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ABSTRACT

Federated Learning (FL) provides a flexible distributed platform where numerous
clients with high degrees of heterogeneity in data and system can collaborate
to learn a model jointly. Previous research has shown that FL is effective in
handling diverse data but often assumes idealized conditions. Specifically, client
participation is often simplified in these studies, while real-world factors make it
difficult to predict or design individual client participation. This complexity often
diverges from the ideal client participation assumption, rendering an unknown
pattern of client participation, referred to as arbitrary client participation (ACP).
Hence, it is an important open problem to explore the impact of client participation
and find a lightweight mechanism to enable ACP in FL. In this paper, we first
empirically investigate the influence of client participation on FL, revealing that
FL algorithms are significantly impacted by ACP. To alleviate the influence, we
propose a lightweight solution, Federated Average with Snapshot (FAST), to
unleash almost ACP for FL. It can seamlessly integrate with other classic FL
algorithms. Specifically, FAST enforces the clients to take a snapshot once in
a while and facilitates ACP for the majority of the training process. We show
the convergence rates of FAST in non-convex and strongly-convex cases, which
match the rates with those in ideal client participation. Furthermore, we empirically
introduce an adaptive strategy for dynamically configuring the snapshot frequency,
tailored to accommodate diverse FL systems. Our extensive numerical results
demonstrate that our FAST attains significant improvements under the conditions
of ACP and highly heterogeneous data.

1 INTRODUCTION

Federated Learning (FL) stands out as an emerging distributed machine learning framework where a
large number of clients (i.e., computing nodes or devices) collaborate together to train a machine
learning model under the coordination of a central server (McMahan et al., 2017; Kairouz et al.,
2021). FL establishes itself as a powerful and flexible distributed platform, fostering collaboration
among diverse clients characterized by substantial heterogeneity in data and system while preserving
the privacy of raw data residing within each client. Hence, previous research endeavors have yielded
a spectrum of efficient algorithms capable of achieving optimal convergence rates in theory and
delivering great performance in some practical cases, in the presence of varying degrees of data
heterogeneity (Kairouz et al., 2021; Zhao et al., 2018; Li et al., 2019; Karimireddy et al., 2020; Yang
et al., 2020; Wang et al., 2021).

Nevertheless, realizing these favorable outcomes often hinges on the assumption of an ideal system
condition (i.e., ideal client participation). Specifically, most FL algorithms presume that client
participation can be fully known, controlled, predicted, or tracked. For example, some works assume
partial client participation, where participation follows a known or controllable random process,
such as ergodic, mixing, or independent processes (McMahan et al., 2017; Acar et al., 2021; Cho
et al., 2023). Others assume that each client participates at least once within certain rounds (Yang
et al., 2022b; Gu et al., 2021; Yan et al., 2024). In practice, however, each client’s participation is
highly dynamic, unknown and unpredictable (Bonawitz et al., 2019; Soltani et al., 2022) since
clients frequently exhibit a spectrum of heterogeneous and dynamically shifting attributes, including
computational power, communication capacity, and availability (Kairouz et al., 2021; Bonawitz et al.,
2019; Yang et al., 2021). These variations stem from the unique characteristics of each individual
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client and the dynamics of distributed learning systems. The intricacies of client participation, marked
by their dynamic, unknown, and unpredictable nature, make it challenging and even impossible to
ascertain a priori beforehand. Moreover, in some FL systems, such as cross-device FL, tracking client
participation is either infeasible or not permitted Kairouz et al. (2021). We refer to this complex and
unpredictable pattern as arbitrary client participation (ACP), reflecting its dependence on various
system factors and the absence of explicit client tracking. Clearly, it leaves a substantial gap between
algorithmic designs built on the premise of ideal client participation and the real-world applications
of FL in the face of ACP. On the other hand, without any conditions on client participation, a constant
error arises for ACP as identified by the lower bound Cho et al. (2022); Wang et al. (2020); Yang
et al. (2022b), implying that no algorithm can achieve stationary point convergence in such case. This
observation motivates us to pose the following fundamental question:

(Q1): Is it possible to design a lightweight mechanism for FL that can accommodate arbitrary
client participation with theoretical guarantees?

In this paper, we show an affirmative answer to this question by proposing a new client participation
mechanism for FL, denoted as Federated Averaging with SnapshoT (FAST). In contrast to most FL
algorithms that necessitate ideal client participation in each communication round, FAST imposes a
minimal requirement for client participation by intermittently implementing a snapshot step. This
approach significantly diminishes the requirement for individual client participation, enabling ACP
for the majority of the training process. We highlight our contributions as follows:

• Through extensive experiments, we revealed that the mismatch between ideal client participation
in algorithm design and arbitrary client participation in practice leads to severe performance
degradation, especially in highly heterogeneous data scenarios. These phenomena are universal
and extend beyond specific algorithms, as observed across multiple FL algorithms.

• To address this issue, we introduce FAST, a lightweight FL framework that requires only intermittent
snapshot steps, enforcing fully random client participation during these steps while accommodating
arbitrary client participation within the system at all other times. This requirement applies to
the client cohort rather than individual clients, allowing the participating group to be statistically
representative. This is a milder condition compared to existing works (see Table 1), as it eliminates
the need to track each client individually.

• Theoretically, we demonstrate that, under mild conditions, FAST can achieve a convergence rate
of O(1/

√
mRK) for non-convex functions and Õ(1/R) for strongly-convex functions, where R

is the number of communication rounds, K is the number of local steps, and m is the number of
participated clients. These rates can match the rates of that with ideal client participation.

• Empirically, we further propose an adaptive strategy designed to adjust the frequency of the
snapshot step dynamically, and we show that our FAST framework can seamlessly integrate with
other classic FL algorithms. Also, our extensive experiments show its effectiveness.

Table 1: Comparison of Client Participation in FL and Convergence Rate in Non-convex Functions.
Algorithm Participation Condition Client Tracking Convergence Rate

MIFA (Gu et al., 2021) Bounded inactive rounds ✓ O( 1√
mKR

)

AFL (Yang et al., 2022b) Bounded inactive rounds ✓ O( 1√
mKR

)

FedAU (Wang & Ji, 2023) Every client participates ✓ O( 1√
mKR

)

FedAmplify (Wang & Ji, 2022) Regularized, mixing, independent process ✗ O( 1√
mKR

)

FedAvg (McMahan et al., 2017) Uniform participation in every round ✗ O( 1√
mKR

)

FAST (our work) Uniform participation occasionally ✗ O( 1√
mKR

)

Lower Bounds (Cho et al., 2022; Wang et al., 2020; Yang et al., 2022b) No assumptions - Ω(1)

2 RELATED WORK

Ideal Client Participation: full client participation and uniformly random client participation.
In FL, client participation can be seen as a proxy for system heterogeneity. Due to the inherent
complexity of real-world FL systems, explicitly modeling client participation proves challeng-
ing (Bonawitz et al., 2019; Yang et al., 2021). Most existing FL algorithms often make an assumption
about ideal client participation, typically relying on either full client participation (Gorbunov et al.,
2021; Haddadpour et al., 2019; Lin et al., 2018; Wang & Joshi, 2019; 2021; Yu et al., 2019) or
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uniformly random client participation (McMahan et al., 2017; Li et al., 2019; Karimireddy et al.,
2020; Yang et al., 2020; Wu et al., 2023; Zhang et al., 2023; Wang et al., 2023; Liu et al., 2021;
Jhunjhunwala et al., 2022; Grudzień et al., 2023). This assumption requires that the server can
force all clients or at least uniformly and randomly sample a subset of clients to participate in each
communication round. However, it is crucial to acknowledge that each client in FL is not entirely
under the server’s control. While the server may sample a client for a specific round, the client
is highly likely not to participate due to various system factors such as drop-out, communication
congestion, and other unpredictable factors (Kairouz et al., 2021; Yang et al., 2021). It is worth
noting that the server can invest additional resources to enforce uniform client participation, such
as sampling more clients and extending the waiting time in each round. Yet, this approach leads to
prolonged training times due to significant communication and computation overhead (Zhou et al.,
2022). As shown in (Luo et al., 2022), enforcing uniform client participation in every round by the
server results in slow wall-clock time for FL training.

Controllable Client Participation. In addition to uniform client participation, another approach
in the field involves modeling client participation as a controllable random process. One line of
works utilizes predefined patterns or probabilities as the model of client participation (Chen et al.,
2022; Yang et al., 2022b; Fraboni et al., 2021; Ruan et al., 2021; Gu et al., 2021; Avdiukhin &
Kasiviswanathan, 2021; Wang & Ji, 2022; Koloskova et al., 2022). The main idea is to allow
asynchronous communication or fixed participation patterns (e.g., given probability) for clients to
participate flexibly in training. However, existing works in this area often require extra assumptions,
such as bounded delay and extra memory (Yang et al., 2022b; Ruan et al., 2021; Gu et al., 2021;
Koloskova et al., 2022) and identical computation rate (Avdiukhin & Kasiviswanathan, 2021).
Moreover, several works explore some unique scenarios of client participation. For instance, (Chen
et al., 2022) introduced a novel client subsampling scheme considering the importance of updates,
relying solely on the norm of the update. The studies by (Malinovsky et al., 2023) and (Cho et al.,
2023) investigated cyclic client participation. (Wang & Ji, 2022) provided a unified analysis for
various client participation, including regularized, ergodic, independent, and mixing participation.
The implicit assumption in these studies is that client participation is either known, largely controllable
or adheres to predefined patterns. It is also noteworthy to mention a related work (Wang & Ji, 2023),
wherein the estimated probability of each client’s participation was used for a re-weighting process
under unknown participation statistics. However, estimating such probabilities can be challenging in
practical scenarios, such as cross-device FL (Kairouz et al., 2021).

Each of these approaches contributes to the diverse client participation strategies employed in FL.
However, these strategies often necessitate adherence to specific patterns, which may not align
seamlessly with practical FL scenarios characterized by highly dynamic, unknown and unpredictable
nature. In this paper, we introduce a more general and practical approach, referred to as arbitrary
client participation (ACP). This implies that we do not impose any assumptions on client participation
for the majority of the training round. Our aim is to offer a flexible and realistic framework that
accommodates various client participation scenarios in real-world FL applications.
Comparison of Related Work. We compare some related work about ACP in Table 1. Except for
the difference in participation patterns and convergence rate, there are still some important points
that we need to compare. For FedAmplify (Wang & Ji, 2022), it can achieve the convergence rate
of O( 1√

mKR
) only in some ideal cases (see Sec. 5 in (Wang & Ji, 2022)), and the server requires

participation frequency for each client. For MIFA (Gu et al., 2021), each client needs to participate
in training at least once in the one-time window. For Anarchic Federated Learning (AFL) (Yang
et al., 2022b), the server needs to identify and store local models, and each client needs to participate
in training at least once in the one-time window. In contrast, our FAST framework has no extra
assumptions for client participation and can achieve the ideal convergence rate. In addition, regular
FAST does not have any demand to store extra information.

