD

LCE CE 0.281 0.191 0.317ABD 0.292A 0.392AB 0.204AB 0.154AB 0.282B 0.255AB 0.191ABD 0.193 0.231A 0.260AB 0.205ABD 0.324AB 0.261BD 0.555 0.283ABD 0.405 0.791 0.104 0.491ABD 0.673ABD 0.284ABD

LCE Ensemble 0.352 0.199 0.340ABC 0.327 0.427 0.237 0.183 0.321 0.282 0.208ABC 0.214 0.255 0.284 0.227ABC 0.346 0.272BC – 0.303ABC 0.407B 0.823 0.120 0.507ABC 0.685ABC 0.336ABC

RankNet Random 0.181 0.086 0.144 0.145 0.125 0.104 0.100 0.151 0.145 0.105 0.099 0.119 0.120 0.100 0.247 0.142 0.335 0.287BCD 0.238 0.707 0.097 0.259 0.593BCD 0.237
RankNet BM25 0.308 0.229 0.313 0.299 0.384 0.205 0.156 0.278 0.254C 0.195C 0.179 0.232C 0.243C 0.194C 0.354CD 0.274CD 0.592 0.293ACD 0.415D 0.802 0.115 0.509C 0.657ACD 0.306CD

RankNet CE 0.294 0.215 0.333D 0.310 0.402 0.219 0.168 0.291 0.256B 0.201B 0.188 0.238B 0.249B 0.207B 0.351BD 0.272BD 0.604 0.296ABD 0.420 0.807 0.113 0.502B 0.646ABD 0.323BD

RankNet Ensemble 0.344 0.256 0.348C 0.338 0.444 0.251 0.185 0.324 0.281 0.224 0.212 0.265 0.274 0.226 0.363BC 0.282BC 0.599 0.310ABC 0.416B 0.835 0.131 0.554 0.681ABC 0.357BC

mMSE Random 0.382 0.218D 0.324C 0.309C 0.393C 0.199BC 0.154BC 0.304D 0.257BC 0.182 0.172 0.231BC 0.251BC 0.184 0.351D 0.241 0.525 0.299BCD 0.384 0.818 0.117 0.498BCD 0.679BCD 0.314BCD

mMSE BM25 0.299 0.193 0.293 0.295 0.363 0.201AC 0.156AC 0.270 0.254AC 0.199CD 0.184 0.229AC 0.239AC 0.202C 0.335C 0.262C 0.587 0.288ACD 0.414C 0.816 0.111 0.496ACD 0.662ACD 0.309ACD

mMSE CE 0.312 0.190 0.323A 0.306A 0.402A 0.210AB 0.161AB 0.286 0.261AB 0.207BD 0.194 0.236AB 0.252AB 0.209B 0.332B 0.262B 0.591 0.293ABD 0.416B 0.816 0.108 0.504ABD 0.655ABD 0.313ABD

mMSE Ensemble 0.366 0.219A 0.343 0.328 0.429 0.245 0.188 0.314A 0.282 0.216BC 0.217 0.262 0.284 0.231 0.351A 0.276 0.599 0.304ABC 0.407 0.840 0.121 0.537ABC 0.679ABC 0.349ABC

KL Random 0.346 0.232 0.312BCD 0.308BC 0.405BC 0.218BC 0.164BC 0.302BC 0.259BC 0.197BCD 0.179 0.234BC 0.246BCD 0.201BCD 0.334BCD 0.262BCD 0.559 0.303BCD 0.359 0.745 0.132 0.539CD 0.665BCD 0.298BCD

KL BM25 0.324C 0.196 0.334ACD 0.315AC 0.403AC 0.214AC 0.163AC 0.291AC 0.267AC 0.202ACD 0.195 0.241AC 0.253ACD 0.215ACD 0.339ACD 0.275ACD 0.559 0.286ACD 0.414CD 0.806 0.109 0.466 0.687ACD 0.322ACD

KL CE 0.321B 0.207D 0.324ABD 0.303AB 0.407AB 0.209AB 0.160AB 0.301AB 0.258AB 0.204ABD 0.193 0.237AB 0.265ABD 0.210ABD 0.340ABD 0.268ABD 0.565 0.289ABD 0.413BD 0.805 0.111 0.501AD 0.670ABD 0.323ABD

