DYNO: Dynamic Neurosymbolic Orchestrator for Multi-Agent Systems

Ritvik Garimella, Chathurangi Shyalika, Renjith Prasad, Amit Sheth

Artificial Intelligence Institute, University of South Carolina, USA
ritvikg@sc.edu, jayakodc @email.sc.edu, kaippilr@mailbox.sc.edu, amit@sc.edu

Abstract

Large Language Model (LLM)-based multi-agent systems
(LaMAS) represent an emerging paradigm for tackling com-
plex, multi-step reasoning and decision-making problems. As
these systems scale, orchestration, which is the ability to co-
ordinate, manage, and evaluate the interactions among di-
verse agents, becomes central to their success. While recent
orchestrators such as AgentFlow have demonstrated promise
in managing communication and task delegation, they remain
limited in their ability to understand task semantics, coordi-
nate heterogeneous agent types (e.g., reactive vs. cognitive),
and adaptively align outputs with human-defined goals. In
this position paper, we introduce the DYNO (Dynamic Neu-
rosymbolic Orchestrator), a system developed as part of our
broader research framework on neurosymbolic Al for robust,
interpretable, and trustworthy composite intelligence. DYNO
integrates interdependent components to plan, execute, eval-
uate, and refine workflows iteratively. Each component coop-
erates through shared registries of agents, data, knowledge,
and evaluation metrics, allowing the system to continuously
optimize task performance. We argue that such dynamic or-
chestration, combining symbolic decomposition with neural
adaptability, is essential for achieving scalable, interpretable,
and self-correcting multi-agent intelligence. The paper posi-
tions dynamic orchestration as a foundational step toward re-
liable, trustworthy, and human-aligned multi-agent systems.

Introduction and Related Work

The automation of complex tasks has long been a central fo-
cus of technological advancement aimed at improving effi-
ciency and reducing human effort. Process Automation (PA)
(Cichocki et al. 1997) operationalizes this goal by automat-
ing repetitive procedures to enhance speed, accuracy, and
consistency. Robotic Process Automation (RPA) extends
this paradigm by translating manual tasks into structured
workflows that coordinate multiple agents, functions, and
tools to accomplish defined objectives (Ivancié¢, Susa Vugec,
and Bosilj Vuksi¢ 2019; Agostinelli, Marrella, and Mecella
2020). Despite its widespread adoption, RPA remains labor-
intensive and brittle, requiring extensive manual configura-
tion and demonstrating limited adaptability to dynamic en-
vironments (Eulerich et al. 2024).

Copyright © 2026, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Large Language Models (LLMs) have enabled automa-
tion that extends beyond static rule execution (Ahn et al.
2022; Cheng, Li, and Bing 2023; Qian et al. 2023). This
progress has led to a shift from RPA towards Agentic Process
Automation (APA) (Wornow et al. 2024; Li et al. 2024; Ye
et al. 2023), where the orchestration of workflows is guided
by LLMs. However, current APA systems rely heavily on
LLMs that lack semantic alignment, leading to low relia-
bility in mission-critical applications such as healthcare, au-
tonomous driving, and manufacturing. This lack of semantic
grounding limits their ability to orchestrate complex, inter-
dependent workflows that define how agents plan, commu-
nicate, and refine shared goals at scale.

Recent advancements in enterprise-oriented Multi-Agent
Systems (MAS) (Wu et al. 2024; Hu et al. 2025; Hong
et al. 2023; OpenAl 2025) attempt to address this limita-
tion by distributing specialized roles across multiple collab-
orating LLM-based agents. However, the absence of itera-
tive, learning-driven improvement cycles continues to con-
strain their performance and adaptability. Orchestrators such
as AgentFlow (Li et al. 2025) partially mitigate this issue
through trainable planning mechanisms, yet they still fall
short in understanding task semantics, coordinating hetero-
geneous agent types (e.g., reactive, cognitive, neural, sym-
bolic), and aligning outputs with human-defined goals.

Another key limitation lies in the fact that progress in au-
tomation has largely focused on enhancing the intelligence
of individual agents, while the coordination layer governing
their interaction remains underexplored (Cemri et al. 2025;
Gao et al. 2025). As multi-agent systems grow in complexity
and heterogeneity, effective orchestration emerges as the key
determinant of system reliability and alignment. We view or-
chestration not as an auxiliary mechanism but as a central
architectural principle that unifies learning, reasoning, and
evaluation across agents.