3 THE IMPACT OF CLIENT PARTICIPATION IN FL

In this section, our goal is to investigate the impact of client participation on FL performance. We
first introduce the fundamental formulation and the standard FedAvg. Subsequently, we examine
FedAvg’s performance across various client participation scenarios and show the adverse effects of
different ACP. This highlights the gap between current algorithm designs and practical FL systems,
thus motivating us to develop a new framework to accommodate ACP for FL.
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3.1 FEDERATED LEARNING AND FEDERATED AVERAGING

Problem Formulation. In one FL system with M clients, the goal is to minimize the objective
function, which can be formulated as follows:

min
x∈Rd

F (x) :=
1

M

M∑
i=1

Fi(x), (1)

where x ∈ Rd is a d-dimension model parameter, M is the total number of clients, and Fi(x) :=
1

|Si|
∑

ξ∈Di
F (x, ξ),∀i ∈ [M ] is the local loss function associate with local dataset Di that is IID

sampled from one underlying distribution Pi. One of the critical features of FL is that each client has a
subtly different local data distribution, i.e., Pi ̸= Pj if i ̸= j. This leads to heterogeneous (or Non-IID)
data in the FL system, causing model drift and non-trivial performance degradation (Kairouz et al.,
2021; Wang et al., 2021).

FedAvg Algorithm. The Federated Average (FedAvg) algorithm (McMahan et al., 2017) stands as
the pioneering exemplar algorithm for FL, inspiring numerous followup algorithms. Most of the FL
algorithms follow the typical parameter-server architecture. In each communication round r ∈ [R],
the server first selects a subset of clients to participate and broadcasts the current global model xr

to each client. Upon receiving the global model, each participating client locally optimizes the loss
function for some local steps using the local dataset without communication. For example, FedAvg
takes K local steps using the vanilla stochastic gradient descent method. That is, xi

r,k+1 = xi
r,k −

ηc∇Fi(x
i
r,k, ξ

i
r,k), k ∈ {0, · · · ,K − 1} starting from xi

r,0 = xr where ξir,k ∼ Di. After the local
computation, the client sends the model update xi

r = xi
r,K to the server. At the server side, the server

updates the global model by aggregating all the returned local model, i.e., xr+1 = 1
|Sr|

∑
i∈Sr

xi
r

where Sr is the set of participated clients in the r-th round. Then, the next training round begins.

Undoubtedly, client participation, denoted as the set Sr, stands as a pivotal factor influencing the
performance of FL models. While the majority of works in FL concentrate on mitigating data
heterogeneity, the implications of client participation remain largely under-explored. To ensure
convergence guarantees in FL algorithms, specific conditions must be imposed on client participation.
Essentially, these algorithms necessitate a regulated form of client participation, such as participation
through uniformly random sampling or a predetermined probability distribution, as detailed in Sec.2.

However, in real-world FL systems, client participation is inherently dynamic, prone to changes
in each round (Bonawitz et al., 2019; Yang et al., 2021). Even if the server employs an ideal
sampling way, like uniformly random sampling, actual client participation remains unknown and
largely uncontrollable. We term this as arbitrary client participation, signifying that Sr includes
any sampling from the whole client set [M ], thereby incorporating a diverse array of participation
schemes. This process is determined by various inherent system factors, such as client failures and
status changes (Bonawitz et al., 2019; Yang et al., 2021). Hence, there exists a conflict between current
algorithm designs with ideal client participation and practical FL systems with ACP. This motivates
us to explore the impact of different client participations on the FL algorithms’ performance.

3.2 THE IMPACT OF CLIENT PARTICIPATION IN FL

Simulation of Arbitrary Client Participation. We delve into FedAvg’s performance across four
client participations characterized by distinct distributions: uniform, Beta, Gamma, and Weibull.
Uniform client participation entails the random client selection from the entire client set, which is
an assumption representing the ideal scenario in current FL algorithms. The Beta distribution is
commonly employed to model events constrained within an interval. The Gamma distribution finds
application in characterizing the frequency of a sequence of events associated with time or distance,
while the Weibull distribution is widely utilized in reliability or survival analysis (Lai et al., 2006). In
FL, the server often receives returns from clients within a given time window. Hence, it is reasonable
to use uniform distribution as a baseline for ideal client participation. The latter three distributions
are utilized to approximate different real-world scenarios, serving as representatives of ACP.

It is important to emphasize that our primary goal is not to precisely model client participation in
FL but to explore the impact of different potential client participation scenarios. Also, we aim to
highlight the adverse effects resulting from the mismatch between the ideal client participation used
in the current algorithm design and ACP observed in practical FL.
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Experiment Settings. We perform extensive experiments on Fashion-MNIST (Xiao et al., 2017) and
CIFAR-10 (Krizhevsky et al., 2009), considering various Non-IID degrees and utilizing these four
distributions to simulate different client participation. As shown in Table 2, we scrutinize the model
performance using FedAvg. For each case, we record the last five results and report the mean and
standard deviation of test accuracy. Due to the space limit, we only show key findings and delegate
the detailed settings and results for other datasets and algorithms to Sec. 5 and Appendix B.2.

Table 2: Test Accuracy Comparison of FedAvg

Participation \ α Fashion-MNIST CIFAR-10

0.05 0.1 0.3 0.5 1.0 0.1 0.5 1.0

Uniform 84.10%±2.4 86.85%±1.9 89.39%±0.7 91.39%±0.3 92.21%±0.3 80.18%±0.6 80.49%±0.4 80.83%±0.7
Beta 74.84%±1.2 79.89%±4.0 86.40%±1.1 88.74%±0.4 89.43%±0.1 68.30%±0.9 72.27%±0.4 73.32%±0.6

Gamma 66.65%±4.7 81.81%±1.8 88.41%±0.5 87.79%±0.4 89.44%±0.2 70.90%±0.8 73.20%±0.4 73.04%±0.3
Weibull 73.15%±5.1 78.78%±1.6 88.80%±0.4 89.20%±0.6 89.53%±0.2 71.74%±0.7 73.21%±0.7 73.75%±0.3

* The details of this table are introduced in Sec. 5-Note.

Observations. We have three key observations. First, the performance of FedAvg is significantly
influenced by client participation. As shown in Table 2, the model accuracy varies across different
client participation cases, with uniform participation yielding the best performance among these four
cases. This performance difference is substantial, ranging from 3% to 18%. These results align with
practical FL simulations, where uncontrolled client participation induced by system heterogeneity
leads to non-trivial model performance degradation (Yang et al., 2021). Second, this performance
degradation strongly correlates with the degree of Non-IID data. In our setting, we adopt the common
approach of generating Non-IID data using the Dirichlet distribution (Acar et al., 2021), with the
parameter α controlling the Non-IID degree. A smaller α corresponds to a higher Non-IID degree.
For datasets with a higher degree of Non-IID data (smaller α), the model accuracy gap between
uniform and other cases becomes more pronounced. For instance, on the Fashion-MNIST dataset, the
model behaves similarly for different client participation cases with less Non-IID data (i.e., α = 1).
However, as the degree of Non-IID gets higher, such as α = 0.05, the accuracy gap between uniform
and other participation cases could be as large as 18%. Third, the performance degradation for ACP
(in the latter three cases) is a universal phenomenon. This extends beyond FedAvg, as evidenced by
consistent observations across other FL algorithms such as FedProx and FedAvgM.

It is essential to note that occasional enforcement of uniform client participation in FL is feasible.
For instance, the server can sample a larger number of clients and allocate sufficient time for each
communication round, allowing ample clients to complete local computations. However, this strategy
inevitably demands more resources and significantly extends the training time due to longer waiting
time. Therefore, it becomes unrealistic to enforce uniform client participation in every round. On
the other hand, without imposing any constraints on client participation, FedAvg is theoretically
incapable of asymptotically converging to a stationary point (Yang et al., 2022b;a) and experiences
non-trivial performance degradation in practice, as shown above. This realization motivates us to
develop a lightweight client participation mechanism. This mechanism aims to achieve performance
similar to that of uniform participation while imposing fewer constraints on FL systems.

4 FEDERATED AVERAGE WITH SNAPSHOT (FAST)

In this section, we first introduce a lightweight client participation mechanism, denoted as Federated
Average with SnapshoT (FAST). Then, we provide the convergence analysis in non-convex and
strongly-convex cases. In addition, to eliminate the requirement to set snapshot frequency in advance,
we empirically propose a strategy to adjust the snapshot frequency for our FAST adaptively.

4.1 ALGORITHM DESCRIPTION

As illustrated in Algorithm1, we introduce a lightweight and practical client participation mechanism
for FL. In each communication round r ∈ [R], we design two options for client participation. If
r%I == 0, the server takes a snapshot step that requires to enforce a round of uniform client
participation denoted as client set Su

r with cardinality m for that round (Lines 3-4), where I is a
hyper-parameter to control the frequency of the snapshot step. Otherwise, the server does not put any
constraints and can accommodate any system heterogeneity by allowing ACP denoted as set Sa

r with
cardinality n (Lines 5-6). On the client side, each participating client takes K Stochastic Gradient
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Algorithm 1 Federated Average with Snapshot (FAST)
1: Initialize model parameter x0, learning rate ηc, the number of local update steps K, communica-

tion rounds R, snapshot step interval I (or probability q).
2: for r = 0, . . . , R− 1 do
3: If r%I == 0 (with probability q = 1/I): ▶ Snapshot
4: The server enforces uniformly random clients Sr = Sur (|Sur | = m) to participate
5: Otherwise: ▶ Arbitrary
6: The server allows arbitrarily random clients Sr = Sar (|Sar | = n) to participate
7: Each client i ∈ Sr computes in parallel:
8: Local update: xi

r,k+1 = xi
r,k − ηc∇Fi(x

i
r,k, ξ

i
r,k), k ∈ [K].

9: Send xi
r = xi

r,k+1 to the server.
10: Server aggregation: xr+1 = 1

|Sr|
∑
i∈Sr

xi
r.

11: end for

Descent (SGD) steps and sends the returns back to the server (Lines 7-9), mirroring the procedure in
the FedAvg algorithm. Subsequently, after local computations, the server aggregates all the returns
and updates the global model (Line 10). Additionally, we present a probabilistic perspective. In each
round, there exists a probability q of enforcing snapshots and a complementary probability of 1− q
to permit ACP. Here q = 1/I can be interpreted as the snapshot probability or frequency.

In general, the uniqueness of FAST is utilizing a snapshot step every I rounds by enforcing a round
of uniform client participation. The trade-offs of the snapshot are discussed as follows: 1) Resources.
Although uniform client participation is an ideal situation in FL, it can still be achieved in practice
by using some strategies. For instance, the server can initially sample 1.3 ×m clients and extend
the waiting period Bonawitz et al. (2019). This approach would make uniformly random client
participation hold statistically, and mirrors practical FL simulations, such as 11.6% dropout rate
and an optimal waiting time Yang et al. (2021). Hence, enforcing uniform client participation is
practical in reality. Unfortunately, this approach to achieve uniform participation consumes more
resources, such as time and computation. However, in FAST, snapshots just occupy a small portion
of entire training rounds, so FAST can save resources compared to completely uniform participation
in other FL algorithms. 2) Benefits. By the snapshot, our FAST can simultaneously enjoy the optimal
convergence rates as those with uniform client participation shown in Sec. 4.2 and achieve improved
performance when compared with ACP shown in Sec. 5.

4.2 CONVERGENCE ANALYSIS

We first state several standard assumptions commonly used in our work and other optimization and
FL works (Kairouz et al., 2021; Wang et al., 2021).

