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ABSTRACT

We present AnyCap, a plug-and-play framework that brings instruction alignment
to omni-modal captioning. Captions offer a unified language interface for multi-
modal learning, and users increasingly expect instruction-driven control over their
content and style. Current caption models lack explicit instruction supervision and
are weak at instruction following, while directly tuning them can degrade general
language ability. Achieving instruction alignment in an omni-modal setting is
harder still, as each modality calls for separate models and custom designs. To
address these challenges, AnyCap leverages a residual-correction paradigm that
refines uncontrolled captions from existing models to instruction-aligned ones,
without re-training base models. By processing multi-modality features in a uni-
fied framework, it enables one model to serve images, videos, and audio. To ad-
dress the lack of instruction-based data, we construct AnyCapData, a large-scale,
high-quality corpus spanning three modalities with 28 well-designed instruction
types. For evaluation, we address the limitations of current metrics for instruction-
oriented captioning by designing AnyCapEval. Its key insight is to decouple eval-
uation into content and style for fine-grained assessment. Extensive experiments
show that on AnyCapEval and diverse public benchmarks, AnyCap consistently
improves both caption quality and instruction adherence for both open-source and
API-based models. Notably, AnyCap-8B boosts GPT-40’s content scores by 46%

and style scores by 12%. Our code and models will be made publicly available.

[ Instruction Gallery: & Background <\ Instance Appearance ? Instance Position & Movement @ Perspective A Detail T Genre ... ]

( ) /The scene takes place on a sunny day in an urban area with\
ase Base & Describe this video's palm trees lining both sides of the street. The road is wide and
MLLM Caption background setting. appears to be a main thoroughfare, as indicated by the presence
(Video) P of multiple lanes and ing in both directions. The
\ / sky is clear with minimal cloud cover, suggesting pleasant
weather conditions. On either side of the road, there are well-
— ? Describe the position \_maintained sidewalks and greenery, including bushes and trees. /
@ Image Base of the castle in the image. s ~
Base The castle is positioned at the top center of the image, situated
MLLM Caption on a hill overlooking the city and river below. It occupies a
(Image) - - significant portion of the upper half of the frame, with its towers
~— A Generate a detailed |_and walls extending across the middle section. )
description of the audio
that captures all its
ﬂ) Audio 4 \ elements (" The audio features the sound of a train approaching, with the
Base BEa train horn blowing loudly. The train then comes to a stop, and
MLLM . the sound of the train's brakes squealing is heard as it halts. The
T ‘ - h d of th in's braki ling is heard as it halts. Thi
@' (Audio) Caption AnyCap ’@h overall atmosphere is that of a train arriving at a station, with
4 \ J AnyCap \_the distinct sounds of the train horn and the braking system. Y,

Figure 1: We design diverse natural language instructions for controllable captioning. Given image,
video, and audio inputs, base models first generate initial captions. AnyCap effectively aligns them
into high-quality, instruction-aligned outputs. A single AnyCap model serves all three modalities.

1 INTRODUCTION

Multimodal large language models (MLLMs) are rapidly advancing towards omni-modal intelli-
gence (Hurst et al., 2024; Anil et al., 2023; Xu et al., 2025; Zhao et al., 2025). Textual captions
provide a natural way to connect different modalities by conveying their information in a unified
language form. Beyond producing generic descriptions, users increasingly expect captions that are
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instruction-aligned, directly adapting to desired content and style. This can more flexibly support
multimodal tasks such as retrieval (Radford et al., 2021), question answering (Li et al., 2022), and
content generation (Ramesh et al., 2022).

Yet, instruction-aligned captioning faces three significant challenges. (i) Existing models have
limited instruction following ability. Many are trained as general-purpose understanding models.
They can lean toward the requested focus, but mainly produce broad content or unrelated de-
tails (Wang et al., 2025). For finer control over captions, current approaches usually rely on special
tokens (Dwibedi et al., 2024) or bounding boxes (Zhao et al., 2024; Huang et al., 2024), to guide
local descriptions. In practice, however, users could prefer flexible natural language instructions
(e.g., in Table 1) to specify caption types, focuses, and styles. This represents a more fine-grained
and natural form of control, yet current captioning models fall short in this ability. Bridging the
gap is non-trivial, as directly fine-tuning these models to emphasize such instructions can weaken
their overall language capability (Luo et al., 2023). (ii) Adapting instruction alignment to differ-
ent modalities further adds complexity. Each modality imposes distinct demands. For example,
visual captions often emphasize object appearance, whereas audio captions may reflect prosodic
cues (Sharma et al., 2023; Mei et al., 2022). Meeting heterogeneous requirements usually forces
the use of separate models. (iii) High-quality training data and benchmarks for omni-modal cap-
tioning are also lacking. Most caption datasets cover a single modality (Wang et al., 2024c; Qian
et al., 2025). They also provide only coarse-grained captions, which cannot support the fine-grained
instruction following required above. In particular, audio data is especially scarce, with existing
corpora offering only short COCO-style captions and few long-form descriptions (Kim et al., 2019).

To tackle these challenges, we propose AnyCap, a new captioning framework characterized by two
key features. It (i) generates captions that are directly controlled by user language instructions, and
(i) a single model can handle images, videos, and audio data. Our core idea, inspired by residual
learning mechanism in Aligner (Ji et al., 2024), is to refine coarse captions into user-desired ones
using a small model. Specifically, we leverage open-source models and available APIs to provide
basic captions, and then learn how to align them with user instructions using both the modality
observations and instruction texts (Fig. 1). This design simplifies the task, where the base caption
supplies general content, while the learning process can focus on capturing instruction intent and
refining correctness. Once trained, AnyCap can be used as a plug-and-play module to stack upon di-
verse captioning models, enhancing captioning without modifying their parameters, or as a flexible
tool for re-annotating datasets. It is worth noting that, unlike Aligner that only corrects text modal-
ity, AnyCap significantly differs by incorporating multimodal information in a unified framework.
Moreover, our aim is to achieve instruction-aligned captioning in an omni-modal setting, which is
the first of this kind to our knowledge.

For the lack of instruction-based caption data, we construct a large-scale dataset termed Any-
CapData. Unlike prior datasets where instruction types are fixed (e.g., “describe ... in
short/details” (Onoe et al., 2024)), we carefully design 28 diverse instruction dimensions spanning
images, videos, and audio to better reflect real-world needs (Table 1). To support our alignment
paradigm, each sample is annotated as a triplet: an instruction, a preferred caption, and a less-
preferred caption, clearly capturing differences in instruction alignment quality. These triplets are
generated in a data-aware manner by prompting large MLLMs with the original modality inputs,
ensuring that user instructions are grounded in the source content. To further secure quality, we
perform small-scale manual screening for each instruction pattern and modality before large-scale
generation. With this limited human effort, we improve the quality of automated data generation.

For reliable evaluation, existing methods also remain inadequate. They typically adopt traditional
machine translation scores (e.g., BLEU (Papineni et al., 2002), CIDEr (Vedantam et al., 2015)) that
lack semantic awareness, or rely on direct LLM-based scoring, which suffers from high randomness
across instruction types (Qian et al., 2025; Chen et al., 2025b). We thus design AnyCapEval, with the
key insight to categorize diverse instruction types into two orthogonal dimensions, i.e., content and
style, and evaluate them separately for focused and fine-grained evaluation. For content evaluation,
we introduce the Keypoint Density (KPD) metric. It employs an automatic matcher to measure the
recall of content keypoints and penalizes redundancy in excessively long captions. This encourages
captions that are both precise and of appropriate length. For style evaluation, we rigorously design
detailed scoring rubrics for each instruction type, combined with references to guide evaluation and
reduce scoring variance. This structured design enables consistent distinction between compliant
and non-compliant stylistic outputs.
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Extensive experiments show that AnyCap significantly improves caption quality and instruction-
following ability across image, video, and audio. It benefits both open-source and proprietary API-
based models. Specifically, stacking a 2B AnyCap on GPT-40 improves content following by 35%
and style controllability by 9%. The improvements are also consistently shown on widely-used
benchmarks including MIA-Bench and VidCapBench, demonstrating its generalizability. We further
validate AnyCap through detailed ablation studies and user studies, observing that, compared to
other models, AnyCap tends to convey the instruction-required information more accurately while
removing redundant content (Table 11), thereby better matching user preferences.

2 RELATED WORK

Image, video, and audio captioning. Most early captioning models focus on a single-modality and
produce only brief sentences (Vinyals et al., 2015; Venugopalan et al., 2015; Kim et al., 2019). Later
research on image and video captioning moves toward longer and finer-grained descriptions (Bianco
et al., 2023; Chen et al., 2024a; Ge et al., 2024; Krishna et al., 2017b). Recently, some base MLLMs
have attempted to unify image and video captioning (Chen et al., 2024c; Bai et al., 2025) and even
cover audio (Hurst et al., 2024; Anil et al., 2023; Xu et al., 2025). Yet, under open-ended prompts
these models often drift from user-specific needs, producing irrelevant details or hallucinations that
misalign with the intended caption instructions (Han et al., 2024; Huang et al., 2023). To address
this, we introduce a plug-and-play model that aligns coarse captions across image, video, and audio
into fine-grained, high-utility outputs.

Fine-grained captioning with instructions. A range of works use control signals as instructions to
specify caption content or style. Representative approaches include employing length embedding for
controlling caption length (Zeng et al., 2023), bounding boxes (Cornia et al., 2019) or masks (Wang
et al., 2023) for region-level grounding, soft prompting for style or domain transfer (Zhao et al.,
2024), and structured prompts to standardize instance-level descriptions (Fan et al., 2024). While
effective, these control interfaces are individually designed and difficult to compose, limiting their
ability to capture diverse fine-grained requirements. In contrast, we focus on flexible natural lan-
guage as a unified instruction interface. Our framework aligns captions with 28 instruction types
across modalities to broadly cover the spectrum of captioning needs.

Caption evaluation metrics. Traditional word-overlap metrics like BLEU (Papineni et al., 2002)
and CIDEr (Vedantam et al., 2015) are widely used, but they cannot evaluate semantic consistency or
instruction-following ability. This limitation arises because n-gram similarity only measures surface
word overlap. Another common approach is to use LLM or MLLM as judges (Maeda et al., 2024;
Qian et al., 2025; Chan et al., 2023; Sun et al., 2024; Mao et al., 2024; Dong et al., 2024; Lu
etal., 2024; Liu et al., 2023; Sun et al., 2023), which offers semantic coverage but suffers from large
variance and model bias (He et al., 2024; Qiu et al., 2023). Recent attempts also tailor metrics toward
specificity in long captions (Chen et al., 2025a). We incorporate the strengths of these directions
by introducing AnyCapEval benchmark. It explicitly separates content and style assessment with
a particular focus on instruction-following evaluation. We design a new keypoint density (KPD)
metric and the constructed scoring rubrics for more reliable assessment of caption quality.

