RL-based sample selection improves transfer learning in low-resource and
imbalanced clinical settings

Anonymous ACL submission

Abstract

A common strategy in transfer learning is few
shot fine-tuning, but its success is highly depen-
dent on the quality of samples selected as train-
ing examples. Although active learning meth-
ods like uncertainty sampling and diversity
sampling can pick useful samples, they under-
perform in low-resource and class-imbalanced
conditions. We introduce a more robust sample
selection strategy using reinforcement learn-
ing (RL) to identify the most informative sam-
ples. Combined with back-translation data
augmentation, this approach greatly improved
model adaptability in low-resource and class-
imbalanced settings. Experimental evaluations
on two clinical datasets related to invasive fun-
gal infection (IFI) show our RL-based sample
selection strategy enhances model transferabil-
ity and still maintains robust performance un-
der extreme class imbalance compared to tra-
ditional methods. An ablation study on data
augmentation reveals that this approach can
greatly enhance performance when only a few
samples are available, but as sample size grows,
the quality of back-translation is also crucial
for the model’s performance.

1 Introduction

Unlike general texts, clinical reports are typically
challenging to analyze using Natural Language Pro-
cessing (NLP) because they contain specialized
symbols, abbreviations, and medical jargon. The
effectiveness of NLP techniques in healthcare heav-
ily relies on the quality of annotated datasets (Tou-
vron et al., 2023; Liu et al., 2024a). However, due
to data restrictions and the rarity of many disease
conditions, acquiring large amounts of gold stan-
dard data in healthcare can be difficult. The high
cost of annotation further restricts the availability
of labeled data. Therefore, maximizing the utility
of limited data becomes a crucial research focus.
Transfer Learning (TL) (Tan et al., 2018) is
an approach in which knowledge learned from a
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Figure 1: Overview of the NLP-based IFIs detection
surveillance framework.

task is reused to boost performance on a related
task. It has shown effectiveness across various ma-
chine learning applications (Weiss et al., 2016), and
opens new avenues for addressing low-resource sce-
narios. Previous works have attempted to leverage
pretrained embeddings (Maimaiti et al., 2021) and
few shot examples (Alyafeai et al., 2020) to facili-
tate transfer learning in NLP. However, when the
target task offers very few labeled instances, these
approaches may generate unreliable outputs. This
is an especially acute problem in healthcare, where
reliability is paramount.

Class-imbalance (Johnson and Khoshgoftaar,
2019) is another challenge often present in low-
resource settings. In clinical datasets, there is often
a scarcity of positive cases due to the low preva-
lence of many conditions, making such instances
both valuable and limited in number. Differences
in data-collection protocols can lead some cohorts
to contain very few positive samples, while oth-
ers may be overwhelmingly positive. These ex-
treme disparities in class distribution further hinder
the transferability of NLP models across heteroge-
neous clinical datasets.

Invasive fungal infections (IFIs) pose signifi-
cant risks to patients with weakened immune sys-
tems, requiring timely detection (Neofytos et al.,
2009). Previous works have shown the efficacy
of NLP techniques in detecting IFIs from clini-
cal reports (Rozova et al., 2023; Martinez et al.,
2015). However, available IFI related datasets are
limited and also face the class-imbalance prob-



lem. These datasets come from diverse sources,
such as reports from CT and PET scans, or cytol-
ogy and histopathology findings, where the content
structures, terminology, and linguistic expressions
differ. In different document types, IFI detection
cues overlap to some degree, but existing IFI detec-
tion models still fall short of human performance
in transferring knowledge between them. As the
preparation of gold standard annotated datasets is
time-consuming, effective learned knowledge trans-
fer from existing datasets to new but similar tasks
becomes valuable. This not only improves annota-
tion efficiency but also enhances the models’ adapt-
ability in dealing with similar tasks.

In this work, we propose a more robust strat-
egy for knowledge transfer between similar but
different sources, particularly for low-resource and
class-imbalanced environments. Firstly, we employ
a reinforcement learning (RL) based strategy to
identify the most informative samples within new,
unlabeled datasets. The sampling policy relies on
learner feedback derived from existing knowledge.
It considers both content representations and model
confidence. After selection, medical experts anno-
tate the selected examples for use in fine-tuning.
Finally, we apply back-translation to address the
shortage of medical content in low resource condi-
tions. Experimental results show that our approach
improves both the adaptability and performance
of IFI detection between different sources. In the
context of transfer learning, this approach offers
a promising way to both reduce annotation effort
and enhance model robustness in low-resource and
class-imbalanced settings.

Our contributions are summarized as follows:

* This work is the first to address the challenges
posed by low-resource and class-imbalance
scenarios in IFI detection from medical re-
ports.

* We propose a more robust RL-based sample
selection strategy tailored to scenarios with
both data scarcity and class imbalance.

* We demonstrate that back-translation based
data augmentation further mitigates the chal-
lenges posed by low-resource conditions.

* Extensive experiments on two IFI-related
datasets confirm that our transfer learning ap-
proach is more effective between similar but
different sources, even under low-resource
and class-imbalanced conditions.

