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Abstract001

A common strategy in transfer learning is few002
shot fine-tuning, but its success is highly depen-003
dent on the quality of samples selected as train-004
ing examples. Although active learning meth-005
ods like uncertainty sampling and diversity006
sampling can pick useful samples, they under-007
perform in low-resource and class-imbalanced008
conditions. We introduce a more robust sample009
selection strategy using reinforcement learn-010
ing (RL) to identify the most informative sam-011
ples. Combined with back-translation data012
augmentation, this approach greatly improved013
model adaptability in low-resource and class-014
imbalanced settings. Experimental evaluations015
on two clinical datasets related to invasive fun-016
gal infection (IFI) show our RL-based sample017
selection strategy enhances model transferabil-018
ity and still maintains robust performance un-019
der extreme class imbalance compared to tra-020
ditional methods. An ablation study on data021
augmentation reveals that this approach can022
greatly enhance performance when only a few023
samples are available, but as sample size grows,024
the quality of back-translation is also crucial025
for the model’s performance.026

1 Introduction027

Unlike general texts, clinical reports are typically028

challenging to analyze using Natural Language Pro-029

cessing (NLP) because they contain specialized030

symbols, abbreviations, and medical jargon. The031

effectiveness of NLP techniques in healthcare heav-032

ily relies on the quality of annotated datasets (Tou-033

vron et al., 2023; Liu et al., 2024a). However, due034

to data restrictions and the rarity of many disease035

conditions, acquiring large amounts of gold stan-036

dard data in healthcare can be difficult. The high037

cost of annotation further restricts the availability038

of labeled data. Therefore, maximizing the utility039

of limited data becomes a crucial research focus.040

Transfer Learning (TL) (Tan et al., 2018) is041

an approach in which knowledge learned from a042

Figure 1: Overview of the NLP-based IFIs detection
surveillance framework.

task is reused to boost performance on a related 043

task. It has shown effectiveness across various ma- 044

chine learning applications (Weiss et al., 2016), and 045

opens new avenues for addressing low-resource sce- 046

narios. Previous works have attempted to leverage 047

pretrained embeddings (Maimaiti et al., 2021) and 048

few shot examples (Alyafeai et al., 2020) to facili- 049

tate transfer learning in NLP. However, when the 050

target task offers very few labeled instances, these 051

approaches may generate unreliable outputs. This 052

is an especially acute problem in healthcare, where 053

reliability is paramount. 054

Class-imbalance (Johnson and Khoshgoftaar, 055

2019) is another challenge often present in low- 056

resource settings. In clinical datasets, there is often 057

a scarcity of positive cases due to the low preva- 058

lence of many conditions, making such instances 059

both valuable and limited in number. Differences 060

in data-collection protocols can lead some cohorts 061

to contain very few positive samples, while oth- 062

ers may be overwhelmingly positive. These ex- 063

treme disparities in class distribution further hinder 064

the transferability of NLP models across heteroge- 065

neous clinical datasets. 066

Invasive fungal infections (IFIs) pose signifi- 067

cant risks to patients with weakened immune sys- 068

tems, requiring timely detection (Neofytos et al., 069

2009). Previous works have shown the efficacy 070

of NLP techniques in detecting IFIs from clini- 071

cal reports (Rozova et al., 2023; Martinez et al., 072

2015). However, available IFI related datasets are 073

limited and also face the class-imbalance prob- 074
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lem. These datasets come from diverse sources,075