3 ANYCAP

3.1 FRAMEWORK

Given a modality input m from images (m'™), videos (m*'), or audio (m®9), captioning across
different modalities often relies on separate MLLMs, and the resulting captions often fail to follow
user-specified content or style requirements. To address this, we design AnyCap as a plug-and-play
approach to help existing foundation models align captions with user instructions. As illustrated in
Fig. 2(a), a frozen base model first processes m to produce an initial caption yg. Then, AnyCap
(M,,) takes the original input m, the initial caption o, and a detailed user instruction ¢ to generate
a refined caption y., formulated as

Ye :Ma(maQ7y0)~ (1)

Concretely, as shown in Fig. 2(b), AnyCap first employs modality-specific encoders (e.g., Intern-
ViT (Chen et al., 2024c) for m™¢ and m*4, and EAT (Chen et al., 2024b) for m®9) to extract



Under review as a conference paper at ICLR 2026

Refined Caption y,

(a) Workflow

\

Refined Caption y,

ooooo0ooc0good

Large Language Model

7

(b) AnyCap Architecture

I
' i
! 1
! 1
! 1
! 1
: 1
1

1
Answer 3, 0000000000 ocoo

1
\ I * :

\ 1
4 ;>$@ \ 1 ? | | '
MLLM: \ . Instruction g + Answer y, 2 D 1
(e.g., GPT-40, GPT-4o-audio, ‘\ 1 Visual Projector Audio Projector :
InternVL, Qwen-audio, YiVL, \ ! |
( QuenVL, LLaVA, .) ) N : (L) Text Token 1 1 !
\ ! D Multimodal Token B < ]
\ : Visual Encoder Audio Encoder |
“ h E\ Image Data :
( il ) ‘\ : Video Data * f :
Instruction g + ] ﬂ) \ @) Audio Data ! ﬂb) !
\ = ‘o ’

Figure 2: AnyCap framework. (a) AnyCap is stacked upon various MLLMs, refining their initial
captions into high-quality, instruction-aligned outputs. (b) Specifically, AnyCap takes as input the
initial caption, the original modality data, and the user instruction to produce the final caption.

features from each modality input. These modality features are projected into a shared semantic
space via modality-specific linear transformations (MLPs). Concurrently, ¢ and yq are tokenized
and embedded into textual embeddings. Finally, modality and textual embeddings are concatenated
and fed into a large language model to produce the refined, instruction-compliant caption ..

The architecture of AnyCap allows us to adopt a residual-correction strategy (Ji et al., 2024). Al-
though supervision still follows standard next-token prediction on the final caption y., AnyCap fo-
cuses on learning the correction pattern from the initial caption yy to the instruction-compliant target.
This refinement is also conditioned on both the modality features and the user instruction, ensuring
that the final caption remains grounded in the source input while aligning with the specified require-
ments. With y, as reference, we observe that residual learning makes the task easier and delivers
two gains: (i) it outperforms directly fine-tuning base MLLMs with instructions alone, as shown
in Tables 8 and 9; and (ii) it enables a single model to be trained jointly across image, video, and
audio data. We only train the lightweight plug-and-play AnyCap, leaving the base MLLMs frozen
to preserve its original capabilities. To help the model recognize when no change is needed, about
40% of training instances already satisfy the instruction. It makes training more stable and mitigates
over-editing issue, as ablated in Fig. 4.

3.2 ANYCAPDATA

We propose AnyCapData that features three aspects: (i) it covers large-scale, high-quality caption
data across images, videos, and audio; (ii) each caption is paired with user instructions to spec-
ify requirements; and (iii) each sample adopts a triplet structure to support our residual-correction
training, formulated as (g, ¢, a). Here, ¢ denotes the language instruction, c is a high-quality caption
adhering to the instruction, while a is a suboptimal caption that may exhibit minor deficiencies in
factual accuracy, level of detail, or compliance with the instruction.

Instruction types. To ensure both diversity and practicality, we identify instruction types by system-
atically surveying caption-related literature to surface common control categories and by analyzing
typical downstream requirements. The final selections are further conditioned on the distinctive
characteristics of each modality, as listed in Table 1. More details are illustrated in Sec. A.2.

Construction pipeline. With the designed instruction types, we first use MLLLMs to jointly gener-
ate a specific user instruction ¢ and its compliant caption c¢ for each image, video, or audio sample.
This avoids cases where a separately predicted instruction might request information the caption
cannot provide. The prompts for data construction are tailored per modality and instruction type,
including clear task descriptions, explicit length and style constraints, common pitfalls, few-shot
exemplars, and the original media as input. For audio, we include the dataset’s reference caption
(when available) in the prompt to reduce hallucination. Importantly, ¢ is instantiated for each ex-
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Table 1: Supported instruction types across image, video, and audio modalities in AnyCapData.
Checkmarks (v') indicate where each control is applicable. Content types control what information
is conveyed, while Style types shape how the message is delivered.

Instruction Type Description Image Video Audio
Content

Background (Bkg) Provide or suppress scene—background details v

Event (Evt) Require mention of an event or temporal change v v
Instance (Ins) Emphasise or ignore specific entities; enable inter-entity comparison v v
Instance Action (IAct) Describe the motion state of a designated instance v
Instance Appearance (IApp) Characterise visual attributes of a designated instance v v
Instance Position (IPos) Specify spatial position of an instance within the scene v v
Movement (Mov) Specify camera motion type (e.g., pan, zoom, dolly) v
Perspective (Per) Require a particular viewpoint of an object/person v v

Region (Reg) Restrict description to a specified image/video region v v

Style

Brief (Brf) Produce a concise rendition with minimal elaboration v v v
Detail (Det) Regulate the required level of descriptive granularity v v

Genre (Gen) Adopt a literary form (e.g., poem (Poe), narrative (Nar)) v v v
Length (Len) Constrain caption size (words or sentences) v v v
Theme (Thm) Conform to a designated linguistic style v v

ample (e.g., “describe the watermelon’s appearance in this image”, rather than a generic “describe
details”), enabling fine-grained and targeted control. We primarily adopt strong open-source VLMs
(e.g., InternVL2.5-78B, Qwen2.5-VL-72B) for visual modality. GPT-40 are selected for harder con-
trols (e.g., perspective, poetry) and for audio modality, balancing coverage and cost. For contrastive
supervision, given (g,c) we derive a suboptimal caption a by removing guidance to make it un-
controlled or injecting degradations to increase hallucination. The latter includes omitting required
keypoints, introducing mild factual errors, or violating style/length constraints.

Before large-scale automatic construction, each prompt template is manually validated on about 20
instances per modality—type. The validation requires full instruction compliance, no hallucination,
correct formatting, and preservation of modality-specific details. After large-scale generation, a
check of 5% of the data shows over 95% agreement with human preferences. We also apply type-
specific length gate and automatic sanity check to filter degenerate or repetitive outputs. The entire
pipeline requires only limited human intervention to enable low-cost scaling.

Statistics. The resulting AnyCapData contains about 300k (g, ¢, a) triplets, spanning images (125k),
videos (100k), and audio (75k), constructed from and augmented over roughly 75k samples, which
are derived and augmented from 75k original samples. These original samples are collected from
multiple public datasets (Wang et al., 2024b; Onoe et al., 2024; Urbanek et al., 2024; Cui et al.,
2024; Fan et al., 2024; Kim et al., 2019) with the ensured quality. Data sources and splits, detailed
construction procedures, and statistic details are shown in Sec. A.

3.3 ANYCAPEVAL

We design AnyCapEval for reliable evaluation of caption quality and, more importantly, the degree
of instruction alignment. Beyond previous works, our key idea is that diverse instructions can be
grouped into two dimensions: content or style requirements. Accordingly, the evaluation targets:
(i) Content, which checks whether captions follow the requested control and remain semantically
relevant; and (ii) Style, which measures consistency with human references in narrative manner,
structure, and fluency. They are separately evaluated to prevent mutual conflicts, for example when
polished language conceals factual mistakes.

Content evaluation. Given a ground-truth caption c, a predicted caption y., and a user instruction
g, we first annotate a keypoint set KC,. , = {k1, ko, ..., k,, } that exhaustively covers the information
required by q. GPT-40 then serves as an automatic matcher to identify which subset of keypoints is
present in y. (see Fig. 3(a) for examples). Different from naive approaches that input (y., ¢, ¢) into
an LLM to first find keypoints and then produce a score, we constrain the LLM to a binary classifi-
cation task, i.e., whether y. expresses each k;. It simplifies evaluation and improves reliability.

To process verbosity issue, where longer captions may trivially cover more keypoints, we in-
troduce the keypoint density (KPD) to normalize for length, formulated as KPD(y.;q) =
Nmateh/ Lwords (Ye) X 100. Npaeeh is the number of matched keypoints and Lyogs(ye) is the word
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Figure 3: Details of AnyCapEval. (a) Examples for content evaluation via KPD and style evaluation
via scoring rules. (b) AnyCapEval judgments highly align with human preference. (c) Integrating
AnyCap consistently boosts base models across both content and style dimensions.

count of y.. KPD quantifies the effective information rate, rewarding captions that satisfy user
instructions while penalizing redundant or irrelevant content.

Style evaluation. We employ GPT-40 to compare the predicted caption y. with the ground truth ¢
under instruction g, producing a discrete score s(y.) € {0, ...,4}. The scoring criteria is as follows:
(0) severely deviates from g or largely hallucinated/incorrect; (1) deviates from ¢ or contains many
hallucinations; (2) slightly deviates from g or contains certain hallucination; (3) highly similar to ¢
and hallucination-free; and (4) outperforms ¢ while remaining hallucination-free; (see Fig. 3(a)).

This scoring follows explicit criteria along three aspects: semantic similarity, hallucination severity,
and stylistic conformity, for each level from 0 to 4. With such a constrained rubric, carefully de-
signed prompts, and side-by-side comparison, the evaluation reduces the judge’s degrees of freedom,
thereby lowering variance and improving reproducibility.

To verify the bias of AnyCapEval, we conduct a human validation. After assessing multiple models
with AnyCapEval, we randomly sample 200 examples per model and ask five independent anno-
tators to judge if the predicted scores and grading rationals (e.g., Fig. 3(a)) aligned with human
preference. The results in Fig. 3(b) show high agreement. We also observe that integrating AnyCap
consistently improved strong base models in both content and style dimensions (Fig. 3(c)).