2 Related Work

With high-quality annotated datasets, NLP methods
have shown promising results in infection detec-
tion. Based on the concept features relevant to
IFIs, dictionary-based detection approaches have
shown effective performance (Rozova et al., 2023;
Martinez et al., 2015). Bag-of-words models have
also been utilized, often combined with machine
learning techniques to further enhance accuracy
and scalability in infection detection (Cury et al.,
2021; Lépez-Ubeda et al., 2020). Recently, large
language models (LLMs), such as BioBERT (Lee
et al., 2020) and Clinical BERT (Huang et al., 2019),
pre-trained on large biomedical corpora, have fur-
ther improved contextual understanding in clinical
texts (Consoli et al., 2024; Boligarla et al., 2023).

Low resource settings remain challenging for
NLP tasks. Researchers have explored various
transfer strategies to improve model performance
by learning from limited data or external knowl-
edge. Few-shot fine-tuning (Mann et al., 2020;
Gu et al,, 2021; Liu et al., 2022a), where large
pre-trained models are adapted using only a small
number of labeled examples, has shown promis-
ing results. Selecting effective few-shot samples
is critical, and active learning strategies such as
uncertainty sampling (Nguyen et al., 2022) and
diversity sampling (Yang et al., 2015) are often em-
ployed. However, these active learning approaches
typically focus on a single metric and may not
perform consistently across diverse scenarios. Re-
inforcement Learning (RL) (Fang et al., 2017; Liu
et al., 2024b) offers a potential solution by opti-
mizing more flexible and adaptive sample selection
policies, thereby improving robustness in differ-
ent contexts. Data augmentation (Li et al., 2022;
Shorten et al., 2021; Bayer et al., 2022) is a strategy
to address limited training data by generating more
training examples from existing ones. Common
methods in NLP include paraphrasing, synonym
replacement, word perturbation, back-translation,
and synthetic text generation. These techniques
expand the dataset and help models to improve per-
formance in low-resource settings. Although these
strategies are widely studied, their effectiveness in
clinical NLP applications, with highly specialized
terminology and noisy texts (Liu et al., 2022b), still
requires further exploration and validation.

Class imbalance is especially crucial in low-
resource clinical NLP tasks (Ghosh et al., 2024). To
address this, previous studies have explored various
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Figure 2: An overview of our framework for transfer learning from A to B. Task A and Task B share some similar
knowledge but still have differences. Without transfer learning, the model trained only on Dataset A performs well
on Task A but not on a Task B. Our sample selection strategy uses RL to identify key samples from Dataset B and
finally applies back-translation. The resulting model achieves good performance on both Task A and Task B. Task
A = test set of Dataset A, Task B = test set of Dataset B. Dataset A contains train/dev reports and has labels. Dataset
B contains unlabeled train/dev reports. Dataset B’ contains the selected samples from Dataset B and have been

annotated. SFT = Supervised Fine-tuning.

strategies. Data-level approaches, such as oversam-
pling minority classes (Hairani et al., 2024) and
undersampling majority classes (Yang et al., 2024),
are typically used to balance class distributions.
Algorithm-level methods, such as cost-sensitive
learning (Araf et al., 2024) and focal loss adjust-
ments (Aljohani et al., 2023), aim to direct model
attention toward underrepresented classes, thereby
improving model performance. Despite these ad-
vances, effectively managing class imbalance in
low-resource clinical scenarios continues to be an
active area of investigation.

3 Methodology

3.1 Overview

The overall framework of our proposed method is
shown in Figure 2. Initially, we fine-tune an active
learner with the source dataset. The active learner
then provides feedback in the form of document
embeddings and predicted probabilities for a new,
unlabeled target dataset. This new dataset contains
unlearned knowledge and shares partial similarity
with the source domain. These outputs from feed-
back than serve as the input state representation for
a Sampling Policy Network (SPN) which is trained
via RL to select the most informative samples. The
selected informative samples are subsequently an-
notated and combined with the original annotated
dataset. Finally, the expanded dataset is enhanced
through back-translation. With supervised fine-
tuning on the final dataset, the knowledge can be
effectively transferred and the model performance
across heterogeneous datasets also improved.

3.2 Sample Selection Strategy

Our sample selection strategy uses RL to iden-
tify the most informative samples between low-
resource and class-imbalanced datasets. The aim
is to improve the model’s transferability across dif-
ferent medical datasets with the selected samples.
The pseudocode for this part is provided in Ap-
pendix A. This strategy consists of the following
key components:

Active Learner. The active learner is a
lightweight classifier fine-tuned on a fully anno-
tated dataset. Its primary role is to serve as an
analytic tool. It uses learned representations from
labeled data to evaluate and provide diagnostic
feedback on unlabeled datasets.

State Representation. We construct the state rep-
resentation for each unlabeled report based on the
outputs of the active learner. Specifically, each
state vector combines the contextual embedding
derived for the unlabeled report and its predicted
probabilities for each class. We also integrate two
informative metrics: confidence and margin. Confi-
dence is defined as the highest predicted class prob-
ability, and the margin is calculated as the absolute
difference between class probabilities. Finally, the
state vector is defined as:

i = [hew); po(xi); pr(i); e(@i);m(x:)] (1)
where h ;) are the contextual embeddings of the
unlabeled report, po(x;) and p; (z;) are predicted
class probabilities, ¢(x;) is the confidence, and

m(x;) represents the probability margin. This com-
prehensive representation equips the RL agent with



nuanced diagnostic signals to effectively guide the
sample selection process. The overall dimension
of the state vector is set to 772.

