
Under review as submission to TMLR

Addressing caveats of neural persistence
with deep graph persistence

Anonymous authors
Paper under double-blind review

Abstract

Neural Persistence is a prominent measure for quantifying neural network complexity, pro-
posed in the emerging field of topological data analysis in deep learning. In this work,
however, we find both theoretically and empirically that the variance of network weights
and spatial concentration of large weights are the main factors that impact neural persis-
tence. Whilst this captures useful information for linear classifiers, we find that no relevant
spatial structure is present in later layers of deep neural networks, making neural persistence
roughly equivalent to the variance of weights. Additionally, the proposed averaging proce-
dure across layers for deep neural networks does not consider interaction between layers.
Based on our analysis, we propose an extension of the filtration underlying neural persis-
tence to the whole neural network instead of single layers, which is equivalent to calculating
neural persistence on one particular matrix. This yields our deep graph persistence measure,
which implicitly incorporates persistent paths through the network and alleviates variance-
related issues through standardisation. Code will be publicly released upon acceptance of
the paper.

1 Introduction

Analysing deep neural networks to gain a better understanding of their inner workings is crucial, given their
now ubiquitous use and practical success for a wide variety of applications. However, this is a notoriously
difficult problem. For instance, neural networks often generalise well, although they are overparameterised
(Zhang et al., 2017). This observation clashes with intuitions from classical learning theory. Both the training
process, which is a stochastic process influenced by minibatches and modifications of gradient-based weight
updates due to the chosen optimiser, e.g. Adam (Kingma & Ba, 2015), and the computations performed by
a trained neural network are very complex and not easily accessible to theoretical analysis (Goodfellow &
Vinyals, 2015; Choromanska et al., 2015; Hoffer et al., 2017).

Topological Data Analysis (TDA) has recently gained popularity for analysing machine learning models,
and in particular deep learning models. TDA investigates data in terms of its scale-invariant topological
properties, which are robust to perturbations (Cohen-Steiner et al., 2007). This is a desirable property
in the presence of noise. In particular, Persistent Homology (PH) provides means of separating essential
topological structures from noise in data. We refer to (Pun et al., 2022) for an overview of the field, as a
detailed introduction to TDA and PH is out of the scope of this work.

Recent works consider neural networks as weighted graphs, which allows for analysis with tools from TDA
developed for such data structures (Rieck, 2023). This is possible by considering the intermediate feature
activations as vertices, and parameters as edges. The corresponding network weights are then interpreted
as edge weights. Using this perspective, Rieck et al. (2019) define neural persistence, a popular measure1 of
neural network complexity, which is calculated on the weights of trained neural networks, i.e. the edges of the
computational graph. Neural persistence does not consider the data and intermediate or output activations.
Nevertheless, Rieck et al. (2019) show that neural persistence can be employed as an early stopping criterion
instead of a validation set. We consider it important to comprehend which aspects of neural networks

1The here considered measures of network complexity do not comply with the measure-theoretic definition of a measure.
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are measured by inspection tools such as neural persistence. This helps understanding the limitations and
developing new applications for the methods used for model assessment. In addition, unresolved problems
that require further theoretical justification can be exposed. In this paper, we attempt to conduct such an
analysis for neural persistence.

Our results suggest that neural persistence is closely linked to the variance of weights and is better suited to
analyse linear classifiers than deep feed-forward neural networks (DNNs). As the possibility of applying TDA
for analysing DNNs is highly desirable, we propose to modify the complexity measure and introduce deep
graph persistence which extends neural persistence to also capture inter-layer dependencies. The proposed
extension alleviates certain undesirable properties of neural persistence, and makes deep graph persistence
applicable in the downstream task of covariate shift detection. This task has been tackled by an earlier
extension of neural persistence, called topological uncertainty. Our results indicate our proposed extension
to be better suited for detecting image corruptions.

To summarise, our contributions are as follows: (1) We identify the variance of weights and spatial con-
centration of large weights as important factors that impact neural persistence. (2) We observe that later
layers in deep feed-forward networks do not exhibit relevant spatial structure and demonstrate that this
effectively reduces neural persistence to a surrogate measure of the variance of weights. (3) We introduce
deep graph persistence, a modification of neural persistence, which takes the full network into account and
reduces dependency on weight variance, making it better suited for deep networks.

2 Related work

Topological data analysis has recently gained popularity in the context of machine learning (Carrière et al.,
2019; Hofer et al., 2017; 2019; Hu et al., 2019; Khrulkov & Oseledets, 2018; Kwitt et al., 2015; Moor et al.,
2020b; Ramamurthy et al., 2019; Rieck et al., 2019; Rieck, 2023; Royer et al., 2020; Zhao & Wang, 2019;
Reininghaus et al., 2015; Rieck, 2023; von Rohrscheidt & Rieck, 2022; Birdal et al., 2021). For a recent,
in-depth overview of the field we refer to (Zia et al., 2023). Topological features have been used as inputs to
machine learning frameworks, or to constrain the training of models. For instance, persistence landscapes
have been used for time series analysis (Stolz et al., 2017), or for topological layers in image classification (Kim
et al., 2020). Additionally, McGuire et al. (2023) studied the learnt internal representations for topological
feature input. Different to this, Moor et al. (2020b;a) constrain the training to preserve topological structures
of the input in the low-dimensional representations of an autoencoder, and Chen et al. (2019) introduce a
penalty on the topological complexity of the learnt classifier itself.

Another prominent line of work uses TDA to analyse neural networks, either by considering the hidden
activations in trained neural networks, or by examining the network weights. Corneanu et al. (2020); Gebhart
et al. (2019); Ballester et al. (2022) interpret hidden units as points in a point cloud and employ TDA methods
to analyse them. For example, Corneanu et al. (2020) use the correlation of activations for different inputs as
a distance metric and observe linear correspondence between persistent homology metrics and generalisation
performance. Naitzat et al. (2020) find that learning success is related to the simplification of the topological
structure of the input data in the hidden representations of trained networks. In contrast, Wheeler et al.
(2021) propose to quantify topological properties of learnt representations. To facilitate model inspection
or understand finetuning of word embeddings, Rathore et al. (2021; 2023) introduce visualisation tools for
learnt representations based on TDA. Chauhan & Kaul (2022) formulate a topological measure that links
test accuracy to the hidden representations in language models. Different to those works, we analyse the
structure in the weights of trained neural networks.

Several complexity measures for the weights of DNNs have been proposed, e.g. by considering the weights as
weighted stratified graphs (Rieck et al., 2019), or analysing the learnt filter weights in convolutional neural
networks (Gabrielsson & Carlsson, 2019). Birdal et al. (2021) also consider network weights and analyse
the network’s intrinsic dimension which they show to be linked to generalisation error. The generalisation
performance has also been shown to be directly linked to a model’s loss landscape (Horoi et al., 2022). Rieck
et al. (2019) introduce neural persistence which is a complexity measure for DNNs based on the weights of
trained networks which can be used as an early stopping criterion. Rieck et al. (2019); Zhang et al. (2023) also
show that topological properties can be useful for distinguishing models trained using different regularisers.
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Lacombe et al. (2021) extends neural persistence to take concrete input data into account, enabling out-of-
distribution detection. Balwani & Krzyston (2022) use neural persistence to derive bounds on the number
of units that may be pruned from trained neural networks. In this work, we perform an in-depth analysis
of neural persistence which confirms favourable properties of neural persistence for linear classifiers which,
however, do not extend to DNNs. Watanabe & Yamana (2021; 2022) leverage persistent homology to detect
overfitting in trained neural networks by considering subgraphs spanning across two layers. Different to this,
we consider the global shape in network weights by proposing deep graph persistence which extends neural
persistence to a complexity measure for DNNs. As our analysis shows that neural persistence is best applied
to linear classifiers, we focus on creating a filtration that only implicitly incorporates intermediate nodes.
A similar idea has been explored by Liu et al. (2020), who apply TDA to detect subsets of input features
that interact the most in trained networks. Differently to our work, however, Liu et al. (2020) consider
interactions between all nodes in every layer.

3 Understanding neural persistence

In this section, we aim at providing a deeper understanding of neural persistence, which was introduced by
Rieck et al. (2019). In particular, we identify variance of weights and spatial concentration of large weights
as important factors that impact neural persistence. We formalise these insights by deriving tighter bounds
on neural persistence in terms of max-over-row and max-over-column values of weight matrices.

Neural persistence is defined for undirected weighted graphs, and is used to compute the neural persistence
of linear layers in neural networks Rieck et al. (2019). Before stating the definition of neural persistence, we
recall the definition of complete bipartite graphs.
Definition 3.1 (Bipartite graph). A graph G = (V,E) is called bipartite if vertices V can be separated into
two disjoint subsets A,B with V = A∪B and A∩B = ∅, and all edges e ∈ E are of the form e = (a, b) with
a ∈ A and b ∈ B, i.e. every edge connects a vertex in A to one in B.
Definition 3.2 (Complete bipartite). G is complete bipartite if edges between all vertices in A and all
vertices in B exist.
Remark 3.3. Note that any matrix W ∈ Rn×m can be interpreted as the adjacency matrix of an undirected
weighted complete bipartite graph. In this case, rows and columns correspond to vertices in A and B,
respectively. The matrix entries then resemble edge weights between all vertices in A and B.

Rieck et al. assert that neural persistence can be defined in terms of the maximum spanning tree (MST) of
a complete bipartite graph instead of persistent homology.
Definition 3.4 (Neural persistence). Let W ∈ [0; 1]n×m be a matrix with n rows, m columns, and entries
bounded below by 0 and above by 1. Throughout this paper, we denote entries in W with row index
i and column index j as Wi,j . As in Remark 3.3, W can be interpreted as the adjacency matrix of an
undirected weighted complete bipartite graph GW = (VW , EW ). Let MST(GW ) = (VW , EMST(GW )) with
EMST(GW ) ⊂ EW be the unique maximum spanning tree of GW . In general, uniqueness is not guaranteed,
but can be achieved by infinitesimal perturbations. Then, let MSTw(GW ) be the set of weights for edges
contained in the MST, i.e.

MSTw(GW ) := {Wv,v′ | (v, v′) ∈ EMST(GW )}. (1)

The neural persistence NPp(W ) is defined as

NPp(W ) :=

1 +
∑

w∈MSTw(GW )

(1 − w)p

 1
p

, (2)

and subsequently neural persistence for an entire neural network is defined as the average neural persistence
across all individual layers. Weights, which can have arbitrary values, are mapped to the range [0; 1] by
taking the absolute value and dividing by the largest absolute weight value in the neural network. Thus, for
the remainder of this paper, we assume that all weights are in the range [0; 1]. Also, we abbreviate neural
persistence as “NP”.
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Normalised neural persistence. To make NP values of matrices with different sizes comparable, Rieck
et al. propose to divide NP by the theoretical upper bound (n+m− 1)

1
p (see Theorem 1 in (Rieck et al.,

2019)). This normalisation maps NP values to the range [0; 1]. We follow Rieck et al. and use the proposed
normalisation and p = 2 in all experiments, both the experiments concerning NP (Section 4) and also
the experiments concerning deep graph persistence (Definition 5.1 and Appendix G.4). For caveats of this
normalisation, refer to Appendix C.

Bounds on neural persistence. Defining NP in terms of the MST of a complete bipartite graph provides
the interesting insight that the NP value is closely related to max-over-rows and max-over-columns values in
the matrix. This characterisation provides intuitions about properties of weight matrices that influence NP.
These intuitions are formalised in Theorem 3.5 as bounds on NP which are tighter than the bounds given
in Theorem 2 in (Rieck et al., 2019).
Theorem 3.5. Let GW = (VW , EW ) be a weighted complete bipartite graph as in Definition 3.4 with edge
weights given by W and VW = A ∪B, A ∩B = ∅. To simplify notation, we define

Φb := (1 − max
a∈A

Wa,b)p ∀b ∈ B, (3)

Ψa := (1 − max
b∈B

Wa,b)p ∀a ∈ A. (4)

Using these shortcuts, we define

L :=
(∑

b∈B

Φb +
∑
a∈A

Ψa

) 1
p

, (5)

U :=

|B \B ̸∼A| +
∑

b∈B ̸∼A

Φb +
∑
a∈A

Ψa

 1
p

, (6)

where
B̸∼A := {b ∈ B | ∀a ∈ A : b ̸= argmax

b′∈B
Wa,b′}. (7)

B ̸∼A ⊂ B can be thought of as the set of columns whose maximal element does not coincide with the maximal
element in any row of W .