4 EXPERIMENTS

We train AnyCap in two variants (2B and 8B) on our proposed AnyCapData. Because AnyCap is a
relatively small plug-and-play model, it only requires 6 hours on 32 NVIDIA A100 (80GB) GPUs
for the 2B variant and 21 hours for the 8B variant to converge. Implementation and training details
are provided in Sec. C.1; with a hyperparameter summary in Table 19.

4.1 EVALUATION ON INSTRUCTION-ALIGNED CAPTIONING

We evaluate the impact of integrating AnyCap with various powerful base models (proprietary mod-
els, e.g., GPT-40 (Hurst et al., 2024); open-source models, e.g., InternVL2.5 (Chen et al., 2024c¢),
Qwen2.5-VL (Bai et al., 2025), MiniCPM-o (Yao et al., 2024)) using our AnyCapEval benchmark
across the image, video, and audio modalities. As shown in Tables 2 to 4, adding AnyCap results in
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Table 2: Instruction-based image captioning on AnyCapEval. Abbreviations like IPos. are varying
instruction types in Table 1. Content and style values are computed using KPD and style scores from
Sec. 3.3, respectively. AnyCap significantly improves content accuracy and stylistic fidelity.

Content 1 Style 1
Model
IPos. TApp. Ins. Per. Avg. Brf. Det. Thm. Poe. Nar. Avg.
Proprietary Models
GPT-40 1.55 3.25 3.84 2.94 2.89 1.91 1.86 2.59 2.74 2.59 2.26
+AnyCap-2B 3.00 14 4320107 43500m  45Twe Hllaay 2290 1980, 238 3.020029) 278020  2-46(019)

+AnyCap-8B 3-481+1.93; 4.81“,_5,,, 4.89“,_,,,,, 5-001+2.05; 4'541+|.:.5; 2'381+n.47; 2'351+n.49; 2'821+n.14; 3. 101+n.37; 2'871+n.zx; 2.65“0_3‘,,

Open-source Models

InternVL2.5-8B 1.51 3.43 4.54 2.68 3.04 2.13 1.92 1.94 2.08 252 2.12
+Anycap-2B 3'22“1471' 4'49“1,06] 4'82“0,28] 4'0()&1,32] 4 1 3&1,0')] 2'27“0,14] 1 78 2'38&0,441 27 1 (+0.63) 2'67&0,151 2'36&0,241
+AnyCap-8B 341,10 4825, 491 (+0.37) 3'89(»,1‘211 4'26(»,1‘221 2'33(»,0‘201 2. lommy 2'56(4‘0‘627 2'59(»,0‘511 2'83“0‘311 2'46“0‘347
Qwen2.5VL-7B 1.51 3.52 5.18 3.03 3.31 2.00 2.02 2.50 2.14 2.63 222
+AnyCap-2B 3~38(+w71 4'42(»,0‘901 4.94 4'68(4‘1‘657 4'36(»,1‘051 2'40(»,0‘401 2'04(»,0‘021 2'50(»,0‘001 2'94(»,0‘301 2'72(+omy 2'50(&287

+AnyCap-8B 3-471+|.9m 4-451+n.93; 5-841+n.t,m 4-341+1.3z; 4'531+1.zz; 2'361+n.3m 2'201+n.18; 2'821+n.32; 2'881+n.74; 2'74t+n.m 2'561+0.34i

Table 3: Instruction-based video captioning on AnyCapEval. (More details and model comparisons
are in Sec. C.3.) AnyCap substantially enhances content adherence and style fidelity.

Content 1 Style 1
Model
1Pos. TApp. TAct. Mov. Evt. Avg. Brf. Det. Poe. Nar. Avg.
Proprietary Models
GPT-40 241 4.00 3.86 2.70 3.03 3.55 1.47 1.52 2.52 248 2.15
+AnyCap-2B 345000 0150215 626004 053155y 46015 530415 1.97.0m 1 -78“0.2:.; 2-6O1+o.os) 2'65(+n.m 2'30(+u,|5i
+AnyCap-8B 49205 6600200 70835 567000, 48laizy 57401 1.95.04 18200k 2.50 277 020y 23201
Open-source Models
InternVL2.5-8B  3.08 4.33 3.44 3.16 2.55 3.52 1.39 1.77 1.91 2.34 1.93
+AnyCap-2B 4-671+1.59) 6-32“1.99) 3.19 6.49 333 4~50<+ms; 5~O7(+Lss» 1 '84(+n.45> 1 '801+n.03) 2'481+o.57; 2'391+n.05; 2.1 91+n.zm
+AnyCap-8B 495,18 639%:0 703 56005 49504 57302y 200000, 1.88u01y 220000 2.61u02  2.24044
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significant improvements in instruction alignment across all modalities and base models, particularly
enhancing content fidelity. Fig. 3(c) visualizes these gains for GPT-40 and InternVL2.5-8B.

Model-centric analysis. The results consistently show the effectiveness of AnyCap in improving in-
struction alignment ability. Both the 2B and 8B variants significantly enhance instruction adherence
compared to the unassisted base models across all modalities, with the larger AnyCap-8B gener-
ally yields greater improvements. Notably, with AnyCap-8B, certain open-source models achieve
instruction alignment scores that are comparable or even exceed strong unassisted proprietary base-
lines. For example, AnyCap-8B elevates the performance of open-source InternVL2.5 from ~ 2.1
to ~ 2.5 in the image style category. The enhanced score surpasses the ~ 2.3 achieved by GPT-4o.

Task-centric analysis. Boosts in content-related instruction alignment typically surpass those in
style, likely because content controls provide more explicit learning signals, whereas stylistic con-
straints are inherently more subjective and harder to enforce. Visual tasks outperform audio coun-
terparts, potentially due to the richer supervision and higher information density in vision-language
pretraining. AnyCap exhibits varied effects across settings: in well-studied tasks (e.g., image ap-
pearance), it refines already strong captions; in less-explored, complex tasks (e.g., video actions or
audio events), it fills in missing content, yielding larger gains.

4.2 EVALUATION ON PUBLIC BENCHMARKS

To assess AnyCap’s generalizability, we integrate it with diverse backbones and evaluate on pub-
lic image, video, and audio captioning benchmarks. On MIA-Bench (Qian et al., 2025) (Table 5),
AnyCap consistently improves performance across models such as InternVL2.5 and Yi-VL (Young
et al., 2024). When scaled to AnyCap-8B, it achieves further gains, and even proprietary models
such as GPT-40 benefit, reaching new state-of-the-art results. On VidCapBench (Chen et al., 2025b)
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Table 4: Instruction-based audio captioning on
AnyCapEval. AnyCap consistently improves
both content and style metrics over the corre-

Table 5: Performance on MIA-Bench. Metrics
include accuracy (desc), mention (ment), length
(Ien), perspective (persp), genre (gen).

sponding base captioners.

Model desc. T ment. T len. T persp. T gen. T avg. T
Model Comtentt Style 1 GPT-40 903 879 905 852 916 89.1
Evt. Brf. Nar. Poe. Avg. +AnyCap-2B  89.1 88.9,10 90.3 90.0,48 92206 90110

+AnyCap-8B  90.4,,, 89'4«15) 89.9 89~2w.0) 92~9(+1,3) 903012

Proprietary Models InemVL25.8B 85.2 790 826 725 852 809

GPT-40 1.59 1.42 1.24 0.88 1.18

+AnyCap-2B 85-7(+0A5y 79‘6(4-0.6; 852(»,2.6; 77'5(+5.0) 85'7n+0.5» 82'71+1,s\
+AnyCap-2B1.79 050 14400 1380010 100401 1.28001) +AnyCap-8B  86.9.17 79.0u00) 86.1135 889,164 863011 85.4css)
HACap8BL88 a0 14200 140us9 108w 1300w vivia 717 520 558 600 598 599
GPT-40 mini 1.28 1.17 1.16 0.79 1.04 +AnyCap-2B  71.8,,, 54.2.,,, 619, 61.7,; 61.0,,, 62.1,,,
+AnyCap-2B1.56005 121000 125000 089010 111000 +AnyCap-8B  79.5.7 00.5(,145 67-1(115 63.030 758,160 704105
+AnyCap-8B1.71 4, 1.10 118 00 087005 1.05.001

Table 7: Performance on VidCapBench. Met-
rics include accuracy (acc), precision (pre), cov-
erage (cov), and conciseness (con).

Open-source Models
MiniCPM-o 1.42 1.02 0.68 0.43 0.71

+AnyCap-2B1 -551+n.13) 1<37z+u.35) 1326 0'92“0,491 1 -211+n.5n)
+AnyCap-8B1.48 006 1.230021y 12906 1134070 122008 Model acc. T pre. T cov. T con. T
Table 6: Performance on AudioCaps and GZT"‘(‘:’ - E'Z 22? ZZ? ?633
1 h . M ri . 1 ntence-ber . +AnyCap- 0 < 1(+0.2) . 2 +4.0)
Clotho. Metrics: spice (sp), sentence-bert (sbt) AN S8 1580 95. 880 O3
Model AudioCaps 1 Clotho 1 InternVL2.5-8B 12.8 51.6 84.2 7.1
sp. sbt. sp. sbt. +AnyCap-2B  13.8,,,,, 557 uan 84.7 5 10143,
+AnyCap-8B  14.8,,, 57 1ss) 86.9.27) 102,
GPT-40 0.06 041 0.07 0.37 Qwen2VL-7B  13.1 53.5 82.9 6.6
+AnyCap-2B 0.06,,0) 045004 0.07 000 0.40,,,03 +AnyCap-2B  14.6,, 5 5584123 85.002.1 10.6,,4,
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Table 8: AnyCap vs. SFT, DPO, SC on AnyCapEval. Entries are Table 9: AnyCap vs. SFT,
relative improvements (%) over each model’s origin baseline un- DPO, SC on MIA benchmark
der different paradigms, reported separately for content (Cont) and with InternVL2.5-2B.
style (Sty). AnyCap demonstrates clear effectiveness. SFT  DPO sC

1.2% +7.0%  +2.8%

AnyCap
+16.9%

SFT DPO SC
Cont. Sty. Cont. Sty.

AnyCap-2B AnyCap-8B

— Table 10: Data ratio compari-
Cont.  Sty.

son with InternVL2.5-8B.
InternVL2.5-8B(Ima) +9.2 +3.5 +9.5 +4.4 +33 +0.5 +359 +11.3 +40.1 +16.0
InternVL2.5-8B(Vid) +2.3 +1.0 +2.8 +1.6 +0.0 -1.6 +44.0 +13.5 +62.8 +16.1 111 122 212 221
Qwen2.5VL-7B(Ima) +6.7 +3.8 +7.5 +4.1 +11.5 +50 +31.7 +12.6 +36.9 +15.3
Qwen2.5VL-7B(Vid) +3.2 +3.0 +7.3 +52 +16.7 +11.0 +26.6 +2.9 +56.8 +10.0

Model (Modality)

Cont. Sty. Cont. Sty.