Sampling Policy Network (SPN). We formulate
the sample selection process by training a SPN.
This is a deep Q-learning network (Hester et al.,
2018) trained to decide whether each unlabeled re-
port should be selected (action a; = 1) or discarded
(action a; = 0). To be specific, we optimize the net-
work parameters § by minimizing the mean squared
error (MSE) between the predicted Q-values and
the target Q-values:

[’(0) = E(s,a,r,s’)NB [(Q(37 a; 9)

) )
—(r+ 7y max Q(s',d’;0 ))) ]
a

where B is the experience replay buffer,
(s,a,r,s’) are past experiences, -y is the discount
factor, and 0~ represents the parameters of the peri-
odically updated target network. Through this train-
ing process, the SPN learns an effective sampling
policy that prioritizes selecting the most informa-
tive samples for improving model transferability

across different datasets.

Reward. In our RL framework, we use the clas-
sification margin m(x;) as the reward r;. This
margin quantifies the active learner’s confidence in
its prediction. A larger margin indicates higher cer-
tainty, whereas a smaller margin signals greater un-
certainty. After the agent taking action a; € {0,1}
(select vs. discard), the agent receives r; and up-
dates its network via the Bellman target:

Qi =r + 7 H}?XQtargct(si—i-ha,)v 3)

Over episodes, this reward structure drives the
policy toward an optimal sampling strategy under
a limited annotation budget.

Sample Selection. After the SPN is trained, we
apply the learned policy to the unlabeled dataset.
For each sample, we compute the action with the
highest expected reward according to the SPN:

a; = arg Jnax Q(si,a;0) )
Samples for which a; = 1 are selected for annota-
tion. By iteratively applying this selection process,
the resulting annotated subset helps improve the
knowledge transfer performance in low-resource
and class-imbalanced datasets.

3.3 Data Augmentation

To address the scarcity of textual data, we employ
multilingual back-translation as a data augmenta-
tion strategy. For each report, we translate the
English text into multiple target languages and sub-
sequently back-translate it into English, leveraging
pretrained MarianMT models' from Hugging Face.
The back-translation augmentation process for a
given text x is defined as follows:

28T = fratskn (fEnote(2)) )

where frn—Tge and fre—En are pretrained trans-
lation models from English to a target language
and from the target language back to English.

We utilize several language pairs to enhance lin-
guistic diversity, including English—Chinese (zh),
English—French (fr), English—-German (de), and
English—Spanish (es). This augmentation is ap-
plied to both the selected samples and the anno-
tated dataset which contains previously acquired
knowledge. By enriching multilingual variations,
this approach mitigates the low-resource issues in-
herent in NLP tasks.

4 Experimental Setup

4.1 Datasets

We chose two IFI-related clinical datasets as bench-
marks in this study: the Cytology and Histopathol-
ogy IFI Reports corpus (CHIFIR?) and the PET-CT
Invasive Fungal Infection Reports corpus (PIFIR?).
These data originated from 2 Australian hospitals,
one tertiary referral center and one specialized can-
cer hospital.
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Figure 3: Word clouds for the CHIFIR (right) and PIFIR
(left) datasets. Word size corresponds to term frequency.

fungal

£ macrophages

m:r

£

Although both datasets are related to IFI, the
vocabulary used varies across them. The CHIFIR
dataset is collected from cytology and histopathol-
ogy reports. These reports assess tissue or fluid

1https: //huggingface.co/Helsinki-NLP

2 Available for credentialed users at https://physionet.
org/content/corpus-fungal-infections/1.0.2/

3 Available for credentialed users at https://physionet.
org/content/pifir/1.0.0/


https://huggingface.co/Helsinki-NLP
https://physionet.org/content/corpus-fungal-infections/1.0.2/
https://physionet.org/content/corpus-fungal-infections/1.0.2/
https://physionet.org/content/pifir/1.0.0/ 
https://physionet.org/content/pifir/1.0.0/ 

Transfer Learning Strategy ‘

Performance on PIFIR
Accuracy F1 score

Performance on CHIFIR

Precision Recall | Accuracy Fl-score Precision Recall

Zero-shot Transfer  Fine-tuned on CHIFIR 0.33 0.12 1.00 0.6 0.94 0.76 1.00 0.63
€ro-shot Transler  pihe-tuned on PIFIR 0.88 0.92 0.88 0.97 0.48 0.27 0.17 0.63
Full-shot Transfer  Fine-tuned on CHIFIR + PIFIR ‘ 0.83 0.89 0.85 0.94 ‘ 0.90 0.55 1.00 0.38