To address these gaps, we propose DYNO (Dynamic
Neurosymbolic Orchestrator), developed within the broader
C3AN framework: Custom, Compact, Composite Al with
Neurosymbolic Integration (Sheth et al. 2025). C3AN is
an emerging Al paradigm emphasizing robustness, intelli-
gence, and trust in composite Al systems. The Custom com-
ponent refers to domain-specific data and workflows; Com-
pact emphasizes efficiency and deployability across infras-
tructures, including edge devices; and Composite denotes

the modular orchestration of neural, symbolic, and decision
modules into unified systems. The Neurosymbolic principle
integrates neural learning with symbolic reasoning within
each module, enabling transparent, knowledge-aligned, and
explainable decision-making (Sheth, Roy, and Gaur 2023).

Position: In this paper, we argue that orchestration, rather
than individual agent intelligence, should serve as the cen-
tral design principle for next-generation LaMAS. This ap-
proach combines symbolic constraints with neural adapta-
tion to achieve continual learning, interpretability, and align-
ment in autonomous agent collectives.

The structure of this paper is organized as follows. We
first formalize the concept of neurosymbolic orchestra-
tion, followed by DYNO’s three-stage architecture for task
planning, workflow orchestration, and iterative improve-
ment. We conclude with an illustrative implementation that
demonstrates the application of DYNO in a smart manufac-
turing context.

Neurosymbolic Orchestration

We formalize the concept of Neurosymbolic Orchestration,
which unifies neural adaptability with symbolic structure to
enable reasoning-driven coordination among agents. Unlike
conventional orchestrators, which focus on managing com-
munication and control flow, neurosymbolic orchestration
augments these capabilities with semantic reasoning. It not
only routes information but also interprets, verifies, and re-
fines the meaning of interactions among agents. Neural mod-
ules propose and explore potential workflows whereas sym-
bolic modules constrain, validate, and adjust them through
iterative feedback. This continual interplay grounds com-
plex workflows in semantics, ensuring that orchestration re-
mains interpretable, adaptive, and self-improving.

DYNO instantiates this paradigm through a deliberately
three-stage framework comprising Task Planning, Workflow
Orchestration, and Iterative Improvement (as shown in Fig-
ure 1). These stages mirror the essential phases of reason-
ing, generation, execution, and reflection and together form
a closed cognitive loop. The Task Planner integrates neu-
ral creativity with symbolic validation to decompose high-
level goals into semantically coherent sub-tasks by using
planning ontologies. The Workflow Orchestration stage
operationalizes these sub-tasks by composing agents, data,
and evaluations into executable workflows. The resulting
workflow is then verified for compatibility within the main
pipeline by orchestration verifier and integrated into the fi-
nal setup. The Iterative Improvement stage then closes the
loop, feeding evaluation signals and cached outputs back
into the system to refine its knowledge, agents, and ontolo-
gies. This closed loop enables continual learning throughout
the planning and workflow generation process.

The reasoning cycle in DYNO is grounded in two foun-
dational constructs. They are Operations and Registries. To-
gether, they define the symbolic substrate that enables the
system to compose, interpret, and continually refine com-
plex workflows. Operations provide the formal grammar of
orchestration, while Registries supply the shared semantic
memory that maintains coherence across planning, execu-
tion, and learning.

Operations

DYNO’s orchestration semantics are grounded in a min-
imal set of three symbolic operators that define relation-
ships among tasks, agents, and data streams. These opera-
tors constitute the primitive algebra of composition, allow-
ing the system to generate complex yet interpretable work-
flows while constraining them to remain semantically valid.
Limiting the operator set ensures transparency and prevents
incoherent task structures (Figure 2). The operators are:

* Sequential (seq): defines a directed dependency between
components a and b, where the output of a becomes the
input of b, enforcing causal consistency in linear flow.

* Branch (brn): propagates the output of a component a
to multiple downstream components {by, ba, ..., b, }, en-
abling controlled parallelism and exploration.

» Aggregation (agg): merges the outputs of multiple com-
ponents {ay, as, ..., a, } into a unified component b, sup-
porting synthesis and ensemble reasoning.

This triad forms DYNO’s symbolic grammar for
reasoning-driven orchestration. Complex many-to-many in-
teractions can be represented as compositions of these prim-
itives, providing explainability while allowing neural mod-
ules to adapt their instantiations dynamically based on task
semantics (Figure 1).

Registries

Complementing the compositional logic of Operations,
DYNO maintains four interconnected registries that act as
persistent semantic memory. They provide context, trace-
ability, and adaptability across all stages of orchestration,
enabling the system to reason over its own history and con-
tinually improve. Each registry serves a distinct but inter-
linked role:

» Data Registry: maintains structured metadata for all data
assets, capturing modality, provenance, relevance, and
embeddings to enable transparent, versioned retrieval.