such as reports from CT and PET scans, or cytol-076

ogy and histopathology findings, where the content077

structures, terminology, and linguistic expressions078

differ. In different document types, IFI detection079

cues overlap to some degree, but existing IFI detec-080

tion models still fall short of human performance081

in transferring knowledge between them. As the082

preparation of gold standard annotated datasets is083

time-consuming, effective learned knowledge trans-084

fer from existing datasets to new but similar tasks085

becomes valuable. This not only improves annota-086

tion efficiency but also enhances the models’ adapt-087

ability in dealing with similar tasks.088

In this work, we propose a more robust strat-089

egy for knowledge transfer between similar but090

different sources, particularly for low-resource and091

class-imbalanced environments. Firstly, we employ092

a reinforcement learning (RL) based strategy to093

identify the most informative samples within new,094

unlabeled datasets. The sampling policy relies on095

learner feedback derived from existing knowledge.096

It considers both content representations and model097

confidence. After selection, medical experts anno-098

tate the selected examples for use in fine-tuning.099

Finally, we apply back-translation to address the100

shortage of medical content in low resource condi-101

tions. Experimental results show that our approach102

improves both the adaptability and performance103

of IFI detection between different sources. In the104

context of transfer learning, this approach offers105

a promising way to both reduce annotation effort106

and enhance model robustness in low-resource and107

class-imbalanced settings.108

Our contributions are summarized as follows:109

• This work is the first to address the challenges110

posed by low-resource and class-imbalance111

scenarios in IFI detection from medical re-112

ports.113

• We propose a more robust RL-based sample114

selection strategy tailored to scenarios with115

both data scarcity and class imbalance.116

• We demonstrate that back-translation based117

data augmentation further mitigates the chal-118

lenges posed by low-resource conditions.119

• Extensive experiments on two IFI-related120

datasets confirm that our transfer learning ap-121

proach is more effective between similar but122

different sources, even under low-resource123

and class-imbalanced conditions.124

2 Related Work 125

With high-quality annotated datasets, NLP methods 126

have shown promising results in infection detec- 127

tion. Based on the concept features relevant to 128

IFIs, dictionary-based detection approaches have 129

shown effective performance (Rozova et al., 2023; 130

Martinez et al., 2015). Bag-of-words models have 131

also been utilized, often combined with machine 132

learning techniques to further enhance accuracy 133

and scalability in infection detection (Cury et al., 134

2021; López-Úbeda et al., 2020). Recently, large 135

language models (LLMs), such as BioBERT (Lee 136

et al., 2020) and ClinicalBERT (Huang et al., 2019), 137

pre-trained on large biomedical corpora, have fur- 138

ther improved contextual understanding in clinical 139

texts (Consoli et al., 2024; Boligarla et al., 2023). 140

Low resource settings remain challenging for 141

NLP tasks. Researchers have explored various 142

transfer strategies to improve model performance 143

by learning from limited data or external knowl- 144

edge. Few-shot fine-tuning (Mann et al., 2020; 145

Gu et al., 2021; Liu et al., 2022a), where large 146

pre-trained models are adapted using only a small 147

number of labeled examples, has shown promis- 148

ing results. Selecting effective few-shot samples 149

is critical, and active learning strategies such as 150

uncertainty sampling (Nguyen et al., 2022) and 151

diversity sampling (Yang et al., 2015) are often em- 152

ployed. However, these active learning approaches 153

typically focus on a single metric and may not 154

perform consistently across diverse scenarios. Re- 155

inforcement Learning (RL) (Fang et al., 2017; Liu 156

et al., 2024b) offers a potential solution by opti- 157

mizing more flexible and adaptive sample selection 158

policies, thereby improving robustness in differ- 159

ent contexts. Data augmentation (Li et al., 2022; 160

Shorten et al., 2021; Bayer et al., 2022) is a strategy 161

to address limited training data by generating more 162

training examples from existing ones. Common 163

methods in NLP include paraphrasing, synonym 164

replacement, word perturbation, back-translation, 165

and synthetic text generation. These techniques 166

expand the dataset and help models to improve per- 167

formance in low-resource settings. Although these 168

strategies are widely studied, their effectiveness in 169

clinical NLP applications, with highly specialized 170

terminology and noisy texts (Liu et al., 2022b), still 171

requires further exploration and validation. 172

Class imbalance is especially crucial in low- 173

resource clinical NLP tasks (Ghosh et al., 2024). To 174

address this, previous studies have explored various 175
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Figure 2: An overview of our framework for transfer learning from A to B. Task A and Task B share some similar
knowledge but still have differences. Without transfer learning, the model trained only on Dataset A performs well
on Task A but not on a Task B. Our sample selection strategy uses RL to identify key samples from Dataset B and
finally applies back-translation. The resulting model achieves good performance on both Task A and Task B. Task
A = test set of Dataset A, Task B = test set of Dataset B. Dataset A contains train/dev reports and has labels. Dataset
B contains unlabeled train/dev reports. Dataset B’ contains the selected samples from Dataset B and have been
annotated. SFT = Supervised Fine-tuning.

strategies. Data-level approaches, such as oversam-176

pling minority classes (Hairani et al., 2024) and177

undersampling majority classes (Yang et al., 2024),178

are typically used to balance class distributions.179

Algorithm-level methods, such as cost-sensitive180

learning (Araf et al., 2024) and focal loss adjust-181

ments (Aljohani et al., 2023), aim to direct model182

attention toward underrepresented classes, thereby183

improving model performance. Despite these ad-184

vances, effectively managing class imbalance in185

low-resource clinical scenarios continues to be an186

active area of investigation.187

3 Methodology188

3.1 Overview189

The overall framework of our proposed method is190

shown in Figure 2. Initially, we fine-tune an active191

learner with the source dataset. The active learner192

then provides feedback in the form of document193

embeddings and predicted probabilities for a new,194

unlabeled target dataset. This new dataset contains195

unlearned knowledge and shares partial similarity196

with the source domain. These outputs from feed-197

back than serve as the input state representation for198

a Sampling Policy Network (SPN) which is trained199

via RL to select the most informative samples. The200

selected informative samples are subsequently an-201

notated and combined with the original annotated202

dataset. Finally, the expanded dataset is enhanced203

through back-translation. With supervised fine-204

tuning on the final dataset, the knowledge can be205

effectively transferred and the model performance206

across heterogeneous datasets also improved.207

3.2 Sample Selection Strategy 208

Our sample selection strategy uses RL to iden- 209

tify the most informative samples between low- 210

resource and class-imbalanced datasets. The aim 211

is to improve the model’s transferability across dif- 212

ferent medical datasets with the selected samples. 213

The pseudocode for this part is provided in Ap- 214

pendix A. This strategy consists of the following 215

key components: 216

Active Learner. The active learner is a 217

lightweight classifier fine-tuned on a fully anno- 218

tated dataset. Its primary role is to serve as an 219

analytic tool. It uses learned representations from 220

labeled data to evaluate and provide diagnostic 221

feedback on unlabeled datasets. 222

State Representation. We construct the state rep- 223

resentation for each unlabeled report based on the 224

outputs of the active learner. Specifically, each 225

state vector combines the contextual embedding 226

derived for the unlabeled report and its predicted 227

probabilities for each class. We also integrate two 228

informative metrics: confidence and margin. Confi- 229

dence is defined as the highest predicted class prob- 230

ability, and the margin is calculated as the absolute 231

difference between class probabilities. Finally, the 232

state vector is defined as: 233

si = [h(xi); p0(xi); p1(xi); c(xi);m(xi)] (1) 234

where h(xi) are the contextual embeddings of the 235

unlabeled report, p0(xi) and p1(xi) are predicted 236

class probabilities, c(xi) is the confidence, and 237

m(xi) represents the probability margin. This com- 238

prehensive representation equips the RL agent with 239
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nuanced diagnostic signals to effectively guide the240