Table 1: Performance comparison of fine-tuned BioBERT over CHIFIR and PIFIR with different strategies. Models
perform well when fine-tuned and evaluated on the same dataset. In contrast, evaluated on a similar but still different
dataset causes a clear performance drop. Fine-tuned on a single dataset but evaluated on another dataset can be
regard as the zero-shot transfer, and we set this as our baseline. Fine-tuned and evaluated on both datasets can be
regarded as the full-shot transfer, and we assume this is the best of transfer learning performance.

samples and describe the microscopic visualiza-
tion of fungal organisms. The PIFIR dataset is
collected from PET-CT reports. These reports as-
sess metabolic activity and discuss the anatomical
and morphological features of fungal lesions via
PET-CT imaging. Figure 3 shows differences in
their predominant clinical terms. More detailed
concept level analysis of differences can be found
in Appendix B. Both CHIFIR and PIFIR exhibit
class imbalance. CHIFIR is dominated by negative
cases (negative: 86%, positive: 14%), whereas PI-
FIR is dominated by positive cases (negative: 31%,
positive: 69%). This imbalance not only increases
the difficulty of effective knowledge transfer but
also poses challenges for experimental evaluation
by potentially skewing performance metrics.

Solit CHIFIR PIFIR

P Total P N | Total P N
Train | 202 28 174 | 139 94 45
Dev 29 4 25| 20 14 6
Test | 52 8 44 | 42 31 11

Table 2: Class distribution for CHIFIR and PIFIR across
train, development, and test sets. P = the number of
positive reports, N = the number of negative reports.

For the CHIFIR dataset, expert annotators have
provided report-level classification labels indicat-
ing whether a report is positive or negative for an
IFI, as well as span-level annotation of concepts
relevant to IFI detection. It contains 283 reports
from 201 patients, with an average length of 1,384
characters. The PIFIR dataset also has report- and
concept- level annotations. It includes 201 reports
from 156 patients, with an average of 1,457 char-
acters. The original datasets do not contain a de-
velopment set. We therefore split each dataset into
training, validation, and test parts. The ratio is
around 70:10:20, and the original class balance is
kept. Table 2 shows the number of positive and
negative samples in each split.

4.2 Evaluation Metrics

We employ a variety of metrics for evaluation, in-
cluding accuracy, F1 score, precision, and recall.
Class imbalance in benchmark datasets makes the
F1 score particularly important. Recall is also
important, given that it is critical not to miss IFI-
positive cases.

4.3 Baselines

We select the fine-tuned BioBERT approach from
previous work (Anonymous) as the baseline. When
fine-tuned separately on CHIFIR and PIFIR dataset,
the model performs well on its own data but poorly
on the other dataset. Although both datasets focus
on IFIs and they share some similarities, the model
still struggles to apply what it learned from one
dataset to the other. Table 1 shows the baseline
results and reveals the challenges of knowledge
transferability between these datasets. Although
training on both CHIFIR and PIFIR can improve
performance, it requires annotating all reports in
the unlabeled dataset, which is labor-intensive. We
observed that even when training on both datasets
together, the evaluation performance on the CHI-
FIR dataset remains low, with an F1 score of 0.55.
It suggests that transferring knowledge from CHI-
FIR to PIFIR is relatively simple, while the reverse
transfer from PIFIR to CHIFIR is more difficult.

5 Experimental Results

5.1 Cross-Dataset Transfer Learning
Performance

We set the number of few shot examples to k£ €
{1,2,4,8,16,32}; this scale is widely used in ear-
lier few shot studies (Brown et al., 2020). The
largest value, 32 samples, is safe for our data be-
cause it adds about 16% to the training instances
in CHIFIR dataset and about 23% to the instances
in PIFIR dataset, so the auxiliary samples never
outweigh the target domain.