* Knowledge Registry: stores ontologies, semantic
graphs, and reasoning rules, linking symbolic en-
tities with neural embeddings to ensure consistent
neurosymbolic alignment.

» Agent Registry: describes agent capabilities, modalities,
and performance profiles, supporting adaptive agent se-
lection and fine-tuning within orchestration loops.

* Evaluation Registry: unifies evaluation metrics and
feedback histories, providing continual signals for self-
assessment and learning.

These registries form DYNO’s evolving knowledge sub-
strate. They ensure that each orchestration cycle bene-
fits from accumulated context and feedback, transforming
DYNO from a static coordinator into a continuously learn-
ing orchestration ecosystem.

Stage-1: Task Planner

The Task Planner is the first stage of DYNO’s neurosym-
bolic orchestration pipeline, transforming high-level objec-
tives into structured, executable sub-tasks. It comprises of

| ing the failed sub-task for further

Registry

| breakdown into multiple sub-tasks

using domain cues, contextual and

r Knowledge
ing domail a 1
b 2
Registry

S

Sub-Task Planner
(generates valid task execution plan)

| iterative tuning for optimized sub-task plan \

Handler

Data & Knowledge

(finds optimal data/know. streams)

o |

C3AN Evals
Regist!

Active learning over
knowledge and data

invalid workflow

Intermediate Evaluation | Orchestration

| iterative tuning for optimized orchestration |

Sub-Task’s

Plan | Planner Verifier
Ontolo ies (validates generated sub-task plan)
ogles |

Heterogeneous
Agent Handler

(finds relevant agents for subtask)

Verifier
(checks validity of generated
sub-task’s workflow orchestration)

Assessor

(adds relevant evaluations))
V,

Workflow

Hyperparameter Tuning over
Agents & performance reports valid

workflow

€ Storing sub-task’s workflow for
Abstracted sub-task’s workflow snapshot for iterative improvement Agent caChed workflow-level meta-learning
of plan ontologies i.e., ontology-guided plan refinement Registry Workflows f 2
< End

(- N
| LEGEND Task Planner Stage Workflow Orchestration Stage Iterative Improvement Stage Artifacts |
| (creates & divides tasks into solvable sub-tasks; (constructs a verified complete, executable, and (performs iterative refinement of data, knowledge, and agent handling; | |(Anything that is an object in the pipeline - stored data, |
L Process | | sends sub-tasks iteratively for workflow. i luabl for a given sub-task) performs cyclical plan ontologies and sub-task workflow updates) knowledge, registries, cached workflows, etc.) |

—— —_—

Figure 1: Architecture of DYNO. Task Planner divides the given task into solvable sub-tasks, Workflow Orchestration creates
executable workflows for solving the sub-tasks, and Iterative Improvements provide loops for continual training. All Registries,
Ontologies and Workflows are stored in shared memory space called Artifacts.

Input Output
Descriptions, embeddings, Directed Acyclic Graph (DAG)
input/output streams, instruction set with <seq, brn,
information from registries I agg> as operators
(" "DYNO |
I
fSub-Task Planner\ | Operations I ($ub-Task Planner\
« Full Task Description | ——= > 11 input, seq, sub-task_1
« Iterative feedback from plan I | * sub-task_1,brn, [sub-task_2,
verifier (symbolic reasoner) | s tial () I sub-task_3]
« Semantic and contextual | [Sequential (seq 1 * sub-task_2, seq, sub-task_4
embeddings from K-Registry | | —=< [| loubrtaskc3, subrtasical, agg
* System States, input stream | | sub-task_5
and output goals | * sub-task_5, seq, output
. /1 |
I |
(AgentHandler) ||_Branch(brn)]I S)
+ Description of one sub-task | I
. Availa_ble Agents and their | | f Agent Handler \
associated metadata | -
« Current Information Sources | | I * input, ieq: agent 1)
(Data, Knowledge) from D&K * agent_1,seq, agent_.
Handler I\ \Aggregate (agg)) | |. agent2, brn, lagent.3, sub-
« Input & Outputstreams) - agent_4]
k) « [agent_3, agent_4], agg,
; . agent_5
i I |« agent_5, seq, output
| LEGEND | e g, outp
= Task Planner Stage Workflow Orchestration I
1| (creates & divides tasks into (constructs a complete executable | |
I solvable sub-tasks) workflow for a given sub-task) I k)
A

Figure 2: Descriptive diagram of DYNO’s operation set.
Sub-Task Planner leverages operations for creating a DAG
of solvable sub-tasks from a given task, Agent Handler
leverages operations for constructing DAGs of workflows
for a given sub-task.

two interdependent modules: Sub-Task Planner, which pro-
poses task decompositions and Planner Verifier, which re-
fines and validates the decompositions using evolving onto-
logical knowledge. This iterative process continues until a
plan achieves both generative adequacy and symbolic valid-
ity or reaches user-set the iteration limit (K).