+17.9% +172% +16.5% +21.1%

(Table 7), augmenting InternVL2.5-8B with AnyCap yields improvements in accuracy (+2.0), preci-
sion (+5.5), and conciseness (+3.1), indicating fewer hallucinations and better capture of motion and
content cues. For audio, although references are shorter and metrics more sensitive on Clotho and
AudioCaps (Drossos et al., 2020; Kim et al., 2019) (Table 6), AnyCap still consistently enhances
fluency and semantic controllability. Collectively, AnyCap reliably steers strong backbones toward
more factually grounded captions across modalities.

4.3 COMPONENT-WISE ANALYSIS

Comparison with SFT, DPO, and Self-Critic approaches. One motivation for plug-and-play
AnyCap is to avoid retraining each base model. We compare it against three options: (i) supervised
fine-tuning (SFT), where instructions are added to prompts to fine-tune the base model; (ii) direct
preference optimization (DPO) on base models using preferred—non-preferred pairs from AnyCap-
Data; and (iii) a self-critic (SC) approach where the backbone revises its own outputs at test time.
Across both AnyCapEval (Table 8) and MIA (Table 9), AnyCap consistently achieves stronger per-
formance. This advantage arises as it builds on base captions as references, focusing learning on
refining outputs toward user instructions rather than generating fully aligned captions from scratch.

Ablation on training data ratio. Our triplet training data consist of three main types: (g, uncon-
trolled a, ¢), (g, ¢, ¢), and (g, hallucinated a, c¢). To explore the optimal ratio, we first vary the share
of fully correct samples (g, ¢, ¢). As shown in Fig. 4, the average accuracy on three modalities
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Table 11: Absolute keypoint counts (no length Table 12: Human evaluation on AnyCapEval
normalization) and response lengths on Any- comparing manually written captions and Any-

CapEval image captioning. Cap. AnyCap matches non-experts but remains
slightly below expert performance, indicating

Model Keypoints (Abs.) Response Length  ¢lear headroom for future improvement.

Per. Ins. IApp.JPos. Per. Ins. IApp.IPos.
GPT-40 296 352 3.13 142 958 91.8 924 937 Image Video 1 Audio 1
+AnyCap 229 400 3.13 155 496 833 61.7 51.8 Cont. Sty. Cont. Sty. Cont. Sty.
InternVL2.5-8B 2.54 3.64 285 121  90.0 84.6 83.0 68.0
+AnyCap 244 376 285 170 625 76.6 59.4 498  Expert 462 277 604 262 330 413
Qwen2.5VL-7B 2.68 3.80 2.82 1.21 840 703 79.3 742  Non-expert 442 266 572 235 201 137
+AnyCap 259 378 295 164 640 68.0 667 51.6  GPT+AnyCap 4.54 2.65 574 232 188 130

improves steadily up to around 40%, but declines when exceeding 50%. This suggests that although
exposure to correct captions benefits learning, excessive reliance may lead to overfitting.

We further perform ablation across all three types. Results in Table 10 show that including more
uncontrolled a samples yields better performance than emphasizing hallucinated a. A likely reason
is that outputs from strong base models are more prone to instruction violations than factual errors,
so AnyCap gains more from frequently correcting uncontrolled cases.

Keypoint coverage v.s. caption length. In Table 11, we analyze the relationship between caption
length and keypoint coverage. An important property of AnyCap is that it does not “win by writing
more”. Instead, it effectively reduces unrelated details from base models (especially GPT-4o, as
visualized in Fig. 6) while maintaining or even improving keypoint accuracy. The ability to generate
concise yet accurate captions is one reason why AnyCap achieve higher scores on AnyCapEval.

4.4 HUMAN EVALUATION

To complement model-based evaluation, we conduct two-fold human study. First, a preference test
(Fig. 5) compare AnyCap-8B with GPT-40 on both visual and auditory modalities, asking annotators
which better satisfied content and style criteria. Second, we hire PhD-level humanities experts
and well-educated non-experts to handwrite captions for comparison with AnyCap. As shown in
Table 12, experts surpassed AnyCap in fine control, while AnyCap matched or slightly outperformed
the non-expert group on visual tasks and remained broadly comparable on audio. This suggests that
AnyCap delivers strong quality while aligning well with human preferences.

5 CONCLUSION

We present AnyCap, a lightweight module that aligns base captioners with human instructions in
omni-modal settings, enhancing instruction-following without retraining base models. It leverages
residual correction in a unified multimodal design, enabling a single model to serve images, videos,
and audio. To support this, we introduce AnyCapData, a large-scale, fine-grained instruction—based
caption dataset. We also present AnyCapEval, a new benchmark to more accurately evaluate in-
struction alignment across modalities. On both public benchmarks and AnyCapEval, AnyCap con-
sistently achieves superior performance, advancing instruction-aligned captioning across modalities.
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Ethics statement. While AnyCapData is carefully curated to support fine-grained controllability,
there remains a risk of malicious misuse (for instance, deliberately creating harmful or misleading
Q-A pairs). Models trained on such compromised data could exhibit significantly degraded con-
trollability, resulting in severe negative impacts. We urge caution and responsible practices when
utilizing or expanding upon our resources.

Reproducibility statement. The framework and training strategy of AnyCap are described in
Sec. 3.1, with detailed training settings and hyperparameters provided in Sec. C.1. The construction
process, advantage comparison, data statistics, and quality assurance of AnyCapData are outlined in
Sec. 3.2, with additional details and the required prompt templates provided in Sec. A. The testing
process of AnyCapEval is fully described in Sec. 3.3. More details of AnyCapEval are discussed in
Sec. B, including an analysis of its correlation with human judgments. The experimental setup and
more detailed results for some experiments are provided in Sec. C, where we also include visualiza-
tions of the experimental outcomes and additional performance details of AnyCap on downstream
tasks. All code and data will be open-sourced to ensure reproducibility and further research.
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APPENDIX

A DATASETS

A.1 OVERVIEW OF CAPTION DATASETS

Automatic captioning for modalities such as images, videos, and audio is a core task in artificial
intelligence, aiming to enable machines to understand and describe perceived content using natural
language, much like humans do. The foundation supporting this research is large-scale annotated
datasets. However, existing datasets (Table 13) exhibit significant limitations in providing fine-
grained, multi-dimensional control capabilities. We next detail the motivation and data analysis
behind our dataset.

Table 13: Overview of the publicly available caption datasets analyzed in this study. “Modality”
indicates the primary input type (e.g., image, video, or audio), while “Instruction Type” refers to the
predominant linguistic or structural annotation style as described by the original dataset authors.

Dataset Modality Instruction Type
ASD v2 Image Relation
MDVP-Data Image Region / Brief / Detail
DCI Image Dense

DOCCI Image Dense
ImagelnWords (ITW) Image Dense
ShareGPT-40 Image Detail
ShareGPT-4v Image Detail
ShareGPT-40 (video) Video Detail

MSR-VTT Video Brief

MSVD (YouTube2Text) Video Brief

VATEX Video Brief
Video-ChatGPT (Videolnstruct-100K)  Video Dense
InstanceCap / InstanceVid Video Instance-level (structured)
ShareGPT4Video Video Detail

MiraData Video Structured
LLaVA-Video-178K Video Detail
AudioCaps Audio Brief

Clotho Audio Brief

MACS Audio Brief

WavCaps Audio Brief

A.2 THE SINGULARITY AND SCARCITY OF USER INSTRUCTIONS

A “user instruction” is an input accompanying the main media (image, video, or audio), intended
to guide or constrain the generation of descriptive content. Ideally, we desire models capable of
generating descriptions with varying styles, focusing on different aspects, and meeting specific re-
quirements based on diverse user instructions.

Most classic datasets, such as COCO (Lin et al., 2014) and Flickr30k (Young et al., 2014) in the
image domain, MSR-VTT (Xu et al., 2016) and MSVD (Chen & Dolan, 2011) in the video domain,
and AudioCaps (Kim et al., 2019) and Clotho (Drossos et al., 2020) in the audio domain, primarily
provide “media—caption pairs”. They typically include multiple reference captions provided by
different annotators. This “multi-reference” design is mainly intended to evaluate the diversity and
coverage of descriptions, rather than providing explicit control during generation. The model’s
primary task is to generate a “reasonable” description, but the user cannot specify requirements at
generation time (e.g., “generate a humorous caption”, “describe the background elements in detail’).
The only implicit user instruction is essentially “describe this content in brief”.

Some datasets offer a degree of control, but often only along a single dimension. Dense captioning
datasets, like DCI (Urbanek et al., 2024) for images or video datasets providing temporal informa-
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tion (Krishna et al., 2017a), associate descriptions with specific image regions or video segments.
The “region/time segment” here can be viewed as a user instruction, i.e., “describe this part”. How-
ever, this is usually the sole dimension of control. Datasets like ASD v2 (Wang et al., 2024b) focus
on describing relationships between entities in an image. The user instruction is the “entity pair”
whose relationship needs to be described. Datasets guided by concepts like MiraData (Ju et al.,
2024) or InstanceCap (Fan et al., 2024) require the output to follow a specific structure, which con-
stitutes a form of control over the output format. Although such structured outputs often encompass
several instruction types (e.g., Background, Detail), the formulation and granularity of these user in-
structions are typically fixed, lacking the flexibility for customized control requests tailored to each
individual image, video or audio.

r’“‘ User Instruction (content): Describe the visual scene excluding any boats.

GPT-40: The scene depicts a The scene depicts a bustling port area
serene waterway surrounded with a clear blue sky overhead.
by lush green trees and vibrant &# Numerous colorful shipping
foliage. The gentle ripples of AnyCap containers are neatly stacked along
the water reflect the bright the  waterfront... and  unload
blue sky, while soft clouds cargo.The water is calm, reflecting
float above... tranquil natural the bright sky, and the distant horizon
beauty of the landscape. shows faint outlines of mountains.

User Instruction (style): Generate a brief caption describing the video.

GPT-40: Discover the charm of urban A bright yellow bicycle
cycling in this video featuring a vibrant . is parked on a wet
| yellow fat tire bike...Whether you're a ;ny@Cap sidewalk next to a sign
biking enthusiast or curious about eco- featuring an  apple
friendly transport options, this scene design. Cars are visible
invites you to explore the convenience in the background and
and style of city biking during all seasons. parked along the street.