Then, the following inequalities hold:

0 ≤ L ≤ NPp(W ) ≤ U ≤ (n+m)
1
p . (8)

Proof (sketch). For the lower bound, using properties of spanning trees, we construct a bijection between
vertices V (with one vertex excluded) and edges in MST(GW ). Each vertex v is mapped to an edge that is
connected to v. Using this bijection, we can bound the weight of each edge in the MST by the maximum
weight of any edge connected to the respective vertex. Since maximum weights of edges connected to
vertices correspond to max-over-rows and max-over-columns values, we obtain the formulation of L. For the
upper bound, we observe that all max-over-rows and max-over columns values are necessarily included in
MSTw(GW ). However, in some cases max-over-rows values and max-over-columns values coincide. Therefore,
this observation leaves some values in MSTw(GW ) undetermined. For these, we choose the value that
maximises NP, i.e. 0, to obtain an upper bound.

The detailed proof is provided in Appendix A and we also show in Appendix B.1 that the lower bound is
generally tight and the upper bound tightens with increasing spatial concentration of large weights.

Variance and spatial concentration of weights as factors that impact neural persistence. The
bounds on NP derived in Theorem 3.5 mostly depend on max-over-columns and max-over-rows values in W .
Thus, they identify additional factors that impact NP, in particular the variance and spatial concentration
of weights. With “spatial structure” (of a matrix), we mean properties of how large entries relate to their
indices. For example, we say a matrix exhibits no spatial structure (of large entries), if large entries appear
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at arbitrary indices. Contrarily, we say a matrix exhibits spatial structure, if large weights mostly appear
at clusters of indices which are close to each other (in the row and column directions). In the following, we
explain how the derived bounds identify these particular properties as factors that impact NP.

The lower bound L is tighter when the variance of weights is smaller. In this case, it is more likely that the
actual weight in the MST chosen for any vertex v is close to the maximum weight connected to v. When
mean weight values and variances of weights are highly correlated, which is the case in practise, NP increases
with lower variance. The reason is that the lower variance causes the expected maximum value of a sample to
be closer to the expected value, meaning the max-over-rows and max-over-columns values will also decrease
together with lower mean and variance.

The upper bound U is tighter when B ̸∼A is smaller. This is the case when large weights are concentrated
on edges connected to few or even a single vertex, i.e. when there is relevant spatial concentration of large
weights on certain rows or columns. In the extreme case, all edges with maximum weight for any vertex
in A are connected to the same vertex b ∈ B. Then, we know that edges with maximum weight, i.e. max-
over-columns values, for all vertices in B \ {b} will be part of the MST. In this case, we have equality of
NPp(W ) = U . Also, when large weights are concentrated on fewer rows or columns, max-over-rows and
max-over-columns values will generally be lower, resulting in higher NP values.

In addition to our experiments in Section 4 using trained models, we also validate these claims on synthetic
data in Appendix B.

4 Experimental analysis of neural persistence

4.1 Experimental setup

To study NP of neural networks in a controlled setting and validate our insights in practise, we train a
larger set of models than Rieck et al. (2019). We train DNNs with exhaustive combinations of the following
hyperparameters: Number of hidden layers ∈ {1, 2, 3}, hidden size ∈ {50, 100, 250, 650}, and activation
function ∈ {tanh, relu}. However, we do not apply dropout or batch normalisation. We use the Adam
optimizer (Kingma & Ba, 2015) with the same hyperparameters as Rieck et al., i.e. with a learning rate
of 0.003, no weight decay, β1 = 0.9, β2 = 0.999, and ϵ = 10−8. Each model is trained for 40 epochs with
batch size 32, and following Rieck et al. (2019) we keep a checkpoint after every quarter epoch. We train
models on three datasets, namely MNIST (LeCun et al., 1998), EMNIST (Cohen et al., 2017), and Fashion-
MNIST (Xiao et al., 2017). For EMNIST, we use the balanced setting. Rieck et al. do not train models on
EMNIST, but we decide to include this dataset, because it is more challenging as it contains more classes,
namely 49 instead of 10 in the case of MNIST and Fashion-MNIST. For each combination of hyperparameters
and dataset, we train 20 models, each with different initialisation and minibatch trajectory. If not stated
otherwise, we analyse the models after training for 40 epochs. Additionally, we train 20 linear classifiers
(perceptrons) for each dataset using the same hyperparameters (optimizer, batch size, number of epochs) as
for deep models.

4.2 Neural persistence for linear classifiers

NP is defined for individual layers in Definition 3.4. Generalisation to deeper networks is achieved by
averaging NP values across different layers. Here, we first analyse NP for models with only one linear layer,
i.e. for linear classifiers. In this case, there are no effects of averaging or different matrix sizes.

For linear classifiers, we show the presence of spatial structure trained models. Furthermore, we demonstrate
the correspondence of NP and variance, after controlling for spatial structure. We find that both factors,
variance of weights and spatial structure of large weights, vary in trained linear classifiers. Therefore, because
these two factors can already explain a significant amount of the variation of NP values according to our
insights in Section 3, NP is likely to exhaust its full capabilities in the case of linear classifiers.

Spatial structure. We demonstrate that weights of trained linear classifiers exhibit spatial structure in
the following way: We compare the NP of actual weight matrices to suitable null models. As null models,
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(a) Effect of randomly permuting weights in trained
linear classifiers. Large changes in NP (NP∆) in-
dicate the presence of spatial concentration of large
weights. For each dataset, we train 50 models (see
Section 4.1), which are fully characterised by the
learned weight matrix.
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(b) Relationship of log-variance of weights and NP
conditioned on the respective dataset for linear clas-
sifiers. All models were trained for 40 epochs. The
relationship is almost perfectly linear. Linear regres-
sion fits give R2 ≈ 99% for all datasets.

we choose randomly shuffled weight matrices, i.e. we take actual weight matrices of trained linear classifiers
and randomly reassign row and column indices of individual weight values without changing the set of
weights present in the matrix. This intervention destroys any spatial structure in the weights, but preserves
properties that are independent of the spatial distribution, such as variance.

Figure 1a shows that weight matrices of linear classifiers trained on all datasets used in this paper, namely
MNIST, EMNIST and Fashion-MNIST, exhibit relevant spatial concentration of large weights. Random
permutation of weights leads to large changes in NP values. For comparison, the mean absolute deviation
of NP from the mean for different initialisations is generally less than 0.02. Changes resulting from random
permutation are smallest for models trained on Fashion-MNIST. Possibly, visual structures in Fashion-
MNIST data, i.e. clothes, are more complex and spatially distributed compared to characters or digits in
MNIST and EMNIST which means that more different input features will receive large weights.

Variance of weights. Having established the presence of spatial concentration of large weights in weight
matrices of trained linear classifiers, we analyse the relationship of NP and the variance of weights. Figure 1b
shows that a linear relationship between NP and the variance of weights can be observed for trained linear
classifiers. In particular, the R2 score of a linear regression fit is ≈ 99% for all datasets. This is expected,
since all else being equal, the dataset is the only factor that impacts the spatial concentration of large weights
in linear classifiers. Recall that in linear classifiers, large weights identify important features in the input
data. Therefore, multiple linear classifiers trained on the same dataset will generally assign large weights
to the same entries in the weight matrix. Eliminating this factor by separating models trained on different
datasets in the analysis leaves variance as the only factor identified in Section 3 that impacts NP.

4.3 Neural persistence for deep neural networks

In Section 4.2, we have established that trained linear classifiers exhibit spatial concentration of large weights
and, conditioned on the spatial concentration of large weights, NP responds linearly to changes in variance
of weights. Naturally, we are interested in whether this extends to DNNs. As before, motivated by our
theoretical analysis, we analyse the impact of the variance of weights and the spatial concentration of large
weights on NP. In particular, we find that no relevant spatial structures is present in later layers of DNNs,
and therefore NP corresponds roughly linearly to the variance of weights, as effects of spatial structure
become irrelevant.

Spatial structure. To analyse the spatial structure in DNNs, we repeat the permutation experiment from
Section 4.2, where we shuffle entries in weight matrices and compare the resulting NP values to NP values
for the original weight matrices of trained neural networks. Results for the resulting changes in NP values
are provided in Figure 2. They clearly show that, irrespective of the dataset or number of layers, NP values
of later layers in the network are insensitive to the random permutation of entries. The difference between
NP of permuted matrices and the true NP is mostly less than 0.02, which is a good bound for the variation
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Figure 2: Effect of randomly permuting weights in weight matrices in trained DNNs. Large changes in
NP indicate the presence of spatial concentration of large weights. We factorise the results by dataset and
number of layers in a feed-forward neural network, where having one hidden layer means that the full network
contains two linear transforms.

of NP values resulting from different initialisations and minibatch trajectories. These findings indicate the
absence of any spatial structure in the large weights of trained neural networks that is relevant for NP in
later layers of trained neural networks.
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Figure 3: Roughly linear correspondence of log-
variance of weights and NP for DNNs (2 or 3 hidden
layers, hidden size ∈ {250, 650}).

Variance of weights. Unlike spatial structure, dif-
ferences in the variance of trained weights also ex-
ist in the case of DNNs. Therefore, our results so
far suggest that, in the absence of relevant spatial
structure, the variance of weights becomes the main
factor that corresponds to changes in NP. Indeed,
in Figure 3 we again observe a roughly linear cor-
respondence of NP with the log-transformed global
variance of all weights in the trained network.

As is the case for linear classifiers, matrix sizes in-
fluence the effective NP values. However, the ma-
trix sizes that influence the final NP value depend
on the dataset (input and output layer), the hidden
size, and the number of layers. Therefore, we only
include DNNs with 2 or 3 hidden layers and hidden
size ∈ {250, 650} in Figure 3. Additional supporting
results are provided in Appendix G.1.

The absence of spatial structure in later network layers in conjunction with the strong correspondence of
NP with the variance of weights naturally raises questions about the additional information provided by NP
that goes beyond the variance of weights. We argue that little additional information is provided: Rieck
et al. (2019) suggest to use the growth of NP values for early stopping. This is very useful in cases where no
validation data is available. Therefore, we compare the variance as early stopping criterion to NP.

In Appendix G.2, we show that using the variance of weights in place of NP as early stopping criterion yields
similar results: Using the variance as criterion leads to training for 2 more epochs on average compared to
NP, with small increase in the resulting test set accuracy. Additionally, we find that the variance of weights
yields similar results as NP in distinguishing models trained with different hyperparameters, e.g. dropout or
batch normalisation. Further details are given in Appendix G.3.
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5 An improved complexity measure for deep feed-forward neural networks

Our analysis in Sections 3 and 4.2 demonstrated that the variance of the weights dominates the neural
persistence measure. Moreover, variance proves to be equally effective as the computationally demanding
NP when used as an early stopping criterion.

In this section, we introduce our deep graph persistence measure with the intention of reducing the dependency
on the variance of network weights, and instead increasing dependency on the network structure. Our deep
graph persistence alters the filtration used in the calculation of neural persistence. This addresses underlying
issues in neural persistence, and we show that deep graph persistence compares favourably to related methods
on the downstream task of covariate shift detection.

5.1 Definition of deep graph persistence

Our proposed deep graph persistence measure addresses two caveats of neural persistence: (1) Neural persis-
tence of a layer is highly correlated with the variance of the respective weight matrix; (2) Neural persistence
of a network is computed by averaging layer-wise values.

To address the first caveat, we standardise the weight matrices in each layer before normalisation. This
mitigates effects of layer imbalances (Du et al., 2018), i.e. all weights appearing very small because one entry
in a particular layer is very large.

We standardise the weights by subtracting the layer mean µl and dividing by the standard deviation σl of
weights in the same layer:

W
l

i,j = Wi,j − µl

σl
. (9)

We then follow the normalisation procedure of neural persistence by taking the absolute values of the
normalised weights W l

i,j and dividing by the largest resulting value in the network Wmax. We can then define
the set WG :=

{∣∣Wn

∣∣/Wmax∀n = 0, . . . , Nw
}

, indexed in descending order. Here, Nw is the cardinality of
the set WG, i.e. the number of parameters in the full network.