1. Sub-Task Planner

The Sub-Task Planner functions as the neural engine, pow-
ered by a LLM-based reasoning core. It decomposes the

input task into a directed acyclic graph (DAG) of solvable
sub-tasks, where nodes represent sub-tasks and edges denote
dependencies constrained by symbolic operators (seq, brn,
agg) as illustrated in Figure 2. By leveraging contextual, se-
mantic embeddings and domain cues from the Knowledge
Registry and iterative feedback from Planner Verifier, the
planner aligns its generative reasoning with available knowl-
edge assets, ontological context, and current system state.

2. Planner Verifier

The Planner Verifier serves as the symbolic reasoning com-
ponent, validating the semantic and structural integrity of
the sub-task plans. Implementation consists of either a rule-
based engine or a hybridized architecture depending on the
scope, strictness and constraints of the implemented domain
to produce a deterministic reasoner for verification and itera-
tive improvement of the generated plan by the sub-task plan-
ner. It references dynamic plan ontologies that encode per-
missible hierarchies, constraints, and dependencies. These
ontologies evolve continuously through feeback from prior
planning episodes and verified workflows of Workflow Or-
chestration stage. This adaptive ontology accumulation en-
ables each plan to remain semantically grounded, opera-
tionally feasible, and aligned with available agents and data
assets.

Once a verified plan is generated, the Task Planner dis-
patches sub-tasks sequentially to Workflow Orchestration
stage for controlled workflow generation and verification.
By integrating adaptive planning and symbolic grounding,
this neurosymbolic mechanism underpins DYNO’s goal of
scalable, interpretable, and self-correcting multi-agent or-
chestration.

Stage-2: Workflow Orchestration

The Workflow Orchestration Stage receives a verified sub-
tasks and associated plan from the Task Planner and is
responsible for constructing a complete, executable, and
evaluable workflow for that sub-task and then consolidating

the constructed workflow into given plan. It consists of four
interdependent components: Data and Knowledge Handler,
Heterogeneous Agent Handler, Evaluation Assessor, and
Orchestration Verifier. Together, they design, validate, and
iteratively refine the control, data and knowledge flows nec-
essary for successful orchestration.

1. Data and Knowledge Handler

The Data and Knowledge Handler is responsible for discov-
ering, retrieving, and contextualizing the most relevant data
and knowledge assets for the sub-task. This handler queries
the Data Registry and Knowledge Registry to design the data
and knowledge flow. It selects inputs (datasets, streams, in-
dices), contextual knowledge (ontologies, schemas, graphs),
and auxiliary artifacts (prompts, exemplars, retrieval views)
that minimize information bottlenecks and maximize se-
mantic coverage for the sub-task. Retrieved assets are an-
notated with provenance, version identifiers, and usage con-
straints to support traceability and reproducibility during
downstream execution.

This handler communicates directly with agents through
the MCP (Model Context Protocol) (Hou et al. 2025),
which standardizes how data and knowledge assets are re-
quested, transferred, and contextualized during orchestra-
tion. The MCP protocol ensures bidirectional synchroniza-
tion between agents and information sources: agents can dy-
namically query or update contextual knowledge, while the
handler maintains provenance, consistency, and usage con-
straints for each asset. This design guarantees that every
agent operates over well-grounded, up-to-date information
throughout the workflow.

2. Heterogeneous Agent Handler

The Heterogeneous Agent Handler manages agent selec-
tion, composition, and coordination for the current sub-task.
It draws from the Agent Registry, which includes multi-
ple classes of agents: reactive (tool-like), generative (LLM-
based), symbolic (rule-based), etc. Agent selection follows
an importance-weighted strategy, preferring lightweight,
deterministic, and statistically reliable algorithmic agents
whenever feasible, and escalating to heavier cognitive or
neural agents only when task complexity or reasoning depth
demands it.

This handler is responsible for designing the control flow
of the sub-task by constructing an executable control graph
governed by the constrained operator set (seq, brn, agg).
To enable seamless inter-agent communication, DYNO em-
ploys A2A (Agent-to-Agent) Protocol (Google A2A 2025),
which standardizes message passing, state synchronization,
and dependency signaling between heterogeneous agents.
A2A ensures that agents of diverse modalities and agent
types can interoperate coherently without manual bridging,
enabling compositional reasoning and decentralized collab-
oration.