KL Ensemble 0.354 0.206C 0.339ABC 0.333 0.431 0.238 0.184 0.321 0.281 0.216ABC 0.213 0.258 0.283ABC 0.228ABC 0.350ABC 0.277ABC 0.585 0.306ABC 0.413BC 0.827 0.120 0.519AC 0.669ABC 0.344ABC

Table 7: Mean nDCG@10 for architecture CE across BEIR datasets

Loss Domain arguana climate-fever cqa-android cqa-english cqa-gaming cqa-gis cqa-mathematica cqa-physics cqa-programmers cqa-stats cqa-tex cqa-unix cqa-webmasters cqa-wordpress dbpedia-entity fiqa hotpotqa nfcorpus nq quora scidocs scifact trec-covid webis-touche2020

LCE Random 0.311 0.217 0.386D 0.373 0.475 0.292 0.216BCD 0.335D 0.306D 0.265D 0.245D 0.288BCD 0.329 0.276BCD 0.369 0.317C 0.680 0.340BCD 0.384 0.795 0.156 0.665BD 0.658BCD 0.340BCD

LCE BM25 0.238 0.205 0.356C 0.318 0.436 0.253C 0.208ACD 0.305 0.266C 0.232C 0.226C 0.288ACD 0.284CD 0.249ACD 0.404CD 0.361D 0.686 0.328ACD 0.474CD 0.670 0.147 0.643AD 0.728ACD 0.339ACD

LCE CE 0.250 0.190 0.363B 0.298 0.447D 0.261B 0.198ABD 0.287 0.267B 0.230B 0.226B 0.289ABD 0.288BD 0.263ABD 0.406BD 0.320A 0.684 0.311ABD 0.477BD 0.703 0.135 0.582 0.716ABD 0.327ABD

LCE Ensemble 0.352 0.164 0.381A 0.349 0.453C 0.276 0.217ABC 0.326A 0.297A 0.260A 0.247A 0.288ABC 0.303BC 0.272ABC 0.414BC 0.360B 0.694 0.327ABC 0.474BC 0.746 0.151 0.661AB 0.700ABC 0.361ABC

RankNet Random 0.363BCD 0.177 0.379BCD 0.376BCD 0.461BCD 0.280BCD 0.216BCD 0.334 0.309BCD 0.254BCD 0.230 0.291 0.324BCD 0.240 0.309 0.307 0.598 0.338BCD 0.353 0.633 0.149 0.672BCD 0.628 0.313
RankNet BM25 0.362ACD 0.260 0.379ACD 0.381ACD 0.474ACD 0.291ACD 0.219ACD 0.348CD 0.314ACD 0.265ACD 0.249CD 0.304CD 0.314ACD 0.277CD 0.422CD 0.368CD 0.720 0.342ACD 0.482C 0.785 0.154 0.701ACD 0.707CD 0.375CD

RankNet CE 0.369ABD 0.253D 0.381ABD 0.376ABD 0.473ABD 0.288ABD 0.219ABD 0.351BD 0.313ABD 0.272ABD 0.247BD 0.304BD 0.313ABD 0.280BD 0.419BD 0.372BD 0.717 0.339ABD 0.482B 0.787 0.152D 0.701ABD 0.695BD 0.367BD

RankNet Ensemble 0.364ABC 0.252C 0.383ABC 0.377ABC 0.469ABC 0.290ABC 0.220ABC 0.347BC 0.311ABC 0.265ABC 0.250BC 0.304BC 0.308ABC 0.279BC 0.423BC 0.369BC – 0.342ABC 0.476 0.810 0.151C 0.719ABC 0.688BC 0.367BC

mMSE Random 0.305 0.182 0.368BCD 0.365BCD 0.460BCD 0.276BCD 0.201 0.333BCD 0.303BCD 0.268BCD 0.237 0.284 0.305BCD 0.259BCD 0.403BCD 0.338 0.655 0.343BCD 0.451 0.691 0.148 0.680BCD 0.713BCD 0.340BCD

mMSE BM25 0.348 0.249 0.387ACD 0.363ACD 0.465ACD 0.282ACD 0.215CD 0.334ACD 0.299ACD 0.263ACD 0.243 0.303CD 0.301ACD 0.269ACD 0.421ACD 0.374CD 0.707 0.342ACD 0.485C 0.782 0.150 0.686ACD 0.726ACD 0.366ACD