Assumption 1 (L-Lipschitz Continuous Gradient) For any x and y, there exists a constant L > 0
such that ∥∇F (x)−∇F (y)∥ ≤ L∥x− y∥ and ∥∇Fi(x)−∇Fi(y)∥ ≤ L∥x− y∥.

Assumption 2 (Unbiased Stochastic Gradients with Bounded Variance) The stochastic gradient
calculated by the client or server is unbiased with bounded variance: E [∇Fi(x, ξ)] = ∇Fi(x) and
E [∥∇Fi(x, ξ)−∇Fi(x)∥2] ≤ σ2, where ξ is the data sample.

Assumption 3 (Bounded Gradient Dissimilarity) For any i ∈ [M ], ∥∇Fi(x)−∇F (x)∥2 ≤ σ2
G.

Now, we are ready to offer FAST’s convergence analysis for non-convex functions.

Theorem 1 (Convergence of FAST for Non-convex Functions). Under the Assumptions 1, 2 and
3, supposing that the probability q ≥ (2LKηc−1)G2+2K2σ2

G

G1+(2LKηc−1)G2−2LKηcG3+2K2σ2
G

and the learning rate

ηc ≤ min
{

1
8LK , nq+m(1−q)

5mnLK

}
, then the sequence {xr} generated by FAST satisfies:

1

R

R∑
r=1

E∥∇F (xr)∥2≤
4ζ

KRηc︸ ︷︷ ︸
Optimization Error

+
4
(
qn+(1−q)m

)
mn

Lηcσ
2︸ ︷︷ ︸

Statistical Error

+
(
120(1−q)+60q

)
L2K2η2cσ

2
G︸ ︷︷ ︸

Heterogeneity Error

, (2)
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where ζ := F (x0)− F (x∗), x∗ is the optimal solution, and G1−3 are defined in the Appendix A.2.

With a proper learning rate, we have the following convergence rate for FAST:

Corollary 1 With ηc = O
( √

mn√
RK(nq+m(1−q))

)
, the convergence rate of FAST is

1

R

R∑
r=1

E∥∇F (xr)∥2 ≤ O

(√
nq +m(1− q)

nmKR

)
+O

(
mnK

(nq + (1− q)m)R

)
(3)

The convergence error of FAST comprises three components: 1) the optimization error depending on
the initial point x0, 2) the statistical error associated with stochastic gradient noise σ, and 3) the error
arising from heterogeneous data and local updates in FL. Notably, the third error exhibits a quadratic
relationship with the learning rate. Hence, the first two terms dominate when using a sufficiently

small learning rate. With an appropriate learning rate, the convergence rate is O
(√

nq+m(1−q)
nmKR

)
for

a suitably large round R ≥ (mnK)3

[nq+m(1−q)]3 . In the special case(m = n), the convergence rate becomes:

Corollary 2 Supposing that m = n, FAST achieves convergence rate:

1

R

R∑
r=1

∥∇F (xr)∥2 ≤ O
(√ 1

mRK

)
. (4)

Remark 1 In non-convex functions, this sublinear convergence rate shows the speedup in terms of
clients’ number m and the local steps K, which matches the optimal convergence rate in FL with
uniform client participation in every round (Karimireddy et al., 2020; Yang et al., 2020).

Remark 2 It is worth pointing out that there does exist a requirement of the snapshot prob-
ability/frequency q (or I). Specifically, it depends on data heterogeneity in the FL system:
q ≥ (2LKηc−1)G2+2K2σ2

G

G1+(2LKηc−1)G2−2LKηcG3+2K2σ2
G

= 1
1+(G1−2LKηcG3)/(2K2σ2

G+2LKηcG2−G2)
. For every

heterogeneous data in FL, we can choose a proper q such that it can converge at such an optimal rate.
We list two special cases to show FAST’s generalization. 1) σG → 0. If data is IID among clients,
then q ≥ 0, meaning that we can always avoid using the snapshot step and set q = 0. This situation
corresponds to traditional distributed learning where each client has access to a shared dataset or IID
datasets. In such cases, the choice of which subset of clients participates is inconsequential, as the
training data used remains statistically identical. 2) σG →∞. If data is extremely highly Non-IID,
the lower bound of q will approach 1, requiring a high frequency of snapshots. In extreme cases, it
might require uniform client participation in every round to guarantee convergence.

If we assume a strongly convex condition on the function, we can achieve a faster convergence rate.

Assumption 4 (Strong Convexity) For any x and y, Fi is µ-convex with a constant µ > 0, if
Fi(y) ≥ Fi(x) +∇Fi(x)

T (y − x) + µ
2 ∥y − x∥2,∀i ∈ [M ].

Theorem 2 (Convergence of FAST for Strongly Convex Functions). Under the Assumptions 1,2,3
and 4, supposing that the learning rate 0 < ηc ≤ min

{
1

20mLK , 1
20nLK

}
and the probability

q ≥ 1−
(

µKηc−16L2K2η2
c

4σ2
G

)
, the sequence {xr} generated by FAST satisfies:

E∥xR − x∗∥2 ≤ exp (−µKRηc)κ+
(1− q)

2µ
Kηc +

8

µ
Kηcσ

2
G +

2
(
qn+ (1− q)m

)
mnµ

ηcσ
2,

where κ = ∥x0 − x∗∥2 and x∗ is the optimal solution.

Corollary 3 For Theorem 2, supposing µ > 0, m = n, ηc ≤ 1
20mLK and R ≥ 20mL, we can obtain

E∥xR − x∗∥2 ≤ Õ
(
exp

(
− µR

20mL

))
+ Õ

(
(1− q)

µR

)
+ Õ

(
1

µR
σ2
G

)
+ Õ

(
1

µmKR
σ2

)
,

where Õ(·) subsumes all log-terms and constants. Accordingly, FAST achieves a convergence rate of
Õ(1/R).
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Remark 3 In strongly-convex functions, FAST can achieve a faster convergence rate of Õ(1/R)
compared to the non-convex case. It is worth mentioning that this rate can match these rates achieved
in FL with ideal client participation (Li et al., 2019). In conjunction with Corollary 1, it is clear that,
under appropriate hyper-parameter settings, our FAST can achieve the same convergence rate under
ACP as these FL algorithms with ideal client participation.

4.3 ADAPTIVE FAST

As shown in Algorithm 1, FAST introduces an extra hyper-parameter, q (or I), representing the
snapshot probability (or frequency). Obviously, the effective performance of our FAST is evidently
contingent on the selection of an appropriate q, as indicated by the ablation study on q in Sec. 5. In
practice, obtaining prior knowledge to consistently set the optimal q poses a challenge. To address
this issue, we propose an adaptive strategy to dynamically update q as shown in Algorithm 2.

Algorithm 2 Adaptive q in FAST
1: Initialize q0 = 0, ∆ = 0, λ(default = 1).
2: for round r = 0, 1, ..., R− 1 do
3: Obtain accr
4: ∆← ∆− accr
5: qr+1 ← min(1,max(0, qr + λ∆))
6: ∆← accr
7: end for

In more detail, we initiate with q = 0 to refrain from enforcing client participation at the beginning of
training procedure. Meanwhile, q is adjusted in each round based on the training accuracy difference
∆ between the current and previous rounds. When ∆ > 0, indicating a decrease in training accuracy
compared to the last round, we increase q by λ∆. This adjustment aims to increase the probability
of uniform client participation, improving performance. Conversely, when ∆ < 0, signifying an
increase in training accuracy in the current round, we decrease q by λ∆. This reduction aims to
diminish the probability of uniform client participation, ensuring a more substantial contribution from
arbitrary participation in the training process. Line 5 ensures that the frequency q stays within the
range of [0,1]. For the selection of λ, we conduct a series of experiments to assess the performance
under different λ. Our results show that the adaptive FAST is less sensitive to the choice of λ, and
choosing a default λ = 1 works well under different settings provided in Sec. 5 and Appendix B.2.3.

5 EXPERIMENTS

We provide our experiment settings and main results in Sec. 5.1, while leaving other details to
Appendix B.2 due to a lack of space.

Datasets and Models. We employ Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 datasets
(Krizhevsky et al., 2009) for image classification tasks. Additionally, we utilize the Shakespeare
dataset (Caldas et al., 2018) for the next character prediction task. For image classification tasks, we
train convolutional neural network (CNN) models in our FL system, but the models are different
for these two datasets, aiming to adapt to the characteristics of different tasks. Besides, we train the
Char-LSTM model for character prediction tasks. Due to space constraints, we direct readers to the
Appendix B.1 for comprehensive details regarding datasets and models.

FL System. Our FL system comprises 100 clients in total for Fashion-MNIST and CIFAR-10 and
139 clients for Shakespeare. In each round, only 10% clients are chosen to participate in the training
process. 1) Data Heterogeneity. The experiments on Fashion-MNIST and CIFAR-10 adhere to
balanced and Non-IID datasets. This implies that each client possesses an equal number of data, yet
the label distributions differ across clients. To establish this setup, we leverage the FedLab framework
(Zeng et al., 2023) for data partitioning. We employ Dirichlet Distribution, as in previous works (Hsu
et al., 2019), to generate label-based distributions for each client. By adjusting α, we can control
the Non-IID degree of data. Generally, a smaller α corresponds to higher data heterogeneity. We
provide a data visualization in Figure 1 in Appendix for reference. As for the Shakespeare dataset, its
inherent nature is Non-IID. Consequently, we distribute the data of each user to each individual client,
ensuring that the number of users in the dataset equals the number of clients in our FL system. 2)
Client Participation. We employ four distributions to simulate various participation patterns: uniform,
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Beta, Gamma, and Weibull distributions. The uniform distribution serves as ideal client participation.
In contrast, the other three distributions act as proxies for ACP. 3) Algorithms. We implement three
baselines: FedAvg, FedProx and FedAvgM. Here, we primarily present FedAvg’s results, deferring
other results to Appendix B.2. When q = 0, our FAST becomes the classic FedAvg under various
ACP. When q = 1, it is the FedAvg under ideal client participation.

Table 3: Experiment results of FAST+FedAvg under different client participation and Non-IID cases.