To address the second caveat, we consider the whole computational graph at once when computing deep
graph persistence similar to Liu et al. (2020) and Gebhart et al. (2019). This allows including structural
properties between layers which is different from the averaging over individual layers in neural persistence.
The filtration proposed by Rieck et al. (2019) for neural persistence is computed layer-wise, and within each
layer nodes are considered as independent components. Specifically, Rieck et al. include an edge in the
calculation of neural persistence, i.e. in the MST, in the order defined by decreasing magnitude whenever it
creates a new connected component consisting of input nodes and output nodes of the respective layer. We
extend this intuition to the entire neural network instead of treating layers independently. We add edges
to the computational graph sorted by decreasing (absolute) magnitude. Whenever an edge creates a new
connected component of input and output nodes of the full neural network, we include this edge. Finally,
we compute deep graph persistence similar to neural persistence, but by using the previously described set
of edges for the full neural network, instead of using edges from individual layers only.

In essence, we adapt the calculation of neural persistence to involve just the input nodes Vin and output
nodes Vout of G in a way that respects persistent paths through the entire network. Mathematically, this
is equivalent to calculating the MST of a complete bipartite graph Ĝ := (V̂ , Ê), with the set of vertices
V̂ := Vin ∪ Vout representing the input and output nodes of G and a set of edges Ê between these nodes.

In order to assign weights to the edges in Ê, we turn to the full network graph G = (V,E). For any choice
of input node a ∈ Vin and output node b ∈ Vout, we consider the set of directed paths Pab (following the
computational direction of the network) from a to b. Each path p ∈ Pab contains L+ 1 edges, where L is the
number of hidden layers in the network, and the edges are in different layers. Let ϑ : E → WG denote the
mapping that returns the edge weight of any edge (a, b) ∈ E. We can now define Θ : Ê → WG to compute
the edge weight of any edge (â, b̂) ∈ Ê as
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Θ(â, b̂) := max
p∈Puv

min
(u,v)∈p

ϑ(u, v). (10)

Thus, Θ assigns the filtration threshold to (â, b̂) for which there exists at least one directed path between a
and b in the full network graph G. The resulting persistence diagram for deep graph persistence is calculated
from the MST of the bipartite graph corresponding to

S
â̂b

= Θ(â, b̂). (11)

Different to neural persistence, this approach encodes information about connectivity in the full network.
Finally, we can define the deep graph persistence measure in an analogue fashion to neural persistence:
Definition 5.1 (Deep graph persistence). Let S ∈ [0; 1]|Vin|×|Vout| be a summarisation matrix with |Vin|
rows, |Vout| columns, and entries given by Θ. The deep graph persistence DGPp of the full network G is
defined as

DGPp(G) :=

1 +
∑

w∈MSTw(Ĝ)

(1 − w)p


1
p

. (12)

This formulation requires calculating the MST for just a single matrix S rather than for every layer. Further-
more, S has a fixed dimensionality regardless of architectural choices, such as hidden layer sizes, and it can
be efficiently constructed by dynamic programming. As a result, this approach is computationally cheaper
than neural persistence and scales better with increasing model depth. In the following, we abbreviate deep
graph persistence with “DGP”.

We show in Appendix G.4 that DGP indeed does not exhibit the correspondence to the variance of weights
that we observed for NP. Also, we check if DGP yields a better early stopping criterion than NP or the
variance of weights. However, our results in Appendix G.5 are negative. There is no relevant practical
difference between NP and DGP when used as early stopping criterion. Since Rieck et al. (2019) only
provide empirical, and no theoretical, justification for why NP can be used as early stopping criterion, we
conclude from our findings that assessing generalisation or even convergence only from a model’s parameters
without using any data remains difficult. While related methods also try to avoid labelled data as early
stopping criterion, they always require access to information based on model computations, such as gradients
(Mahsereci et al., 2017; Forouzesh & Thiran, 2021) or node activations (Corneanu et al., 2020).

Therefore, in the following, we focus on the utility for downstream applications which we see as a more
fruitful direction for applying methods related to NP.

5.2 Sample-weighted deep graph persistence for covariate shift detection.

Lacombe et al. (2021) have shown the usefulness of the neural persistence approach for covariate shift detec-
tion by including individual data samples in the calculations of Topological Uncertainty (TU). Concretely,
TU uses the same method as NP, namely calculating the 0-order persistence diagrams of individual layers
(i.e. the MST of the corresponding bipartite graph) and then averaging scores across layers. In contrast to
NP, TU is applied to the activation graph of a neural network (Gebhart et al., 2019) instead of the static
weights graph.

To use our proposed deep graph persistence in downstream tasks that require access to data, we introduce
the notion of sample-weighted deep graph persistence. For this, we calculate DGP on weights multiplied with
the incoming activation that is obtained when applying the network to a given sample, instead of the static
weights of the trained model. In the following, we formally define sample-weighted deep graph persistence.
Definition 5.2 (Activation graph). For a neural network G, the activation graph is defined as the input-
induced weighted graph G(x) obtained as follows. For an edge connecting a hidden node in layer ℓ with a
hidden node in layer ℓ+1 of G, the edge weight is given by the activation value of the hidden node multiplied
by the corresponding element in the weight matrix, i.e. W ℓ

i,j · xℓ
i . Following Lacombe et al. (2021), we use

the absolute value |W ℓ
i,j · xℓ

i |.
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Definition 5.3 (Sample-weighted deep graph persistence). For a neural network G and a sample x, we first
obtain the activation graph G(x). We then calculate the summarisation matrix S(x) using the edge values
of the activation graph instead of the edge weights of the non-sample weighted computational graph.

We use our sample-weighted DGP for the detection of covariate shifts, i.e. shifts in the feature distribution
in relation to the training or in-domain data. This task was also considered in TU (Lacombe et al., 2021)
which can be considered as an application of NP. We show that modifying neural persistence to mitigate its
identified caveats improves performance of derived methods in downstream applications. To compare DGP
and TU, we build on work by Rabanser et al. (2019), who have established a method to detect covariate and
label shifts by leveraging representations from trained neural networks.

Method. The method proposed by Rabanser et al. (2019) attempts to detect if a batch of data samples
contains out-of-domain data by comparing it to in-domain data. The method assumes the availability of
(a limited amount of) in-domain data. Concretely, Rabanser et al. first extract representations of the in-
domain and test data from a trained neural network. This results in two feature matrices Fclean ∈ Rn×d and
Ftest ∈ Rm×d, where n is the number of in-domain datapoints, m is the number of test datapoints (here, we
assume n = m), and d is the number of features in the representation extracted from the trained model.

For each feature dimension i ∈ {1, . . . , d}, a two-sample Kolmogorov-Smirnov (KS) test is conducted to
test the hypothesis that the feature values in feature dimension i are sampled from the same underlying
distribution in Ftest and Fclean. Using Bonferroni correction when d tests are performed, the null hypothesis,
namely that the underlying distributions are equal, is rejected at a confidence level of 95% if the p-value of
the KS test is smaller than 0.05 · 1

d . Rabanser et al. conclude that Ftest contains out-of-domain datapoints
if at least one of the d tests fails.

In order to use deep graph persistence and TU in this setting, we use the weights in the MST used for
calculating the DGP value (Definition 5.1) or the NP value (Definition 3.4). This is equivalent to using the
persistence diagram used for calculating DGP (or NP). To ensure consistency with the persistence diagram
formulation, the set of weights in the MST is sorted by weight magnitude and represented as a vector. For
a network with k input nodes and c output nodes corresponding to the c classes, this representation yields
feature vectors of dimension k + c − 1. The −1 is due to the MST containing one edge less than there
are nodes in the graph. Following Lacombe et al. (2021), we calculate the differences to class-wise mean
representation. Class-wise mean representations are defined as follows: Let f(xi) be a representation for
sample xi (of k given samples) extracted from the trained model, i.e. the sorted set of weights in the MST
of a layer in the activation graph. Let lj the number of samples with class j and yi the class of xi. Then,
the class-wise mean representation µj is defined as

µj = 1
lj

k∑
i=1

δ[yi = j] · f(xi). (13)

Given k labeled training samples {xi, yi}i=1,...l (in our case, l = 1000) and feature extraction function
f : Rk → Rd that extracts MST weights (or other representations such as the vector of softmax outputs) the
difference of the representation of a sample xtest to the mean representation of class j is given by

∆j(xtest) = ∥f(xtext) − µj∥2 , (14)

where lj is the number of training samples in class j. Lacombe et al. (2021) use the difference to the
mean representations only of the predicted class for sample xtest as a scalar score (averaged across layers).
However, we find that using the c-dimensional vector which contains the differences to mean representations
for training samples of all classes as done in Hensel et al. (2023) to be more effective for both TU and DGP:

∆(xtest) =
(
∆1(xtest) ∆2(xtest) . . . ∆c(xtest)

)
. (15)

Baselines. We compare DGP to three baselines for covariate shift detection. Softmax outputs of the
model are used by the seminal work of Rabanser et al. (2019). Topological Uncertainty (TU) (Lacombe
et al., 2021) effectively calculates NP on the activation graph (Gebhart et al., 2019). The recently proposed
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Dataset CIFAR-10 Fashion-MNIST MNIST
n Corruption GB GN PD UN GB GN PD UN GB GN PD UN
10 Softmax 2.22 2.84 4.76 1.97 1.76 5.78 5.55 3.04 2.11 15.30 19.67 7.44

TU 1.32 3.66 16.31 1.34 *1.44 1.79 7.55 1.54 1.63 5.07 *17.03 2.27
MAGDiff 1.83 5.24 9.86 1.56 1.52 3.42 7.07 2.16 2.39 8.48 19.49 4.60
DGP (Ours) *1.23 *9.18 *26.17 *2.53 1.44 *4.10 *12.76 *2.87 *1.91 *25.79 14.90 *16.96

20 Softmax 4.56 6.71 14.31 3.79 4.00 16.44 14.33 9.20 4.14 32.60 36.94 20.17
TU *3.17 10.91 29.67 3.12 *3.04 4.22 18.28 3.45 3.85 13.85 *31.02 6.54
MAGDiff 5.11 14.48 22.42 3.62 3.20 10.51 17.83 5.78 5.47 20.72 36.14 12.98
DGP (Ours) 2.84 *22.65 *43.51 *8.41 2.92 *12.53 *25.74 *8.75 *4.92 *43.57 28.44 *32.56

50 Softmax 6.16 10.26 23.53 3.24 4.37 28.64 23.31 17.42 4.20 48.69 51.30 32.00
TU 4.11 20.08 44.14 4.91 *3.59 7.20 29.82 4.08 6.34 24.02 *46.74 12.28
MAGDiff 9.38 25.51 35.95 6.80 3.30 19.49 29.34 11.13 8.24 35.22 50.58 23.70
DGP (Ours) *4.61 *36.33 *60.49 *16.57 3.09 *25.78 *39.72 *18.84 *9.71 *62.13 43.20 *48.92

100 Softmax 11.84 18.91 36.57 5.28 9.61 43.06 35.44 28.97 7.23 65.03 66.84 47.75
TU 8.79 31.31 58.81 9.98 *7.08 16.07 43.47 8.53 12.35 37.17 *62.33 21.31
MAGDiff 17.79 38.49 50.47 13.35 5.96 32.84 42.70 21.07 15.55 51.31 65.96 38.59
DGP (Ours) *10.78 *50.91 *79.88 *27.70 6.48 *40.74 *54.41 *31.78 *20.16 *79.21 58.14 *64.71

200 Softmax 18.77 27.71 48.20 8.37 16.29 56.78 46.94 41.12 10.60 79.23 78.90 61.45
TU 15.90 42.90 71.13 16.81 12.55 26.72 56.61 16.05 19.38 50.64 *75.64 31.92
MAGDiff 27.58 50.97 63.80 20.76 10.45 45.90 55.58 32.82 23.15 65.83 78.13 52.32
DGP (Ours) *19.67 *64.36 *89.39 *39.16 *13.11 *55.58 *67.51 *45.22 *30.19 *91.08 71.58 *78.71

Table 1: Covariate shift detection results for various corruptions and datasets. Scores are given in percent,
i.e. in the range [0; 100]. GB means Gaussian blur, GN means Gaussian noise (i.e. noise sampled from a
Gaussian distribution), PD means pixel dropout, and UN means uniform noise. Bold entries denote the best
result among methods for each combination of n, dataset and corruption type. With the asterisk, we mark
whether DGP or TU achieves a better score for the respective combination.