Rationale for Dual-Handler Design The decision to
maintain separate handlers for data/knowledge flow from
agent/control flow is foundational aspect of DYNO’s orches-
tration design. The Data and Knowledge handler focuses on

information quality and sematic coverage whereas the Het-
erogeneous Agent handler focuses over agent selection and
coordination. This separation offers key benefits:

1. Parallel optimization paths: Parallel handlers ensure op-
timization paths reach desired equilibrium without one
taking precedence over another.

2. Smaller search space: Separated exploration reduces
joint optimization permutations.

3. Modularity and Re-usability: Cached workflows can be
reused for new domains by swapping data assets and
vice-versa without full redesign.

Through standardized bidirectional interactions between
the handlers enabled via dual-protocol system (A2A for
intra-agent connectivity and MCP for agent—knowledge in-
terfacing) over operation sets, DYNO’s workflow orchestra-
tion stage ensures a fully bound orchestration graph with
complete provenance metadata.

3. Evaluation Assessor

The resulting Intermediate Sub-Task Workflow generated
from prior modules is augmented with suitable evaluation
metrics that assesses performance at both component and
system levels. DYNO employs a multidimensional evalu-
ation approach grounded in the 14 principles of C3AN
framework (Sheth et al. 2025): reliability, consistency,
alignment, analogy, abstraction, causality, instructability,
reasoning, planning, grounding, explainability, attribution,
interpretability, and safety. Each dimension is operational-
ized through quantitative metrics such as accuracy, preci-
sion, and recall, and qualitative indicators such as coherence,
contextual relevance, and causal soundness. Together, these
measures provide a balanced assessment of DYNOQO’s robust-
ness, transparency, and alignment with responsible Al stan-
dards.

Beyond static evaluation, the Evaluation Assessor also
serves as a checkpoint within the Iterative Improvement
stage, where results are routed through two feedback loops:
one enabling active learning over data and knowledge as-
sets, and the other supporting hyperparameter tuning for
adaptive agents. Further details are provided in the Iterative
Improvement section.

4. Orchestration Verifier

This module checks the structural and logical validity of
each generated sub-task workflow before integration into
global workflow. The validation steps include:

1. Data flow validity: Ensuring type, schema, and modality
compatibility across the workflow.

2. Control flow validity: Confirming correct operator usage
(seq, brn, agg), absence of deadlocks, adherence to dual-
protocols (A2A and MCP), and completeness of depen-
dencies.

3. Pipeline coherence: Verifying seamless integration of the
sub-task workflow into the global orchestration DAG
while preserving alignment with the original root task
plan.

Workflows that pass all checks are finalized for execution
and merged into global workflow. If validation fails, the Ver-
ifier produces a structured diagnostic report identifying fail-
ure points, implicated agents or assets, and recommended
corrective actions to the Task Planner. This feedback triggers
an iterative refinement process analogous, to iterative deep-
ening, where the sub-task is decomposed, re-orchestrated,
and re-evaluated until a valid configuration is achieved.

Beyond Validation, this module serves as another check-
point within the Iterative Improvement stage, where re-
sults are routed through two feedback loops: one enabling
meta-learning of workflow orchestration, and the other sup-
porting replanning under Task Planner tuning for adaptive
agents. Further details are provided in the Iterative Improve-
ment section.

Stage-3: Iterative Improvement

The iterative improvement stage enhance the DYNO
pipeline with loops aimed at providing continual self-
optimization. This optimization is enabled through feedback
loops at two checkpoints - Evaluations Assessment and Or-
chestration Verification.

The feedback loops at evaluations checkpoint aim at op-
timizing the pipeline via results from evaluation suites,
namely - (i) Agent Hyperparameter Fine-Tuning, (ii) Active
learning over Knowledge and Data. The feedback loops at
orchestration verification checkpoint aim at optimizing the
pipeline at cognitive choke points of the system, namely task
planning and workflow generation leading to formalization
of (iii) Workflow-Level Meta-Learning, and (iv) Ontology-
Guided Plan Refinement (Re-Planning) feedback loops.

Agent Hyperparameter Tuning

The results obtained from Evaluations Assessor module are
used to optimize the performance of agents in two ways:

1. Hyperparameter tuning: Hyperparameters of individual
agents tuned by bayesian optimization for optimal per-
formance.

2. Performative feedback for human judgement: Analytical
performance reports containing scores, calibrations and
historical trace records would be sent to users to deter-
mine the necessity of either fine-tuning current agent or
finding better replacements.