Participation q
Fashion-MNIST CIFAR-10 Shakespeare

α=0.05 α=0.1 α=0.1 α =N/A

Test Accuracy Ratio Test Accuracy Ratio Test Accuracy Ratio Test Accuracy Ratio

Uniform (FedAvg) 1 84.10%±2.4 0% 86.85%±1.9 0% 80.18%±0.6 0% 48.86%±0.3 0%

Beta (FAST)

Ada.(7) 80.92%±3.1 60.3% 83.77%±1.8 69.4% 76.83%±1.0 67.5% 48.80%±0.3 54.2%
Ada.(def.) 77.93%±0.7 88.5% 81.08%±1.2 95.5% 68.94%±4.0 96.6% 47.51%±0.6 93.9%

0.5 80.74%±2.7 49.6% 82.83%±2.0 50.2% 78.03%±1.3 50.7% 48.63%±0.3 49.6%
0.4 80.89%±1.3 59.6% 84.07%±2.2 60.7% 78.04%±0.2 60.3% 48.52%±0.3 60.1%
0.3 75.88%±4.4 69.9% 81.40%±3.5 70.3% 76.84%±0.6 70.1% 48.31%±0.3 70.5%
0.2 76.78%±1.5 77.9% 80.61%±1.3 82.6% 73.90%±1.2 80.0% 47.96%±0.4 79.5%
0.1 74.42%±5.3 90.9% 81.15%±0.7 88.5% 72.98%±1.4 89.9% 47.45%±0.6 90.2%

Beta (FedAvg) 0 74.84%±1.2 100% 79.89%±4.0 100% 68.30%±0.9 100% 46.84%±0.4 100%

Gamma (FAST)

Ada.(7) 79.95%±4.9 59.3% 84.42%±2.7 74.0% 76.26%±1.4 66.1% 48.88%±0.3 50.8%
Ada.(def.) 71.48%±4.5 91.8% 82.00%±2.1 96.9% 73.47%±0.5 97.3% 45.37%±0.5 92.7%

0.5 77.39%±2.7 50.4% 85.52%±2.3 52.0% 77.76%±0.5 49.6% 48.66%±0.3 49.7%
0.4 77.69%±3.5 61.0% 84.23%±2.7 59.5% 78.45%±0.7 59.9% 48.35%±0.4 60.7%
0.3 76.87%±2.6 68.5% 85.91%±1.7 69.4% 75.67%±1.1 70.7% 47.69%±0.8 69.8%
0.2 72.40%±4.7 79.3% 84.40%±3.1 78.2% 75.70%±0.7 81.0% 47.11%±0.6 80.0%
0.1 72.23%±3.2 89.7% 84.55%±2.4 91.1% 74.77%±0.6 89.7% 45.91%±0.7 90.3%

Gamma (FedAvg) 0 66.65%±4.7 100% 81.81%±1.8 100% 70.90%±0.8 100% 44.46%±1.0 100%

Weibull (FAST)

Ada.(7) 77.89%±3.3 59.5% 83.72%±2.7 77.3% 76.37%±1.3 66.6% 48.38%±0.3 47.9%
Ada.(def.) 77.14%±2.7 90.4% 79.83%±3.6 97.0% 72.91%±0.4 97.4% 46.36%±0.8 89.0%

0.5 79.10%±4.2 50.7% 85.54%±0.7 49.8% 79.17%±1.0 50.2% 48.55%±0.3 50.1%
0.4 77.72%±3.4 60.3% 84.85%±1.1 62.3% 77.70%±0.5 59.5% 48.05%±0.7 60.4%
0.3 77.08%±4.2 71.3% 84.48%±2.3 69.5% 75.80%±0.6 69.9% 47.95%±0.4 70.4%
0.2 75.66%±4.4 80.8% 81.37%±4.1 80.5% 75.21%±0.6 79.1% 47.27%±0.4 80.2%
0.1 75.36%±2.6 89.5% 82.42%±2.5 89.4% 74.14%±1.1 89.8% 46.63%±1.4 90.6%

Weibull (FedAvg) 0 73.15%±5.1 100% 78.78%±1.6 100% 71.74%±0.7 100% 45.18%±1.8 100%

Hyper-parameter Settings. 1) Fashion-MNIST: rounds = 1000, learning rate = 1e-3, training batch
size = 128, testing batch size = 1000. 2) CIFAR-10: rounds = 10,000, learning rate = 1e-2, training
batch size = 128, testing batch size = 256. At the 5000th round, the learning rate decays by half. 3)
Shakespeare: rounds = 5000, learning rate = 0.5, training batch size = 128, testing batch size = 256.

Note. For simplicity and clarity, we declare the following notations about experiment results across all
tables in this paper: a) Ada.(λ) means adaptive FAST with a fixed λ. The default λ is λ = 1 denoted
by Ada.(def.). b) We define "Ratio" as Rounds with ACP

Total rounds represents the percentage of arbitrary client
participation. (1− Ratio) represents the percentage of the snapshot enforcement. When Ratio = 0, it
implies that every round necessitates uniformly random sampling. Conversely, when Ratio = 1, only
ACP occurs. c) α is the concentration parameter of Dirichlet distribution to control the Non-IID level.
d) A±B: A is the average of the last 5 test accuracy, and B is the standard deviation.

5.1 EXPERIMENT RESULTS

In this subsection, we provide four key findings to validate our algorithm and support theoretical
analysis: 1) degraded performance for FL algorithms under ACP, 2) improved performance of
our FAST algorithm under ACP, 3) compatible framework of our FAST to integrate with other FL
algorithms, and 4) ablation study for the hyper-parameters.

1. FL algorithms’ degraded performance under ACP. In Sec. 4, we illustrate the non-trivial
performance degradation of FedAvg under ACP. It is worth noting that this performance degradation
is a universal phenomenon extending beyond FedAvg. This is evident in the FedProx results, as
shown in Table 4. Results in the table reveal a discernible gap between ideal client participation
(uniform distribution) and ACP (other three distributions), with this gap significantly impacted by the
level of data heterogeneity. In Appendix, we present more similar findings for other FL algorithms.

2. Improved performance of our FAST under ACP. In Table 3, we present a comparison between
FedAvg and our FAST across various client participation and Non-IID scenarios, leading to three key
findings: 1) Our FAST improves performance by increasing the snapshot frequency (q) across all
tasks. We conducted experiments with different fixed values of q and observed that our FAST, when
configured with q = 0.5, nearly matches the test accuracy of FedAvg under ideal client participation.
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In other words, we can enforce uniform client participation in only half of the rounds, allowing the
remaining rounds to follow ACP. 2) Our adaptive FAST proves effective, showcasing an increased test
accuracy with the least snapshots. For instance, in Fashion-MNIST with α = 0.05, with the default
λ = 1, our FAST requires only 1− 91.8% = 8.2% snapshot enforcement while elevating accuracy
from 66.65% to 71.48% in the Gamma distribution. If we take a more aggressive λ = 7, the accuracy
can be improved to 79.95%. 3) Our adaptive FAST achieves a great balance between test accuracy
and snapshot frequency. Across all cases in Table 3, our default adaptive strategy (Ada.(def.), with
λ = 1) consistently requires less than 10% snapshots while delivering notable improvements.

Table 4: FedProx performance comparison of different client participation in different degrees of Non-IID data.
Fashion-MNIST CIFAR-10

Participation \ α 0.05 0.1 0.3 0.5 1.0 0.1 0.5 1.0

Uniform 83.48%±3.4 86.67%±0.5 90.36%±1.5 91.56%±0.3 91.99%±0.6 79.53%±0.5 80.67%±0.9 81.82%±0.5
Beta 74.74%±0.8 77.88%±4.7 88.77%±0.4 89.44%±0.2 89.93%±0.2 72.76%±1.0 74.76%±0.7 76.54%±0.2

Gamma 75.59%±5.5 84.49%±1.9 89.76%±1.0 89.97%±1.0 91.47%±0.2 65.94%±1.3 79.04%±0.9 80.00%±0.3
Weibull 79.55%±2.0 83.66%±2.3 89.77%±0.3 90.31%±0.7 90.97%±0.2 72.94%±1.2 77.30%±0.3 77.63%±0.3

Table 5: Performance comparison of different λ for adaptive FAST+FedAvg with α = 0.1.
Distribution \ λ 1 2 3 4 5 6 7 8 9

Beta (FAST) 81.08%±1.2 80.79%±1.5 81.37%±2.3 82.40%±1.8 81.63%±1.7 81.99%±0.7 83.77%±1.8 81.84%±1.8 79.63%±5.2
Ratio 95.5% 90.7% 85.2% 80.4% 72.7% 73.1% 69.4% 68.5% 63.9%

Gamma (FAST) 82.00%±2.1 79.63%±5.2 82.76%±3.4 84.43%±0.7 84.47%±1.0 86.02%±0.5 84.42%±2.7 84.55%±1.4 83.89%±1.9
Ratio 96.9% 90.4% 86.4% 82.3% 77.2% 77.3% 74.0% 71.4% 70.8%

Weibull (FAST) 79.83%±3.6 81.76%±4.6 78.88%±2.5 82.09%±3.1 84.01%±2.0 83.29%±2.6 83.72%±2.7 84.65%±3.7 84.84%±1.6
Ratio 97.0% 93.0% 91.2% 85.8% 82.3% 80.3% 77.3% 74.8% 72.7%

3. Compatible framework of our FAST to integrate with other FL algorithms. We highlight that
the client participation mechanism in FAST constitutes a general and compatible framework which
can seamlessly integrate with other FL algorithms. To demonstrate this, we adopt two additional FL
algorithms, FedProx and FedAvgM, utilizing our FAST client participation mechanism, referred to as
FAST+. Detailed experimental results are provided in Table 6 and Table 7 in the Appendix due to
space limitations. In general, we observe that, under ACP, as modeled by the latter three distributions,
the performance of FAST+ significantly surpasses that of FedProx and FedAvgM. These results hold
for both fixed q and adaptive q. In specific cases, adaptive FAST+ achieves higher test accuracy than
FAST+ with a fixed q when their individual proportions of ACP are approximately equal. In other
words, adaptive FAST+ can attain higher test accuracy with a higher percentage of ACP (bigger Ratio
or smaller q). These observations align with the results in Table 3 for FedAvg, demonstrating that the
client participation mechanism in FAST is general and compatible with other FL algorithms.

4. Ablation study for the hyper-parameters. We conducted an extensive series of experiments
to perform an ablation study on FL and hyper-parameters of our FAST, including α, distributions
for modeling client participation, adaptive hyper-parameter λ, etc. Here, we specifically investigate
the impact of λ as a key hyper-parameter in our adaptive FAST, leaving all other results in the
Appendix B.2.3. In Table 5, we present the test accuracy for Fashion-MNIST with λ varying from
1 to 9. Overall, FAST’s performance exhibits less sensitivity to the choices of different λ values
under distinct distributions. As increasing λ, the snapshot frequency rises, resulting in a decreased
ratio. This indicates that the q increases with the increase of λ. However, we observe that the model
performance remains stable. Notably, with our default choice of λ = 1, our FAST attains good test
accuracy with only a small percentage of snapshots. Across these three distributions, when λ = 1,
we require less than 5% of snapshot enforcement, validating the effectiveness of our adaptive FAST.

6 CONCLUSION

In this paper, we explored the impact of ACP on FL, characterized by an unknown pattern of client
participation. We first empirically showed that FL algorithms are significantly impacted by ACP.
Afterward, we proposed a lightweight solution, Federated Average with Snapshot (FAST), to unleash
the almost ACP for FL. In strongly-convex and non-convex cases, we proved the convergence rates
of FAST, which match the rates with those in ideal client participation. Besides, we introduced an
adaptive strategy for dynamically configuring the snapshot frequency, tailored to accommodate diverse
FL systems. Extensive numerical results showed that our FAST attains significant improvements
under the conditions of ACP and can seamlessly integrate with other classic FL algorithms.
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A PROOF OF THEOREMS

A.1 LEMMAS

Here we introduce some lemmas that we use in our proof and are also commonly used in other works.

Lemma 1 For any x and y, L-Lipschitz function F satisfies F (y) ≤ F (x) +∇F (x)T (y − x) +
L
2 ∥y − x∥2.

Lemma 2 (Karimireddy et al., 2020) For any x,y, z ∈ dom g, any L-smooth and µ-strongly-convex
function satisfies ⟨∇g(x), z− y⟩ ≥ g(z)− g(y) + µ

4 ∥y − z∥2 − L∥z− x∥2.