MAGDiff (Hensel et al., 2023) uses the complete final layer of the activation graph for sample x as extracted
representation f(x) to detect corrupted images. TU and MAGDiff do not use features directly, but their
difference to the mean features of training samples grouped by classes. We compare to TU, as it directly
uses neural persistence, and we also incorporate other methods as baselines. We use the evaluation protocol
proposed by Rabanser et al..

Setup. To evaluate the different methods on the covariate shift detection task, we train MLP models on
MNIST, Fashion-MNIST and CIFAR-10. For each dataset, we train models with all combinations of hidden
size ∈ {100, 650} and number of hidden layers ∈ {1, 3}. For each hyperparameter combination, we train 5
models with different initialisations. Hyperparameters and training setup are as described in Section 4.1.

Evaluation. Covariate shifts are simulated on synthetic data by artificially corrupting in-domain data with
added noise or other augmentations as proposed by Rabanser et al. (2019). In our evaluation, we corrupt
images from the MNIST, Fashion-MNIST and CIFAR-10 datasets by adding Gaussian noise (i.e. noise
sampled from a Gaussian distribution), uniform noise (i.e. noise sampled from a uniform distribution), or by
applying input dropout (i.e. changing the colour or brightness of pixels to black), and applying Gaussian blur
to images. All corruptions are applied in varying strengths. Details regarding the strength of corruptions
are in Appendix F.

We report the detection ratio (in percent) which measures the frequency of detecting corrupted samples for
each method. Specifically, it captures how often each method returns feature representations which make
the KS tests reject the hypothesis that the underlying feature distributions are equal for in-domain and
corrupted images. A score of 100 means that 100% of samples with corrupted images have been detected.

Results. In Table 1, we show covariate shift detection ratios on the CIFAR-10, Fashion-MNIST, and MNIST
datasets for Gaussian blur, Gaussian noise, pixel dropout, and uniform noise. Interestingly, however, DGP
does not manage to detect more subtle image transformations, such as rotation and zoom, equally well as the
baselines, so here we focus on noise-type corruptions and leave exploring other types of shifts to future work.
Also in Table 1, we show results for different features extraction methods and number of samples n used
for the detection. We observe that DGP performs better than baselines on most combinations of datasets
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n 20 50 100
Corruption GB GN PD UN GB GN PD UN GB GN PD UN
TU 3.85 13.85 31.02 6.54 6.34 24.02 46.74 12.28 12.35 37.17 62.33 21.31
TU (+ norm) 4.94 40.55 28.51 28.34 9.31 57.44 43.40 43.23 18.48 75.06 58.26 57.80
DGP (- norm) 3.66 35.15 27.72 22.46 5.15 51.78 41.15 35.70 11.26 67.71 55.95 49.74
DGP 4.92 43.57 28.44 32.56 9.71 62.13 43.20 48.92 20.16 79.21 58.14 64.71

Table 2: Ablation results on MNIST. Scores are corrupution detection ratios (in %). “norm” denotes applying
layer-wise standardisation. The full table with results for n = 10 and n = 200 is in Appendix G.7.

and corruptions, i.e. DGP detects corruptions more often and needs fewer samples to detect corruptions.
DGP gives particularly strong results on CIFAR-10. There, DGP surpasses the baselines on all corruption
types except for Gaussian blur, where it still performs better than TU. Results on MNIST are similar. On
MNIST, DGP is stronger for Gaussian blur detection for larger sample sizes, but fails to detect pixel dropout
similar to the baselines. Results on Fashion-MNIST are more mixed. Here, DGP only performs better than
the baselines on detecting uniform noise for larger sample sizes, and Softmax remains superior on detecting
Gaussian noise and Gaussian blur, but with small margin. In both cases, DGP performs better than TU.

DGP yields improvements over TU for all corruptions and datasets with the exception of detecting pixel
dropout on MNIST and detecting Gaussian blur on Fashion-MNIST, where deep graph persistence is outper-
formed by TU. The difference in these cases is relatively small compared to the improvements DGP achieves
in other settings.

5.3 Ablation study on sample-weighted deep graph persistence.

In Table 2, we show the effect of different components in the calculation of DGP on the covariate shift
detection performance. In particular, we analyse the impact of standardising layers by substracting the
layer-wise mean and of dividing by the layer-wise standard deviation. “TU (+ norm)” refers to TU, but
removing mean and standard deviation of layers of the activation graph before calculating representations.
“DGP (-norm)” refers to DGP, but without the removal of mean and standard deviation before constructing
the matrix S. Due to the high computational cost of calculating TU for many samples, we provide results
for the MNIST dataset only. Table 2 shows that both modifications, i.e. removing the averaging of layer-
wise scores (DGP (- norm)) and standardisation (TU (+ norm)), already improve performance individually.
Standardisation alone generally leads to stronger performance than DGP without standardisation. Together,
they yield further albeit smaller improvements. Note, that again we observe a weaker performance of DGP
for pixel dropout. In summary, this suggests that our proposed modifications indeed target properties of NP
that so far impede its usefulness for downstream tasks.

6 Conclusion

In this work, we thoroughly analysed the neural persistence measure and found both theoretically and
empirically that the variance of weights and spatial concentration of large weights are main factors that
impact neural persistence. We compared the behaviour of neural persistence for linear classifiers and for
deep feed-forward neural networks. For trained linear classifiers, we observed that the variance of weights
varies for different independent training runs and that the spatial concentration or large weights varies for
different datasets. However, we find that later layers in deep feed-forward neural networks do not exhibit
relevant spatial structure. We conclude that neural persistence is a more relevant metric for linear classifiers
than for deep feed-forward neural networks, because in the latter case we find neural persistence to provide
little information beyond the variance of weights. As neural persistence is more costly to compute than
the variance of weights without yielding additional insights, we hypothesise that a reformulation or different
application of neural persistence is necessary for deep neural networks. This leads us to propose deep graph
persistence as an extension of neural persistence. Deep graph persistence directly addresses the caveats of
neural persistence. Finally, we demonstrate the utility of deep graph persistence for covariate shift detection,
which permits direct comparison to previous work in applying topological methods in downstream tasks.
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A Proof of Theorem 3.5

Before we give the full argument proving the bounds in Theorem 3.5, we recall relevant definitions from
graph theory.
Definition A.1 (Spanning tree). A spanning tree of an undirected graph G = (V,E) is a connected acyclic
subgraph of G that contains every vertex (Sections 3-7 in Deo (1974)).
Remark A.2. A relevant property of spanning trees, and trees in general, is that for all vertices v, v′, there
is a unique path from v to v′ (Theorem 3-1 in Deo (1974)).
Definition A.3 (Maximum spanning tree). The maximum spanning tree MST(G) of a weighted graph
G = (V,E) is a spanning tree with maximal (summed) edge weights (Theorem 3-16 in Deo (1974). If all
weight values are unique, which we assume here, the maximum spanning tree is unique as well. We denote
the maximum spanning tree by MST(G) = (V,EMST).
Remark A.4. The maximum spanning tree MST(G) of graph G, and any tree in general, contains exactly
|V | − 1 edges (Theorem 3-3 in Deo (1974)).
Definition A.5 (Rooted tree). A rooted tree is a tree where exactly one vertex u ∈ V is singled out and
called “root” (Section 3-5 in Deo (1974)). Any (unrooted) tree can be turned into a rooted tree by picking
an arbitrary vertex as root.
Definition A.6 (Arborescence). An arborescence is a rooted tree with directed edges, where all edges point
away from the root (Section 9-6 in Deo (1974)).
Remark A.7. An inductive argument over the path length shows that any (undirected) rooted tree can be
turned into an arborescence by inducing the natural orientation on edges away from the root.
Remark A.8. In an arborescence, every vertex v except for the root u has in-degree one, i.e. exactly one
(directed) edge points towards v. The root u has in-degree zero, i.e. no (directed) edge points towards u
(Theorem 9-2 in Deo (1974)).
Remark A.9. Let T = (VT , ET ) be a rooted tree with root u ∈ VT . Through Remark A.8, we get a bijection
φ : VT \ {u} → ET that maps every non-root vertex to its unique incoming edge. φ is well defined because
of Remark A.8. Also, φ is injective, because every edge e ∈ ET has one and only one vertex that e points
to. Finally, φ is surjective, because for every edge e ∈ ET there is a vertex that e points to.
Remark A.10. Let T = (VT , ET ) be a rooted tree with root u ∈ VT and weighted edges. Let ψ : ET → R be
the function that assigns weights to edges of T , i.e. ψ maps edges to their corresponding weights. Then, we
can extend φ from Remark A.9 to φw : VT \ {u} → R which maps a vertex v ∈ VT \ {u} to the weight of the
unique edges ev ∈ ET that points towards v, i.e. φw = ψ ◦ φ.
Definition A.11 (Bipartite graph). Repeated from Definition 3.1. A graph G = (V,E) is called bipartite if
vertices V can be separated in two disjoint subsets A,B with V = A ∪ B and A ∩ B = ∅, so that all edges
e ∈ E have form e = (a, b) with a ∈ A and b ∈ B, i.e. every edge connects a vertex in A to a vertex in B (p.
168 in Deo (1974)).
Definition A.12 (Complete bipartite). Repeated from Definition 3.2. G is called complete bipartite if edges
between all vertices in A and all vertices in B exist, i.e. E is the Cartesian Product of A and B (p. 192 in
Deo (1974)).
Remark A.13. Any matrix W can be interpreted as the adjacency matrix of an undirected weighted complete
bipartite graph. In this case, rows and columns correspond to vertices in A and B, respectively. Entries of
W correspond to edge weights between all vertices in A and B. Given a matrix W , we denote the graph
induced by W as GW = (VW , EW ).

Now, we have gathered all preliminaries to give a proof for Theorem 3.5. For completeness, we repeat
Theorem 3.5 with additional explanations:
Theorem A.14. Let GW = (VW , EW ) a bipartite weighted graph induced by a matrix W ∈ [0; 1]n×m as
in Definition 3.4. Edge weights of GW are given by entries of W . We assume uniqueness of entries in
W , which may not be the case in general, but can be achieved by infinitesimal perturbations. Note, that
neural persistence (see Definition 3.4) is continuous, therefore infinitesimal perturbations also only have
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infinitesimal impact on neural persistence. According to Remark A.13, GW is bipartite and thus we denote
the parts as VW = A ∪B with A ∩B = ∅.

We define

L =
(∑

b∈B

(1 − max
a∈A

Wa,b)p +
∑
a∈A

(1 − max
b∈B

Wa,b)p

) 1
p

(16)

and

U =

|B \ B̸∼A| +
∑

b∈B ̸∼A

(1 − max
a∈A

Wa,b)p +
∑
a∈A

(1 − max
b∈B

Wa,b)p

 1
p

, (17)

where
B ̸∼A = {b ∈ B | ∀a ∈ A : b ̸= argmaxb′∈B Wa,b′}. (18)

B ̸∼A can be thought of as the set of columns whose maximal element does not coincide with the maximal
element in any row of W .

Then, the following inequalities hold:

0 ≤ L ≤ NPp(W ) ≤ U ≤ (n+m)
1
p . (19)

In the following, we first give a proof for the lower bound, then for the upper bound.

Lower bound. We first prove the lower bound L ≤ NPp(W ) (0 ≤ L is clear). Let MST(GW ) =
(VW , EMST(GW )) be the maximum spanning tree of GW . According to Definition 3.4, neural persistence
is calculated from the weights of all edges in MST(GW ).

First, we equip the maximum spanning tree MST(GW ) with arborescence structure. According to Defini-
tion A.5, we choose an arbitrary vertex u ∈ VW as root to make MST(GW ) a rooted tree. Then, we obtain
arborescence structure on MST(GW ) as in Remark A.7. Note that this only requires an arbitrary choice of
the root, but no particular assumptions on the maximum spanning tree or GW in general. Instead, we are
exploiting general properties of spanning trees.

Having introduced arborescence structure, according to Remark A.10 we have a bijection φw : VW \ {u} →
[0, 1] from vertices (without the root) to edge weights. Note that in our case, we can assume edge weights
to be in range [0; 1], because GW is induced from W and we assume that W has entries bounded below by
0 and above by 1.