sample selection process. The overall dimension241

of the state vector is set to 772.242

Sampling Policy Network (SPN). We formulate243

the sample selection process by training a SPN.244

This is a deep Q-learning network (Hester et al.,245

2018) trained to decide whether each unlabeled re-246

port should be selected (action ai = 1) or discarded247

(action ai = 0). To be specific, we optimize the net-248

work parameters θ by minimizing the mean squared249

error (MSE) between the predicted Q-values and250

the target Q-values:251

L(θ) = E(s,a,r,s′)∼B

[(
Q(s, a; θ)

−(r + γmax
a′

Q(s′, a′; θ−))
)2] (2)252

where B is the experience replay buffer,253

(s, a, r, s′) are past experiences, γ is the discount254

factor, and θ− represents the parameters of the peri-255

odically updated target network. Through this train-256

ing process, the SPN learns an effective sampling257

policy that prioritizes selecting the most informa-258

tive samples for improving model transferability259

across different datasets.260

Reward. In our RL framework, we use the clas-261

sification margin m(xi) as the reward ri. This262

margin quantifies the active learner’s confidence in263

its prediction. A larger margin indicates higher cer-264

tainty, whereas a smaller margin signals greater un-265

certainty. After the agent taking action ai ∈ {0, 1}266

(select vs. discard), the agent receives ri and up-267

dates its network via the Bellman target:268

Q̂i = ri + γ max
a′

Qtarget(si+1, a
′), (3)269

Over episodes, this reward structure drives the270

policy toward an optimal sampling strategy under271

a limited annotation budget.272

Sample Selection. After the SPN is trained, we273

apply the learned policy to the unlabeled dataset.274

For each sample, we compute the action with the275

highest expected reward according to the SPN:276

a∗i = arg max
a∈{0,1}

Q(si, a; θ) (4)277

Samples for which a∗i = 1 are selected for annota-278

tion. By iteratively applying this selection process,279

the resulting annotated subset helps improve the280

knowledge transfer performance in low-resource281

and class-imbalanced datasets.282

3.3 Data Augmentation 283

To address the scarcity of textual data, we employ 284

multilingual back-translation as a data augmenta- 285

tion strategy. For each report, we translate the 286

English text into multiple target languages and sub- 287

sequently back-translate it into English, leveraging 288

pretrained MarianMT models1 from Hugging Face. 289

The back-translation augmentation process for a 290

given text x is defined as follows: 291

xBT = fTgt→En
(
fEn→Tgt(x)

)
(5) 292

where fEn→Tgt and fTgt→En are pretrained trans- 293

lation models from English to a target language 294

and from the target language back to English. 295

We utilize several language pairs to enhance lin- 296

guistic diversity, including English–Chinese (zh), 297

English–French (fr), English–German (de), and 298

English–Spanish (es). This augmentation is ap- 299

plied to both the selected samples and the anno- 300

tated dataset which contains previously acquired 301

knowledge. By enriching multilingual variations, 302

this approach mitigates the low-resource issues in- 303

herent in NLP tasks. 304

4 Experimental Setup 305

4.1 Datasets 306

We chose two IFI-related clinical datasets as bench- 307

marks in this study: the Cytology and Histopathol- 308

ogy IFI Reports corpus (CHIFIR2) and the PET-CT 309

Invasive Fungal Infection Reports corpus (PIFIR3). 310

These data originated from 2 Australian hospitals, 311

one tertiary referral center and one specialized can- 312

cer hospital. 313

Figure 3: Word clouds for the CHIFIR (right) and PIFIR
(left) datasets. Word size corresponds to term frequency.

Although both datasets are related to IFI, the 314

vocabulary used varies across them. The CHIFIR 315

dataset is collected from cytology and histopathol- 316

ogy reports. These reports assess tissue or fluid 317

1https://huggingface.co/Helsinki-NLP
2Available for credentialed users at https://physionet.

org/content/corpus-fungal-infections/1.0.2/
3Available for credentialed users at https://physionet.

org/content/pifir/1.0.0/
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Transfer Learning Strategy Performance on PIFIR Performance on CHIFIR
Accuracy F1 score Precision Recall Accuracy F1-score Precision Recall

Zero-shot Transfer Fine-tuned on CHIFIR 0.33 0.12 1.00 0.06 0.94 0.76 1.00 0.63
Fine-tuned on PIFIR 0.88 0.92 0.88 0.97 0.48 0.27 0.17 0.63

Full-shot Transfer Fine-tuned on CHIFIR + PIFIR 0.83 0.89 0.85 0.94 0.90 0.55 1.00 0.38