mMSE CE 0.357 0.240 0.390ABD 0.371ABD 0.470ABD 0.289ABD 0.222BD 0.340ABD 0.309ABD 0.261ABD 0.247D 0.306BD 0.311ABD 0.275ABD 0.416ABD 0.376BD 0.706 0.346ABD 0.485B 0.788 0.154D 0.703ABD 0.714ABD 0.356ABD

mMSE Ensemble 0.367 0.217 0.384ABC 0.374ABC 0.457ABC 0.285ABC 0.218BC 0.334ABC 0.309ABC 0.268ABC 0.246C 0.297BC 0.305ABC 0.277ABC 0.423ABC 0.376BC 0.708 0.342ABC 0.480 0.793 0.155C 0.699ABC 0.693ABC 0.379ABC

KL Random 0.342 0.180 0.403BCD 0.375 0.491 0.310 0.231BCD 0.351 0.318 0.275BCD 0.255 0.310BC 0.332 0.283BCD 0.383 0.324 0.630 0.340BCD 0.422 0.822 0.146 0.681BCD 0.678BCD 0.330BCD

KL BM25 0.287 0.204C 0.381ACD 0.331 0.463CD 0.276CD 0.214ACD 0.327CD 0.297CD 0.251ACD 0.240CD 0.299AC 0.303CD 0.271ACD 0.411CD 0.376CD 0.690 0.339ACD 0.482C 0.756 0.149D 0.682ACD 0.734ACD 0.341ACD

KL CE 0.320 0.204B 0.387ABD 0.345D 0.469BD 0.278BD 0.222ABD 0.337BD 0.298BD 0.262ABD 0.243BD 0.307AB 0.304BD 0.278ABD 0.415BD 0.364BD 0.698 0.338ABD 0.481B 0.773 0.151 0.690ABD 0.704ABD 0.351ABD

KL Ensemble 0.333 0.187 0.382ABC 0.347C 0.457BC 0.282BC 0.215ABC 0.323BC 0.292BC 0.257ABC 0.241BC 0.286 0.300BC 0.270ABC 0.416BC 0.367BC – 0.341ABC 0.476 0.761 0.149B 0.671ABC 0.701ABC 0.395ABC

G ADDITIONAL FIGURES

As a qualitative way to discriminate between domains, observe across Figure 4 the increasing
alignment of model scores to a power law as harder negatives are applied. Under increasingly difficult
negatives, the model’s score distribution stretches into a heavy-tailed, near–power-law form: only a
few distractors receive high scores, while other documents are driven sharply downward. The slope
of this tail offers a simple, domain-agnostic measure of how confidently the model assigns relevance.
Importantly, when evaluated out of domain, this power-law alignment vanishes entirely, potentially
indicating overfitting, as indicated by reduced effectiveness out of domain in our main findings.
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Figure 3: Training loss in the form of the KL divergence (left) and gradient norm of the student
f (right). Note the log scale of loss values. Observe the reduced variance in gradient under locality but
otherwise minimal difference between sampling domains, we observe that loss converges marginally
higher inversely with density ratio κQ.

H LICENSES

Datasets MSMARCO is licensed under the MIT license, strictly for non-commercial research
purposes. NQ and DBPedia are provided under the CC BY-SA 3.0 license. ArguAna and Touché-
2020 are provided under the CC BY 4.0 license. CQADupStack is provided under the Apache License
2.0 license. SciFact is provided under the CC BY-NC 2.0 license. SCIDOCS is provided under the
GNU General Public License v3.0 license. HotpotQA is provided under the CC BY-SA 4.0 license.
TREC-Covid test queries and judgements are provided under open domain however the underlying
CORD-19 collection has variable licensing and we point readers to this metadata for more details.

Models All base checkpoints (BERT and ELECTRA) are provided under Apache-2.0.

I USAGE OF GENERATIVE AI

Within this work, we employed generative AI to critique the manuscript, particularly to improve the
narrative in our introduction, through rounds of summarisation to ensure key points were clearly
stated. Additionally, a generative agent facilitated through the open-source AI2 Asta was employed
to explore literature and ensure comprehensive coverage.

22

https://www.kaggle.com/datasets/allen-institute-for-ai/CORD-19-research-challenge/data?select=metadata.csv
https://asta.allen.ai/synthesize
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Figure 4: log-log plots of average score at each document rank on MS MARCO passage (TREC DL
2019 judged) for each loss function (rows) and domain (columns) when training a cross-encoder.
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