Knowledge Transfer from CHIFIR to PIFIR

Knowledge Transfer from PIFIR to CHIFIR

Sample Selection (in PIFIR) Performance on PIFIR Sample Selection (in CHIFIR) Performance on CHIFIR
Strategy Num P:N Acc F1 P R Strategy Num P:N Acc F1 P R
1 - 0.3143  0.1500 0.4800 0.0900 1 - 0.5115 0.2071 0.1729 0.5000
2 - 0.4476 0.3866 0.7208 0.2968 2 - 0.6038 0.1804 0.1548 0.3500
Randomly 4 - 0.5810 0.5974 0.9359 0.4710 Randomly 4 - 0.7346  0.1556 0.1433  0.1750
8 - 0.6571 0.7180 0.8871 0.6774 8 - 0.7692 0.0307 0.0400 0.0250
16 - 0.7381 0.8113 0.8693 0.7871 16 - 0.8307 0.0364 0.0667 0.0250
32 - 0.7667 0.8508 0.8087 0.9032 32 - 0.8269 0.0000 0.0000 0.0000
1 1.00:0.00 | 0.4524 0.4103 1.0000 0.2581 1 0.00:1.00 | 0.7692 0.1429 0.1667 0.1250
2 1.00: 0.00 | 0.5000 0.5330 0.8571 0.3871 2 0.50:0.50 | 0.3654 0.3265 0.1951 1.0000
Uncertainty 4 1.00: 0.00 | 0.6667 0.7667 0.7931 0.7419 Uncertainty 4 0.33:0.67 | 0.6154 0.2857 0.2000 0.5000
8 1.00: 0.00 | 0.6667 0.8000 0.7179 0.9032 8 0.13:0.87 | 0.8077 0.1667 0.2500 0.1250
16 0.94:0.06 | 0.6667 0.8000 0.7179 0.8710 16 0.13:0.87 | 0.7115 0.0000 0.0000 0.0000
32 0.94:0.06 | 0.7381 0.8493 0.7381 1.0000 32 0.13:0.87 | 0.8462 0.0000 0.0000 0.0000
1 1.00: 0.00 | 0.3571 0.2286 1.0000 0.1290 1 0.00: 1.00 | 0.4423 0.2927 0.1818 0.7500
2 1.00: 0.00 | 0.6190 0.6923 0.8571 0.5806 2 0.00: 1.00 | 0.5962 0.2759 0.1905 0.5000
Diversity 4 1.00: 0.00 | 0.6667 0.7812 0.7576 0.8065 Diversity 4 0.25:0.75 | 0.6154 0.2857 0.2000 0.5000
8 0.87:0.13 | 0.7857 0.8525 0.8667 0.8387 8 0.13:0.87 | 0.8462 0.0000 0.0000 0.0000
16 0.87:0.13 | 0.7381 0.8493 0.7381 1.0000 16 0.06:0.94 | 0.8462 0.0000 0.0000 0.0000
32 0.91:0.09 | 0.7381 0.8493 0.7381 1.0000 32 0.06:0.94 | 0.8462 0.0000 0.0000 0.0000
1 1.00: 0.00 | 0.2857 0.1176 0.6667 0.0645 1 1.00: 0.00 | 0.4423 0.3256 0.2000 0.8750
2 0.50:0.50 | 0.3571 0.2286 1.0000 0.1290 2 0.50:0.50 | 0.6923 0.2727 0.2143 0.3750
Our Method 4 0.75:0.25 | 0.6429 0.6809 1.0000 0.5161 Our Method 4 0.50: 0.50 | 0.5769 0.3889 0.2500 0.8750
8 0.87:0.13 | 0.7381 0.8493 0.7381 1.0000 8 0.38:0.62 | 0.6346 0.2400 0.1765 0.3750
16 0.75:0.25 | 0.7857 0.8696 0.7895 0.9677 16 0.31:0.69 | 0.7500 0.1333 0.1429 0.1250
32 0.69:0.31 | 0.7857 0.8696 0.7895 0.9677 32 0.25:0.75 | 0.8654 0.2222 1.0000 0.1250

Table 3: Transfer learning performance from CHIFIR to PIFIR (left) and from PIFIR to CHIFIR (right) under
different sample selection strategies. Num = the number of annotated reports; P:N = the positive-to-negative ratio in
these annotations. Metrics reported are Accuracy (Acc), F1 score (F1), Precision (P) and Recall (R).

We compare our strategy with several other ac-
tive learning approaches to analyze the impact of
different sample selection methods on knowledge
transfer performance. In this analysis, we do not
apply back translation data augmentation, thus iso-
lating the effects of the sample selection itself:

1) Random Selection: We randomly select k£ sam-
ples from the unlabeled dataset for annotation.
Each experiment is run five times to reduce vari-
ance and obtain more reliable results. We report
the mean evaluation metrics over these five runs.

2) Uncertainty-based Selection (Nguyen et al.,
2022): Uncertainty score is the lowest confidence
predicted by the active learner. Based on this, we
select k samples for annotation and evaluate trans-
fer learning performance on a different dataset.

3) Diversity-based Selection (Margatina et al.,
2021): Diversity score measures report similarity
between datasets. We calculate the cosine distance
between each report embedding in the unlabeled
dataset and the embeddings in the labeled dataset.
Higher scores show greater differences between

samples. We select the £ most diverse samples for
annotation, and evaluate the resulting performance.

4) Our method: Our RL-based sampling strategy
selects the most informative samples based on con-
textual embeddings, predicted probabilities, con-
fidence, and margin. We annotate these samples
and then evaluate their effectiveness for improving
knowledge transfer.

The results of our transfer learning experiments
across the CHIFIR and PIFIR datasets are shown
in Table 3. We analyze how the number of selected
samples affects performance. Although both our
datasets are focused on IFI-detection, the experi-
mental results show that unlike in context learning,
with 1 samples selected, few shot fine-tuning can
not greatly improve the robustness of model per-
formance on the other datasets. As k increases
from 1 to 32, all methods show steady improve-
ment. However, after k& = 16, the performance
gain becomes smaller, suggesting that additional
annotations bring limited benefits once enough in-
formative samples are selected.



Performance Evaluation on PIFIR
s

Performance Evaluation on CHIFIR
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Figure 4: Class imbalance analysis of positive to negative sample ratios for transfer learning from CHIFIR to
PIFIR (left) and from PIFIR to CHIFIR (right). For each ratio, we randomly selected 20 samples and repeated the
experiment five times to evaluate transfer performance; bars show mean values and black lines indicate variance.