At the evaluation checkpoint, agent hyperparameter tun-
ing is prioritized since Bayesian model training and agent
optimization are comparatively less expensive.

Active Learning over Knowledge and Data

Results obtained from Evaluation Assessor module are used
to optimize the selection of datasets and knowledge assets
either for training or inference purposes. This adaptive pro-
cess operates along two dimensions:

1. Data refinement and augmentation: Resampling to re-

duce bias and enhance representational diversity (Yang,
Huang, and Crowley 2024).

2. Knowledge and ontology refinement: Improved symbolic
representations selection for domain task and suggestive

enhancements for representations via new entities, re-
lations, or constraints derived from evaluation insights
(Kim et al. 2025).

This loop consists of five steps: model training, scoring,
sampling, human verification, and subsequent retraining.

Workflow-Level Meta-Learning

This loop caches generated sub-task workflows and their
associated metadata, which serve as training substrates for
meta-learning (Hospedales et al. 2021) within the Agent
Handler. This process learns implicit correlations between
data assets, agent configurations, and evaluation outcomes
to generate priors that bootstrap new sub-tasks and enhance
the system’s understanding of workflow semantics.

Ontology-Guided Plan Refinement

This loop augments the plan ontologies with task oriented
abstractions by capturing decomposition patterns, sub-task
dependencies and associated success probabilities. The re-
sulting refined ontologies serve as informed priors that guide
replanning (Cushing and Kambhampati 2005) of the Sub-
Task planner.

Illustrative implementation of DYNO

In this section, we present an illustrative example to demon-
strate the implementation of DYNO (Illustrated in Figure 3).

sending
orchestrated workflow
for a sub-task

|

(Task Planner) i (Workflow Orchestrator)
el b fellsri
INPUT OUTPUT INPUT OUTPUT
1.Task Description * 3solvable Sub-Tasks: 1.Sub-Task Description « Connected workflow
2.Input Sources. anomaly prediction (T1), 2.Input Sources with assets, agents, and
(annotated historical manuals guide (T2), historical suitable evaluations
time series data, live conversational bot (T3) sending time series data, live |+ DAG with workflow
time series data stream,§ ¢ Directed acyclic graph [one sub-task j—p] time series data stream,§ ~connections
mfg. manuals, (DAG) with sub-task oG mfg. manuals, Ts IMGs
images of images of
bot, live time series bot, live time series
images stream) images stream)
3.Prior planning 3.Prior planning
ontologies (from ontologies (from
_ internal knowledge)) _ internal knowledge))
TS IMGs

integrate workflow into
| global workflow and
prompt for next sub-task

Cached Ontologies,
Workflows, Global
Workflow, Registries
Agents/

,
|
5 Task Plannor]| | Ariacts. | |_Processes | el
|
|
|

[5-2: Workftow Orchestration | 5-3: terative Improvement

INPUT
1.Task and Sub-Task
Descriptions
2.0rchestrated workflow
for the sub-task
3.Global workflow
4. Domain cues,
contextual and
semantic embeddings
(from internal
knowledge)

OUTPUT
« Compatibility check
report of sub-task
workflow w.r.t global.

Final workflow

workflows and plan

LEGEND

(
I
I
I
I
I
I

o Formatted intermediate|

ontologies (for caching)

Orchestration Verifier paorwo)

Figure 3: Illustrative diagram of Smart Manufacturing
pipeline creation using DYNO.

Preface. Manufacturing industries in Industry 4.0 require
an integrated, intelligent workflow to address interconnected
challenges such as downtime, forecasting inaccuracies, and
multimodal data interpretation that existing Al solutions
treat in isolation.

Input Stream from User

Task Description: ”Develop a conversational chatbot that
alerts an engineer when an anomaly occurs in the manufac-
turing pipeline, suggests relevant mitigation strategies from

existing manuals, and can answer any engineer’s questions
related to the pipeline or the anomaly. The chatbot should
also predict future anomalies using historical data.”

Input Sources (Data and Knowledge assets): An-
notated historical time-series data, Live time-series data
streams, manufacturing manuals, annotated images (from
both anomalous and regular operations)

Stage-1 (Task Planner) Execution

The task description and input sources are processed and
sub-modules of Task Planner (Sub-Task Planner and Plan-
ner Verifier) iteratively interact to generate a set of sub-
tasks and their connections in form of a directed acyclic
graph(illustrated in Figure 3):

¢ Anomaly Prediction (ST-1): Build an agent that uses
multimodal sensor data to detect and classify anomalies
in real time.