Because φ and, assuming uniqueness of entries in W , thus also φw is a bijection, it follows that the image
of φw is identical to the set of weights of edges in the maximum spanning tree, i.e.

imφw = {ψ(e) | e ∈ EMST(GW )}, (20)

where ψ : EW → [0, 1] is the function that assigns weights to edges of GW , i.e. ψ maps edges to their
corresponding weights. As direct consequence, we can rewrite the definition of neural persistence in terms
of φw, namely

NPp(W ) =

1 +
∑

v∈VW \{u}

(1 − φw(v))p

 1
p

. (21)

Also note that the number of edges in MST(GW ), which is |Vw| − 1 according to Remark A.4, matches the
size of VW \ {u}. For any vertex v ∈ VW \ {u}, the value of φw(v) is bounded from above by the maximum
value of any edge connected to v. The reason is that φw is defined as φw := ψ ◦ φ and φ maps a non-root
vertex v to an edge connected to v. For example, assume v ∈ A, i.e. v corresponds to a row in W . Then,

φw(v) ≤ max
b∈B

Wv,b, (22)
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because the weights of edges connected to v are given by the entries in the row of W corresponding to v.
Furthermore, it follows that (

1 − max
b∈B

Wv,b

) 1
p

≤ (1 − φw(v))
1
p . (23)

The same argument holds for vertices in B, which correspond to columns of W , and thus for all vertices
v ∈ VW \ {u}. For the root u, again by definition of W , we get(

1 − max
b∈B

Wu,b

) 1
p

≤ 1, (24)

which corresponds to the constant offset in the definition of neural persistence. Here, we assume u ∈ A, but
the same argument can be made when b ∈ B.

In summary, we see that all additive terms in the definition of L are bounded by a corresponding additive
term in the definition of NPp(W ), and so it follows that L ≤ NPp(W ).

Upper bound. To prove the upper bound NPp(W ) ≤ U , we adopt the filtration perspective detailed by
Rieck et al. (2019): We traverse all edges sorted by weight in reversed order, i.e. from largest weight to
smallest. Whenever the introduction of an edge connects two previously disconnected components, the edge
is saved. The resulting saved edges are the same as the edges that appear in the maximum spanning tree,
i.e. EMST(GW ).

From this perspective, we observe that for every vertex v ∈ VW the maximum spanning tree necessarily
contains the edge connected to v with maximum weight. The reason is that, when traversing edges in
descending order sorted by weight, the first edge e connected to any vertex v is the edge connected to v with
largest weight. Because we have not encountered another edge connected to v before, v is not connected to
any other vertex. Instead, at this point v is an isolated connected component. Thus, by definition of neural
persistence, e appears in the calculation of neural persistence.

However, this does not suffice to describe the full maximum spanning tree, because some edges may have
maximal weight for both vertices connected by the edge. This is captured by the definition of U : The
right-most term, ∑

a∈A

(1 − max
b∈B

Wa,b)p,

captures all edges with maximal weight connected to vertices in A. The middle term,∑
b∈B ̸∼A

(1 − max
a∈A

Wa,b)p,

captures all edges that have maximal weight for a vertex in B but are not maximal for any vertex in A.
These weights are necessarily part of the maximum spanning tree.

The last term, |B \ B ̸∼A| captures all remaining edges and the constant offset. We do not make any
assumptions about them and give them the value that maximises neural persistence, i.e. 0. Since we have
|A| + |B| = |VW | and |B| = |B ̸∼A| + |B \ B̸∼A|, the numbers of additive terms in U and the definition of
neural persistence match.

Finally, the inequality U ≤ (n+m)
1
p holds, because here by definition terms of form (1 − w)p are bounded

by 1 and the sum in the definition of U contains exactly n+m terms.

Example. We provide an example for the calculation of bounds in Table 3. Note, that this is purely for
demonstration purposes, as in practise matrices are much larger.

L is derived by combining the maximum value in each row and the maximum value in each column of W .
In the example, the multiset (i.e. the set which may contain multiple instances of the same element) of
weights used to calculate L is {0.8, 1.0, 0.8, 0.8, 1.0, 0.7}. U is derived from L by replacing duplicates with 0.
Accordingly, the multiset of weights used to calculate U is {0.8, 1.0, 0.8, 0.7} and B \B ̸∼A = {b2, b3}, because
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B max(rows)
b1 b2 b3

A
a1

 0.5 0.1 0.8
 0.8

a2 0.7 1.0 0.1 1.0
a3 0.2 0.8 0.0 0.8

max(cols) 0.7 1. 0.8

Table 3: Example to illustrate the derived bounds on neural persistence. Bold values are entries of W
that appear in the calculation of neural persistence (but not necessarily in the calculation of the bounds).
According to max-over-rows values and max-over-columns values, B ̸∼A = {b1} and we have L ≈ 0.45,
U ≈ 1.47 and NP2(W ) ≈ 1.29.

the weight that is maximal in the column corresponding to b2 is also maximal in the row corresponding
to a2, and likewise the weight that is maximal in the column corresponding to b3 is maximal in the row
corresponding to a1.
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B Empirical validation of bounds and implications for neural persistence

B.1 Tightness of bounds

Here, we evaluate how tight the bounds derived in Theorem 3.5 are using synthetic data. In particular, we
sample matrices W with entries sampled iid from truncated Pareto distributions and then control for the
spatial concentration of large weights using the method described in Appendix E.1. Sampling from truncated
Pareto distributions allows to obtain matrices with neural persistence values that exhaust the full range of
possible values, i.e. the interval [0; 1]. Furthermore, truncated Pareto distributions are a good model for
the distribution of absolute, normalised weights found in trained deep feed-forward neural networks (see
Appendix D).

For the resulting matrices, we calculate the respective values of neural persistence, the lower bound L and
the upper bound U . Additionally, we compute the sortedness sortedness(W ) (see Appendix E.2) for all
matrices to show that the upper bound is tighter when sortedness(W ) is larger.

Concretely, we sample 10 000 different matrices with the following parameters:

• Parameter b of truncated Pareto distributions is sampled form a Beta distribution with parameters
α = 1 and β = 2, scaled by factor 60. This means that b = 60x, x ∼ Beta(1, 2). Sampling values
in this way generates matrices whose neural persistence values exhausts the full range of possible
values.

• Noise level s, where log(s) is uniformly sampled from the interval [−10, 0]. We explain the relation-
ship between noise level s and the resulting sortedness value sortedness(W ) in Appendix E.3. This
explanation also motivates our sampling range.

• The number of rows and number of columns sampled uniformly but independently between 50 and
500, i.e. the minimum number of rows (or columns) is 50, and the maximum number of rows (or
columns) is 500. Matrices are not necessarily square, i.e. the number of rows and the number of
columns of a matrix can differ.

Results are in Figure 4. Values above the diagonal correspond to values of the upper bound, and values
below the diagonal correspond to values of the lower bound. We plot values of the upper bound in different
colours showing the sortedness value sortedness(W ) of the matrix W the upper bound is calculated from.
This illustrates that the upper bound is tighter when sortedness is larger. Also, we show the diagonal as an
orange line and values corresponding to lower bounds as cyan (blue) circles. To additionally separate values
corresponding to upper bounds, we plot them as crosses.

Figure 4 shows that the lower bound is generally tight. Only in the vicinity of 0, i.e. for very small neural
persistence values, the tightness of the lower bounds seems to slacken. Contrarily, the upper bound only
becomes tight for neural persistence values greater than 0.5. For lower neural persistence values, the bound
is only tight when sortedness(W ) is close to 1, i.e. for matrices with high spatial concentration of large
weights. Note, however, that in practise for trained models, we mostly encounter neural persistence values
greater than 0.5. Therefore, we do not consider the upper bound not being tight when neural persistence is
small to be a problem. Furthermore, our insights do not rely directly on the tightness of bounds, but provide
theoretical insights into which factors impact neural persistence.

B.2 Variance and spatial concentration of large weights as factors that impact neural persistence

We empirically validate the insights obtained from the bounds on neural persistence (3.5). Namely, we
claim that variance of weights and spatial concentration of large weights are main factors that impact neural
persistence. Also, recall that with weights, we always refer to weights mapped to the range [0; 1] by first
taking absolute values and then dividing by the largest absolute weight value.

For our evaluation, we use synthetic, i.e. randomly sampled, weight matrices. For these synthetic matrices,
we control the variance of weights and the spatial concentration of large weights. Varying these factors, all
else being equal, allows us to investigate their relationship to neural persistence in a controlled way.
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Absolute Error Relative Error
Mean Max. Mean Max.

Lower Bound 0.004 0.043 01.04% 75.44%
Upper Bound 0.021 0.441 13.18% 1302.40%

Table 4: Absolute and relative errors of the upper bound and lower bound estimated on 10 000 synthetic
matrices. We report mean and maximum deviation from the actual neural persistence value.
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Figure 4: Tightness of bounds on neural persistence in Theorem 3.5. Values above the diagonal correspond
to upper bounds, and values below the diagonal correspond to lower bounds. Additionally, we indicate
the sortedness of matrices for upper bounds by colour to demonstrate that the upper bound tightens with
increasing spatial concentration of large weights. The diagonal is shown as an orange line. Lower bounds
are plotted as cyan (blue) circles, and upper bounds are plotted as crosses. A sortedness value of 0.0 means
random dispersion of large entries, and a sortedness value of 1.0 means perfect concentration of large entries
on bottom rows.

We calculate the neural persistence value, the variance, and the sortedness value sortedness(W ) (see Ap-
pendix E.2) for all generated matrice W s.

In particular, we sample matrices according to the following parameters:

• Entries are sampled iid from truncated Pareto distributions and truncated Normal distributions, so
that entries are within the range [0; 1]. The type of distribution is sampled randomly for every ma-
trix. Truncated Pareto distributions have one parameter b > 0, and truncated normal distributions
similarly have a single parameter σ, which we set to 1

b for convenience. We sample b from a Beta
distribution with parameters α = 1 and β = 2 scaled by factor 60, i.e. b = 60x, x ∼ Beta(1, 2). This
gives distributions with different variances to exhaust the full range of neural persistence values.

• The noise level s of the noisy sorting process described in Appendix E.1 that controls the spatial
concentration of large weights is sampled as follows: We sample log(s) uniformly between -10 and
0 and then apply exp to get a value between 0 and 1. The change of sortedness(W ) is faster for
sortedness values close to 0 (see Appendix E.3), therefore sampling uniformly on a log-scale gives a
better distribution of resulting sortedness values.
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Figure 5: Analysing the neural persistence of synthetic weights matrices when varying the variance and spatial
concentration of large weights. We observe approximately linear correspondence of neural persistence with
log-variance and spatial concentration of large weights. The R2 score of a linear regression fit is around
89% for both samples from truncated Pareto distributions and samples from truncated normal distributions.
“Sortedness” is a proxy measure for the spatial concentration of large weights. A sortedness value of 0 means
random spatial dispersion, 1 means that the matrix entries are perfectly sorted.

• For each number of rows and columns in {50, 100, 250}, where the number of rows is always equal to
the number of columns, we sample 2000 matrices randomly according to the parameters described
above. Note, that in this case it is necessary to treat matrices with different sizes separately, because
we observe that the neural persistence value also depends on the matrix size (see Appendix C).
Showing results for different matrix sizes confirms the generality of our observation and proves that
it is not an artifact of a particular set of parameters.
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Figure 5 shows that neural persistence increases monotonically with decreasing variance, i.e. lower variance
(and in this case also mean weight value) results in larger neural persistence. The increase of neural per-
sistence with decreasing variance is approximately linear when log-transforming the variance. Likewise, for
fixed variance, neural persistence increases monotonically with sortedness. Fitting a linear regression model
which maps the log-variance and sortedness to neural persistence achieves a coefficient of determination
R2 ≈ 89% for all matrix sizes. The R2 score measures the proportion of variance in neural persistence that
is predictable from log-variance and sortedness. Therefore, this result means that a significant amount of
the variance in neural persistence can be explained from variance of weights and sortedness.

In summary, these observations confirm a strong relationship between the variance and spatial concentration
of weights and neural persistence.
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C Normalised neural persistence depends on matrix size

Here, we provide empirical evidence that the normalisation of neural persistence to the range [0, 1] as proposed
by Rieck et al. (2019) does not achieve comparability of values calculated for different matrix shapes. Recall
that the neural persistence of a n × m matrix with entries in [0; 1] is bounded by (n+m− 1)

1
p . This is

asserted by Theorem 1 in Rieck et al. (2019). This bound is used to normalise neural persistence values to
the interval [0; 1], with the aim of comparing neural persistence values calculated for matrices of different
sizes. However, we find that even this definition of normalised neural persistence tends to decrease with
increasing matrix size. In other words, using the theoretical upper bound for normalisation does not lead to
comparability between matrix sizes.