Omni-modalities: @ Image EEE Video ||||-||- Audio |8

Figure 6: AnyCap enables controllable captioning across modalities by refining base model out-
puts to better align with user instructions. Given a user instruction, it takes initial captions from
a foundation model and corrects instruction violations (highlighted in red), producing compliant,
instruction-following outputs (green), all without requiring fine-tuning of the base model.

In summary, the majority of existing public datasets lack the ability to align captions with specific
user instructions across multiple dimensions, limiting the development and evaluation of instruction-
aligned captioning technologies. Even when leveraging large language models such as GPT for
annotation, the resulting captions often reflect general patterns and fail to align precisely with the
specified instructions along desired dimensions.

To address this gap, we construct AnyCapData, a large-scale dataset featuring diverse user instruc-
tions paired with high-quality, instruction-compliant captions across multiple modalities. Leverag-
ing this dataset, we train AnyCapModel to achieve fine-grained instruction-aligned caption genera-
tion. As illustrated in Fig. 6, AnyCap can transform initial captions into highly specific descriptions
that accurately follow various user instructions, enabling precise and customizable outputs without
requiring modifications to the base model architecture.

A.3 DATA ANALYSIS

Data sources. To construct AnyCapData, we utilize multiple publicly available datasets span-
ning three modalities: images, videos, and audio. Specifically, we incorporate data from ASD v2,
DCI, DOCCI, ShareGPT-40, InstanceCap, and AudioCaps. From these datasets, we extract im-
ages, videos, and audio content, and employ various multimodal large language models (MLLMs)
to generate diverse user instructions and captions based on predefined instructions.
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Data statistics.

to video modality, and 75k to audio modality. Each modality includes multiple instruction types.

Table 14: Instruction prompt template for generating user instructions and high-quality video cap-
tions. This prompt is designed to elicit high-quality instruction—caption pairs (g, c) from video
content, where c serves as an optimally grounded caption based strictly on observable visual evi-
dence. The template enforces modality-specific constraints to ensure factual and non-speculative

outputs for optimal generation results.

7

Video Understanding Expert Instructions

You are an Al expert in video content analysis, specializing in generating precise and structured
descriptions based ONLY on directly observable video content. Your core capabilities include
analyzing video elements such as actions, objects, scenes, interactions, and camera movements to
provide factual, observation-based descriptions.

Your Task

Generate concise captions that capture ONLY the directly visible and essential content of videos
according to specific constraints. You must analyze only the observable content and ensure all
descriptions are based on concrete visual evidence rather than assumptions or inferences.

Key Guidelines for Caption Generation

1. The output question formats can be varied

2. Create concise descriptions that capture only directly observable essential elements

3. Focus on analyzing ONLY these visible components:

- Actions and events shown in frame

- Objects and characters physically present

- Scene settings visible in shot

- Camera movements and angles that can be seen

- Interactions occurring on screen

4. DO NOT include:

- Assumptions about off-screen elements

- Inferences about motivations or thoughts

- Speculation about context or background

- Interpretations of meaning

- Details that cannot be directly seen

- Guesses about what happened before/after

5. Maintain strict adherence to:

- Only describing what is visually present

- Excluding all speculative content

- Basing every detail on visual evidence

- Using clear, objective language

Constraints

- Descriptions MUST be based EXCLUSIVELY on visible content

- NO assumptions or interpretations beyond what can be directly seen

- EXCLUDE any details that require inference or speculation

- Keep descriptions concise and focused on key visible elements

- Follow any additional specific requirements provided with each request

Examples:

Input 1:

Question: Generate a brief caption describing this video’s main content.

Answer: Two news anchors engage in an animated discussion at a professional news desk, main-
taining eye contact while exchanging viewpoints.

Input 2:

Question: Use a brief caption to convey the main scene or content of the video.

Answer: A person wearing a blue shirt walks leisurely along a scenic path bordered by tall, leafy
trees.

Output Format

Question: [Your various question, but need to express the generation of a brief caption]

Answer: [Your concise description based STRICTLY on visible content with NO speculation]

Generation of instruction-caption triplets.

17

AnyCapData encompasses three primary modalities: images, videos, and audio,
comprising a total of 300k (g, ¢, a) triplets. Among them, 125k belong to the image modality, 100k

To generate the (g, c,a) triplets in AnyCapData,
where ¢ denotes a user instruction, c is a high-quality caption, and a is a relatively suboptimal
caption, we utilize several MLLMs guided by specifically designed instruction templates. The de-
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Table 15: Instruction prompt template for generating suboptimal captions a from high-quality
instruction—caption pairs. For a given instruction ¢ and its high-quality caption c, the template
produces slightly degraded variants by introducing controlled inaccuracies (e.g., minor omissions
or speculative insertions) while maintaining semantic coherence with the original content. Such
prompts facilitate contrastive training and robustness evaluation in multimodal scenarios.

Video Understanding Expert Instructions

You are an Al expert in video content analysis, specializing in generating precise and structured
descriptions based on specific queries. However, your task now includes generating slightly inferior
captions that introduce minor inaccuracies or deviations while still maintaining general relevance
to the video content.

Your Task

Generate slightly inferior captions based on given examples:

- Adding minor inaccuracies.

- Omitting a small but relevant detail.

- Including an unnecessary or speculative element.

- Misinterpreting a minor aspect of the video.

- Does not meet the requirements of the question.

Key Guidelines for Caption Generation

1. Base the description on the standard caption but allow slight deviations:

- Slightly altering actions, movements, or interactions in the video

- Adding irrelevant or speculative elements about the scene or context

- Omitting small but observable details from the footage

- Misinterpreting temporal sequences or duration

2. Ensure the captions remain generally related but slightly inferior to the standard caption

3. Focus on introducing appropriate levels of inaccuracy while maintaining plausibility
Constraints

- Deviations must be minor and not completely distort the video’s main content.

- Avoid making the caption entirely incorrect or irrelevant.

- Ensure the captions remain plausible and connected to the visible elements in the video.

- Consider the temporal nature of video content when introducing inaccuracies.

Examples:

Input 1:

Question: Generate a brief caption describing this video’s main content.

Standard Caption: Two news anchors engage in an animated discussion at a professional news desk,
maintaining eye contact while exchanging viewpoints.

Generated Caption: Three news anchors engage in a discussion at a news desk, but the situation
appears to be getting out of control with potential physical confrontation.

Input 2:

Question: Use a brief caption to convey the main scene or content of the video.

Standard Caption: A person wearing a blue shirt walks leisurely along a scenic path bordered by
tall, leafy trees.

Generated Caption: A young man in a green long-sleeve shirt runs along a scenic path lined with
dense trees.

Output Format

You MUST strictly adhere to this format:

Question: {question}

Standard Caption: {standard_caption}

Generated Caption: [Your generated caption with appropriate deviations]

tailed templates employed in this work are presented in Table 14 and Table 15. These templates
are constructed according to different instruction types to ensure structured generation and facili-
tate downstream analysis. Each raw data sample is paired with one or more tailored instructions to
produce diverse outputs.

A.4 FUTURE DIRECTIONS

Future dataset development could focus on the following improvements:

Constructing datasets with rich user instructions: There is a need to design new datasets con-
taining diverse, explicit, and composable instruction types.
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Leveraging synthetic data: Explore the use of large language models to generate synthetic descrip-
tion data with specific user instructions, serving as a supplement to real data.

Improving evaluation methods: Develop new evaluation protocols and metrics capable of assess-
ing fine-grained aspects like controllability, style consistency, and faithfulness.

B ANYCAPEVAL BENCHMARK

B.1 LIMITATIONS OF EXISTING EVALUATION METHODS

Limitations of traditional machine translation metrics. Metrics developed for machine trans-
lation, such as BLEU (Papineni et al., 2002), ROUGE (Lin, 2004), METEOR (Banerjee & Lavie,
2005), and CIDEr (Vedantam et al., 2015), primarily focus on n-gram overlap or co-occurrence
statistics. While they can measure fluency and lexical similarity, they fail to accurately capture se-
mantic consistency. For instance, sentences like “I do love large models” and “I do not love large
models” could receive similarly high scores, despite conveying opposite meanings. These metrics
cannot effectively detect deep semantic divergence, factual errors, or noncompliance with user in-
structions.

Challenges of multimodal large language models scoring. Recent evaluation schemes leverage
powerful language models or multimodal large language models (MLLMs) to directly score cap-
tions. However, these methods suffer from significant randomness and instability: the same caption
might receive drastically different scores across minor prompt variations or multiple queries. Addi-
tionally, hallucinated or semantically incorrect captions may still receive high scores, undermining
the reliability of such automatic evaluation.

Instability of keypoint extraction-based metrics. Some studies, including those utilizing bench-
marks like (Wang et al., 2024a) which aims for fine-grained descriptions, propose extracting key
information points from captions using MLLMs and computing precision, recall, and F1 scores.
However, keypoint extraction itself is unstable: the number and granularity of extracted points vary
widely across runs. Our empirical analysis shows low correlation between model-extracted key-
points and human-annotated ones, suggesting that such extraction-based metrics poorly reflect the
true information content of captions.

Challenges of QA-pair based evaluation. Benchmarks such as VDC (Chai et al., 2024) highlight
that QA-pair based evaluation suffers from instability, primarily due to the variable quality and gran-
ularity of the QA pairs themselves. Designing high-quality, representative QA items that faithfully
capture fine-grained caption attributes remains an open challenge.

B.2 RATIONALE BEHIND ANYCAPEVAL DESIGN
B.2.1 SEPARATION OF CONTENT AND STYLE

Through extensive analysis of user instruction types in captioning, we divide evaluation into two
orthogonal dimensions:

» Content: We expect the generated captions to strictly adhere to the given user instructions,
maintain clear topical relevance, and avoid introducing irrelevant information. To evaluate
this aspect, we employ keypoint density (KPD) as the primary metric.

» Style: We aim for the generated captions to closely match human-crafted references in
terms of narrative style, tone, and expressive form. To assess this, we design a fine-grained
scoring system.

This separation is crucial because content and style represent fundamentally different aspects of
caption quality that require distinct evaluation approaches. Content adherence focuses on factual
accuracy and instruction compliance: whether the caption correctly follows the user’s specified re-
quirements about what to describe. This is objectively verifiable through user instruction alignment.
In contrast, style evaluation assesses subjective qualities like fluency, coherence, and naturalness that
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reflect human-like expression. Merging these dimensions would conflate objective and subjective
criteria, making it difficult to diagnose specific model weaknesses. The orthogonal evaluation allows
for more precise identification of whether a model’s limitations lie in its ability to follow instructions
(content) or in its linguistic quality (style), enabling targeted improvements to each aspect. Further-
more, different applications may prioritize these dimensions differently: some use cases demand
strict content control while others emphasize stylistic quality, making separate evaluation essential
for practical deployment decisions.