Compared to other sample selection strategies,
our approach shows greater robustness. In trans-
fer learning from CHIFIR to PIFIR, with more
than 16 samples, uncertainty-based selection and
diversity-based selection result in models that pre-
dict all cases as positive and no negative samples
are correctly identified (False Negative = 0 and
True Negative = 0). Our method avoids this prob-
lem, maintaining balanced predictions and good
performance on both classes. Similarly, in transfer
learning from PIFIR to CHIFIR, uncertainty and di-
versity methods fail to predict positive cases when
more than 8 samples are selected. Their F1 score,
precision, and recall drop to zero, as models predict
all reports as negative. In contrast, our method still
has the ability to identify positive samples even
under class imbalance, although the performance
does not increase with more samples, suggesting
that this transfer is more challenging.

In Appendix C, we provide additional evalua-
tions of model performance on the labeled dataset
after transfer learning. Interestingly, our method
achieves stable results and even slightly outper-
forms joint fine-tuning on both datasets. This may
be because joint fine-tuning risks overfitting when
data is limited, while our sample-efficient strategy
mitigates this.

5.2 Robustness under Imbalanced Sampling

We evaluate the robustness of our sampling strat-
egy under class imbalance conditions. First, we use
the random selection strategy to choose 20 samples
from the unlabeled dataset with different positive
to negative ratios (from 1:9 to 9:1). Each setting
is repeated five times to obtain stable results. Fig-
ure 4 shows the outcomes. For knowledge transfer
from CHIFIR to PIFIR, the best performance oc-

curs when the positive to negative ratio is around
7:3, which closely matches the actual class distribu-
tion in PIFIR. In the reverse transfer, from PIFIR to
CHIFIR, increasing the positive ratio raises recall
but hurts accuracy. This happens because CHIFIR
has many more negative cases, and a high positive
ratio makes the model label almost everything as
positive. To predict both positive and negative sam-
ples well, the ratio still needs to match CHIFIR’s
true distribution.

Table 3 shows uncertainty and diversity strate-
gies tend to select mostly positive or negative sam-
ples. Specifically, when selecting 10 samples, these
methods choose only positive cases. This imbal-
ance causes the trained models to classify nearly
all reports as positive in the PIFIR dataset. Conse-
quently, these methods perform poorly at identify-
ing negative samples, resulting in low precision and
recall for the negative class. In reverse class dis-
tribution scenarios, choosing more samples of the
minority class from the data already learned helps
the model tell positive and negative classes apart.
However, in low-resource and class-imbalanced
settings, this choice can easily lead the model to
overfit on the new task.

Our RL-based sampling method selects samples
having class ratios that better match the true distri-
bution of each dataset. By choosing a more suit-
able ratio of positive and negative examples, our
method helps the model better identify both classes.
Our method improves knowledge transfer between
heterogeneous datasets, outperforming uncertainty
and diversity sample selection strategies.

5.3 Effects of Data Augmentation

Since the knowledge transfer performance from
PIFIR to CHIFIR is unstable, we concentrate here



on the CHIFIR to PIFIR transfer performance. Fig-
ure 5 (upper) shows the knowledge transfer perfor-
mance after informative sample selection, compar-
ing results with and without back translation for
Chinese, French, German, and Spanish together.
It shows that back translation has a large impact
when the sample size is small, but as the sample
size grows, its effect becomes less obvious and may
even decrease slightly. Since we applied back trans-
lation in four languages, we further evaluate how
each language affects model performance. The
results are shown in Figure 5 (lower).
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Figure 5: The effects of data augmentation performance
on knowledge transfer from CHIFIR to PIFIR after in-
formative sample selection.

To understand the impact of each language, we
examined the model’s F1 scores at different sample
sizes. We found that German and Spanish transla-
tions gave stable, high performance even with few
samples. Models trained with German translations
achieved the highest overall F1 scores and exhib-
ited robustness when the number of samples in-
creased. Spanish translations showed similar trends
and reliable results. French translations demon-
strated moderate effectiveness. While achieving
good results with adequate samples, performance
fluctuated significantly when sample sizes were
small. Chinese translations, despite adding linguis-
tic diversity, led to unstable and lower overall per-
formance. Models trained on Chinese translations
initially improved with limited samples but then
dropped noticeably with increased sample sizes.
This likely results from significant semantic shifts

introduced during translation, causing confusion
and negatively affecting learning effectiveness.

To access translation quality quantitatively, we
evaluate the BLEU scores (Papineni et al., 2002)
between the original texts and their back-translated
versions as shown in Figure 6. Higher BLEU scores
suggest translations closely resemble the original
reports. Overall, BLEU scores were modest across
languages, but German and Spanish achieved the
highest scores. Chinese translations had the low-
est BLEU scores, reflecting substantial differences
from the original texts. This explains why model
performance dropped slightly when using 32 sam-
ples augmented with Chinese back translation.
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Figure 6: BLEU scores between original reports and
their back-translated versions for different languages.

Overall, our ablation study highlights that al-
though multilingual back-translation enhances
model adaptability in low resource scenarios, care-
ful selection of target languages is also crucial.