However, this is not a theoretical issue: The constructive proof of the bounds on neural persistence (Theorem
1 in Rieck et al. (2019)) shows that, for any matrix size, a matrix can be constructed whose neural persistence
is equal to the upper bound. The theoretical upper bound is a limiting case of ever more positive-skewed
distributions of normalised absolute weights. It is reached when all edges except for one have weight 0, and the
remaining edge has weight 1. Therefore, maximum neural persistence is approached by having increasingly
skewed distributions of weights. However, when fixing a certain distribution of weights, increasing the matrix
size leads to a decrease of neural persistence.

We demonstrate this in the following way: For given n,m which specify the matrix size and distribution P
defined on the unit interval, we sample matrices of size n × m with entries sampled iid from P . Then, we
compute the mean normalised neural persistence from all sampled matrices.

In particular, we demonstrate the trend by sampling weights from a Uniform Distribution, a Truncated
Normal Distribution with σ = 0.5, and Truncated Pareto Distributions with increasing parameter b. The
Uniform Distribution and the extremely skewed Truncated Pareto Distribution with parameter b = 60
represent different extrema that may be encountered. Therefore, showing that the claimed trend holds for
both distributions affirms its generality.

Results for Truncated Pareto distributions are in Figure 6. Results for the Truncated Normal distribution
and the Uniform distribution are in Figure 7. The trend that normalised neural persistence decreases with
increasing matrix size, i.e. larger number of rows or columns, is visible for all distributions. Note, that
concrete neural persistence values differ for each distribution, but here we are only interested in the trend.

For a theoretical justification, consider the argument used to derive bounds in Theorem 3.5 (see Appendix A):
There is a bijection between vertices (excluding one arbitrary root) and the edges in the maximum spanning
tree that are used for calculating neural persistence. In other words, we can construct the maximum spanning
tree by picking for each vertex exactly one edge connected to the vertex. Assume now that the rank of all
selected edges, when sorting edges connected to a vertex by weight in decreasing order, is bounded by k.
k could be constant or growing very slowly with matrix size. This is a reasonable assumption, because for
most vertices, the selected edge has rank 1. Assume further that edge weights are sampled iid from some
distribution defined on the unit interval. Then, for any ϵ > 0, the probability of any value larger than 1 − ϵ
being withing the top k largest values increases monotonically with matrix size. The reason is that, due to
iid sampling, values in each row and column constitute themselves an iid sample. By increasing the matrix
size, we increase the sample size and thereby the probability of sampling a value close to the maximum, i.e.
1. Note that larger weight values lead to lower neural persistence.
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Figure 6: Expected normalised neural persistence for different matrix sizes and Truncated Pareto distri-
butions with varying parameter b. The expected normalised neural persistence decreases with increasing
matrix size (darker is lower). Note that heatmaps have different scales. Our aim is to show the trend, not
to compare values for different distributions.
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Figure 7: Expected normalised neural persistence for different matrix sizes and a Truncated Normal distribu-
tions with parameter σ2 = 1

2 as well as a Uniform distribution. The expected normalised neural persistence
decreases with increasing matrix size (darker is lower). Note that heatmaps have different scales. Our aim
is to show the trend, not to compare values for different distributions.
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D Distribution of weights in trained neural networks

Here, we quantify the distribution of weights actually encountered in the models trained as described in
Section 4.1. Our concrete aim is to make our experiments in Appendix B as faithful to real data as possible.
The main finding in this section is that normalised absolute weight values in trained neural networks are
best modelled by truncated Pareto distributions and truncated Normal distributions. In consequence, we
use these two families of distributions whenever we sample synthetic matrices.

Method We propose the following method for analysing weight distributions: Given a weight matrix W ∈
[0; 1]n×m, we fit parameters of distributions defined on the unit interval by minimising the negative log-
likelihood of weights in W . This means that for a given family of univariate distributions with parameters
θ, we minimize

L = − log
∏
i,j

P (Wi,j | θ) = −
∑
i,j

logP (Wi,j | θ). (25)

Weight matrices W are obtained from the weight matrices in trained neural networks by first taking absolute
values of all entries and then dividing each entry by the globally maximal absolute weight value in the entire
neural network, i.e. applying the same normalisation that is applied to calculate neural persistence values.

Since we use various distributions where no closed-form solution for argminθ L exists, we use a black-box
optimiser to find optimal parameters. Concretely, we use the Nelder-Mead method Nelder & Mead (1965) im-
plemented in scipy.optimize.minimize. Using a black-box optimizer is feasible, because we only consider
families of distributions with at most two parameters, which means that fitting parameters is computation-
ally relatively cheap. Also, in our case all parameters are constrained to positive values. We realise this
constraint by optimizing the log-transformed value of the parameters which is unconstrained in R, and apply
exp after optimisation.

Anecdotally, it is well known that trained neural networks tend to have very skewed distributions of weight
magnitudes with few large weights and most weights being close to 0. Therefore, expecting skewed distribu-
tions of weights, we consider the following families of distributions and fit their parameters for every weight
matrix of all trained models:

• Beta distribution with parameters α > 0 and β > 0

• Truncated Exponential distribution with parameter λ > 0

• Truncated Normal distribution with parameter σ > 0 (location is fixed to 0)

• Truncated Pareto distribution with parameter b > 0

Note, that all truncated distributions are truncated in a way to be defined on the unit interval. For Beta dis-
tributions, this is the case by definition. Therefore, our analysis is limited by the four families of distributions
that we consider. However, we the Beta distributions is very flexible and therefore a strong baseline when
comparing to the three truncated distributions, which are biased towards modelling skewed distributions.

Results First, we analyse which distributions are best models of weights in trained neural networks. For each
weight matrix, we compare the negative log-likelihood L of entries achieved by the optimised parameters.
We assume that the distribution whose optimal fit to the weights yields the lowest negative log-likelihood
is the best model of the entries found in the respective matrix. Note, that we do not take the numbers of
parameters into account and only compare log-likelihoods. Also, it may be the case that for some matrices
the optimiser fails or does not find optimal values. However, given that we analyse around 5000 matrices in
total, this does not obscure the (clear) trends visible in our results.

In Figure 8, we show the relative win rates of each distribution family for models trained on different datasets
and with different numbers of layers. We also show results for each layer separately, but aggregate over hidden
sizes and different activation functions. We define the win rate as the ratio of considered matrices where the
respective family of distributions achieves lowest negative log-likelihood. This means that the win rates sum
to one for the four considered families of distributions.
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Figure 8: Ratios of weight matrices where different families of distributions achieve highest log-likelihood of
normalised entries after fitting parameters. We show results for different datasets and models factorised by
number of layers in the model and weight matrices factorized by position in the model.
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Figure 9: Optimal values of parameter b for truncated Pareto distributions shown for models with different
number of layers trained on different datasets. We show values for each layer separately, but aggregate values
for models with different hidden sizes and activation functions. We observe that later layers generally have
lower value of b, which indicates less skewed distributions.

The general trend is that weights of deeper models and in later layers of all models are better modelled by
truncated Pareto distributions. However, especially for models trained on EMNIST and Fashion-MNIST,
weights in the first layer, i.e. the layer connected to inputs, are best modelled by truncated normal dis-
tributions. The relatively high number of winning truncated normal distributions in the final layer of one
layer models is mostly due to models with tanh activation function. Perhaps surprisingly, Beta distributions
rarely yield best negative log-likelihood, which confirms our initial hypothesis about distributions of weight
magnitudes being very skewed.
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Figure 10: Optimal values of parameter σ for truncated normal distributions shown for models with different
number of layers trained on different datasets. We show values for each layer separately, but aggregate values
for models with different hidden sizes and activation functions. We observe that later layers generally have
higher value of σ, which indicates less skewed distributions.
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Next, we are interested in the values of fitted parameters of truncated Pareto distributions and truncated
normal distributions. Through this, we can assess how skewed distributions actually are and if there are any
perceivable trends. Figure 9 shows the distributions of optimal values for the parameter b of truncated Pareto
distributions. We distinguish between models with different numbers of layers trained on different datasets,
and show results for each layer individually. However, we aggregate over models with different hidden sizes
and activation functions. In all cases, the main trend is that later layers have a less skewed distribution of
weight magnitudes (lower value of b). We hypothesise that in the first layer, some features receive very high
weights (and in fact it can be shown that concentration of large weights on fewer features monotonically
increases during training), whereas later layers are more densely and also more evenly connected. The
observed trend is confirmed when looking at optimal parameters of truncated normal distributions (see
Figure 10). Here, values of parameter σ are higher in later layers, indicating less skewed distributions.
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E Manipulating the spatial concentration of large entries in matrices

E.1 Noisy sorting process

Here, we explain how to obtain matrices with controlled spatial concentration of large weights. The core of
the method is to reorder entries of a matrix W so that they correspond to a non-perfect sorting of the entries.
This is achieved by constructing a permutation π of entries that sorts a perturbed matrix Wnoise. Then, we
apply the permutation π to W to reorder entries. We denote the result of applying the permutation π to W
as Wsort.

Wnoise is given by W + s · ϵ, where s ∈ R+ is a scalar parameter that determines the noise level. ϵ has the
same dimension, i.e. number of rows and columns, as W . Each entry ϵi,j of ϵ is sampled iid from a standard
normal distribution, i.e. ϵi,j ∼ N (0, 1) ∀i, j. Due to reparametrization, this means that s is equal to the
standard deviation of the added noise. Also note, that Wnoise has the same dimension, i.e. number of rows
and columns, as W .

Next, we formally describe how to derive π. First, we define two total orders on matrices W . We denote the
index set of W , i.e. the set of all (row, column) index pairs that specify positions in W , as I. Note that I
is also the index set of Wnoise.
Definition E.1 (Total order on matrix entries from indices). Let I = (i, j) ∈ I and I ′ = (i′, j′) ∈ I two
pairs of (row, column) indices that specify positions of entries in W . Then, define the relation ≤index as

I ≤index I
′ ⇐⇒ (i ≤ i′) ∨ (i > i′ ∧ j ≤ j′) (26)

In other words, an index pair I = (i, j) precedes another index pair I ′ = (i′, j′) if I indexes an entry of W
that has lower row index as I ′ or the same row index but lower column index. Clearly, this is a total order
on the index set of W .
Definition E.2 (Total order on matrix entries from values). Let I = (i, j) ∈ I and I ′ = (i′, j′) ∈ I two
pairs of (row, column) indices that specify positions of entries in W . Then, define the relation ≤value as

I ≤value I
′ ⇐⇒ Wnoise[i, j] ≤ Wnoise[i′, j′] (27)

In other words, an index pair I = (i, j) precedes another index pair I ′ = (i′, j′) if I indexes an entry of W
that has lower value as the entry indexed by I ′.

If we assume uniqueness of values of entries of W and Wnoise, which in general is not the case but can be
achieved by infinitesimal perturbations, both ≤index and ≤value are strict total orders. Then, it is a well
know fact that finite totally ordered sets of size k can be indexed by the first k natural numbers. In other
words, for both ≤index and ≤value, a bijection ι : I → N≤|I| exists that maps I (ordered according to the
respective relation) to the first k natural numbers. We denote the bijection induced by ≤index as ιindex, and
the bijection induced by ≤value as ιvalue.

Now, we define π as a bijection
π : I → I
(i, j) 7→ (ι−1

value ◦ ιindex)((i, j))
(28)

Then, applying π to W , i.e. changing entries of W according to the permutation π, yields an approximately
sorted matrix Wsort. Wsort is only approximately sorted, because the order induced by ≤value when using
values in Wnoise does not fully coincide with the order induced by ≤value when using values in W for sorting
due to the added Gaussian noise.