A.2 PROOF OF THEOREM 1

Theorem 1: (Convergence of FAST for Non-convex Functions) Under the Assumptions 1,2
and 3, supposing that the local step size ηc ≤ min

{
1

8LK , nq+m(1−q)
5mnLK

}
and the probability

q ≥ (2LKηc−1)G2+2K2σ2
G

G1+(2LKηc−1)G2−2LKηcG3+2K2σ2
G

, then the sequence {xr} generated by FAST satisfies:

1

R

R∑
r=1

E∥∇F (xr)∥2 ≤
4
(
F (x0)− F (x∗)

)
KRηc

+

(
4
(
qn+ (1− q)m

)
mn

)
Lηcσ

2

+
(
120(1− q) + 60q

)
L2K2η2cσ

2
G,

where F (x∗) is the minimum value of F (·), and G1−3 are defined in the following proof.

Proof:

We define that there are totally Ru = |Tu| = qR rounds under uniform client participation, Ra =
|Ta| = (1− q)R rounds under arbitrary client participation, and total rounds R = Ru +Ra.

When the server uniformly samples clients at random as a client set Sur and |Sur | = m, we begin with
Lemma 1 to get

E r[F (xr+1)] ≤F (xr) + ⟨∇F (xr),E r[xr+1 − xr]⟩+
L

2
E r∥xr+1 − xr∥2

=F (xr) + ⟨∇F (xr),E r[∆
u
r ]⟩︸ ︷︷ ︸

A1

+
L

2
E r∥∆u

r ∥2︸ ︷︷ ︸
A2

, (5)

where we denote that

∆u
r = xr+1 − xr = −ηc

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k) and E r[∆

u
r ] = −

ηc
M

M∑
i=1

K∑
k=1

E r

[
∇Fi(x

i
r,k)
]
.

Note that E r[·] means the expectation given all randomness generated before the (r + 1)-th round.

Now, we focus on bounding the term A1. We use the Parallelogram Identity to deal with this cross-
term, use assumption 1 to get A3, and use Lemma 3 in (Reddi et al., 2020) to get the inequality (6)
under the condition ηc ≤ 1

8LK .

A1 =⟨∇F (xr),E r[∆
u
r ]⟩

=⟨∇F (xr),−
ηc
M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)⟩

=
ηc
2K

−K2∥∇F (xr)∥2 −

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2

+

∥∥∥∥∥K∇F (xr)−
1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2


=− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2

+
ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

(
∇Fi(xr)−∇Fi(x

i
r,k)
)∥∥∥∥∥

2
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≤− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2

+
ηc
2M

M∑
i=1

K∑
k=1

∥∥∇Fi(xr)−∇Fi(x
i
r,k)
∥∥2

≤− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2

+
L2ηc
2M

M∑
i=1

K∑
k=1

∥∥xr − xi
r,k

∥∥2︸ ︷︷ ︸
A3

≤− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2

+
L2ηc
2M

M∑
i=1

K∑
k=1

(
5Kη2c (σ

2 + 6Kσ2
G) + 30K2η2c∥∇F (xr)∥2

)
(6)

=
(
15L2K3η3c −

Kηc
2

)
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥
2

+
5

2
L2K2η3cσ

2 + 15L2K3η3cσ
2
G (7)

Next, we use Lemma 4 in (Karimireddy et al., 2020) to bound the A2 term.

A2 =
L

2
E r∥∆u

r ∥2

=
L

2
E r

∥∥∥∥∥∥−ηc
m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k)

∥∥∥∥∥∥
2

≤Lη2c

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
LKη2c
m

σ2 (8)

Plugging (7) and (8) into (5), we obtain

E r[F (xr+1)] ≤F (xr) +
(
15L2K3η3c −

Kηc
2

)
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇F (xi
r,k)

∥∥∥∥∥
2

+ 15L2K3η3cσ
2
G +

5

2
L2K2η3cσ

2 + Lη2c

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
LKη2c
m

σ2

=F (xr)−
(Kηc

2
− 15L2K3η3c

)
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇F (xi
r,k)

∥∥∥∥∥
2

+ 15L2K3η3cσ
2
G +

(5
2
L2K2η3c +

LKη2c
m

)
σ2 + Lη2c

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

(9)

Rearranging (9) , we get

Kηc

(1
2
− 15L2K2η2c

)
∥∇F (xr)∥2 ≤ F (xr)− E r[F (xr+1)]−

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇F (xi
r,k)

∥∥∥∥∥
2

+ 15L2K3η3cσ
2
G +

(LKη2c
m

+
5

2
L2K2η3c

)
σ2 + Lη2c

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

(10)
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To lower bound the constant on the left side of (10), we require the learning rate ηc to satisfy that
ηc ≤ 1

2
√
15KL

. Then, we further simplify (10) to obtain

1

4
Kηc∥∇F (xr)∥2 ≤F (xr)− E r[F (xr+1)]−

ηc
2K

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇F (xi
r,k)

∥∥∥∥∥
2

+ 15L2K3η3cσ
2
G

(11)

+
(LKη2c

m
+

5

2
L2K2η3c

)
σ2 + Lη2c

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

(12)

Multiplying 4
Kηc

on the both sides of (12), we have

∥∇F (xr)∥2 ≤
4

Kηc

(
F (xr)− E r[F (xr+1)]

)
− 2

K2

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇F (xi
r,k)

∥∥∥∥∥
2

+ 60L2K2η2cσ
2
G

+
(4Lηc

m
+ 10L2Kη2c

)
σ2 +

4Lηc
K

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

(13)

We temporarily keep the result (13) there and continue to deal with the next part of arbitrary client
participation in the following.

When the server arbitrarily samples clients Sa
r and |Sa

r | = n, we use Lemma 1 to get

E r[F (xr+1)] ≤F (xr) + ⟨∇F (xr),E r[xr+1 − xr]⟩+
L

2
E r∥xr+1 − xr∥2

=F (xr) + ⟨∇F (xr),E r[∆
a
r ]⟩︸ ︷︷ ︸

A4

+
L

2
E r∥∆a

r∥2︸ ︷︷ ︸
A5

, (14)

where we denote that

∆a
r = xr+1 − xr = −ηc

n

∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k) and E r[∆

a
r ] = −

ηc
n
E r

∑
i∈Sa

r

K∑
k=1

[
∇Fi(x

i
r,k)
]
.

We deal with the term A4 by using the Parallelogram Identity.

A4 =⟨∇F (xr),E r[∆
a
r ]⟩

=
ηc
2K

−K2∥∇F (xr)∥2 −

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+

∥∥∥∥∥∥K∇F (xr)−
1

n

∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2


=− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

(
∇F (xr)−∇Fi(x

i
r,k)
)∥∥∥∥∥∥

2

≤− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
ηc
2n

∑
i∈Sa

r

K∑
k=1

∥∥∇F (xr)−∇Fi(x
i
r,k)
∥∥2︸ ︷︷ ︸

A6

(15)

Then, in the following, we use Jensen’s Inequality to bound A6 in the first inequality, utilize L-
Lipschitz and data heterogeneity assumptions to get the second inequality, and use Lemma 3 in
(Reddi et al., 2020) to get (16) under the condition ηc ≤ 1

8LK .

A6 =∥∇F (xr)−∇Fi(x
i
r,k)∥2

=∥∇F (xr)−∇Fi(xr) +∇Fi(xr)−∇Fi(x
i
r,k)∥2
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≤2∥∇F (xr)−∇Fi(xr)∥2 + 2∥∇Fi(xr)−∇Fi(x
i
r,k)∥2

≤2σ2
G + 2L2∥xr − xi

r,k∥2

≤2σ2
G + 2L2

(
5Kη2c (σ

2 + 6Kσ2
G) + 30K2η2c∥∇F (xr)∥2

)
(16)

=60L2K2η2c∥∇F (xr)∥2 + (2 + 60L2K2η2c )σ
2
G + 10L2Kη2cσ

2 (17)

Plugging (17) into (15), we establish

A4 ≤−
Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
ηc
2n

∑
i∈Sa

r

K∑
k=1

(
60L2K2η2c∥∇F (xr)∥2 + (2 + 60L2K2η2c )σ

2
G + 10L2Kη2cσ

2
)

=− Kηc
2
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+ 30L2K3η3c∥∇F (xr)∥2

+ (Kηc + 30L2K3η3c )σ
2
G + 5L2K2η3cσ

2

=
(
30L2K3η3c −

Kηc
2

)
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+ (Kηc + 30L2K3η3c )σ
2
G + 5L2K2η3cσ

2 (18)

Next, we apply Lemma 4 in (Karimireddy et al., 2020) to bound the A5 term.

A5 =
L

2
E r∥∆r∥2

=
Lη2c
2

E r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k)

∥∥∥∥∥∥
2

≤Lη2c

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
LKη2c
n

σ2 (19)

Plugging (18) and (19) into (14), we obtain

E r[F (xr+1)] ≤F (xr) +
(
30L2K3η3c −

Kηc
2

)
∥∇F (xr)∥2 −

ηc
2K

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+ (Kηc + 30L2K3η3c )σ
2
G + 5L2K2η3cσ

2 + Lη2c

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
LKη2c
n

σ2

=F (xr)−
(Kηc

2
− 30L2K3η3c

)
∥∇F (xr)∥2 −

( ηc
2K
− Lη2c

)∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+ (Kηc + 30L2K3η3c )σ
2
G +

(LKη2c
n

+ 5L2K2η3c

)
σ2 (20)

Rearranging (20), we establish(Kηc
2
− 30L2K3η3c

)
∥∇F (xr)∥2 ≤F (xr)− E r[F (xr+1)]−

( ηc
2K
− Lη2c

)∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2
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+ (Kηc + 30L2K3η3c )σ
2
G +

(LKη2c
n

+ 5L2K2η3c

)
σ2

(21)

To lower bound the constant on the left side of (21), we require the learning rate ηc to satisfy that
ηc ≤ 1

2
√
30KL

.

Then, we arrive at

1

4
Kηc∥∇F (xr)∥2 ≤F (xr)− E r[F (xr+1)]−

( ηc
2K
− Lη2c

)∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+ (Kηc + 30L2K3η3c )σ
2
G +

(
LKη2c
n

+ 5L2K2η3c

)
σ2 (22)

Multiplying 4
Kηc

on the both sides of (22), we obtain

∥∇F (xr)∥2 ≤
4

Kηc

(
F (xr)− E r[F (xr+1)]

)
−
(

2

K2
− 4Lηc

K

)∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+ (4 + 120L2K2η2c )σ
2
G +

(
4Lηc
n

+ 20L2Kη2c

)
σ2 (23)

Note that there are total R (R = Ru +Ra) rounds, including Ru rounds (Tu as the round indices)
under uniform client participation and Ra rounds (Ta as the round indices) under arbitrary client par-
ticipation. Then, by (13) from uniform participation and (23) from arbitrary participation, executing
our algorithm for R rounds, we can establish

1

R

R∑
r=1

∥∇F (xr)∥2 ≤
4

Kηc

1

R

∑
r∈Su

r

(
F (xr)− E r[F (xr+1)]

)
− 2

K2

1

R

∑
r∈Su

r

∥∥∥∥∥ 1

M

M∑
i=1

K∑
k=1

∇F (xi
r,k)

∥∥∥∥∥
2

+
1

R

∑
r∈Su

r

60L2K2η2cσ
2
G +

1

R

∑
r∈Su

r

(4Lηc
m

+ 10L2Kη2c

)
σ2

+
4Lηc
K

1

R

∑
r∈Su

r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
4

Kηc

1

R

∑
r∈Sa

r

(
F (xr)− E r[F (xr+1)]

)

−
( 2

K2
− 4Lηc

K

) 1

R

∑
r∈Sa

r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
1

R

∑
r∈Sa

r

(4 + 120L2K2η2c )σ
2
G +

1

R

∑
r∈Sa

r

(4Lηc
n

+ 20L2Kη2c

)
σ2

≤
4
(
F (x0)− F (x∗)

)
KRηc

+

(
4
(
qn+ (1− q)m

)
mn

)
Lηcσ

2

+
(
10q + 20(1− q)

)
L2Kη2cσ

2 +
(
120(1− q) + 60q

)
L2K2η2cσ

2
G

≤
4
(
F (x0)− F (x∗)

)
KRηc

+

(
4
(
qn+ (1− q)m

)
mn

)
Lηcσ

2

+
(
120(1− q) + 60q

)
L2K2η2cσ

2
G, (24)

where the inequality (24) holds with following conditions: learning rate ηc ≤ nq+m(1−q)
5mnLK

and q ≥ (2LKηc−1)G2+2K2σ2
G

G1+(2LKηc−1)G2−2LKηcG3+2K2σ2
G

. For the domain of q, we introduce
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G1 := max
r∈Tu

∥∥∥ 1
M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k)
∥∥∥2, G2 := max

r∈Ta

∥∥∥ 1
n

∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)
∥∥∥2 and G3 :=

max
r∈Tu

∥∥∥ 1
m

m∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)
∥∥∥2 to light the notation.

