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Abstract

MoE models and other complex routing meth-001
ods have garnered a lot of attention. Procuring002
those models is a costly endeavour, which is003
complex to distribute. This paper shows that004
simple hard routing has a lot of potential in005
Tool-Use QA applications, allowing for more006
distributed training and decentralization, and007
has potential applications elsewhere. The task008
considered is based on a proposed with sepa-009
rated the ReACT stages for separately trained010
models: Planner, Caller and Summariser. Previ-011
ous approaches have largely relied on zero-shot012
comprehension of the nature of specific APIs013
based on the provided documentation. Zero-014
shot abilities of small models are limited and015
studies show that most commonly failures oc-016
cur at the Caller stage of the pipeline. Therefore017
this study shifts away from zero-shot assump-018
tions by using a hard routing-based strategy019
utilizing expert adapters for each category of020
APIs. The experimentation has shown that this021
pipeline can allow the 7 Billion model, to beat022
much larger, modern and closed-source models023
used in a zero-shot scenario on this task.024

1 Introduction025

The growth in computational and architectural ca-026

pabilities has enabled the size expansion of Large027

Language Models (LLMs), allowing new capabili-028

ties to emerge (Brown et al., 2020; Wei et al., 2022).029

Amongst those previously infeasible tasks is Tool-030

Use (Hsieh et al., 2023). In their review, Wang et al.031

(2024) describe it as providing the LLM with var-032

ious utilities that are not part of the neural model,033

allowing the pipeline to perform previously impos-034

sible actions and improve the quality of the answer.035

Those actions can range from consulting a calcu-036

lator to achieve better numerical answer precision037

(Schick et al., 2023), using a web browser to fetch038

current information that was not present during the039

training of the LLM (Zhuang et al., 2023), or even040
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Figure 1: Illustration comparing the standard LLM as-
sistant Question-Answering approach with the Tool-Use
ReACT-based pipeline (Yao et al., 2023), in both Single-
Agent (Qin et al., 2023) and Multi-Agent (Shen et al.,
2024) configurations.

controlling an external robotic assistant through 041

calls (Vemprala et al., 2023). 042

Current solutions based on small models, such 043

as the 7B Llama model used in this study, often 044

fail due to incorrectly generated API calls. Xu 045

et al. (2023) highlight that API call malformation 046

in the shape of incorrect Argument Population1 is 047

the most significant contributor to failures of the en- 048

tire pipeline. Therefore improvements made at this 049

stage of the pipeline are highlight likely to improve 050

the pipelines overall. Furthermore, other studies 051

show the poor zero-shot abilities of the small mod- 052

els used in this pipeline (Wei et al., 2022), hence 053

pointing to a hypothesis where a shift away from 054

the assumption that zero-shot API comprehension 055

is feasible, would potentially have a large positive 056

impact. 057

2 Related Work 058

Multi-Agent Tool-Use. Shen et al. (2024) have 059

considered that performing ReACT reasoning 060

might be too complex for a single small model. 061

Therefore, to reduce the reliance on this weak as- 062

sumption, they fine-tune separate models on three 063

distinct tasks: Reasoning (also referred to as Plan- 064

1Argument Population is the task of selecting the parame-
ters and values for those parameters in the API call.
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ning), Acting (Calling), and Summarizing. This065