Table 1: Performance comparison of fine-tuned BioBERT over CHIFIR and PIFIR with different strategies. Models
perform well when fine-tuned and evaluated on the same dataset. In contrast, evaluated on a similar but still different
dataset causes a clear performance drop. Fine-tuned on a single dataset but evaluated on another dataset can be
regard as the zero-shot transfer, and we set this as our baseline. Fine-tuned and evaluated on both datasets can be
regarded as the full-shot transfer, and we assume this is the best of transfer learning performance.

samples and describe the microscopic visualiza-318

tion of fungal organisms. The PIFIR dataset is319

collected from PET-CT reports. These reports as-320

sess metabolic activity and discuss the anatomical321

and morphological features of fungal lesions via322

PET-CT imaging. Figure 3 shows differences in323

their predominant clinical terms. More detailed324

concept level analysis of differences can be found325

in Appendix B. Both CHIFIR and PIFIR exhibit326

class imbalance. CHIFIR is dominated by negative327

cases (negative: 86%, positive: 14%), whereas PI-328

FIR is dominated by positive cases (negative: 31%,329

positive: 69%). This imbalance not only increases330

the difficulty of effective knowledge transfer but331

also poses challenges for experimental evaluation332

by potentially skewing performance metrics.333

Split CHIFIR PIFIR
Total P N Total P N

Train 202 28 174 139 94 45
Dev 29 4 25 20 14 6
Test 52 8 44 42 31 11

Table 2: Class distribution for CHIFIR and PIFIR across
train, development, and test sets. P = the number of
positive reports, N = the number of negative reports.

For the CHIFIR dataset, expert annotators have334

provided report-level classification labels indicat-335

ing whether a report is positive or negative for an336

IFI, as well as span-level annotation of concepts337

relevant to IFI detection. It contains 283 reports338

from 201 patients, with an average length of 1,384339

characters. The PIFIR dataset also has report- and340

concept- level annotations. It includes 201 reports341

from 156 patients, with an average of 1,457 char-342

acters. The original datasets do not contain a de-343

velopment set. We therefore split each dataset into344

training, validation, and test parts. The ratio is345

around 70:10:20, and the original class balance is346

kept. Table 2 shows the number of positive and347

negative samples in each split.348

4.2 Evaluation Metrics 349

We employ a variety of metrics for evaluation, in- 350

cluding accuracy, F1 score, precision, and recall. 351

Class imbalance in benchmark datasets makes the 352

F1 score particularly important. Recall is also 353

important, given that it is critical not to miss IFI- 354

positive cases. 355

4.3 Baselines 356

We select the fine-tuned BioBERT approach from 357

previous work (Anonymous) as the baseline. When 358

fine-tuned separately on CHIFIR and PIFIR dataset, 359

the model performs well on its own data but poorly 360

on the other dataset. Although both datasets focus 361

on IFIs and they share some similarities, the model 362

still struggles to apply what it learned from one 363

dataset to the other. Table 1 shows the baseline 364

results and reveals the challenges of knowledge 365

transferability between these datasets. Although 366

training on both CHIFIR and PIFIR can improve 367

performance, it requires annotating all reports in 368

the unlabeled dataset, which is labor-intensive. We 369

observed that even when training on both datasets 370

together, the evaluation performance on the CHI- 371

FIR dataset remains low, with an F1 score of 0.55. 372

It suggests that transferring knowledge from CHI- 373

FIR to PIFIR is relatively simple, while the reverse 374

transfer from PIFIR to CHIFIR is more difficult. 375

5 Experimental Results 376

5.1 Cross-Dataset Transfer Learning 377

Performance 378

We set the number of few shot examples to k ∈ 379

{1, 2, 4, 8, 16, 32}; this scale is widely used in ear- 380

lier few shot studies (Brown et al., 2020). The 381

largest value, 32 samples, is safe for our data be- 382

cause it adds about 16% to the training instances 383

in CHIFIR dataset and about 23% to the instances 384

in PIFIR dataset, so the auxiliary samples never 385

outweigh the target domain. 386
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Knowledge Transfer from CHIFIR to PIFIR

Sample Selection (in PIFIR) Performance on PIFIR
Strategy Num P:N Acc F1 P R

Randomly

1 – 0.3143 0.1500 0.4800 0.0900
2 – 0.4476 0.3866 0.7208 0.2968
4 – 0.5810 0.5974 0.9359 0.4710
8 – 0.6571 0.7180 0.8871 0.6774
16 – 0.7381 0.8113 0.8693 0.7871
32 – 0.7667 0.8508 0.8087 0.9032

Uncertainty

1 1.00 : 0.00 0.4524 0.4103 1.0000 0.2581
2 1.00 : 0.00 0.5000 0.5330 0.8571 0.3871
4 1.00 : 0.00 0.6667 0.7667 0.7931 0.7419
8 1.00 : 0.00 0.6667 0.8000 0.7179 0.9032
16 0.94 : 0.06 0.6667 0.8000 0.7179 0.8710
32 0.94 : 0.06 0.7381 0.8493 0.7381 1.0000

Diversity

1 1.00 : 0.00 0.3571 0.2286 1.0000 0.1290
2 1.00 : 0.00 0.6190 0.6923 0.8571 0.5806
4 1.00 : 0.00 0.6667 0.7812 0.7576 0.8065
8 0.87 : 0.13 0.7857 0.8525 0.8667 0.8387
16 0.87 : 0.13 0.7381 0.8493 0.7381 1.0000
32 0.91 : 0.09 0.7381 0.8493 0.7381 1.0000