From this consideration, it is clear that the scalar noise parameter s controls the deviation of Wnoise from
a perfectly sorted matrix. Depending on the noise parameter s, large values of W concentrate towards the
bottom rows of Wsort. In the case of s = 0, Wsort is perfectly sorted. For large s, Wsort is more like a random
permutation of W .
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E.2 Sortedness criterion

Here, we formally describe our sortedness criterion that we use to measure the spatial concentration of large
weights in any given matrix W . We denote the criterion as sortedness(W ). The criterion measures the
number of inversions needed to sort the matrix W . This was proposed as a useful measure of the sortedness
of arrays in Mannila (1985). As underlying order on matrix entries we again use ≤index (see Definition E.1)
and ≤value (see Definition E.2) from Appendix E.1. However, as values used for comparison in the definition
of ≤value we use entries in W , i.e. the argument of sortedness, not Wnoise.

The number of inversions is formally defined as the cardinality |Inv| of the set Inv ⊂ I × I that is defined as

Inv = {((i, j), (i′, j′)) ∈ I × I | (i, j) ≤index (i′, j′) ∧ (i′, j′) ≤value (i, j)} (29)

This means that all tuples of index pairs ((i, j), (i′, j′)) are included in Inv where the order induced by indices
does not correspond to the order induced by values.

To project score values into the range [0; 1], we normalise by the maximum size of Inv. The maximum size
of Inv is |I|·(|I|−1)

2 Also, we substract the normalised score from 1 in order to get a measure of ascending
sortedness, not descending sortedness. Based on these considerations, we define a metric Ω which measures
the spatial concentration of large entries on bottom rows in matrices as

Ω(W ) def= 1 − 2 · |Inv|
|I| · (|I| − 1) (30)

According to Estivill-Castro (2004), Ω is closely related to the Kendall rank correlation coefficient Kendall
(1938), otherwise known as Kendall’s τ . First, we define the complement of Inv, namely

Ninv def= {((i, j), (i′, j′)) ∈ I × I | (i, j) ≤index (i′, j′) ∧ (i, j) ≤value (i′, j′)} (31)

with the property, that

Inv ∪ Ninv = {((i, j), (i′, j′)) ∈ I × I | (i, j) ≤index (i′, j′)} (32)

and thus
|Ninv| = |I| · (|I| − 1) − |Inv|. (33)

These definitions allow to redefine Ω as

Ω(W ) = 1 − 2 · |Inv|
|I| · (|I| − 1) = |I| · (|I| − 1)

|I| · (|I| − 1) − 2 · |Inv|
|I| · (|I| − 1) = 2 · |Ninv|

|I| · (|I| − 1) (34)

Thus, transforming Ω, we have

2Ω(W ) − 1 = 4|Ninv|
|I| · (|I| − 1) − 1 = 4|Ninv|

|I| · (|I| − 1) − 2 · (|Ninv| + |Inv|)
|I| · (|I| − 1) = 2

|I| · (|I| − 1) · (|Ninv| − |Inv|) (35)

which corresponds exactly to the definition of the Kendall rank correlation coefficient when comparing to an
array perfectly sorted in ascending order. Since efficient implementations for calculating the Kendall rank
correlation coefficient exist, we define our sortedness measure sortedness(W ) as

sortedness(W ) def= 2Ω(W ) − 1 (36)

and use the scipy implementation scipy.stats.kendalltau to compute sortedness(W ).

In practise, an (approximate) correspondence of ≤index and ≤value cannot be expected in arbitrary matrices,
even if they exhibit spatial concentration of large weights. In particular, matrices may exhibit spatial con-
centration of large entries in certain rows, certain columns, or both. Therefore, when calculating sortedness
for arbitrary matrices, we first permute rows and columns, so that they are sorted in ascending order by
mean value (over rows or columns, respectively). Furthermore, we compute sortedness using ≤index for W ,
its transpose WT and also using an order on matrix entries ≤diagonal in place of ≤index, that is induced by
diagonals as follows:
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Definition E.3 (Total order on matrix entries from diagonals). Let I = (i, j) ∈ I and I ′ = (i′, j′) ∈ I two
pairs of (row, column) indices that specify positions of entries in W . Then, define the relation ≤diagonal as

I ≤index I
′ ⇐⇒ (i+ j) < i′ + j′ ∨ i+ j = i′ + j′ ∧ i < i′). (37)

In other words, an index pair I = (i, j) precedes another index pair I ′ = (i′, j′) if I indexes an entry of W
that lies on a diagonal (from top right to bottom left) that is more to the left or more to the top of the entry
in W specified by I ′. Clearly, this is a total order on the index set of W .

This definition accounts for cases where large entries concentrate primarily on an intersection of some columns
and rows. Finally, we use the maximum of these three values as the actual sortedness value.

E.3 Relationship between the noisy sorting process and the sortedness criterion

In this section, we analyse the relationship of the noisy sorting process described in Appendix E.1 and
the sortedness criterion described in Appendix E.2. On the one hand, we use the noisy sorting process to
generate synthetic matrices with controlled spatial concentration of large weights on the bottom rows. On
the other hand, we use the sortedness criterion, denoted as sortedness(W ), to measure spatial concentration
of large weights in matrices.

First, we note that the sortedness(W ) is an empirical measure that can be applied to any matrix W .
Contrarily, the noise level s that parametrises the noisy sorting process cannot be recovered without knowing
the original matrix before the sorting process. Therefore, the noisy sorting process does not directly yield an
empirical criterion to assess the spatial concentration of large weights in arbitrary matrices. This answers the
question why we do not simply use the noise level s that parametrises the noisy sorting process as measure
of spatial concentration in the empirical validation part of Section 3.

In order to understand the relationship between the noisy sorting process and the sortedness measure devel-
oped in Appendix E.2, we make the following observation about Ω defined in (34): Ω(W ) can be seen as a
(normalised) sum of indicator variables, namely whether any index pair (i, j) ∈ I × I, i < j, is not in the
set Inv. Therefore, by linearity of expectation, the expected value of 1 − Ω(W ) is equal to the probability of
any such index pair (i, j) being an element of Inv. In consequence, we have to describe this probability.

For this analysis, we assume that entries of W are sampled iid from some probability distribution P defined
on the unit interval, i.e. with support on [0; 1]. We define the random variable δ as the absolute difference
between two values sampled from P . For example, the expected value of δ is defined as

E[δ] = Ex,y∼P [|x− y|] ≤ 1. (38)

Remember from Appendix E.1 that Wnoise is obtained from W by adding element-wise Gaussian noise with
mean 0 and variance s2 to W . For any index pair ((i, j), (i′, j′)) ∈ I × I, let ϵi,j , ϵi′,j′ ∼ N (0, s) be the
respective random noise values. For simplicity, we denote I = (i, j) and I ′ = (i′, j′). Note, that in this
scenario, we assume I ≤index< I ′ and Wi,j < Wi′,j′ . Then, with high probability, we have

1 − E[Ω(W )] = Pr[(I, J) ∈ Inv] = Pr[Wi,j + ϵi,j > Wi′,j′ + ϵi′,j′ ] = Pr[(ϵi,j − ϵi′,j′) − (Wi′,j′ −Wi,j) > 0].
(39)

Unfortunately, we have no prior knowledge about the distribution of δ and therefore can not evaluate this
probability. One practical option is to make the simplifying assumptions that δ is normally distributed
with mean µδ and variance σ2

δ , which we can estimate from the entries in W . In this case, the quantity
(ϵi,j − ϵi′,j′) − (Wi′,j′ −Wi,j) is a sum of three Gaussian random variables, and is accordingly distributed as
N (−µδ, 2s2 + σ2

δ ). Now, we can evaluate Pr[(ϵi,j − ϵi′,j′) − (Wi′,j′ −Wi,j) > 0] as

Pr[(ϵi,j − ϵi′,j′) − (Wi′,j′ −Wi,j) > 0] = Φ−µδ,2s2+σ2
δ
(0) = 1 − Φ0,2s2+σ2

δ
(µδ),

where Φµ,σ2 is the cumulative distribution function of a normal distribution with mean µ and variance σ2.
Recalling the definition of the cumulative distribution function of normal distributions, namely

Φ0,2s2+σ2
δ
(µδ) = 1

2

(
1 + erf

(
µδ√

2 ·
√

2s2 + σ2
δ

))
,
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we get the following relationship:

E[sortedness(W )] = erf
(

µδ√
2 ·
√

2s2 + σ2
δ

)

which we can solve for s when we want to generate matrices with a specific sortedness value. Note, that in
reality δ will generally not be distributed according to a normal distribution. Therefore, this way of finding
suitable values of s will be biased and possibly inaccurate.
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Intensity Level
Corruption I II III IV V VI

MNIST

Gaussian blur σ 0.35 0.4 0.5 0.6 0.7 0.8
κ (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)

Gaussian/uniform noise σ 25
255

40
255

55
255

70
255

85
255

100
255

Pixel dropout p 0.1 0.2 0.3 0.4 0.5 0.6
Fashion-MNIST

Gaussian blur σ 0.35 0.4 0.5 0.6 0.7 0.8
κ (3, 3) (3, 3) (3, 3) (3, 3) (3, 3) (3, 3)

Gaussian/uniform noise σ 10
255

20
255

30
255

40
255

50
255

60
255

Pixel dropout p 0.1 0.2 0.3 0.4 0.5 0.6
CIFAR-10

Gaussian blur σ 1.0 2.0 3.0 4.0 5.0 6.0
κ (3, 3) (3, 5) (5, 5) (5, 7) (7, 7) (9, 9)

Gaussian/uniform noise σ 30
255

60
255

85
255

100
255

120
255

140
255

Pixel dropout p 0.1 0.2 0.3 0.4 0.5 0.6

Table 5: Overview of parameter values for the various image corruptions across datasets and intensity levels
used for creating synthetic data for the evaluation of covariance shift detection in Section 5.2.

F Technical details of image corruptions

Here, we describe in detail how we apply corruptions to images in order to create synthetic data for the
covariate shift detection evaluation in Section 5.2. We evaluate four types of corruption, namely Gaussian
blur, Gaussian noise, pixel dropout, and uniform noise. In the case of Gaussian noise and uniform noise,
feature values are clipped between 0 and 1, to avoid illegal values, which are trivial to detect as corrupted.
For each type of corruption, we evaluate six levels of corruption intensity. For Gaussian noise and uniform
noise, the corruption intensity is defined by multiplying standard normal or uniform noise with factor σ. For
Gaussian blur, the corruption intensity is defined by the standard deviation σ and the kernel size of blurring.
For pixel dropout, the corruption intensity is defined by the dropout probability p.

To set parameters of corruptions, we use the same parameters as Hensel et al. (2023) for Gaussian blur and
Gaussian noise. Additionally, we use the same multipliers for Gaussian noise and for uniform noise. For
pixel dropout, we use custom values. An overview over parameters is given in Table 5.

Additionally, we create samples with varying ratio δ of corrupted samples, while all other images in the
sample are non-corrupted. We include corrupted image ratios of δ ∈ {0.25, 0.5, 0.75}. In samples with less
corrupted images, it is less likely that the KS test will reject the null hypothesis, therefore such samples are
harder to detect by the method evaluated in this work.
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Dataset EMNIST Fashion-MNIST MNIST
Activation relu tanh relu tanh relu tanh

#Layers Hidden Size

1

50 98.63 99.21 98.52 98.37 97.87 97.42
100 97.56 99.03 97.98 93.27 96.95 99.10
250 99.23 99.52 99.01 97.68 98.93 98.83
650 98.68 99.68 99.39 99.39 98.82 98.93

2

50 96.44 99.39 97.72 98.87 98.24 98.47
100 98.83 99.06 99.40 98.67 98.91 99.01
250 99.57 98.88 99.34 99.02 99.48 98.37
650 99.47 99.85 99.40 99.50 99.58 99.30

3

50 98.30 97.65 98.50 98.19 98.94 99.01
100 98.16 99.15 99.52 98.04 99.09 99.26
250 97.11 99.54 98.52 99.51 99.69 99.54
650 98.67 99.73 98.64 99.61 99.36 99.72

Table 6: R2 score of linear regression fits when treating the log-transformed variance of weights as inde-
pendent variable and the neural persistence value as dependent variable. We show results for each model
architecture, accordingly the linear regression is fitted on 20 datapoints that represent the 20 different runs
with different initialisation and minibatch trajectory. All values are close to 1 (here scaled by factor 100 for
better readability), which suggests excellent fit of the linear regression.