scheme allows the individual models to focus more066

on their respective tasks, which is helpful given067

their constraints.068

While routing during training is a trivial problem,069

as the correct agent alignment is known apriori, dur-070

ing inference routing is a significant problem, as071

it is not apparent which agent should respond at072

each step. Therefore, Shen et al. (2024) trained073

the Planner to conclude their responses with Next:074

caller or Next: summariser, which is used to075

route the pipeline at each turn to the correct ex-076

pert. The remaining experts have a simpler routing077

scheme, the Planner follows every Caller action,078

while all responses from the Summarizer conclude079

the turn. Figure 1 includes a simplified illustration080

comparing the two approaches.081

Progressive Fine-Tuning. Comprehension of082

the overall conversation and task is crucial to every083

step in the pipeline; therefore, the authors of the084

Multi-Agent scheme argue that simple fine-tuning085

right from the base models might create models086

that are overly specialised in performing their as-087

signed task, therefore lacking comprehension of the088

overall task. This prompted the authors to propose089

Global-to-Local Progressive Fine-Tuning (GLPFT).090

This scheme approaches the issue mentioned ear-091

lier by first fine-tuning a ‘backbone’ model on the092

entire task, where the single agent has to perform093

all three roles in the reasoning, and then using this094

model to fine-tune three models to take on specific095

roles. This approach aligns with the conclusion pre-096

sented by Gururangan et al. (2020), who show that097

a gradual multi-step alignment to the target task098

yields better performance than direct fine-tuning099

directed at the task. In this way, GLPFT indulges100

in applying the transfer learning principle twice101

through the aforementioned Global-to-Local Pro-102

gressive Fine-Tuning scheme, as the first ‘Global’103

stage is applied on a Llama model already pre-104

trained on Language Modeling. The hierarchical105

structure of the problems considered allows for106

stacking and fine-tuning LoRA adapters that are in-107

creasingly more specialised, inspired by the stacked108

adapter approach used by Gema et al. (2024) in the109

clinical domain. The adapters trained in the study110

are applied to the Caller model in turn indulging in111

further Progressive Fine-Tuning.112

planner The user is likely interested in the weather in their
current location only, hence now I will call the

get_user_location_for_user_info_api API, to find
their location.

caller
Action: get_user_location_for_user_info_api

Action Input: {}

Tool
Identifier

roll
up

get_user_location_for_user_info_api

roll
up

user_info_api

Data

find

Library of
Adapters

Lookup for all 3
load the adapter

if present

Model
size:

~12GB

Adapter
size:

~100MB

What's the weather like?

Figure 2: Illustration of how the plan determines the
adapter choice in the pipeline.

3 Hard Routed Experts 113

The hypothesis investigated is that each endpoint 114

could be regarded as a distinct task, warranting the 115

use of a separate adapted set of parameters for each. 116

Similarly, entire API families2 can be treated as 117

a single unit, and categories3 comprising lists of 118

API families can also be viewed as a unified task. 119

This approach reduces the emphasis on the model’s 120

ability to learn API usage solely from the documen- 121

tation in the prompt, as it allows the model to gain 122

more insight by training on a dataset focused on 123

a specific subset of the overall data. This hypoth- 124

esis aligns with previous research suggesting that 125

smaller models perform better when reliance on in- 126

context learning is minimised through fine-tuning 127

(Mosbach et al., 2023). 128

In a practical scenario, procuring even a rela- 129

tively small subset of Llama-2 7B (Touvron et al., 130

2023) experts through fine-tuning becomes infea- 131

sible, as storing an entire model for each expert 132

would be highly inefficient in terms of storage. 133

To address this, adapters—specifically Low-Rank 134

Adapters (LoRA; Hu et al., 2021)—were used due 135

to their wide adoption in the NLP field and the 136

fact that they allow for dynamic swapping of the 137

adapters into the network. The latter consideration 138

2API families are sets of endpoints from the same
route; for example, all endpoints accessible from
https://soundcloud4.p.rapidapi.com/ constitute
the soundcloud API family.

3The creators of each API family annotate them by select-
ing one category from a list of 49 defined by RapidAPI.