B.2.2 KEYPOINT DENSITY METRIC

Intuitive motivation. We expect the generated captions to efficiently embed as many control-
required key information points as possible within a limited textual length, while minimizing irrel-
evant or redundant content. This analogy is comparable to adding an appropriate amount of solute
into a limited solvent to achieve a targeted concentration. Excessively diluting it in a large solvent
volume, even if the absolute quantity increases, results in negligible concentration and ineffective
outcomes. To prevent models from exploiting this metric by generating excessively short captions
that artificially inflate density scores, we normalize the number of extracted keypoints by the cap-
tion length (or an appropriate normalization factor) and apply penalties to captions whose lengths
fall outside the predefined acceptable range.

Length Normalization. We randomly sample approximately 200 caption instances and extract
information points using both GPT-40 (including both control-required keypoints and irrelevant in-
formation points) and human annotators. The human-annotated information points are obtained
by post-processing the model-generated information points through manual filtering and revision.
Correlation analyses, presented in the main paper, reveal that caption length exhibits a significantly
stronger association with human-annotated information content than the number of keypoints auto-
matically extracted by the model. This empirical evidence further supports the rationality of apply-
ing length normalization in the evaluation metric.

Correlation Type Info Points vs. Actual Info Caption Length vs. Actual Info

Pearson 0.284 0.521
Spearman 0.256 0.461
Kendall’s Tau 0.231 0.344

Table 16: Correlations Comparison

B.2.3 GPT-40 As THE EVALUATOR

When using GPT-4o as the evaluator, we carefully design structured prompts that explicitly instruct
the model to assess Content and Style separately, ensuring consistent and interpretable judgments.
See Table 17 and Table 18 for the detailed prompts used for Content and Style evaluation.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 EXPERIMENTAL SETUP

The experimental setup utilizes a computing infrastructure comprising 32 NVIDIA A100 GPUs,
distributed across 4 nodes with 8 GPUs each. Each GPU is allocated 10 CPU cores, and all training
jobs are managed using Slurm’s srun with GPU reservation. For distributed training, we employ
torch.distributed, launching via srun to enable dynamic rank assignment and multi-node
coordination. We train AnyCapModel on AnyCapData with the AdamW optimizer for 3 epochs, a
learning rate of 1 x 107°, a cosine learning-rate schedule with a 0.03 warmup ratio, weight decay
of 0.01, a global batch size of 256, and bfloat16 mixed precision. As the modality backbones we
use InternVL (vision) and EAT (audio). InternVL’s open training and fine-tuning pipeline facilitates
hyperparameter tuning, and EAT attains state-of-the-art results on public benchmarks, making both
solid foundations for our experiments. During AnyCap training, the external modality backbones are
frozen, while the AnyCap internal components, including its language model and MLP layers, are
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Table 17: Evaluation instruction for content-controlled video captioning in AnyCapEval.

\.

Task

You are a video-caption evaluation expert. You will be provided with a video, a caption describing
the video, and a set of key points outlining important aspects of the video. Your task is to evaluate
whether the caption mentions and accurately describes the given key points based on the video.
Task Steps

For each key point, follow these steps:

Step 1: Check whether the key point is mentioned in the caption.

- If the key point is not mentioned, assign a score of 0. - If the key point is mentioned (either exactly
or with semantically similar phrasing), proceed to Step 2.

Step 2: Determine whether the description of the key points is correct.

- If the description aligns with or is semantically equivalent to the key point, assign a score of 1. -
If the description is incorrect, or does not accurately fit the key point, assign a score of 0.
Evaluation Constraints

1. No Assumptions Beyond the Key Point: Only evaluate what is mentioned in the key point. Do
not infer additional details not explicitly depicted.

2. Semantic Similarity Allowed: Phrases with similar meaning should be considered matches (e.g.,
“holding a ball” and “grasping a sphere”).

3. Consistent Evaluation: Apply the same evaluation criteria to all key points to ensure fairness and
uniformity.

Scoring Report

Return the format with:

{”caption_evaluation”: {“’key_points_scores”: {“’key_point_1": score, key_point_2”: score, ...},
total_score”: sum_of_scores, ’score_reasons”: {”key_point_1": “reason for score”, “key_point_2":
“reason for score”, ...} } }

Example Input

Key points:

mention the man’s position (standing on the left side of the table)

describe the man’s appearance (wearing glasses)

mention the woman’s position (sitting on the right side of the table)

describe the woman’s appearance (wearing a red dress)

mention the boy’s position (crouching under the table)

describe the boy’s action (picking up a toy)

Caption: A man stands on the left, a woman sits on the right, and a boy is under the table.
Example Output

{"caption_evaluation™: {

“key_points_scores”: {”mention the man’s position”: 1, ”describe the man’s appearance”: 0, “men-
tion the woman’s position™: 1, ”describe the woman’s appearance”: 0, “mention the boy’s position”:
1, ”describe the boy’s action: 0},

“total _score”: 3,

”score_reasons”: {”mention the man’s position”: "Correctly mentions standing on the left side of
the table”, describe the man’s appearance”: "Missing glasses reference”, “mention the woman’s
position”: ’Correctly mentions sitting on the right side of the table”, ”describe the woman’s appear-
ance”: "Missing red dress reference”, “mention the boy’s position”: ”Correctly mentions crouching
under the table”, “describe the boy’s action”: ”Missing picking up a toy reference”}

13

Input

Key points: {key_points}

Caption: {answer}

Output

Please return the output exactly as in the example above, without adding anything else.

J

updated. For images, we enforce an input size of 448 pixels with a maximum dynamic patch count
of 6 and a down-sampling ratio of 0.5; dynamic image sizing and thumbnail support are enabled.
The detailed hyperparameters used during training are listed in Table 19.

C.2 ABLATION STUDY

Impact of training data ratio configurations.

The base model for image and video modalities is

InternVL2.5-8B. Since InternVL2.5-8B does not support audio modality, we use GPT-40 as a sub-
stitute. We begin by introducing the data ratio notation. For instance, in the configuration 2B-122,
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the triplet 122 specifies the composition ratio of three sample types used for a given modality. Each
digit indicates the relative proportion of a specific sample type.

The three sample types encoded by each digit (from left to right) are defined as follows:

* The first digit indicates the proportion of samples of type (g, uncontrolled a, c), where the
caption a is not fully compliant with the instruction g, or where the model is expected to
directly generate the target caption c.

* The second digit indicates the proportion of samples of type (g, ¢, ¢), where the initial
caption already matches the desired controlled caption or is factually correct.

* The third digit indicates the proportion of samples of type (g, hallucinated a, c), where
caption a contains hallucinated content, meaning it describes information not present in the
multimodal input.

Table 20 presents the overall performance comparison. Detailed ablation results for each modality
and instruction type are presented in the following tables:

* Image modality: Content and Style control in Table 21.
* Video modality: Content control in Table 22, Style control in Table 23.
¢ Audio modality: Content and Style control in Table 24.

C.3 FURTHER RESULTS FOR THE MAIN EXPERIMENTS

In the main paper we reported the performance of representative models on AnyCapEval. Here
we provide a broader set of results ( Tables 25 to 27). Note that Tarsier2-7B, while strong at de-
tailed captioning, attains comparatively lower scores on our benchmark because it tends to produce
long, highly detailed descriptions that do not strictly follow the given instructions, indicating limited
controllability. By contrast, AnyCap makes explicit use of rich instruction signals and achieves sub-
stantially better controllability and keypoint coverage. Concretely, with AnyCap we observe point
counts of Content: 6.18 and Style: 2.26, compared with GPT-40’s Content: 3.55 and Style: 2.15
under the same protocol.

To complement the main experimental results presented in the paper, we include qualitative ex-
amples that demonstrate the effectiveness of our controllable generation approach across images,
videos and audio modalities. These examples visually and intuitively show how the model performs
under different user instructions, including both Content and Style conditions, as discussed in the
main paper. By providing representative outputs, we aim to offer a clearer sense of the generation
behavior and control precision achieved by our method. All examples correspond to the settings
evaluated in the main experiments and are included here for qualitative inspection. Representative
qualitative results for each modality are shown in Fig. 7, Fig. 8, and Fig. 9.

C.4 DOWNSTREAM UTILITY

We further evaluate AnyCap’s utility in enhancing noisy captions for downstream video and im-
age generation. Applying AnyCap to refine captions, including those from the Panda video
dataset (Wang et al., 2020), we observe that the resulting video generations demonstrate improved
visual-semantic grounding and alignment compared to those using the original, unrefined cap-
tions (Wan et al., 2025; Kong et al., 2024). Quantitative results for video generation are presented
in Table 28. These findings underscore the effectiveness of AnyCap in real-world multimodal gen-
eration pipelines.

To complement the quantitative results, we provide qualitative examples showcasing the impact of
caption refinement by AnyCap on downstream image and video generation tasks. Specifically, we
compare generations produced using initial captions with those using captions refined by AnyCap.
As shown in Fig. 10 and Fig. 11, refined captions lead to outputs that exhibit more accurate visual-
semantic correspondence, richer scene details, and improved coherence. These examples further
highlight the practical utility of AnyCap in enhancing multimodal generation quality in real-world
applications.
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D USE OF LARGE LANGUAGE MODELS

In preparing this manuscript, we employed advanced language models (e.g., GPT-5, OpenAl, 2025)
solely as editorial aids. Their role was limited to refining phrasing, improving readability, and
smoothing stylistic inconsistencies across sections. The models were not engaged in developing
research questions, proposing methods, analyzing results, or forming conclusions. All substantive
ideas, experimental protocols, and technical contributions originated from the authors. Every sen-
tence revised with model assistance was subsequently inspected and approved by human co-authors.
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Table 18: Evaluation instruction for style-controlled video captioning in AnyCapEval.