6 Conclusion and Future Work

In this work, we addressed the challenge of trans-
fer learning for IFI detection under low-resource
and class-imbalanced conditions. We proposed an
RL-based sampling strategy and enhanced the se-
lected data with multilingual back-translation. Our
approach improves model performance and adapt-
ability across diverse medical datasets compared to
traditional sample selection strategies. The back-
translation is effective at small sample sizes and
the quality of translation is crucial for knowledge
transfer. Future work will explore additional ad-
vanced data augmentation techniques to further en-
hance model robustness. Investigating methods
to better align multilingual representations and in-
tegrate clinical domain-specific knowledge more
effectively will also be valuable. Finally, extend-
ing this framework to other NLP tasks and broader
clinical contexts could demonstrate its general ap-
plicability and effectiveness.



Limitations

Despite demonstrating promising results, our ap-
proach has several limitations. First, the datasets
used for evaluation originate from specific clinical
contexts. Future validations should include more
diverse datasets from multiple domains. Second,
the effectiveness of our RL-based sample selection
depends on the diagnostic feedback provided by the
active learner. This places high quality demands
on the original gold dataset. Any inaccuracies or
biases in active learner predictions could negatively
influence the quality of selected samples. Finally,
while back-translation proved beneficial, it can in-
troduce semantic shifts, especially in languages
significantly different from English. Careful con-
sideration and further linguistic validation are re-
quired when applying multilingual augmentation
strategies in sensitive clinical scenarios.
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A Algorithm

We provide the algorithm for the strategy of sample
selection in our approach, as depicted in Algorithm
1. The state vector has 772 elements: the 768-
dimensional [CLS] embedding, two class probabil-
ities, the confidence (max-probability) score and
the margin between the two probabilities.

Algorithm 1 RL-based sample selection strategy

Require: pool U/, budget B, classifier fy, tok-
enizer T'
1: env<— ACTIVELEARNINGENV (U, fy,T, B)

initialise @y, Q¢ @4, replay buffer D
3. for episode = 1to NV do

4 s < env.reset()

5: while not done do

6: a < e-greedy(Qg4, 5)

7: (s',r,done) < env.step(a)

8: store (s,a,r, s, done) in D

9: if |D| > batchSize then Up-
DATENETS(Qy, Qg, D)

10: end if

1: s+ 8

12: end while

13: if episode mod K = 0 then Q¢ — Qs

14; end if

15: end for
Selection

S < @, s <+ envreset()
while not done do
a < argmax, Q4(s,a’)
(s',_, done) + env.step(a)
if a = 1 then add current sample to S
end if
s+ s
. end while
return S

Concept-level Differences Analysis in
CHIFIR and PIFIR Datasets

Concept annotations in CHIFIR and PIFIR
Datasets are listed in Table 4 and Table 5. CHIFIR
dataset totally reports 1,155 concepts and PIFIR
dataset has 3,194 concepts. The two corpora serve
different clinical niches. CHIFIR comes from cytol-
ogy and histopathology notes and therefore focuses
on microbiology terms such as FungalDescriptor
and Stain. PIFIR is built from PET-CT reports
and centres on imaging findings and risk factors,
for example Abnormality_CT and Risk_factor.
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Concept Count Unique Diversity
ClinicalQuery 68 43 0.63
FungalDescriptor 294 86 0.29
Fungus 106 19 0.18
Invasiveness 39 27 0.69
Stain 172 16 0.09
SampleType 198 64 0.32
positive 118 40 0.34
equivocal 8 6 0.75
negative 152 12 0.08

Table 4: Summary statistics for the IFI-related concepts
in the CHIFIR dataset.

Concept Count Unique Diversity
Infection_or_IFI 279 174 0.62
Risk_factor 429 179 0.42
Abnormality 46 24 0.52
Abnormality_CT 460 204 0.44
Abnormality_PET 470 224 0.48
Lung 372 36 0.10
Sinus 19 4 0.21
Other 189 92 0.49
Infection_Inflammation 354 103 0.29
IFI_Indication 37 21 0.57
improvement 115 51 0.44
stable 29 16 0.55
worsening 55 34 0.62
positive 124 33 0.27
equivocal 129 68 0.53
negative 87 23 0.26

Table 5: Summary statistics for the IFI-related concepts
in the PIFIR dataset.

To quantify overlap we compute the Jaccard Sim-
ilarity between the concept vocabularies:

_|ANnB|

J(A,B) = AU D]

(6)

where A and B are the sets of surface forms
in CHIFIR and PIFIR, respectively. Figure 7
plots the resulting heat-map. Although both
datasets include the labels positive, equivocal
and negative, their lexical realisations share little
common ground, so the Jaccard scores remain low.

C Cross-Dataset Transfer Performance
on Original Dataset

Table 6 reports how well each sample selection
strategy performs when evaluated on the source
dataset after transfer. We include two settings. In
the first, we fine-tune on CHIFIR and PIFIR sam-
ples then test on CHIFIR. In the second, we fine-
tune on PIFIR and selected CHIFIR samples and
test on PIFIR. For reference, Table 1 shows our
zero-shot and full-shot baselines. A model trained
only on CHIFIR does well on CHIFIR but poorly



Infection_or_IFI - 0.02 0.01 0.03 0.00

Risk_factor - 0.00 0.00 0.00 0.00
Abnormality - 0.00 0.00 0.00 0.00
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Figure 7: Jaccard similarity heatmap between CHIFIR and PIFIR concepts.

on PIFIR and vice versa. Joint fine-tuning on both
datasets yields strong results on both.