Our Method

1 1.00 : 0.00 0.2857 0.1176 0.6667 0.0645
2 0.50 : 0.50 0.3571 0.2286 1.0000 0.1290
4 0.75 : 0.25 0.6429 0.6809 1.0000 0.5161
8 0.87 : 0.13 0.7381 0.8493 0.7381 1.0000
16 0.75 : 0.25 0.7857 0.8696 0.7895 0.9677
32 0.69 : 0.31 0.7857 0.8696 0.7895 0.9677

Knowledge Transfer from PIFIR to CHIFIR

Sample Selection (in CHIFIR) Performance on CHIFIR
Strategy Num P:N Acc F1 P R

Randomly

1 – 0.5115 0.2071 0.1729 0.5000
2 – 0.6038 0.1804 0.1548 0.3500
4 – 0.7346 0.1556 0.1433 0.1750
8 – 0.7692 0.0307 0.0400 0.0250
16 – 0.8307 0.0364 0.0667 0.0250
32 – 0.8269 0.0000 0.0000 0.0000

Uncertainty

1 0.00 : 1.00 0.7692 0.1429 0.1667 0.1250
2 0.50 : 0.50 0.3654 0.3265 0.1951 1.0000
4 0.33 : 0.67 0.6154 0.2857 0.2000 0.5000
8 0.13 : 0.87 0.8077 0.1667 0.2500 0.1250
16 0.13 : 0.87 0.7115 0.0000 0.0000 0.0000
32 0.13 : 0.87 0.8462 0.0000 0.0000 0.0000

Diversity

1 0.00 : 1.00 0.4423 0.2927 0.1818 0.7500
2 0.00 : 1.00 0.5962 0.2759 0.1905 0.5000
4 0.25 : 0.75 0.6154 0.2857 0.2000 0.5000
8 0.13 : 0.87 0.8462 0.0000 0.0000 0.0000
16 0.06 : 0.94 0.8462 0.0000 0.0000 0.0000
32 0.06 : 0.94 0.8462 0.0000 0.0000 0.0000

Our Method

1 1.00 : 0.00 0.4423 0.3256 0.2000 0.8750
2 0.50 : 0.50 0.6923 0.2727 0.2143 0.3750
4 0.50 : 0.50 0.5769 0.3889 0.2500 0.8750
8 0.38 : 0.62 0.6346 0.2400 0.1765 0.3750
16 0.31 : 0.69 0.7500 0.1333 0.1429 0.1250
32 0.25 : 0.75 0.8654 0.2222 1.0000 0.1250

Table 3: Transfer learning performance from CHIFIR to PIFIR (left) and from PIFIR to CHIFIR (right) under
different sample selection strategies. Num = the number of annotated reports; P:N = the positive-to-negative ratio in
these annotations. Metrics reported are Accuracy (Acc), F1 score (F1), Precision (P) and Recall (R).

We compare our strategy with several other ac-387

tive learning approaches to analyze the impact of388

different sample selection methods on knowledge389

transfer performance. In this analysis, we do not390

apply back translation data augmentation, thus iso-391

lating the effects of the sample selection itself:392

1) Random Selection: We randomly select k sam-393

ples from the unlabeled dataset for annotation.394

Each experiment is run five times to reduce vari-395

ance and obtain more reliable results. We report396

the mean evaluation metrics over these five runs.397

2) Uncertainty-based Selection (Nguyen et al.,398

2022): Uncertainty score is the lowest confidence399

predicted by the active learner. Based on this, we400

select k samples for annotation and evaluate trans-401

fer learning performance on a different dataset.402

3) Diversity-based Selection (Margatina et al.,403

2021): Diversity score measures report similarity404

between datasets. We calculate the cosine distance405

between each report embedding in the unlabeled406

dataset and the embeddings in the labeled dataset.407

Higher scores show greater differences between408

samples. We select the k most diverse samples for 409

annotation, and evaluate the resulting performance. 410

4) Our method: Our RL-based sampling strategy 411

selects the most informative samples based on con- 412

textual embeddings, predicted probabilities, con- 413

fidence, and margin. We annotate these samples 414

and then evaluate their effectiveness for improving 415

knowledge transfer. 416

The results of our transfer learning experiments 417

across the CHIFIR and PIFIR datasets are shown 418

in Table 3. We analyze how the number of selected 419

samples affects performance. Although both our 420

datasets are focused on IFI-detection, the experi- 421

mental results show that unlike in context learning, 422

with 1 samples selected, few shot fine-tuning can 423

not greatly improve the robustness of model per- 424

formance on the other datasets. As k increases 425

from 1 to 32, all methods show steady improve- 426

ment. However, after k = 16, the performance 427

gain becomes smaller, suggesting that additional 428

annotations bring limited benefits once enough in- 429

formative samples are selected. 430
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Figure 4: Class imbalance analysis of positive to negative sample ratios for transfer learning from CHIFIR to
PIFIR (left) and from PIFIR to CHIFIR (right). For each ratio, we randomly selected 20 samples and repeated the
experiment five times to evaluate transfer performance; bars show mean values and black lines indicate variance.