Here, for clarification, we further explain how we get the inequality (24) and the domain of q above.
The key idea is to set− 2

K2
1
RG1+

4LηC

K
1
RG3−( 2

K2 − 4Lηc

K
1
R )G2+

1
R

∑
r∈Sa

4σ2
G ≤ 0, and then we

can drop this entire negative term and follow the condition q ≥ (2LKηc−1)G2+2K2σ2
G

G1+(2LKηc−1)G2−2LKηcG3+2K2σ2
G

.

To further get the convergence rate, we set learning rate to satisfy ηc = O
( √

mn√
RK(qn+(1−q)m)

)
, and

then we can obtain the convergence bound in the non-convex case as follows.

1

R

R∑
r=1

E∥∇F (xr)∥2 ≤O

(√
nq +m(1− q)

nmKR

)
+O

(√
nq +m(1− q)

mnRK
σ2

)

+O
(

mnK

(nq + (1− q)m)R
σ2
G

)
■

A.3 PROOF OF THEOREM 2

Theorem 2: (Convergence of FAST for Strongly Convex Functions) Under assumptions 1,2,3 and
4, if the learning rate and probability of snapshots satisfy 0 < ηc ≤ min

{
1

20mLK , 1
20nLK

}
and

q ≥ 1−
(

µKηc−16L2K2η2
c

4

)
, then the sequence {xr} generated by FAST satisfies:

E ∥xR − x∗∥2 ≤ exp (−µKRηc)κ+
(1− q)

2µ
Kηcσ

2
G +

8

µ
Kηcσ

2
G +

2
(
qn+ (1− q)m

)
mnµ

ηcσ
2,

(25)

where κ := ∥x0 − x∗∥2 and x∗ is the optimal solution.

Proof:

In this proof, we still use the same definitions as the Proof A.2. There are totally Ru = |Tu| = qR
rounds under uniform client participation, Ra = |Ta| = (1 − q)R rounds under arbitrary client
participation, and total rounds R = Ru +Ra.

First, we deal with the uniform client participation part. When the server uniformly samples clients at
random in r-th round as a client set Sur and |Sur | = m, we have

E u
r ∥xr+1 − x∗∥2 =E r∥xr +∆u

r − x∗∥2

=E r∥xr − x∗∥2 + 2E r⟨∆u
r ,xr − x∗⟩+ E r∥∆u

r ∥2

=∥xr − x∗∥2 − 2ηc ⟨
1

M

M∑
i=1

K∑
k=1

∇Fi(x
i
r,k),xr − x∗⟩︸ ︷︷ ︸

A7

+ η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
A8

, (26)

where we denote that

∆u
r = xr+1 − xr = −ηc

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k) and E r[∆

u
r ] = −

ηc
M

M∑
i=1

K∑
k=1

E r

[
∇Fi(x

i
r,k)
]
.
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We use lemma 2 to deal with A7 and use the Lemma 3 in Reddi et al. (2020) to get the inequality
(27), following the condition ηc ≤ 1

8LK

A7 =
1

M

M∑
i=1

K∑
k=1

⟨∇Fi(x
i
r,k),xr − x∗⟩

≥ 1

M

M∑
i=1

K∑
k=1

[
Fi(xr)− Fi(x

∗) +
µ

4
∥x∗ − xr∥2 − L∥xr − xi

r,k∥2
]

≥ 1

M

M∑
i=1

K∑
k=1

[
⟨∇Fi(x

∗),xr − x∗⟩+ µ

2
∥xr − x∗∥2 + µ

4
∥x∗ − xr∥2 − L∥xr − xi

r,k∥2
]

≥3µK

4
∥xr − x∗∥2 − LK

(
5Kη2c (σ

2 + 6Kσ2
G) + 30K2η2c∥∇F (xr)∥2

)
(27)

≥3µK

4
∥xr − x∗∥2 − LK

(
5Kη2c (σ

2 + 6Kσ2
G) + 30L2K2η2c∥xr − x∗∥2

)
≥
(3µK

4
− 30L3K3η2c

)
∥xr − x∗∥2 − 5LK2η2cσ

2 − 30LK3η2cσ
2
G (28)

Then, we bound the term A8 as follows. We use Jensen’s inequality to get (a), use L-smoothness
property to get (b), use Lemma 3 in Reddi et al. (2020) and the data heterogeneity assumption to get
(c), use L-smoothness property to get (d).

A8 =η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k)

∥∥∥∥∥∥
2

≤η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
Kη2c
m

σ2

=η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

[
∇Fi(x

i
r,k)−∇Fi(xr) +∇Fi(xr)

]∥∥∥∥∥∥
2

+
Kη2c
m

σ2

(a)

≤ 2Kη2c
m

E r

∑
i∈Su

r

K∑
k=1

∥∥∇Fi(x
i
r,k)−∇Fi(xr)

∥∥2 + 2η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(xr)

∥∥∥∥∥∥
2

+
Kη2c
m

σ2

(b)

≤ 2L2Kη2c
m

E r

∑
i∈Su

r

K∑
k=1

∥∥xr − xi
r,k

∥∥2 + 2η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

[∇Fi(xr)−∇Fi(x
∗) +∇Fi(x

∗)]

∥∥∥∥∥∥
2

+
Kη2c
m

σ2

(c)

≤2L2K2η2c
(
5Kη2c (σ

2 + 6Kσ2
G) + 30K2η2c∥∇F (xr)∥2

)
+ 4K2η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

[∇Fi(xr)−∇Fi(x
∗)]

∥∥∥∥∥∥
2

+ 4η2cE r

∥∥∥∥∥∥ 1

m

∑
i∈Su

r

K∑
k=1

∇Fi(x
∗)

∥∥∥∥∥∥
2

+
Kη2c
m

σ2

≤2L2K2η2c
(
30K2η2c∥∇F (xr)∥2 + 30K2η2cσ

2
G + 5Kη2cσ

2
)

+
4K2η2c
m

E r

∑
i∈Su

r

∥∇Fi(xr)−∇Fi(x
∗)∥2 + 4K2η2cσ

2
G +

Kη2c
m

σ2

(d)

≤2L2K2η2c
(
30L2K2η2c∥xr − x∗∥2 + 30K2η2cσ

2
G + 5Kη2cσ

2
)
+ 4L2K2η2c ∥xr − x∗∥2

+ 4K2η2cσ
2
G +

Kη2c
m

σ2
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=(4L2K2η2c + 60L4K4η4c )∥xr − x∗∥2 +
(
4K2η2c + 60L2K4η4c

)
σ2
G

+

(
Kη2c
m

+ 10L2K3η4c

)
σ2 (29)

Plugging (28) and (29) back to (26) and absorbing higher-order terms into lower-order terms, we
obtain

E u
r ∥xr+1 − x∗∥2 ≤∥xr − x∗∥2 +

(
Kη2c
m

+ 10L2K3η4c

)
σ2

− 2ηc

((3µK
4
− 30L3K3η2c

)
∥x∗ − xr∥2 − 5LK2η2cσ

2 − 30LK3η2cσ
2
G

)
+ (4L2K2η2c + 60L4K4η4c )∥xr − x∗∥2 + (4K2η2c + 60L2K4η4c )σ

2
G

≤
(
1− 3µKηc

2
+ 8L2K2η2c

)
∥xr − x∗∥2 + 8K2η2cσ

2
G +

2Kη2c
m

σ2, (30)

where the last inequality above follows the condition ηc ≤ 1
20mLK .

Now, we deal with the part of arbitrary participation. When the server arbitrarily samples clients Sar
and |Sar | = n, we have

E a
r∥xr+1 − x∗∥2 =E r∥xr +∆a

r − x∗∥2

=E r∥xr − x∗∥2 + 2E r⟨∆a
r ,xr − x∗⟩+ E r∥∆a

r∥2

=∥xr − x∗∥2 − 2ηcE r⟨
1

n

∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k),xr − x∗⟩

︸ ︷︷ ︸
A9

+ η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k)

∥∥∥∥∥∥
2

︸ ︷︷ ︸
A10

(31)

We deal with the term A9 as follows. We use Lemma 2 to obtain (32), use the Young’s Inequality to
get (33) (ϵ > 0), and use Lemma 3 in Reddi et al. (2020) to obtain (34).

A9 =2ηcE r⟨
1

n

∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k),xr − x∗⟩

≥2ηc
n

E r

∑
i∈Sa

r

K∑
k=1

[
Fi(xr)− Fi(x

∗) +
µ

4
∥xr − x∗∥2 − L∥xr − xi

r,k∥2
]

(32)

≥2ηc
n

E r

∑
i∈Sa

r

K∑
k=1

[
⟨∇Fi(x

∗),xr − x∗⟩+ µ

2
∥xr − x∗∥2 + µ

4
∥xr − x∗∥2 − L∥xr − xi

r,k∥2
]

≥2ηc
n

E r

∑
i∈Sa

r

K∑
k=1

[
⟨∇Fi(x

∗)−∇F (x∗),xr − x∗⟩+ 3µ

4
∥xr − x∗∥2 − L∥xr − xi

r,k∥2
]

≥2Kηc
n

E r

∑
i∈Sa

r

⟨∇Fi(x
∗)−∇F (x∗),xr − x∗⟩+ 3µKηc

2
∥xr − x∗∥2

− 2Lηc
n

E r

∑
i∈Sa

r

K∑
k=1

∥xr − xi
r,k∥2

≥2Kηc
n

E r

∑
i∈Sa

r

(
− 1

4ϵ
∥∇F (x∗)−∇Fi(x

∗)∥2 − ϵ∥xr − x∗∥2
)
+

3µKηc
2
∥xr − x∗∥2
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− 2Lηc
n

E r

∑
i∈Sa

r

K∑
k=1

∥xr − xi
r,k∥2 (33)

≥− Kηc
2ϵ

σ2
G − 2Kηcϵ∥xr − x∗∥2 + 3µKηc

2
∥xr − x∗∥2

− 2LKηc
(
5Kη2c (σ

2 + 6Kσ2
G) + 30K2η2c∥∇F (xr)∥2

)
(34)

≥− Kηc
2ϵ

σ2
G − 2Kηcϵ∥xr − x∗∥2 + 3µKηc

2
∥xr − x∗∥2

− 2LKηc
(
5Kη2c (σ

2 + 6Kσ2
G) + 30L2K2η2c∥xr − x∗∥2

)
≥−

(Kηc
2ϵ

+ 60LK3η3c

)
σ2
G −

(
2Kηcϵ+ 60L3K3η3c −

3µKηc
2

)
∥xr − x∗∥2 − 10LK2η3cσ

2

(35)

Then, we bound A10 as follows. We use Lemma 3 in Reddi et al. (2020) to get (36).