2



is especially important for making this approach139

viable for practical scenarios.140

Hard routing with a library of LoRA adapters141

is used, based on the description by Ostapenko142

et al. (2024), where the pipeline dynamically swaps143

one adapter onto the base model based on the end-144

point names mentioned in the Planning step. In145

this scheme, backing off to the base version of the146

model is efficient, as it simply requires deactivating147

all of the adapters. This scheme has been shown148

in Figure 2. The parameter overhead of this solu-149

tion is in the order of hundreds of megabytes per150

adapter, only one of which is used during inference151

at a time. This means that this solution does not152

significantly impact the inference requirements of153

the system, mostly requiring additional storage.154

4 Dataset155

Training data used in this study is the ToolBench156

dataset, which was a part of the Toollama study157

(Qin et al., 2023). Each expert is trained on a sub-158

set of tool calls that are relevant to the task split159

considered. This way, the agent can focus and de-160

rive expertise in their specific task. Therefore, the161

dataset was grouped by the tool used in each in-162

stance on an endpoint, API family, and category163

level.164

This split points to the fact that, in the described165

pipeline, every classifiable plan can be answered by166

one of three models: the specific endpoint trained,167

the API family, or the category-wide expert. In168

cases where no expert is available (for instance, it169

was not trained yet), backing off to the base caller170

model is also possible.171

5 Experiments172

Metrics. The metrics considered are the exact173

match score for tool selection accuracy and the174

F1-score, which balances precision and recall, to175

evaluate the correctness of the arguments populated176

in the API call, including both keys and values. To177

emphasize the adapter portion of the pipeline, re-178

sults in most experiments are grouped based on the179

output of the Tool Classification.180

Heuristics. Initial experimentation focused on181

selecting the right level of abstraction and divi-182

sion between adapter tasks. It revealed that train-183

ing API-wide experts can match the performance184

of procuring multiple endpoint-focused experts185

in most cases, with this broader and cheaper ap-186

proach sometimes outperforming the latter ap-187
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Figure 3: The effect of increasing the number of tasks
(distinct endpoints) and samples on pipeline perfor-
mance compared to the baseline.

proach. Training Category-wide adapters was not 188

as successful as training API-wide adapters but 189

still offered significant improvements. Predictably, 190

larger categories (and often large APIs) proved to 191

offer little to no benefit over the basic non-adapter 192

approach, as can be seen in Figure 3. This shows 193

that the shift in reliance on zero-shot adaptability 194

has a large performance impact on the resulting 195

pipeline, as the experts trained on larger task divi- 196

sions have to be more flexible to zero-shot adapta- 197

tion. 198

Main experiments. To reduce potential biases 199

and stochasticity the main comparison experiments 200

were conducted on adapters trained based on the 201

RapidAPI categorisation, despite the API-wide ap- 202

proach showing superior performance in the initial 203

experiments. In addition to comparing to the non- 204

boosted Caller model, the model was compared to 205

two highly capable closed-source models attempt- 206

ing the task in a Zero-Shot and Few-Shot prompt- 207

ing scenario. The training required a single A100 208

GPU and potentially could be conducted on a less 209

powerful GPU. The LoRA adapters were applied 210

to the Q and V projections (r = 16). 211

In-Domain Tools. When considering tools from 212

the ToolBench (Qin et al., 2023) TestSet, which 213

covers the same tools as the training set used, the 214

benefits are clear and very large for many cate- 215

gories. The results of this experimentation in terms 216

of Exact Match are shown in Figure 4. More im- 217

portantly, the Argument Population F1-score has 218

also seen a great improvement over the baseline 219

for the majority of the categories considered, as 220

shown in Figure 5. For many of the categories, 221

the proposed pipeline was able to outperform the 222

closed-source models due to their expertise in that 223

domain, which was previously infeasible due to 224
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Figure 4: ToolBench test results for Callers, GPT mod-
els, and Experts. The metric considered measures how
well the model was able to select the correct API.

their limited capabilities.225

Out-of-domain Tools. The ToolAlpaca Test226

set (Tang et al., 2023) was used as a set of out-227

of-domain tools, not represented in the training228

set. The APIs were matched to the ToolBench229

API splits using zero-shot annotation by GPT-4.230

The expertise derived from only the training set231

and the reduction in zero-shot assumption could232

theoretically harm the performance of the pipeline233

in those scenarios. Table 1, goes contrary to this234

belief as the model performed well, sometimes235

even outperforming the baseline. This shows that236

the experts have acquired generalizable knowledge237

of those categories.238

6 Conclusions239

This study demonstrates the viability of an expert240

adapter pipeline for enhancing API call genera-241

tion, building on the work of Shen et al. (2024).242

Reducing reliance on in-context learning signifi-243

cantly improves performance, allowing the small244

model pipeline to beat much larger closed-source245

models. Experts focusing on fewer than 200 end-246

points consistently outperform the Caller model,247

while broader experts struggle to surpass the base-248

line. Aggregating endpoints into API family ex-249

perts proves effective, reducing computational over-250

head for frequently modified APIs. Progressive251

fine-tuning also boosts overall performance, partic-252

ularly when applied in multiple stages. The study253
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Figure 5: ToolBench test results for Callers, GPT mod-
els, and Experts. The metric considered measures how
well the model was able to populate an object with rele-
vant parameters to the tool.