Compared to other sample selection strategies,431

our approach shows greater robustness. In trans-432

fer learning from CHIFIR to PIFIR, with more433

than 16 samples, uncertainty-based selection and434

diversity-based selection result in models that pre-435

dict all cases as positive and no negative samples436

are correctly identified (False Negative = 0 and437

True Negative = 0). Our method avoids this prob-438

lem, maintaining balanced predictions and good439

performance on both classes. Similarly, in transfer440

learning from PIFIR to CHIFIR, uncertainty and di-441

versity methods fail to predict positive cases when442

more than 8 samples are selected. Their F1 score,443

precision, and recall drop to zero, as models predict444

all reports as negative. In contrast, our method still445

has the ability to identify positive samples even446

under class imbalance, although the performance447

does not increase with more samples, suggesting448

that this transfer is more challenging.449

In Appendix C, we provide additional evalua-450

tions of model performance on the labeled dataset451

after transfer learning. Interestingly, our method452

achieves stable results and even slightly outper-453

forms joint fine-tuning on both datasets. This may454

be because joint fine-tuning risks overfitting when455

data is limited, while our sample-efficient strategy456

mitigates this.457

5.2 Robustness under Imbalanced Sampling458

We evaluate the robustness of our sampling strat-459

egy under class imbalance conditions. First, we use460

the random selection strategy to choose 20 samples461

from the unlabeled dataset with different positive462

to negative ratios (from 1:9 to 9:1). Each setting463

is repeated five times to obtain stable results. Fig-464

ure 4 shows the outcomes. For knowledge transfer465

from CHIFIR to PIFIR, the best performance oc-466

curs when the positive to negative ratio is around 467

7:3, which closely matches the actual class distribu- 468

tion in PIFIR. In the reverse transfer, from PIFIR to 469

CHIFIR, increasing the positive ratio raises recall 470

but hurts accuracy. This happens because CHIFIR 471

has many more negative cases, and a high positive 472

ratio makes the model label almost everything as 473

positive. To predict both positive and negative sam- 474

ples well, the ratio still needs to match CHIFIR’s 475

true distribution. 476

Table 3 shows uncertainty and diversity strate- 477

gies tend to select mostly positive or negative sam- 478

ples. Specifically, when selecting 10 samples, these 479

methods choose only positive cases. This imbal- 480

ance causes the trained models to classify nearly 481

all reports as positive in the PIFIR dataset. Conse- 482

quently, these methods perform poorly at identify- 483

ing negative samples, resulting in low precision and 484

recall for the negative class. In reverse class dis- 485

tribution scenarios, choosing more samples of the 486

minority class from the data already learned helps 487

the model tell positive and negative classes apart. 488

However, in low-resource and class-imbalanced 489

settings, this choice can easily lead the model to 490

overfit on the new task. 491

Our RL-based sampling method selects samples 492

having class ratios that better match the true distri- 493

bution of each dataset. By choosing a more suit- 494

able ratio of positive and negative examples, our 495

method helps the model better identify both classes. 496

Our method improves knowledge transfer between 497

heterogeneous datasets, outperforming uncertainty 498

and diversity sample selection strategies. 499

5.3 Effects of Data Augmentation 500

Since the knowledge transfer performance from 501

PIFIR to CHIFIR is unstable, we concentrate here 502
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on the CHIFIR to PIFIR transfer performance. Fig-503

ure 5 (upper) shows the knowledge transfer perfor-504

mance after informative sample selection, compar-505

ing results with and without back translation for506

Chinese, French, German, and Spanish together.507

It shows that back translation has a large impact508

when the sample size is small, but as the sample509

size grows, its effect becomes less obvious and may510

even decrease slightly. Since we applied back trans-511

lation in four languages, we further evaluate how512

each language affects model performance. The513

results are shown in Figure 5 (lower).514

Figure 5: The effects of data augmentation performance
on knowledge transfer from CHIFIR to PIFIR after in-
formative sample selection.

To understand the impact of each language, we515

examined the model’s F1 scores at different sample516

sizes. We found that German and Spanish transla-517

tions gave stable, high performance even with few518

samples. Models trained with German translations519

achieved the highest overall F1 scores and exhib-520

ited robustness when the number of samples in-521

creased. Spanish translations showed similar trends522

and reliable results. French translations demon-523

strated moderate effectiveness. While achieving524

good results with adequate samples, performance525

fluctuated significantly when sample sizes were526

small. Chinese translations, despite adding linguis-527

tic diversity, led to unstable and lower overall per-528

formance. Models trained on Chinese translations529

initially improved with limited samples but then530

dropped noticeably with increased sample sizes.531

This likely results from significant semantic shifts532

introduced during translation, causing confusion 533

and negatively affecting learning effectiveness. 534

To access translation quality quantitatively, we 535

evaluate the BLEU scores (Papineni et al., 2002) 536

between the original texts and their back-translated 537

versions as shown in Figure 6. Higher BLEU scores 538

suggest translations closely resemble the original 539

reports. Overall, BLEU scores were modest across 540

languages, but German and Spanish achieved the 541

highest scores. Chinese translations had the low- 542

est BLEU scores, reflecting substantial differences 543

from the original texts. This explains why model 544

performance dropped slightly when using 32 sam- 545

ples augmented with Chinese back translation. 546

Figure 6: BLEU scores between original reports and
their back-translated versions for different languages.