A10 =η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k, ξ

i
r,k)

∥∥∥∥∥∥
2

≤η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(x
i
r,k)

∥∥∥∥∥∥
2

+
Kη2c
n

σ2

=η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

[
∇Fi(x

i
r,k)−∇Fi(xr) +∇Fi(xr)

]∥∥∥∥∥∥
2

+
Kη2c
n

σ2

≤2η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

[
∇Fi(x

i
r,k)−∇Fi(xr)

]∥∥∥∥∥∥
2

+ 2η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

K∑
k=1

∇Fi(xr)

∥∥∥∥∥∥
2

+
Kη2c
n

σ2

≤2Kη2c
n

E r

∑
i∈Sa

r

K∑
k=1

∥∥∇Fi(x
i
r,k)−∇Fi(xr)

∥∥2

+ 2K2η2cE r

∥∥∥∥∥∥ 1n
∑
i∈Sa

r

[∇Fi(xr)−∇Fi(x
∗) + Fi(x

∗)]

∥∥∥∥∥∥
2

+
Kη2c
n

σ2

=
2L2Kη2c

n
E r

∑
i∈Sa

r

K∑
k=1

∥∥xi
r,k − xr

∥∥2 + 4K2η2c
n

E r

∑
i∈Sa

r

∥∇Fi(xr)−∇Fi(x
∗)∥2

+
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n
E r

∑
i∈Sa

r

∥∇Fi(x
∗)∥2 + Kη2c

n
σ2

≤2L2K2η2c
(
5Kη2c (σ

2 + 6Kσ2
G) + 30L2K2η2c∥xr − x∗∥2

)
+ 4L2K2η2c ∥xr − x∗∥2

+ 4K2η2cσ
2
G +

Kη2c
n

σ2 (36)

=(4L2K2η2c + 60L4K4η4c ) ∥xr − x∗∥2 + (4K2η2c + 60L2K4η4c )σ
2
G

+

(
Kη2c
n

+ 10L2K3η4c

)
σ2 (37)

Plugging (35) and (37) into (31) and absorbing high-order terms into low-order terms, we get

E a
r∥xr+1 − x∗∥2 ≤∥xr − x∗∥2 +

(Kηc
2ϵ

+ 60LK3η3c

)
σ2
G

+
(
2Kηcϵ+ 60L3K3η3c −

3µKηc
2

)
∥xr − x∗∥2 + 10LK2η3cσ

2

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

+ (4L2K2η2c + 60L4K4η4c ) ∥xr − x∗∥2 + (4K2η2c + 60L2K4η4c )σ
2
G

+

(
Kη2c
n

+ 10L2K3η4c

)
σ2

=
(
1− 3µKηc

2
+ 2Kηcϵ+ 4L2K2η2c + 60L3K3η3c + 60L4K4η4c

)
∥xr − x∗∥2

+
(Kηc

2ϵ
+ 4K2η2c + 60LK3η3c + 60L2K4η4c

)
σ2
G

+
(Kη2c

n
+ 10LK2η3c + 10L2K3η4c

)
σ2

≤
(
1− 3µKηc

2
+ 2Kηcϵ+ 8L2K2η2c

)
∥xr − x∗∥2 +

(Kηc
2ϵ

+ 8K2η2c

)
σ2
G

+
2Kη2c
n

σ2, (38)

where the last inequality above follows the condition ηc ≤ 1
20nLK .

By (30) and (38), we establish:
E r∥xr+1 − x∗∥2 =qE u

r ∥xr+1 − x∗∥2 + (1− q)E a
r∥xr+1 − x∗∥2

≤
(
1− 3µKηc

2
+ (1− q)2Kηcϵ+ 8L2K2η2c

)
∥xr − x∗∥2

+

(
(1− q)

Kηc
2ϵ

+ 8K2η2c

)
σ2
G +

(
4K
(
qn+ (1− q)m

)
η2c

mn

)
σ2

≤(1− µKηc)∥xr − x∗∥2 + (1− q)

2
K2η2c + 8K2η2cσ

2
G

+
2
(
qn+ (1− q)m

)
mn

Kη2cσ
2, (39)

where the last inequality follows ϵ = σ2
G

Kηc
, the condition on ηc that we got before, and the condition

q ≥ 1−
(

µKηc−16L2K2η2
c

4σ2
G

)
.

Applying (39) R rounds recursively and denoting as κ := ∥x0 − x∗∥2, we obtain

E∥xR − x∗∥2 ≤(1− µKηc)
Rκ+

(1− q)

2µ
Kηc +

8

µ
Kηcσ

2
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2
(
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mnµ
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Kηcσ

2
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2
(
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mnµ

ηcσ
2

≤ exp (−µKRηc)κ+
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2µ
Kηc +

8

µ
Kηcσ

2
G +

2
(
qn+ (1− q)m

)
mnµ

ηcσ
2

=exp (−µKRηc)κ+

(
(1− q)

2µ
K +

8

µ
Kσ2

G +
2
(
qn+ (1− q)m

)
mnµ

σ2

)
︸ ︷︷ ︸

a

ηc (40)

Choosing ηc = min
{

log(max(κµKR/a,1))
µKR , 1

20mLK , 1
20nLK

}
, FAST can achieve the convergence rate

of Õ(1/R).

Assume that m = n, ηc ≤ 1
20mLK and R ≥ 20mL.

E∥xR − x∗∥2 =Õ
(
exp(− µ

20mL
R) +

B2

µmKR

)
=Õ

(
exp(− µ

20mL
R)
)
+ Õ

(
(1− q)

µR

)
+ Õ

(
1

µR
σ2
G

)
+ Õ

(
1

µmKR
σ2

)
,

where B2 = (1−q)mK
2 + 8mKσ2

G + 2σ2. ■
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B ADDITIONAL EXPERIMENT DETAILS

B.1 EXPERIMENT SETUP

B.1.1 MODELS

We design different kinds of models for different tasks and datasets. All details about the models we
used are provided in our source codes.

a) Fashion-MNIST: The CNN model for Fashion-MNIST comprises two convolutional layers,
introducing non-linearity through ReLU activation and incorporating max-pooling to reduce
spatial dimensions. Additionally, it includes two fully connected layers to map features
extracted by the convolutional layers to the final output categories.

b) CIFAR-10: The CNN model for CIFAR-10 consists of three convolutional layers followed
by ReLU activation and max-pooling, and two fully connected layers.

c) Shakespeare: The Char-LSTM for Shakespeare incorporates an embedding layer to convert
character indices into dense vectors, a two-layer LSTM, a dropout layer for regularization
and a final linear layer generating prediction.

B.1.2 DATA DISTRIBUTION HETEROGENEITY

We use Dirichlet distribution to simulate the Non-IID data on Fashion-MNIST and CIFAR-10 datasets.
The Shakespeare dataset is naturally Non-IID, so there is no demand to use Dirichlet distribution
on it, and we can directly distribute each character’s lines to each client to achieve Non-IID data
distribution. Assuming that there are 30 clients, we set different α (the concentration parameter of
Dirichlet distribution) to control the degree of Non-IID in data distribution. For a clear display, we
visualize it in Figure 1. In each figure below, each color represents a class of label, meaning that there
are 10 kinds of colors in the figures below.

When α = 0.05, which is highly Non-IID, some clients only possess data with approximate 2 ∼ 4
types of labels, and data distribution varies greatly among clients, which is shown in Figure 1 (a).
When α = 1, each client owns data with all labels, and data distributions on every client are less
Non-IID, as shown in Figure 1 (b).
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(a) α = 0.05
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(b) α = 1.0

Figure 1: Dirichlet distribution with balanced data in each client

B.1.3 SIMULATION OF ARBITRARY CLIENT PARTICIPATION

In our experiments, we employ Beta, Gamma and Weibull distribution to simulate arbitrary client
participation patterns in our FL system. To create highly heterogeneous client participation patterns,
we select certain parameters of these distributions in our experiments, which will be introduced in
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details in the following description. In addition, we show the participating situation of 100 clients in
1000 rounds under our parameter settings in Figure 2.

a) Beta distribution.

The probability density function of Beta distribution is f(x;α, β) = xα−1(1−x)β−1

B(α,β) . It is characterized
by two parameters, α and β, where α represents the number of successes in choosing and β represents
the number of failures in choosing, so we can adjust α and β to control the preference of sampling.
In our experiment, we set α = 1 and β = 10.

b) Gamma distribution.

The probability density function of Gamma distribution is f(x; k, θ) = xk−1 e−x/θ

θkΓ(k)
, where k is shape

parameter, θ is scale parameter, and Γ is the Gamma function. In our experiment, we set k = 10 and
θ = 0.01.

c) Weibull distribution.

The probability density function of the Weibull distribution is

f(x;λ, k) =


λ

k

(x
λ

)k−1

e−( x
λ )k , x ≥ 0

0 , x < 0

where k is shape parameter, λ is scale parameter. In our experiment, we set k = 10 and λ = 1.
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(a) Beta Dist. (α = 1, β = 10)
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(b) Gamma Dist. (k = 10, β =
0.01)
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(c) Weibull Dist. (k = 10, λ = 1)

Figure 2: Client participation under Beta, Gamma and Weibull distribution

B.2 ADDITIONAL EXPERIMENT RESULTS

B.2.1 ADDITIONAL RESULTS OF IMPACT OF ARBITRARY CLIENT PARTICIPATION

In our main paper, we have demonstrated that arbitrary client participation can degrade the perfor-
mance of FL when using the classic FedAvg algorithm. To further verify the ubiquity of adverse
effects of arbitrary client participation, we conducted extra related experiments to verify the impact
of arbitrary client participation on other FL optimization algorithms. Table 4 shows the performance
degradation resulting from arbitrary client participation when the FedProx Li et al. (2020) algorithm
is used. Under the less Non-IID circumstances (e.g., α ≥ 0.5), the accuracy of the four types of
participation is concentrated on around 90%. However, in highly heterogeneous situations, compared
to uniform participation, the accuracy of the three types of arbitrary participation patterns suffers
from a more severe decline. More specifically, when α = 0.05, uniform participation suffers from 8%
accuracy degradation. However, the accuracy of Beta, Gamma and Weibull on the Fashion-MNIST
dataset falls by around 15%, 16% and 11%, respectively, which are more severe than the one under
uniform client participation. In another heterogeneous situation with α = 0.1, the accuracy of Beta,
Gamma and Weibull on the CIFAR-10 dataset decreases by about 4%, 14% and 5% separately, but
the accuracy of uniform client participation is just roughly reduced by 2%.
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B.2.2 ADDITIONAL RESULTS ABOUT REGULAR FAST

We demonstrate additional experiment results to verify the effectiveness of FAST and adaptive FAST.