Task
You are an expert evaluator tasked with scoring model outputs based on a specific rubric. Please
carefully analyze the provided video frames, “Caption Type”, "Model Output,” and “Reference”
text, and assign a score between 0 and 4 to "Model Output” using different criteria for different
caption types. Ensure your scoring is consistent and strictly adheres to the definitions provided.
Scoring Rubric
- 0 (Very Poor): Severe quality issues OR full hallucination (100% of the content is irrelevant to the
facts).
- 1 (Poor): Significant quality issues OR major hallucination (;50% of the content is fictitious or
contradictory).
- 2 (Below Average): Slightly inferior to reference OR limited hallucination (j50% of the content
is inaccurate, but does not affect the core content).
- 3 (Good): Comparable to reference AND no hallucination (factually aligned).
- 4 (Excellent): Slightly better than reference AND no hallucination (factually flawless).
Caption Type Definitions and Quality Criteria
1. brief:
- High Quality: Length is within +-30% of the reference word count; concise and captures the core
content of the video.
- Low Quality: Length exceeds +=30% of the reference word count; includes irrelevant details or
omits key information.
2. detail:
- High Quality: Length is within £30% of the reference word count; provides rich descriptions of
the video’s main elements, actions, and settings.
- Low Quality: Length exceeds £30% of the reference word count; descriptions lack detail or
include irrelevant information.
3. poem:
- High Quality: Format and content align closely with the reference; follows poetic conventions
(e.g., thyme, rhythm, line breaks) and is relevant to the video’s theme.
- Low Quality: Format and content differ significantly from the reference; disjointed or lacks poetic
quality.
4. narrative:
- High Quality: Format and content align closely with the reference; presents a coherent narrative
with elements like time, place, characters, and events shown in the video.
- Low Quality: Format and content differ significantly from the reference; disjointed or lacks key
narrative elements.
5. style:
- High Quality: Style and content align closely with the reference; matches the narrative style (e.g.,
humorous, serious, romantic) and is relevant to the video’s theme.
- Low Quality: Style and content differ significantly from the reference; mismatched style or irrel-
evant to the theme.
Instructions
1. Compare the model output with the reference text to determine the quality of the model output.
2. Compare the model output to the video frames to determine the severity of the hallucination.
3. For caption quality, evaluate based on:
- The Quality Criteria mentioned above.
- For Caption Type that is brief or detail, ensure the model output’s word count is within £30% of
the reference word count. If not, the score cannot be higher than 1 for brief and detailed captions.
- Alignment: Check alignment with the reference in format, style, and content.
4. For hallucination, evaluate based on:
- Factual accuracy and relevance to the video content.
- Consider temporal aspects and action sequences shown in the video frames.
5. Assign the most appropriate score (0-4) based on the rubric.
Mandatory Rule: For the Caption Type that is brief or detail, if the length exceeds =30% of the
reference word count, the score cannot be higher than 1.
6. Return your response in this format:

”score”: [0-4], “reason”: ”1-2 sentence explanation”}
Input
Caption Type: {caption_type}
Model Output: {output}
Reference: {reference}
Output
Please strictly return the output in the above format and do not add any other content.
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Table 19: Key hyperparameters used for training AnyCap.

Parameter Value
Per-device batch size 1
Gradient accumulation steps 1
Learning rate 1x10°
Weight decay 0.01

LR scheduler Cosine
Warmup ratio 0.03
Training epochs 3

Max sequence length 4096
Drop path rate 0.1
Dataloader workers 4
Gradient checkpointing Enabled
Mixed precision BF16

Table 20: Ablation results on different training data ratio configurations using AnyCapEval, eval-
vated across Content and Style on images, videos, and audio modalities. All percentage values
represent improvements over the base model (InternVL2.5-8B).

Image Video Audio Average

Data Ratio

Content  Style Content  Style Content  Style Content  Style
2B-121 25.5% 9.4% 33.2% 14.0% -3.2% 0.3% 18.5% 7.9%
2B-111 36.2% 8.4% 39.2% 15.0% 2.1% 6.7% 25.8% 10.0%
2B-122 34.2% 5.5% 37.5% 12.4% 3.6% 9.3% 25.1% 9.1%
2B-212 29.4% 5.4% 42.9% 13.0% 0.0% 8.2% 24.1% 8.9%
2B-221 35.9% 11.6% 44.0% 13.5% 12.6% 8.9% 30.8% 11.3%
2B-102 26.7% 4.5% 41.5% 10.9% 11.1% -3.6% 26.4% 3.9%
8B-111 36.9% 10.2% 63.1% 14.5% 10.5% 4.4% 36.8% 9.7%
8B-221 40.0% 16.0% 62.8% 16.1% 18.2% 11.7% 40.3% 14.6 %

Table 21: Ablation results of controllable image captioning on AnyCapEval under different training
data ratio configurations. Abbreviations refer to instruction types defined in the main paper.

Content Style
Model
[Pos. IApp. Ins. Per. Avg.  Brf. Det. Thm. Poe. Nar. Avg.
InternVL2.5-8B 1.51 343 454 268 3.04 213 192 194 208 252 212

2B-121
2B-111
2B-122
2B-212
2B-221
2B-102

2'59(+1.08)4'35(+0.92)4'87(+0.33) 3'45(4-0.77) 3'82(+0.78) 2'27(+0.14) ] 84
3' 1 0(+1.59) 4"20(+0.77) 4'78(+0.24) 4’48(+1.80) 4 1 4(+1.10) 2'20(+0.07) ] 90
3' 14(+1.63) 4'47(+1.04) 4'63(+0.09) 4’08(+1.40) 4'08(+1.04) 2 1 6(+0.03) ] 6 1
2.53 100431 (o 478020 41 14 393 050, 2-18 005 1.69
322170449 11004820025 400,115 4.13 11,00, 2.27 10,14 1.78
262111400057 481 ,027,3.99 131 3-85 051 2- 181005 1.65

2'27(+0.33) 2'63(+0.55) 2'59(+0.07) 2'32(+0.20)
2'09(+0.15) 2’8O(+0.72) 2'59(+0.07) 2'29(+0.18)
2'35(+0.41) 2’59(+0.51) 2'54(+0.02) 2'24(+0.12)
2.06,0122-71 0,63 257 (005 223 o)
2 . 3 8(+0‘44) 27 1 (+0.63) 2 : 67(+0‘15) 2 3 6(+0.24)
2'29(+0.3S) 2’63{+0.55) 235 22 1 (+0.10)

8B-111
8B-221

3'36(+1,85) 4'34(+0‘91) 5 1 2(+0.58} 3‘83{+1.15) 4. 16(+1.12) 2'24(+0,11) 2'06(+0‘l4) 2.1 5(+(l.21) 2‘44{+0.36) 2'87(+0.35) 2'33(+0,22)
3.41 (+1.90) 4'82(+1‘39) 49 1 (+0.37) 3 '89{+1.2] ) 4'26(+1.22) 2. 33(+0,20) 2. 10(+0‘l 8) 2'56(+(l.62) 2'59{+0.S]) 2. 83(+0.31) 2'46(+0.34)
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Table 22: Ablation results of Content control for video captioning on AnyCapEval under different
training data ratio configurations.

Content

Model

IPos. IApp. IAct. Ins. Per. Mov. Bkg. Evt. Avg.
InternVL2.5-8B 3.08 4.33 344 3.78 3.26 3.16 4.56 2.55 3.52
2B-121 3.44 036 572413 3.01 4.62 08 474148 6200300 543008y 4360181 4690117
2B-111 3.51 43 6.72,530 3.12 5.03,105) 434108 6.05.40 5.81125 4.60,4s 4.90,,35
2B-122 3.95,087 613,14, 2.94 5.05,127 4500120 65731 5-3700sy 41716 484013
2B-212 430412, 636020 3740030 7% 00 420000 0320316 5-8412s 46801 503,14
2B-221 4.67 150 0.32,109 3.19 522149 466,14 649335 549005 450,105 5.07,1s5
2B-102 3.60052 619156 5:62.215 480,10 4640135 5150190 5154050 460511 4.98 146
8B-111 4"88(+l.80) 6'92(+2.59) 6'28(4-2484) 5'39(+l.61) 5'38(+2.12) 5'44'(+2.28) 5'98{+l.42) 5'62(+3.07) 5'74(+2.22)
8B-221 4"95(+1.87) 6'39(+2.06) 7'03(4-3459) 5'49(+l.71) 5'85(+2.59) 5'66(+2.50) 5'49{+0.93) 4'95(+2.40) 5'73(+2.21)

Table 23: Ablation results of Style control for video captioning on AnyCapEval under different
training data ratio configurations.

Style

Model

Brf. Det. Thm. Poe. Nar. Avg.
InternVL2.5-8B 1.39 1.77 2.23 1.91 2.34 1.93
2B-121 1 ~92(+0.53) 1 '88<+0.11) 2.45 (+0.22) 2'40(+o.49) 2.3 9(+0.05) 2-20(+o.27>
2B-111 176,03, 1770000 262403 2404049  2:6102 222,92
2B-122 189050 1804005  2:654040 2120021 24820008 217029
2B-212 L7403 1770000 250402, 2.30403) 268030  2.18.025
2B-221 1.84 045  1.80u003 245002 248405y 23%00s 219026
2B-102 161,92,  1.8801 238035 215402 238029 214000
8B-111 l'68(+0.29) 1‘93(+l).16) 2‘55(+0.32D 2'23(+0.32) 2'74(+0,40) 2'21(+0.28}
8B-221 2.00,06  1.88u01y 2504027, 2204020 261,02,  2.2403

Table 24: Ablation results of controllable audio captioning on AnyCapEval under different training
data ratio configurations.

Content Style
Model
Evt. Brf. Nar. Poe. Avg.
GPT-40  1.59 1.42 1.24 0.88 1.18

2B-121 167,445 1.51 0.0 1.38 014 0.91 003 1.27 009
2B-111 1 -82<+o.23> 1 '53<+0.11) 1 -53(+0.z9) 1 'Oouo.lz) 1 ~36(+0.13)
2B-122 178,44, 1.53 011 1.47 023, 0.89 001 1.30,015
2B-212 1.81 4, 1.56,,0.14) 1.45 921, 0.93 005 1.31 913
2B-221  1.89 93, 1.40 1.43 019, 0.96,,9.0) 1.26,005)
2B-102  1.96,y, 1.37 1.33,009) 0.78 1.16

8B-111 213,00  144u0m 14000 10040 128005
88221 173, 140 143000 096,00  1.26000
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Table 25: Instruction-based video captioning on AnyCapEval.