Overall, our ablation study highlights that al- 547

though multilingual back-translation enhances 548

model adaptability in low resource scenarios, care- 549

ful selection of target languages is also crucial. 550

6 Conclusion and Future Work 551

In this work, we addressed the challenge of trans- 552

fer learning for IFI detection under low-resource 553

and class-imbalanced conditions. We proposed an 554

RL-based sampling strategy and enhanced the se- 555

lected data with multilingual back-translation. Our 556

approach improves model performance and adapt- 557

ability across diverse medical datasets compared to 558

traditional sample selection strategies. The back- 559

translation is effective at small sample sizes and 560

the quality of translation is crucial for knowledge 561

transfer. Future work will explore additional ad- 562

vanced data augmentation techniques to further en- 563

hance model robustness. Investigating methods 564

to better align multilingual representations and in- 565

tegrate clinical domain-specific knowledge more 566

effectively will also be valuable. Finally, extend- 567

ing this framework to other NLP tasks and broader 568

clinical contexts could demonstrate its general ap- 569

plicability and effectiveness. 570
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Limitations571

Despite demonstrating promising results, our ap-572

proach has several limitations. First, the datasets573

used for evaluation originate from specific clinical574

contexts. Future validations should include more575

diverse datasets from multiple domains. Second,576

the effectiveness of our RL-based sample selection577

depends on the diagnostic feedback provided by the578

active learner. This places high quality demands579

on the original gold dataset. Any inaccuracies or580

biases in active learner predictions could negatively581

influence the quality of selected samples. Finally,582

while back-translation proved beneficial, it can in-583

troduce semantic shifts, especially in languages584

significantly different from English. Careful con-585

sideration and further linguistic validation are re-586

quired when applying multilingual augmentation587

strategies in sensitive clinical scenarios.588
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A Algorithm779

We provide the algorithm for the strategy of sample780

selection in our approach, as depicted in Algorithm781

1. The state vector has 772 elements: the 768-782

dimensional [CLS] embedding, two class probabil-783

ities, the confidence (max-probability) score and784

the margin between the two probabilities.785

Algorithm 1 RL-based sample selection strategy

Require: pool U , budget B, classifier fθ, tok-
enizer T

1: env←ACTIVELEARNINGENV(U , fθ, T, B)
2: initialise Qϕ, Q̂ϕ←Qϕ, replay buffer D
3: for episode = 1 to N do
4: s← env.reset()
5: while not done do
6: a← ϵ-greedy(Qϕ, s)
7: (s′, r, done)← env.step(a)
8: store (s, a, r, s′, done) in D
9: if |D| ≥ batchSize then UP-

DATENETS(Qϕ, Q̂ϕ,D)
10: end if
11: s← s′

12: end while
13: if episode mod K = 0 then Q̂ϕ ← Qϕ

14: end if
15: end for

Selection
16: S ← ∅, s← env.reset()
17: while not done do
18: a← argmaxa′ Qϕ(s, a

′)
19: (s′, _, done)← env.step(a)
20: if a = 1 then add current sample to S
21: end if
22: s← s′

23: end while
24: return S

B Concept-level Differences Analysis in786

CHIFIR and PIFIR Datasets787

Concept annotations in CHIFIR and PIFIR788

Datasets are listed in Table 4 and Table 5. CHIFIR789

dataset totally reports 1,155 concepts and PIFIR790

dataset has 3,194 concepts. The two corpora serve791

different clinical niches. CHIFIR comes from cytol-792

ogy and histopathology notes and therefore focuses793

on microbiology terms such as FungalDescriptor794

and Stain. PIFIR is built from PET–CT reports795

and centres on imaging findings and risk factors,796

for example Abnormality_CT and Risk_factor.797

Concept Count Unique Diversity
ClinicalQuery 68 43 0.63
FungalDescriptor 294 86 0.29
Fungus 106 19 0.18
Invasiveness 39 27 0.69
Stain 172 16 0.09
SampleType 198 64 0.32
positive 118 40 0.34
equivocal 8 6 0.75
negative 152 12 0.08

Table 4: Summary statistics for the IFI-related concepts
in the CHIFIR dataset.

Concept Count Unique Diversity
Infection_or_IFI 279 174 0.62
Risk_factor 429 179 0.42
Abnormality 46 24 0.52
Abnormality_CT 460 204 0.44
Abnormality_PET 470 224 0.48
Lung 372 36 0.10
Sinus 19 4 0.21
Other 189 92 0.49
Infection_Inflammation 354 103 0.29
IFI_Indication 37 21 0.57
improvement 115 51 0.44
stable 29 16 0.55
worsening 55 34 0.62
positive 124 33 0.27
equivocal 129 68 0.53
negative 87 23 0.26

Table 5: Summary statistics for the IFI-related concepts
in the PIFIR dataset.