Figure 3 demonstrates the performance of FAST+FedAvg. The corresponding numerical results have
been shown in Table 3. All the performance of using FAST is beyond the baseline (q = 0), and lower
than or even almost equal to the completely uniform participation (q = 1) sometimes.

Table 6 shows the performance of the FAST+FedProx Li et al. (2020) algorithm.

Table 7 shows the performance of the FAST+FedAvgM Hsu et al. (2019) algorithm.
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Figure 3: Experiment results of FAST+FedAvg on Fashion-MNIST & CIFAR-10 & Shakespeare

B.2.3 ADDITIONAL RESULTS ABOUT ADAPTIVE FAST

To select possibly optimal λ, we test the performance of adaptive FAST using different λ on the
Fashion-MNIST dataset. Generally, the proportion of arbitrary client participation decreases as
the increase in λ. Considering the accuracy and the proportion of arbitrary client participation, we
empirically find that a big λ (i.e., 6, 7) can result in a better balance between accuracy and the

26



1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Table 6: Experiment results of FAST+FedProx.

Participation q
Fashion-MNIST CIFAR-10 Shakespeare

α=0.05 α=0.1 α=0.1 α =N/A

Test Accuracy Ratio Test Accuracy Ratio Test Accuracy Ratio Test Accuracy Ratio

Uniform (FedProx) 1 83.48%±3.9 0% 86.67%±0.5 0% 79.53%±0.5 0% 48.51%±0.6 0%

Beta (FAST)

Ada.(7) 81.59%±3.9 59.7% 85.21%±2.4 72.5% 76.35%±1.4 65.0% 48.66%±0.1 62.5%
Ada.(def.) 78.48%±1.6 88.1% 83.65%±1.6 93.5% 74.24%±1.3 96.5% 47.50%±0.3 94.3%

0.5 78.78%±3.9 48.8% 85.75%±2.2 50.7% 76.96%±1.4 47.9% 48.35%±0.4 50.5%
0.4 81.21%±2.2 60.5% 84.94%±3.7 60.2% 78.13%±0.6 58.5% 48.61%±0.1 59.3%
0.3 78.64%±1.6 70.4% 83.49%±2.2 68.9% 75.77%±2.9 69.9% 48.23%±0.4 70.2%
0.2 76.48%±2.3 81.9% 80.59%±4.2 79.1% 75.71%±0.9 80.3% 48.49%±0.2 79.8%
0.1 75.01%±4.5 89.6% 83.50%±1.4 89.5% 72.80%±2.9 89.5% 47.78%±0.3 90.5%

Beta (FedProx) 0 74.74%±0.8 100% 77.88%±4.7 100% 72.76%±1.0 100% 46.98%±0.4 100%

Gamma (FAST)

Ada.(7) 83.83%±2.3 61.6% 85.34%±2.5 73.6% 77.67%±2.3 63.4% 47.96%±0.4 50.4%
Ada.(def.) 79.84%±2.4 93.8% 85.98%±1.6 94.6% 77.30%±0.7 95.4% 44.36%±0.3 93.9%

0.5 84.93%±1.7 50.4% 87.00%±1.6 48.2% 77.34%±1.2 49.6% 48.89%±0.1 49.5%
0.4 81.43%±2.5 56.6% 87.27%±1.1 58.1% 77.51%±1.0 60.1% 48.05%±0.2 58.9%
0.3 77.21%±0.9 67.8% 85.84%±2.5 73.8% 76.99%±2.2 70.7% 46.98%±0.8 70.8%
0.2 81.33%±1.5 80.6% 86.74%±1.8 79.6% 77.50%±1.5 79.7% 46.25%±0.8 80.6%
0.1 78.59%±2.4 90.2% 86.15%±1.2 89.4% 74.77%±0.6 89.7% 44.48%±0.4 91.3%

Gamma (FedProx) 0 75.59%±5.5 100% 84.49%±1.9 100% 65.94%±1.3 100% 43.34%±0.5 100%

Weibull (FAST)

Ada.(7) 84.46%±1.7 55.8% 86.01%±1.0 64.4% 77.24%±1.4 69.3% 48.70%±0.3 55.5%
Ada.(def.) 83.66%±2.6 92.9% 84.11%±1.1 95.4% 76.34%±0.8 96.4% 47.88%±0.6 92.6%

0.5 82.39%±2.2 48.0% 86.53%±1.6 48.2% 78.30%±0.6 50.2% 48.69%±0.2 50.3%
0.4 79.16%±4.2 61.4% 85.76%±1.9 59.1% 76.64%±2.6 59.8% 48.57%±0.2 60.3%
0.3 80.60%±3.5 67.2% 85.72%±1.7 70.8% 77.00%±1.1 70.2% 48.37%±0.4 70.1%
0.2 80.73%±2.4 80.6% 85.26%±2.3 81.4% 76.78%±0.7 79.9% 48.14%±0.2 80.6%
0.1 79.73%±2.8 91.5% 84.65%±1.7 90.4% 76.37%±1.3 89.6% 48.23%±0.2 89.9%

Weibull (FedProx) 0 79.55%±2.0 100% 83.66%±2.3 100% 72.94%±1.2 100% 47.64%±0.8 100%

proportion of arbitrary client participation than a small one. The results are shown in Table 8 and
Table 5.

Figure 4 shows the distribution of q and how q in adaptive FAST varies during the entire training
process. We find that λ is related to the fluctuation range of q. Generally, the larger λ is, the more
drastic the change in q, thus giving rise to a higher proportion of uniform participation (Ratio).
Additionally, when λ = 1, the values of q are primarily concentrated on 0 ∼ 0.2, resulting from that
a small parameter λ limits the fluctuation of q. In contrast with a small λ, a large λ (i.e., 7) leads to a
more uniform distribution of q.

Table 7: Experiment results of FAST+FedAvgM.

Participation q
Fashion-MNIST CIFAR-10 Shakespeare

α=0.05 α=0.1 α=0.1 α =N/A

Test Accuracy Ratio Test Accuracy Ratio Test Accuracy Ratio Test Accuracy Ratio

Uniform (FedAvgM) 1 84.23%±1.3 0% 87.21%±2.0 0% 77.74%±2.3 0% 48.66%±0.2 0%

Beta (FAST)

Ada.(7) 83.86%±1.4 61.0% 85.27%±3.1 65.9% 76.92%±1.6 66.7% 48.77%±0.1 60.2%
Ada.(def.) 80.38%±1.5 93.0% 83.40%±1.5 93.7% 73.30%±0.7 96.8% 47.69%±0.3 94.3%

0.5 83.52%±2.3 50.1% 86.94%±1.7 51.5% 77.61%±0.8 49.2% 48.79%±0.5 50.3%
0.4 83.51%±2.5 58.9% 84.97%±2.5 58.1% 76.26%±1.6 59.9% 48.41%±0.2 60.1%
0.3 83.54%±2.1 68.4% 83.09%±4.8 69.4% 76.37%±0.3 69.5% 47.77%±1.3 70.2%
0.2 80.34%±1.3 77.9% 84.20%±2.1 81.8% 75.56%±1.5 79.8% 48.24%±0.2 79.2%
0.1 70.96%±5.5 92.3% 82.29%±1.4 90.4% 74.54%±1.4 90.4% 47.74%±0.2 89.3%

Beta (FedAvgM) 0 70.48%±2.6 100% 82.18%±2.9 100% 72.96%±1.0 100% 46.86%±0.8 100%

Gamma (FAST)

Ada.(7) 78.14%±2.4 72.8% 83.26%±0.9 83.9% 76.21%±0.7 70.3% 48.09%±0.5 51.6%
Ada.(def.) 74.30%±2.2 92.3% 80.22%±1.6 95.9% 70.61%±0.7 98.1% 44.64%±1.2 93.4%

0.5 78.08%±3.4 50.4% 86.39%±1.8 50.9% 77.59%±1.8 49.9% 48.31%±0.3 51.0%
0.4 79.58%±2.6 58.8% 83.88%±2.4 61.4% 77.15%±1.1 60.1% 48.18%±0.3 58.5%
0.3 77.39%±1.5 71.9% 83.56%±3.4 70.5% 74.69%±1.2 70.1% 47.14%±0.4 70.7%
0.2 75.29%±2.1 80.1% 82.31%±2.2 79.3% 73.67%±1.2 79.7% 46.70%±0.4 79.3%
0.1 69.63%±3.1 92.2% 81.08%±1.3 90.6% 71.88%±0.7 89.9% 44.33%±0.3 90.2%

Gamma (FedAvgM) 0 65.76%±3.6 100% 80.01%±1.5 100% 67.40%±0.9 100% 42.65%±0.4 100%

Weibull (FAST)

Ada.(7) 83.50%±3.1 62.8% 85.12%±2.8 68.3% 77.45%±0.8 67.5% 48.90%±0.3 52.8%
Ada.(def.) 83.91%±1.0 94.2% 83.32%±2.0 92.8% 75.23%±1.2 96.5% 48.00%±0.3 92.4%

0.5 83.16%±3.2 51.7% 86.29%±1.4 50.9% 78.17%±1.1 49.9% 48.69%±0.2 51.1%
0.4 81.93%±1.8 59.0% 84.47%±2.1 62.3% 77.86%±1.2 59.7% 48.56%±0.5 60.6%
0.3 83.22%±3.1 71.4% 83.54%±2.2 70.6% 76.61%±0.9 70.0% 48.64%±0.2 69.5%
0.2 82.67%±2.2 80.6% 83.19%±1.7 79.3% 76.71%±0.6 79.4% 48.36%±0.2 79.3%
0.1 82.90%±3.2 89.1% 83.38%±1.6 90.3% 75.78%±0.9 90.2% 48.38%±0.2 89.7%

Weibull (FedAvgM) 0 75.97%±4.8 100% 80.79%±2.8 100% 74.38%±1.5 100% 47.73%±0.3 100%
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Table 8: Performance comparison of different λ for adaptive FAST+FedAvg with α = 0.05.
λ 1 (def.) 2 3 4 5 6 7 8 9

Beta (FAST) 77.93%±0.7 76.15%±4.2 76.87%±3.8 79.95%±3.4 80.52%±3.4 78.69%±3.4 80.92%±3.1 79.65%±2.9 81.13%±1.6
Ratio 88.5% 87.4% 87.1% 78.8% 74.7% 68.0% 60.3% 61.7% 66.6%

Gamma (FAST) 71.48%±4.5 78.95%±2.3 77.50%±4.7 80.08%±0.8 81.98%±1.1 81.53%±2.8 79.95%±4.9 82.07%±1.7 80.44%±3.7
Ratio 91.8% 82.3% 77.6% 67.3% 56.7% 53.8% 59.3% 50.6% 52.9%

Weibull (FAST) 77.14%±2.7 73.52%±4.0 74.79%±4.0 79.50%±3.3 78.26%±4.9 80.04%±2.1 77.89%±3.3 80.87%±2.6 74.52%±8.9
Ratio 90.4% 83.8% 72.5% 66.1% 61.6% 58.6% 59.5% 60.6% 59.1%
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Figure 4: The fluctuation and distribution of q using different λ in adaptive FAST+FedAvg.
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