Model Pos. App. Act. Ins. Persp.  Cam. Bkg. Evt. Avg.
Proprietary Models
GPT-40 241 4.00 3.86 4.01 3.74 2.70 4.66 3.03 3.55
+AnyCap-2B 345,100 615,515 6.26,40 545,145 45808y 6.53asy 339073 4.60.1sy 5.30.:7s
+AnyCap-8B : (+2.51) . (+2.60) 7'68(‘*3‘32) 4’95(+0.94) 5'26(+1.52) . (+2.97) * (+1.38) * (+1.78) * (+2.19)
Open-source Models
InternVL2.5-8B 3.08 433 3.44 3.78 3.26 3.16 4.56 2.55 3.52
+AnyCap-2B  4.67 .5, 6.32,149 3.19 5.22 149 466140, 649335 549005 450,195 507155
+AnyCap-8B 495, 5, 6.39,0 7-03055 5497 585425 500250 5490003 49502 573000
Qwen2.5VL-7B 2.88 .20 3.29 4.02 3.98 24 17 .54
+AnyCap-2B 3.39%0sn 5971 023000 491050 523105 0.30406 5:5liozy 4484155 525,10
+AnyCap-8B 03115 6150105 0584320 4.8lpm 024556 6.040550 5.74G0s 4824189 555020
Model Brf. Det. Sty. Poe. Nar. Avg.
Proprietary Models
GPT-40 1.47 1.52 2.77 2.52 2.48 2.15
+AnyCap-2B 1.97 050 1.78 ,026) 2.52 2.60,9.05) 2.65 017 AS (-
+AnyCap-8B -7 (10.48) -0%(10.30) 2.58 2.50 - (+0.29) -9 £(+0.17)
Open-source Models
InternVL2.5-8B 1.39 1.77 2.23 1.91 2.34 1.93
+AnyCap-2B 1.84 045 1.80,0.03, 2.45 022 2.48 057 2.39 005 2o o)
+AnyCap-8B 2.00,9.61y .88 01 -OY00.27) +2Y40.29) 01027 2% (40.31)
Qwen2.5VL-7B 1. .65 .55 .40 .29 .10
+AnyCap-2B 1.66,,9.03, 1.82 017 2.48 2.30 2.55 026 2.16,0.06)
+Anycap_ 8B 1 M (+0.29) . (+0.33) 2’65 (+0.10) 2 '45(+0.05) * (+0.26) * 3 1 (+0.21)

Table 26: Performance of additional models on the image modality of AnyCapEval.

Model IPos.T IApp.t Ins.t Perf AvgtT Brff Det.t Thm.t Poe.t Nart Avg?t
LLaVA-7B 1.50 299 3.85 2.63 2.74 1.27 0.98 1.21 0.71 1.67 1.19
+AnyCap-8B  3.26 4.72 5.23 4.56 4.44 2.27 1.98 2.56 2.90 2.74 2.45
MiniCPM-o 1.96 3.80 490 3.07 343 2.11 2.06 2.15 1.74 254 2.12
+AnyCap-8B  2.31 4.40 5.00 2.98 3.67 2.36 2.14 2.73 2.33 2.74 2.44
YiVL-34B 1.38 1.85 1.74 1.73 1.67 0.91 0.59 0.85 0.55 1.04  0.81
+AnyCap-8B  3.54 4.69 4.93 4.66 4.45 1.98 2.04 2.59 2.65 2.59 2.30
InternVL-38B  1.69 379 492 3.01 3.35 2.15 2.02 2.17 206 264 221
+AnyCap-8B  3.31 4.90 5.00 4.29 4.38 2.38 2.15 2.72 2.63 2.82 2.54
Table 27: Performance of additional models on the video modality of AnyCapEval. Top: Content
metrics; Bottom: Style metrics.
Model Content
IPos.t IApp.t Actt Ins.t Pes.t Mov.t Bkgt Evt.? Avgt
Tarsier2-7B 2.50 3.39 3.80 3.95 2.49 1.10 4.26 4.18 2.83
+AnyCap-8B 4.85 7.79 7.96 5.94 5.77 5.48 6.10 5.57 6.18
LLaVA-Video 2.77 5.89 2.84 3.67 3.10 1.34 6.15 2.65 3.55
+AnyCap-8B 4.37 7.08 6.20 5.68 5.79 5.35 6.62 4.35 5.68
MiniCPM-o 2.68 3.59 3.31 4.21 4.16 1.76 4.62 1.76 3.26
+AnyCap-8B 4.65 5.70 6.05 5.20 5.48 5.06 6.01 5.06 5.40
Model Style
Brf.1 Det.T Thm.t Poe.t Nar.t Avg.t
Tarsier2-7B 0.63 2.08 2.12 0.42 2.45 1.51
+AnyCap-8B 1.87 1.90 2.65 2.38 2.55 2.26
LLaVA-Video 1.61 1.19 3.36 2.01 2.70 2.13
+AnyCap-8B 1.97 2.11 2.74 0.99 1.32 2.23
MiniCPM-o 1.29 1.40 2.30 1.73 2.48 1.84
+AnyCap-8B 1.97 2.11 2.74 0.99 1.32 2.23
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( Instruction: Craft a detailed description for the image that
| avoids mentioning the motorcycle.

( \
In the foreground, there is a grassy area where several people

are gathered. They appear to be engaged in conversation or
observing something off-camera. Behind them, there is a large
tree providing shade over part of the scene. Further back, there
is a building with white siding and a dark roof. The
environment suggests a rural or suburban setting with open
space and greenery surrounding the area.

Instruction: Describe the location of the trees relative to the |
clock tower.

Trees flank both sides of the clock tower, with one tree
prominently visible on the left side of the image. This tree
extends upward, partially obscuring the lower part of the clock
face. Another tree is situated further back, closer to the right
edge of the image, adding depth to the scene.

Instruction: Please describe the location of other visible )
elements in the background.

~
In the background, there are several indistinct figures that
appear to be people standing or moving around. These figures
are located at varying distances from the cow, mostly
concentrated towards the upper part of the image. There is also a
structure that resembles a tent or canopy, situated further
back and slightly to the right side of the image. The overall
L setting suggests an outdoor event or gathering area.

(" Instruction: Describe what can be seen from the perspective of )
someone standing inside the "CREAM TEA" shop looking

L outwards towards the street. Y

C a
From inside the "CREAM TEA" shop, one can observe the
vibrant display of artwork outside. The colorful paintings are
arranged neatly on tables and easels, drawing attention with
their bright hues and intricate designs. Outside, there's a
person walking by, adding life to the scene. The shop's interior
is partially visible through the open door, showing some items
for sale.

Instruction: Describe the central plant in terms of its
appearance and notable qualities.

The central plant is a vibrant green leafy vegetable, likely a
type of lettuce or cabbage. It has broad, glossy leaves with
prominent white veins running through them. The leaves are
slightly crinkled and appear fresh and healthy. The plant stands
out against the dark mulch surrounding it, indicating it's
well-nourished and thriving in its environment.

Figure 7: Qualitative examples of controllable caption generation from images.
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( Instruction: Describe the actions and movements of the person )
| in the video.

J

( The person is seated at a desk, gesturing with their hands )
while speaking. They occasionally point towards the
computer monitor displaying graphics. Their hand
movements are expressive as they explain or discuss

L something related to the content on the screen. )

s M
Instruction: Describe everything happening in this video,

| except for the walking motion. )

(The video captures a tranquil outdoor setting during what\
appears to be early morning or late afternoon. A dirt path
stretches into the distance, flanked by tall grasses and
various types of vegetation. Trees line both sides of the path,
their leaves bathed in soft sunlight that filters through them.
The atmosphere is calm and serene, with no visible movement
\_apart from the gentle sway of the grasses. )

( - — )
Instruction: Describe the appearance and characteristics of the
L giraffe in the video.

( The giraffe is standing tall with a long neck and legs. It has a h
patterned coat consisting of large, irregular brown patches
separated by lighter lines. Its head features two small
ossicones on top, and it appears to be looking slightly to the side.
L The giraffe's body is slender, and its tail is visible at the end.

( Instruction: Please outline the chronological order of events )
| captured in this video.

(" The sequence begins with a person sitting by an infinity pool, )
facing away from the camera. They are wearing a white shirt
and have long hair that appears to be gently moving due to
wind. Throughout the entire sequence, there are no visible
actions or changes in their position; they remain seated on the
edge of the pool, gazing out towards the horizon where
\_mountains and water meet. J

Instruction: Tell me about the view from the person's
perspective at the back of the group.

The person can see several people walking forward. They are
moving along a gravel path bordered by wooden railings
covered with moss.

Figure 8: Qualitative examples of controllable caption generation from videos.
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Figure 9: Qualitative examples of controllable caption generation from audios.
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Table 28: Video generation evaluation. Metrics: Visual Quality (VQ), Temporal Consistency (TC),
Dynamic Degree (DD), Text—Video Alignment (TVA), and Factual Consistency (FC).

Model vQ TC DD TVA FC Avg
Wan2.1-T2V-14B  2.84 2.78 2.66 2.76 2.77 2.74
+AnyCap-8B 3.19 (o 3.06 (o2, 3.18 os) 3.07 woan 3.00 (023 3.10 (oa0)
HunyuanVideo 2.98 2.89 2.94 2.90 2.83 291
+AnyCap-8B 3.61 o6 348 0se 362 ogs 334 oun 346 e 350 Lose)
Original Image GPT-40-Based Generation = AnyCap-Based Generation

Figure 10: Images in the first column are original real images. The second column shows images
generated from GPT-4o captions using DALL-E 3, while the third column shows results from our
refined captions. Our method leads to more faithful visual content and better alignment with the
original image semantics.
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- P -
Adapter prompt: Detail: Ina brightly lit studio, a news a center stage. She is » e light-colored  Adapter prompt: Detail; The video takes place in a wellit indoor with polished ... Camera: The camera
top,Heruie i styled stightand il s pat hershouldrs.Bhi er, mlpl scrcens dplay variousimagesand wapics et o "Pop News,” moverent i th video . panto heright, whic i exected smootly and tecil. T shootinganlesppears o b t medum ditnce capuring
including colorful bubbles and text. A lower third graphic appears on screen, indicating \"#2 KIM'S SEI " along *News logo. .. the basketball court and players from

=
‘Adapter prompt: Detail: The video shows a press conference setting with multiple individuals seated at a long table. In front of them is a backdrop ‘Adapter prompt: Detail: The video features a person standing outdoors, holding a camera with a long lens. They are positioned on grassy terrain
featuring et and logos elated o baskethll playoffs frthesear 201, There ars sveral busketls placed o he bl slong with botles o water.. - averlocknga body of wter. In the baeground, hereis 3 blue sky an Their
Appearance: The main instance s  group of individuals seated at a long table. They are dressed in formal atire, predominantly sui attire includes a dark for likely part of a larger park o reserve.
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Adapter prompt: Detail: The video displays a static title card movements. It with some prompt:Backgrn:The sosnei se s o evonient ot apgencs 1 e o istorcal o parod drama. Th oo hascnste
scattered clouds. In the center, there is white text reading hncyCLOUDS inabold font. The lel1\Lrhpm\dlq,lblung.umnhc Sy backdrop..  wallpaper withintricate patt ting a formal an ‘The main instance is a man wearing a sut with a
Background: The scene features  clear blue sky with scattered white clouds. The lighting is bright and natural, suggesting daytime. bow tie. He has a mustache and is seated at a table. His facial expression awemen - smiling or content.

Figure 11: Enhanced text-to-video generation through refined caption quality. Videos in the top row
are generated from original dataset captions. The bottom row showcases videos generated using
our model’s refined captions, demonstrating improved visual fidelity and more expressive camera
motion.
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