In the appendix results, after transfer learning,
the model performance on the original datasets
remains stable and even improves in some cases
compared to before transfer. For example, when
transferring from CHIFIR to PIFIR, adding two or
sixteen samples chosen by our RL method yields
the highest accuracy, F1 score, precision, and re-
call. In both cases, the model makes only one
false positive and one false negative. These results
also show that transfer learning not only improves
model adaptability but also preserves performance
on the source dataset.
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Knowledge Transfer from CHIFIR to PIFIR Knowledge Transfer from PIFIR to CHIFIR

Sample Selection (in PIFIR) Performance on CHIFIR Sample Selection (in CHIFIR) Performance on PIFIR
Strategy ~ Num P:N Acc Fl1 P R Strategy ~ Num P:N Acc Fl1 P R
1 - 0.9269 0.7600 0.7714  0.7500 1 - 0.9048 0.9375 0.9091 0.9677
2 - 0.9296 0.7538 0.8000 0.7250 2 - 0.8333  0.8923 0.8529 0.9355
Randomly 4 - 0.9308 0.7714 0.8000 0.7500 Randomly 4 - 0.8333 0.8955 0.8333 0.9677
8 - 0.9269 0.7600 0.7714 0.7500 8 - 0.8810 0.9254 0.8611 1.0000
16 - 0.9269 0.7600 0.7714 0.7500 16 - 0.8095 0.8824 0.8108 0.9677
32 - 0.9231 0.7500 0.7500 0.7500 32 - 0.8095 0.8750 0.8485 0.9032
1 1.00: 0.00 | 0.9423 0.8000 0.8571 0.7500 1 0.00:1.00 | 0.8571 0.9032 0.9032 0.9032
2 1.00: 0.00 | 0.9432 0.7692 1.0000 0.6250 2 0.50:0.50 | 0.8571 0.9091 0.8571 0.9677
Uncertainty 4 1.00: 0.00 | 0.9615 0.8571 1.0000 0.7500 Uncertainty 4 0.33:0.67 | 0.8571 0.9091 0.8571 0.9677
8 1.00: 0.00 | 0.9423 0.8000 0.8571 0.7500 8 0.13:0.87 | 0.8571 0.9091 0.8571 0.9677
16 0.94:0.06 | 0.9423 0.8000 0.8571 0.7500 16 0.13:0.87 | 0.8571 09118 0.8378 1.0000
32 0.94:0.06 | 0.9231 0.7500 0.7500 0.7500 32 0.13:0.87 | 0.8810 0.9254 0.8611 1.0000
1 1.00: 0.00 | 0.9423 0.8000 0.8571 0.7500 1 0.00: 1.00 | 0.9286 0.9538 0.9118 1.0000
2 1.00: 0.00 | 0.9615 0.8750 0.8750 0.8750 2 0.00: 1.00 | 0.8095 0.8710 0.8710 0.8710
Diversity 4 1.00: 0.00 | 0.9423 0.8000 0.8571 0.7500 Diversity 4 0.25:0.75 | 0.9048 0.9394 0.8857 1.0000
8 0.87:0.13 | 0.9423 0.8000 0.8571 0.7500 8 0.13:0.87 | 0.8571 0.9091 0.8571 0.9677
16 0.87:0.13 | 0.9423 0.8000 0.8571 0.7500 16 0.06:0.94 | 0.9286 0.9524 0.9375 0.9677
32 0.91:0.09 | 0.9038 0.5455 1.0000 0.3750 32 0.06:0.94 | 0.9286 0.9538 0.9118 1.0000
1 1.00: 0.00 | 0.9423 0.8000 0.8571 0.7500 1 1.00: 0.00 | 0.7619 0.8485 0.8000 0.9032
2 0.50:0.50 | 0.9615 0.8750 0.8750 0.8750 2 0.50:0.50 | 0.8571 0.9091 0.8571 0.9677
Our Method 4 0.75:0.25 | 0.9231 0.7500 0.7500 0.7500 Our Method 4 0.50:0.50 | 0.7857 0.8615 0.8235 0.9032
8 0.87:0.13 | 0.9231 0.7500 0.7500 0.7500 8 0.38:0.62 | 0.8810 0.9231 0.8824 0.9677
16 0.75:0.25 | 0.9615 0.8750 0.8750 0.8750 16 0.31:0.69 | 0.7857 0.8657 0.8056 0.9355
32 0.69:0.31 | 0.9423 0.8000 0.8571 0.7500 32 0.25:0.75 | 0.8810 0.9231 0.8824 0.9677

Table 6: Transfer learning performance from CHIFIR to PIFIR (left) and from PIFIR to CHIFIR (right) under
different sample selection strategies. Num = the number of annotated reports; P:N = the positive-to-negative ratio in
these annotations. Metrics reported are Accuracy (Acc), F1 score (F1), Precision (P) and Recall (R).
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