¢ Manuals Guide (ST-2): Build an agent that retrieves rel-
evant mitigation steps from manufacturing manuals.

¢ Conversational Chatbot (ST-3): Integrate ST-1 and ST-
2 within an interactive conversational interface.

The planner sends the sub-tasks sequentially to the Work-
flow Orchestrator.

Stage-2 (Workflow Orchestration) Execution

Workflow Orchestration receives sub-task and their objec-
tives from task planner. For illustration, the process for ST-1
(Anomaly Prediction) proceeds as follows:

¢ A. Data and Knowledge Handler: Retrieves relevant
data and knowledge assets for the sub-task and sends it
to the Heterogeneous Agent Handler.

¢ B. Heterogeneous Agent Handler: Reviews available
assets and sub-task requirements and proposes possible
configurations (e.g., multimodal LLMs, CNNs, LSTMs,
ViTs, Temporal Fusion Transformers, etc.).

« Iterative refinement (A and B): The iterative loop be-
tween A and B ensure optimal choice having input/out-
put compatibility, computational efficiency, and seman-
tic alignment. The system eliminates unsuitable options
(e.g., LLM-based methods due to computational cost).

¢ Workflow Generation: The two-module framework fi-
nalizes CNN for image data and LSTM for time-series
data as the optimal combination and sends the intermedi-
ate workflow to evaluation assessor.

¢ C. Evaluation Assessor: Adds relevant evaluation suites
to the workflow (e.g., consistency, explainability, roc/-
mac, precision, accuracy).

e D. Orchestration Verifier: Validates the sub-task’s
workflow and integrates into global workflow.

This process repeats for all sub-tasks until the complete
Smart Manufacturing Pipeline is constructed and verified.
Once all the sub-tasks’ associated workflows are constructed
and integrated, the pipeline for smart manufacturing task
would be marked as complete.

Conclusion

LaMAS marks a major step towards scalable, reasoning-
driven systems, but their potential for enterprise adaptation
requires navigating complex task coordination across di-
verse agents, multimodal assets, and evolving task seman-
tics. Our proposed neurosymbolic orchestrator, DYNO, ad-
dresses this through a three-stage process: task plan gen-
eration, workflow orchestration, and iterative improvement.
This division mirrors phases of reasoning, generation, ex-
ecution and reflection and forms a closed cognitive loop.
This position paper looks beyond the world of LLMs, agent
paradigms and infrastructures to propose a holistic frame-
work for generating complete pipelines for mission critical
enterprise tasks, potentially serving as a foundational design
principle for next-generation LaMAS. By unifying agents,
data, knowledge and evaluation within a dynamic orches-
tration framework, DYNO moves the field closer to realiz-
ing interpretable, self-correcting, and human-aligned multi-
agent intelligence.

References

Agostinelli, S.; Marrella, A.; and Mecella, M. 2020. To-
wards intelligent robotic process automation for BPMers.
arXiv preprint arXiv:2001.00804.

Ahn, M.; Brohan, A.; Brown, N.; Chebotar, Y.; Cortes, O.;
David, B.; Finn, C.; Fu, C.; Gopalakrishnan, K.; Hausman,
K.; etal. 2022. Do as i can, not as i say: Grounding language
in robotic affordances. arXiv preprint arXiv:2204.01691.
Cemri, M.; Pan, M. Z.; Yang, S.; Agrawal, L. A.; Chopra, B.;
Tiwari, R.; Keutzer, K.; Parameswaran, A.; Klein, D.; Ram-
chandran, K.; et al. 2025. Why do multi-agent 1lm systems
fail? arXiv preprint arXiv:2503.13657.

Cheng, L.; Li, X.; and Bing, L. 2023. Is gpt-4 a good data
analyst? arXiv preprint arXiv:2305.15038.

Cichocki, A.; Ansari, H. A.; Rusinkiewicz, M.; and Woelk,
D. 1997. Workflow and process automation: concepts and
technology, volume 432. Springer Science & Business Me-
dia.

Cushing, W.; and Kambhampati, S. 2005. Replanning: A
new perspective. Proceedings of the International Confer-
ence on Automated Planning and Scheduling Monterey,

USA, 13-16.

Eulerich, M.; Waddoups, N.; Wagener, M.; and Wood, D. A.
2024. The Dark Side of Robotic Process Automation (RPA):
Understanding Risks and Challenges with RPA. Accounting
Horizons, 38(2): 143—-152.