To quantify overlap we compute the Jaccard Sim- 798

ilarity between the concept vocabularies: 799

J(A,B) =
|A ∩B|
|A ∪B|

(6) 800

where A and B are the sets of surface forms 801

in CHIFIR and PIFIR, respectively. Figure 7 802

plots the resulting heat-map. Although both 803

datasets include the labels positive, equivocal 804

and negative, their lexical realisations share little 805

common ground, so the Jaccard scores remain low. 806

C Cross-Dataset Transfer Performance 807

on Original Dataset 808

Table 6 reports how well each sample selection 809

strategy performs when evaluated on the source 810

dataset after transfer. We include two settings. In 811

the first, we fine-tune on CHIFIR and PIFIR sam- 812

ples then test on CHIFIR. In the second, we fine- 813

tune on PIFIR and selected CHIFIR samples and 814

test on PIFIR. For reference, Table 1 shows our 815

zero-shot and full-shot baselines. A model trained 816

only on CHIFIR does well on CHIFIR but poorly 817
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Figure 7: Jaccard similarity heatmap between CHIFIR and PIFIR concepts.

on PIFIR and vice versa. Joint fine-tuning on both818

datasets yields strong results on both.819

In the appendix results, after transfer learning,820

the model performance on the original datasets821

remains stable and even improves in some cases822

compared to before transfer. For example, when823

transferring from CHIFIR to PIFIR, adding two or824

sixteen samples chosen by our RL method yields825

the highest accuracy, F1 score, precision, and re-826

call. In both cases, the model makes only one827

false positive and one false negative. These results828

also show that transfer learning not only improves829

model adaptability but also preserves performance830

on the source dataset.831
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Knowledge Transfer from CHIFIR to PIFIR

Sample Selection (in PIFIR) Performance on CHIFIR
Strategy Num P:N Acc F1 P R

Randomly

1 – 0.9269 0.7600 0.7714 0.7500
2 – 0.9296 0.7538 0.8000 0.7250
4 – 0.9308 0.7714 0.8000 0.7500
8 – 0.9269 0.7600 0.7714 0.7500
16 – 0.9269 0.7600 0.7714 0.7500
32 – 0.9231 0.7500 0.7500 0.7500

Uncertainty

1 1.00 : 0.00 0.9423 0.8000 0.8571 0.7500
2 1.00 : 0.00 0.9432 0.7692 1.0000 0.6250
4 1.00 : 0.00 0.9615 0.8571 1.0000 0.7500
8 1.00 : 0.00 0.9423 0.8000 0.8571 0.7500
16 0.94 : 0.06 0.9423 0.8000 0.8571 0.7500
32 0.94 : 0.06 0.9231 0.7500 0.7500 0.7500

Diversity

1 1.00 : 0.00 0.9423 0.8000 0.8571 0.7500
2 1.00 : 0.00 0.9615 0.8750 0.8750 0.8750
4 1.00 : 0.00 0.9423 0.8000 0.8571 0.7500
8 0.87 : 0.13 0.9423 0.8000 0.8571 0.7500
16 0.87 : 0.13 0.9423 0.8000 0.8571 0.7500
32 0.91 : 0.09 0.9038 0.5455 1.0000 0.3750

Our Method

1 1.00 : 0.00 0.9423 0.8000 0.8571 0.7500
2 0.50 : 0.50 0.9615 0.8750 0.8750 0.8750
4 0.75 : 0.25 0.9231 0.7500 0.7500 0.7500
8 0.87 : 0.13 0.9231 0.7500 0.7500 0.7500
16 0.75 : 0.25 0.9615 0.8750 0.8750 0.8750
32 0.69 : 0.31 0.9423 0.8000 0.8571 0.7500

Knowledge Transfer from PIFIR to CHIFIR

Sample Selection (in CHIFIR) Performance on PIFIR
Strategy Num P:N Acc F1 P R

Randomly

1 - 0.9048 0.9375 0.9091 0.9677
2 - 0.8333 0.8923 0.8529 0.9355
4 - 0.8333 0.8955 0.8333 0.9677
8 - 0.8810 0.9254 0.8611 1.0000
16 - 0.8095 0.8824 0.8108 0.9677
32 - 0.8095 0.8750 0.8485 0.9032

Uncertainty

1 0.00 : 1.00 0.8571 0.9032 0.9032 0.9032
2 0.50 : 0.50 0.8571 0.9091 0.8571 0.9677
4 0.33 : 0.67 0.8571 0.9091 0.8571 0.9677
8 0.13 : 0.87 0.8571 0.9091 0.8571 0.9677
16 0.13 : 0.87 0.8571 0.9118 0.8378 1.0000
32 0.13 : 0.87 0.8810 0.9254 0.8611 1.0000

Diversity

1 0.00 : 1.00 0.9286 0.9538 0.9118 1.0000
2 0.00 : 1.00 0.8095 0.8710 0.8710 0.8710
4 0.25 : 0.75 0.9048 0.9394 0.8857 1.0000
8 0.13 : 0.87 0.8571 0.9091 0.8571 0.9677
16 0.06 : 0.94 0.9286 0.9524 0.9375 0.9677
32 0.06 : 0.94 0.9286 0.9538 0.9118 1.0000

Our Method

1 1.00 : 0.00 0.7619 0.8485 0.8000 0.9032
2 0.50 : 0.50 0.8571 0.9091 0.8571 0.9677
4 0.50 : 0.50 0.7857 0.8615 0.8235 0.9032
8 0.38 : 0.62 0.8810 0.9231 0.8824 0.9677
16 0.31 : 0.69 0.7857 0.8657 0.8056 0.9355
32 0.25 : 0.75 0.8810 0.9231 0.8824 0.9677

Table 6: Transfer learning performance from CHIFIR to PIFIR (left) and from PIFIR to CHIFIR (right) under
different sample selection strategies. Num = the number of annotated reports; P:N = the positive-to-negative ratio in
these annotations. Metrics reported are Accuracy (Acc), F1 score (F1), Precision (P) and Recall (R).
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