G Additional results

G.1 Correspondence of variance and neural persistence for deep neural networks with different
hyperparameters

Here, we demonstrate the approximately linear correspondence of neural persistence and log-transformed
variance of normalised weights for all deep neural networks (see Section 4.1). For each combination of
hyperparameters, we train 20 models with different initialisation and minibatch trajectories. This leads to
20 different models after training for 40 epochs, and models generally have different variance of weights and
neural persistence values. However, we show that there is an approximately linear correspondence between
the log-transformed variance and the neural persistence value. In Figure 11, we show results for models with
relu activation function, and in Figure 12 we show results for models with tanh activation function. In each
case, we show separate plots for models with different numbers of layers and trained on different datasets.
Within each plot, we distinguish models with different hidden size by colours.

All plots agree with our observation that neural persistence corresponds approximately linearly to log-
transformed variance. This can be seen from the resulting linear trajectories, each consisting of 20 points
corresponding to the model variants with different initialisation and minibatch trajectory. Furthermore, our
visual analysis is complemented by R2 scores of linear regression fits, which we report in Table 6. All R2

scores are close to 100%, which indicates that the log-transformed variance can explain a significant amount
of variation of neural persistence values.

In summary, these results suggest that in the case of DNNs, neural persistence becomes a surrogate measure
of the variance of weights.

G.2 Variance as early stopping criterion

Rieck et al. (2019) suggest to use the growth of neural persistence values as an early stopping criterion. This
is very useful in cases where no validation data is available. Therefore, we compare the variance as early
stopping criterion to neural persistence.
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Figure 11: Roughly linear correspondence of log-variance of weights and neural persistence for models with
ReLU activation function. Results are factorised by dataset (columns), number of layers (rows) and hidden
size (colour).
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Figure 12: Roughly linear correspondence of log-variance of weights and neural persistence for models with
tanh activation function. Results are factorised by dataset (columns), number of layers (rows) and hidden
size (colour).
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EMNIST Fashion-MNIST MNIST
∆epoch(NP, val) -0.91 0.68 1.76
∆epoch(NP, var) -2.33 -1.31 -1.60
∆epoch(var, val) 1.43 1.99 3.35
∆accuracy(NP, val) 0.190 0.032 0.033
∆accuracy(NP, var) -0.014 -0.019 -0.002
∆accuracy(var, val) 0.204 0.050 0.034

Table 7: Differences in number of trained epochs when using validation error, neural persistence, or the
variance of weights as early stopping criterion. ∆epoch refers to the difference in number of trained epochs.
∆accuracy refers to the difference in test set accuracy at the point of stopping. A positive difference means
that the corresponding value for the first argument is higher. Note that accuracy is given in %, i.e. takes
values in [0; 100].

Concretely, we evaluate numbers of warm-up epochs (referred to as “burn-in” epochs in Rieck et al. (2019))
from 0 to 25 and use patience values between 1 and 10. We use Algorithm 2 in Rieck et al. (2019) for
calculating early stopping epochs from a maximum of 40 training epochs. Like Rieck et al. (2019), we
evaluate the model every quarter epoch.

Table 7 shows that using the variance as early stopping criterion, on average, stops around 2 epochs later
than using neural persistence or the validation error as early stopping criterion. However, this actually leads
to a slight expected increase of test set accuracy, both compared to neural persistence and to the validation
error. Also note that the difference in test set accuracy between neural persistence and variance is lower
than the difference between neural persistence or variance and using the validation error as early stopping
criterion. This shows that using the variance of weights can indeed be used as a less costly replacement of
neural persistence as early stopping criterion, with a small expected increase in training time.

G.3 Variance and regularizers

We demonstrate that variance yields similar results compared to neural persistence for distinguishing deep
feed-forward neural networks trained using different regularisers, namely dropout, batch normalisation, or
no regulariser. To this end, we replicate the results from Section 4.1 in Rieck et al. (2019). We train models
using the same hyperparameters (2 hidden layers, 650 hidden units, relu activation function) as Rieck et al.
(2019) using no regulariser, batch normalisation, or dropout (p = 0.5) on the MNIST dataset. For each
setting we train 30 models with different initialisations and minibatch trajectories.

Then, we compute the neural persistence and variance of normalised weights for each model. Figure 13 shows
that the distribution of variances differs between models trained with different hyperparameters. Results for
neural persistence are the similar. On the one hand, this reproduces the results in Rieck et al. (2019), but
confirms that variance behaves similar to neural persistence in this regard as well.

Finally, however, we want to mention that we believe that these results are actually an artifact of this
particular dataset, namely MNIST. Figure 14 shows the corresponding results for models trained on the
Fashion-MNIST dataset. Here, we do not see any clear distinction between distributions of variances or
neural persistence values for different datasets.

G.4 Dependence of deep graph persistence on variance.

We verify that deep graph persistence does not correlate strongly with the variance of weights of neural
networks unlike neural persistence. Similar to the analysis in Section 4.2, we analyse the relation between
deep graph persistence and the log-transformed global variance of all weights in a trained network.

In Figure 15b, we show the distribution of correlation coefficients (Kendall τ) of deep graph persistence
and variance and of neural persistence and variance during training. While in the vast majority of cases
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Figure 13: Left: Replication of Figure 3 in Rieck et al. (2019). neural persistence can distinguish models
trained on MNIST using different regularisers. Right: Using variance of weights instead of neural persistence
yields very similar results. Note, that results for variance of weights are vertically flipped compared to neural
persistence, because higher neural persistence corresponds to lower variance of weights.
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Figure 14: Using neural persistence or variance of weights fails to distinguish models trained on Fashion-
MNIST using different regularisers. However, distributions for variance of weights and neural persistence
are again similar up to vertical flipping.

neural persistence and variance evolve similarly during training, the distribution of correlation coefficients
is generally flat. This suggests that there is no systematic co-evolution of deep graph persistence and the
variance of weights during training.

In Figure 15a, we show that there are no visible trends regarding correspondence of deep graph persistence
and variance in trained neural networks. Here, we use the same set of models that we used in Section 4.
Also, we evaluate models after training for 40 epochs. Therefore, we conclude that unlike neural persistence,
deep graph persistence cannot be replaced by only considering the variance of weights.

G.5 Deep graph persistence as early stopping criterion

Table 8 shows that using deep graph persistence as early stopping criterion does not yield notably different
results compared to using neural persistence or the variance of weights as early stopping criterion. Aver-
aged over all models and early stopping setting (i.e. number of warm-up epochs and patience), deep graph
persistence stops earlier than neural persistence and variance of weights, but reaches slightly lower accu-
racy. However, given the generally miniscule differences in accuracy, this does not constitute a qualitative
difference.
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(a) Correspondence of log-transformed variance of
weights and deep graph persistence values in trained
models for EMNIST. Unlike neural persistence, there
is no linear correspondence of deep graph persistence
and the variance of weights and no clear other sys-
tematic trend seems present.
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(b) Distribution of Kendall’s τ between variance of
weights and deep graph persistence values over train-
ing (right) and neural persistence values over training
(left). While neural persistence and the variance of
weights are highly correlated in most cases, there is
no clear trend regarding strong correlation of deep
graph persistence and variance of weights.

EMNIST Fashion-MNIST MNIST
Epoch difference

∆epoch(DGP, val) -1.945 0.711 -0.490
∆epoch(DGP, var) -3.376 -1.28 -3.348
∆epoch(DGP, NP) -1.037 0.032 -2.245

Test accuracy difference
∆accuracy(DGP, val) 0.189 0.034 0.027
∆accuracy(DGP, var) -0.015 -0.017 -0.007
∆accuracy(DGP, NP) -0.002 0.002 -0.006

Table 8: Differences in number of training epochs when using validation error (“val”), neural persistence
(“NP”), or variance (“var”) as early stopping criterion compared to using deep graph persistence (“DGP”) as
early stopping criterion. ∆epochs refers to the difference in number of training epochs. ∆accuracy refers to the
difference in test set accuracy at the point of stopping. A positive difference means that the corresponding
value for the first argument is higher. Note that accuracy is given in %, i.e. takes values in [0; 100].

Our conclusion from these findings is that whether the generalisation capabilities of a model can be assessed
from the parameters alone, i.e. without using any data, remains unclear.

G.6 Additional results for deep graph persistence on covariate shift detection

In Figure 16, we show the detection ratios of all methods in a visual manner for the three different datasets.
Here, the corruption is Gaussian noise. Figure 16 shows that deep graph persistence outperforms the baselines
with a particularly large margin on CIFAR-10, which is the most realistic of the three datasets. On Fashion-
MNIST, the distance to the softmax baseline is small, however. In Figure 17, we show how the different
feature extraction methods are affected by only having a certain ratio δ of test samples (from the CIFAR-
10 data) being corrupted (by Gaussian noise). In Table 1 and Figure 16, detection ratios for the different
corruption ratios are aggregated. Figure 17 shows that batches containing fewer corrupted images are harder
to detect, as expected. But for δ = 0.25, from a certain sample size on, the detection ratio of deep graph
persistence increases rapidly, while that of baselines does not increase as fast. For higher values of δ, all
methods can detect corrupted batches given a sufficiently large sample size n.
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Figure 16: Corruption detection ratios for different sample sizes and feature extraction methods shown for
different datasets. Here, the corruption is Gaussian noise.
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Figure 17: Corruption detection ratios for different sample sizes and feature extraction methods for different
ratios of test batches being corrupted. For example, δ = 0.25 means that 25% of images in the test batch are
corrupted, while all other images are unaltered. Results are for CIFAR-10 and the corruption is Gaussian
noise.
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TU TU (+ norm) DGP (− norm) DGP
n

10 GB 1.63 1.93 1.66 1.91
GN 5.07 23.41 18.82 25.79
PD 17.03 15.43 14.05 14.90
UN 2.27 14.46 9.81 16.96

20 GB 3.85 4.94 3.66 4.92
GN 13.85 40.55 35.15 43.57
PD 31.02 28.51 27.72 28.44
UN 6.54 28.34 22.46 32.56

50 GB 6.34 9.31 5.15 9.71
GN 24.02 57.44 51.78 62.13
PD 46.74 43.40 41.15 43.20
UN 12.28 43.23 35.70 48.92

100 GB 12.35 18.48 11.26 20.16
GN 37.17 75.06 67.71 79.21
PD 62.33 58.26 55.95 58.14
UN 21.31 57.80 49.74 64.71

200 GB 19.38 28.45 19.80 30.19
GN 50.64 86.74 81.76 91.08
PD 75.64 71.39 68.24 71.58
UN 31.92 70.79 63.27 78.71

Table 9: Full ablation results for modifications of neural persistence made to obtain deep graph persistence.
“± norm” denotes whether layer-wise standardisation is applied. Scores are detection ratios on MNIST
reported as percentages in range [0, 100].

G.7 Full results of deep graph persistence ablation on MNIST

In Table 9 we report full results of our ablation study for deep graph persistence on MNIST. In the main
part, we only reported sample sizes n ∈ {20, 50, 100}. Here, we additionally report results for sample sizes
10 and 200. These results do not provide additional information that are not visible for the sample sizes
reported in the main part.

G.8 Deep graph persistence yields calibrated detection scores

In Table 10, we show that both TU and deep graph persistence yield calibrated detection scores for detecting
corrupted images. Specifically, we show that false detection rates, i.e. returning that a batch of images
contains corrupted samples when actually all are not corrupted, is small. This is important to verify that
high true detection rates are not simply caused by too high sensitivity to spurious differences in feature
distributions. Following Hensel et al. (2023), we take a false detection rate of 5% as an upper threshold for
well-calibrated detection scores. Numbers in Table 10 clearly indicate that false positive rates for both TU
and deep graph persistence are well below 5%. Therefore, we can be confident that deep graph persistence
actually captures differences in distribution between corrupted and non-corrupted images.

43



Under review as submission to TMLR

n Method CIFAR-10 Fashion-MNIST MNIST
10 TU 1.04 1.23 1.09

DGP (Ours) 0.89 1.15 1.09
20 TU 1.89 2.25 1.97

DGP (Ours) 1.55 2.09 1.98
50 TU 1.17 1.28 1.31

DGP (Ours) 0.98 1.25 1.19
100 TU 1.12 1.29 1.13

DGP (Ours) 1.00 1.30 1.05
200 TU 0.56 0.62 0.58

DGP (Ours) 0.47 0.62 0.56

Table 10: False detection rates for TU and deep graph persistence on different datasets. Numbers are reported
in percent, i.e. in [0; 100]. All scores are < 5% which means that methods only rarely mistakenly return that
a batch of images contains contains corrupted samples when in reality all images are not corrupted.
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