Gao, M.; Li, Y.; Liu, B.; Yu, Y.; Wang, P.;; Lin, C.-Y.; and
Lai, F. 2025. Single-agent or Multi-agent Systems? Why
Not Both? arXiv preprint arXiv:2505.18286.

Google A2A. 2025. A2A: A New Era of Agent Interop-
erability. https://developers.googleblog.com/en/a2a-a-new-
era-of-agent-interoperability/. Accessed: 2025-10-15.
Hong, S.; Zhuge, M.; Chen, J.; Zheng, X.; Cheng, Y.; Wang,
J.; Zhang, C.; Wang, Z.; Yau, S. K. S.; Lin, Z.; et al. 2023.
MetaGPT: Meta programming for a multi-agent collabora-
tive framework. In The Twelfth International Conference on
Learning Representations.

Hospedales, T.; Antoniou, A.; Micaelli, P.; and Storkey, A.
2021. Meta-learning in neural networks: A survey. IEEE
transactions on pattern analysis and machine intelligence,

44(9): 5149-5169.

Hou, X.; Zhao, Y.; Wang, S.; and Wang, H. 2025. Model
context protocol (mcp): Landscape, security threats, and fu-
ture research directions. arXiv preprint arXiv:2503.23278.
Hu, M.; Zhou, Y.; Fan, W.; Nie, Y.; Xia, B.; Sun, T.; Ye, Z.;
Jin, Z.; Li, Y.; Chen, Q.; et al. 2025. Owl: Optimized work-
force learning for general multi-agent assistance in real-
world task automation. arXiv preprint arXiv:2505.23885.
Ivanci¢, L.; SuSa Vugec, D.; and Bosilj Vuksi¢, V. 2019.
Robotic process automation: systematic literature review. In
International Conference on Business Process Management,
280-295. Springer.

Kim, D.; Yang, H.; Hwang, S.; Yeom, K.; Shim, M.; and
Lee, K.-H. 2025. Active Learning Framework for Improv-
ing Knowledge Graph Accuracy. IEEE Access, 13: 47500—
47513.

Li, Z.; Xu, S.; Mei, K.; Hua, W.; Rama, B.; Raheja, O.;
Wang, H.; Zhu, H.; and Zhang, Y. 2024. Autoflow: Auto-
mated workflow generation for large language model agents.
arXiv preprint arXiv:2407.12821.

Li, Z.; Zhang, H.; Han, S.; Liu, S.; Xie, J.; Zhang, Y.;
Choi, Y.; Zou, J.; and Lu, P. 2025. In-the-Flow Agentic
System Optimization for Effective Planning and Tool Use.
arXiv:2510.05592.

OpenAl 2025. API Agents — OpenAl. https://openai.com/
agent-platform/. Accessed: 2025-11-02.

Qian, C.; Liu, W.; Liu, H.; Chen, N.; Dang, Y.; Li, J.; Yang,
C.; Chen, W.; Su, Y.; Cong, X.; et al. 2023. Chatdev: Com-
municative agents for software development. arXiv preprint
arXiv:2307.07924.

Sheth, A.; Roy, K.; and Gaur, M. 2023. Neurosymbolic Ar-
tificial Intelligence (Why, What, and How). IEEE Intelligent
Systems, 38(3): 56-62.

Sheth, A. P.; Roy, K.; Venkataramanan, R.; Nadimuthu, V.;
and Shyalika, C. 2025. Composite Al With Custom, Com-
pact, Neurosymbolic Models: The Emergent Enterprise Ar-
tificial Intelligence Paradigm. [EEE Internet Computing,
29(2): 37-49.

Wornow, M.; Narayan, A.; Opsahl-Ong, K.; Mclntyre, Q.;
Shah, N. H.; and Re, C. 2024. Automating the enterprise
with foundation models. arXiv preprint arXiv:2405.03710.
Wu, Q.; Bansal, G.; Zhang, J.; Wu, Y.; Li, B.; Zhu, E.; Jiang,
L.; Zhang, X.; Zhang, S.; Liu, J.; et al. 2024. Autogen: En-
abling next-gen LLM applications via multi-agent conversa-
tions. In First Conference on Language Modeling.

Yang, C.; Huang, L.; and Crowley, E. J. 2024. Plug and Play
Active Learning for Object Detection. arXiv:2211.11612.
Ye, Y.; Cong, X.; Tian, S.; Cao, J.; Wang, H.; Qin, Y.; Lu,
Y.; Yu, H.; Wang, H.; Lin, Y.; et al. 2023. Proagent: From
robotic process automation to agentic process automation.
arXiv preprint arXiv:2311.10751.