API Choice: Exact Match

Category Caller Caller+Expert ∆

Music 0.22 0.67 +0.45
News Media 0.46 0.46
Business 0.40 0.60 +0.20
Finance 0.75 0.75
Entertainment 0.15 0.15
Education 0.38 0.44 +0.06
Tools 0.51 0.49 -0.02
Data 0.56 0.56
Sports 0.00 0.00
Social 0.50 0.50

Argument Population: F1-Score

Category Caller Caller+Expert ∆

Music 0.11 0.39 +0.28
News Media 0.46 0.46
Business 0.10 0.20 +0.10
Finance 0.38 0.56 +0.18
Entertainment 0.15 0.15
Education 0.34 0.41 +0.07
Tools 0.47 0.47
Data 0.44 0.39 -0.05
Sports 0.00 0.00
Social 0.38 0.38

Table 1: Performance Comparison Caller+Expert
Adapter pipeline against the baseline (Shen et al., 2024)
on an out-of-domain test set (Tang et al., 2023).

highlights that partial implementations of Tool-Use, 254

focused on challenging or popular APIs, can fur- 255

ther improve results. These experts can be trained 256

using lightweight, dynamically loaded adapters, 257

which could even be distributed by API creators, 258

amplifying the practical benefits of this approach. 259
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7 Limitations260

The study only considered the use of a specific mod-261

erately sized language model (namely Llama-2 in262

the 7B variant) in line with the research previously263

conducted on the same task. It is likely that using a264

different model for this task would make the entire265

pipeline perform better in practical applications.266

Grouping tasks based on the categories taken267

from RapidAPI is another limitation of this study268

as the categories were assigned by the users of the269

service at the creation of the API. Some categories270

were overly broad (such as the Data category) lead-271

ing to poor performance on the APIs from those272

sets. Tasks splits that consider the conclusions of273

this study would likely produce better expert than274

what is presented in this study.275

Uncertainty in tool classification is a major lim-276

itation of this study. With only 64.3% accuracy277

in matching plans to the correct tool, and frequent278

mismatches between API calls and their classifi-279

cations in the dataset. Enhancing the expert selec-280

tion process or training the Planner to explicitly281

indicate the required tool in its output could help282

mitigate this problem. Additionally, GPT-4o mini’s283

poor performance in the Argument Population, al-284

though not deeply explored in this study, raises285

concerns. While its lower cost makes it appealing286

for inference and data generation, its current results287

suggest limited viability unless these issues can be288

addressed.289
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API Choice - Exact Match
music 0.33 0.57 0.52 0.57 0.67
news_media 0.29 0.49 0.59 0.45 0.63
business 0.41 0.45 0.62 0.55 0.69
finance 0.35 0.64 0.62 0.64 0.38
entertainment 0.42 0.55 0.54 0.55 0.51
education 0.50 0.75 0.58 0.58 0.83
travel 0.38 0.42 0.54 0.54 0.62
tools 0.44 0.44 0.56 0.44 0.56
data 0.43 0.64 0.62 0.61 0.46
sports 0.33 0.53 0.60 0.53 0.65
transportation 0.33 0.73 0.73 0.73 0.80
social 0.44 0.75 0.67 0.69 0.83

Argument Population - F1
music 0.24 0.27 0.31 0.43 0.47
news_media 0.23 0.26 0.55 0.42 0.57
business 0.39 0.24 0.56 0.55 0.65
finance 0.28 0.36 0.51 0.56 0.33
entertainment 0.39 0.27 0.47 0.51 0.47
education 0.50 0.25 0.54 0.58 0.75
travel 0.35 0.12 0.41 0.46 0.49
tools 0.41 0.20 0.49 0.42 0.52
data 0.35 0.31 0.51 0.54 0.37
sports 0.31 0.29 0.49 0.51 0.63
transportation 0.23 0.42 0.68 0.68 0.70
social 0.37 0.33 0.49 0.57 0.68

Table 2: Scores for various tasks based on different
models: API Choice - Exact Match and Argument Pop-
ulation - F1. The models include Caller (Shen et al.,
2024), GPT-4o mini (OpenAI), GPT-3.5 Turbo (Ope-
nAI) Zero-shot, GPT-3.5 Turbo (OpenAI) Few-shot, and
Caller+Expert Adapter (this study).
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