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ABSTRACT

Next-Token Prediction (NTP) is a de facto approach for autoregressive (AR) video
generation, but it suffers from suboptimal unidirectional dependencies and slow
inference speed. In this work, we propose a semi-autoregressive (semi-AR) frame-
work, called Next-Block Prediction (NBP), for video generation. By uniformly
decomposing video content into equal-sized blocks (e.g., rows or frames), we shift
the generation unit from individual tokens to blocks, allowing each token in the
current block to simultaneously predict the corresponding token in the next block.
Unlike traditional AR modeling, our framework employs bidirectional attention
within each block, enabling tokens to capture more robust spatial dependencies.
By predicting multiple tokens in parallel, NBP models significantly reduce the
number of generation steps, leading to faster and more efficient inference. Our
model achieves FVD scores of 55.0 on UCF101 and 25.5 on K600, outperforming
the vanilla NTP model by an average of 4.4. Furthermore, thanks to the reduced
number of inference steps, the NBP model generates 8.89 frames (128×128 res-
olution) per second, achieving an 11× speedup in inference. We also explored
model scales ranging from 700M to 3B parameters, observing significant improve-
ments in generation quality, with FVD scores dropping from 25.5 to 19.5 on K600,
demonstrating the scalability of our approach.

1 INTRODUCTION

The advance of Large Language Models (LLMs) such as ChatGPT (OpenAI, 2023), GPT-4 (Achiam
et al., 2023) and LLaMA (Touvron et al., 2023) has cemented the preeminence of Auto-Regressive
(AR) modeling in the realm of natural language processing (NLP). This AR modeling approach,
combined with the decoder-only Transformer architecture (Vaswani et al., 2017), has been pivotal
in achieving advanced levels of linguistic understanding, generation, and reasoning (Wei et al.,
2022; OpenAI, 2024a; Chen et al.). Recently, there is a growing interest in extending AR modeling
from language to other modalities, such as images and videos, to develop a unified multimodal
framework (OpenAI, 2024b; Team, 2024; Lu et al., 2023; Wu et al., 2023). This extension brings
numerous benefits: (1) It allows for the utilization of the well-established infrastructure and techniques
from the LLM community (Dao et al., 2022); (2) The scalability and generalizability of AR modeling,
empirically validated in LLMs (Kaplan et al., 2020; Yu et al., 2023a), can be extended to the
multimodal domains to strengthen models (Henighan et al., 2020); (3) Cognitive abilities observed in
LLMs can be transferred and potentially amplified with multimodal data, moving closer to the goal
of artificial general intelligence (Bubeck et al., 2023).

Given the inherently autoregressive nature of video data in temporal dimensions, video generation is
a natural area for extending AR modeling. Vanilla AR methods for video generation typically follows
the Next-Token Prediction (NTP) approach, i.e., tokenize video into discrete tokens, then predict
each subsequent token based on the previous ones. However, this approach has notable limitations.
First, the generation order of NTP often follows a unidirectional raster-scan pattern (Hong et al.,
2023; Wang et al., 2024; Yan et al., 2021), which fails to capture strong 2D correlations within video
frames, limiting the modeling of spatial dependencies (Tian et al., 2024). Second, NTP necessitates a
significant number of forward passes during inference (e.g., 1024 steps to generate a 16-frame clip),
which reduces efficiency and increases the risk of error propagation (Bengio et al., 2015).
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In this work, we propose a semi-autoregressive (semi-AR) framework, called Next-Block Prediction
(NBP), for video generation. To better model local spatial dependencies and improve inference
efficiency, our framework shifts the generation unit from individual tokens to blocks (e.g., rows or
frames). The objective is also redefined from next-token to next-block prediction, where each token
in the current block simultaneously predicts the corresponding token in the next block. In contrast to
the vanilla AR framework, which attends solely to prefix tokens, our NBP approach allows tokens
to attend to all tokens within the same block via bidirectional attention, thus capturing more robust
spatial relationships. By predicting multiple tokens in parallel, NBP models significantly reduce the
number of generation steps, resulting in faster and more computationally efficient inference.

Experimental results on the UCF-101 (Soomro et al., 2012) and Kinetics-600 (K600) (Carreira et al.,
2018) datasets demonstrate the superiority of our semi-AR framework. With the same model size
(700M parameters), NBP achieves a 25.5 FVD on K600, surpassing the vanilla NTP model by
4.4. Additionally, due to the reduced number of inference steps, NBP models can generate 8.89
frames (128×128 resolution) per second, achieving an 11× speedup in inference. Compared to
previous state-of-the-art token-based models, our approach proves to be the most effective. Scaling
experiments with models ranging from 700M to 3B parameters show a significant improvement in
generation quality, with the FVD score dropping from 25.5 to 19.5, highlighting the scalability of the
framework. We hope this work inspires further advancements in the field.

2 RELATED WORK

Video Generation. Prevalent video generation frameworks in recent years include Generative
Adversarial Networks (GANs) (Yu et al., 2022; Skorokhodov et al., 2021), diffusion models (Ho
et al., 2022; Ge et al., 2023; Gupta et al., 2023; Yang et al., 2024), auto-regressive models (Hong
et al., 2023; Yan et al., 2021; Kondratyuk et al., 2023), etc. GANs can generate videos with rich
details and high visual realism, but their training is often unstable and prone to mode collapse.
In contrast, diffusion models exhibit more stable training processes and typically produce results
with greater consistency and diversity (Yang et al., 2022). Nevertheless, AR models demonstrate
significant potential for processing multi-modal data (e.g., text, images, audio, and video) within a
unified framework, offering strong scalability and generalizability. To align with the trend of natively
multimodal development (OpenAI, 2024b), this paper focuses on exploring video generation using
AR modeling.

Auto-regressive Models for Video Generation. With the success of the GPT series models (Brown
et al., 2020), a range of studies has applied AR modeling to both image (Chen et al., 2020; Lee
et al., 2022) and video generation (Hong et al., 2023; Wang et al., 2024; Yan et al., 2021). For image
generation, traditional methods divide an image into a sequence of tokens following a raster-scan
order and then predict each subsequent token based on the preceding ones. In video generation, this
process is extended frame by frame to produce temporally-coherence content. However, conventional
AR models predict only one token at a time, resulting in a large number of forward steps during
inference. This significantly impairs the generation speed, especially for high-resolution images or
videos containing numerous tokens (Liu et al., 2024).

Semi-Auto-regressive Models. To improve the efficiency of AR models, researchers in the NLP
field have explored speculative decoding (Xia et al., 2023) and parallel decoding (Stern et al., 2018)
algorithms. These methods typically use multiple output heads or modules to predict several future
tokens based on the last generated token (Gu et al., 2017; Gloeckle et al., 2024). Given that video
content can be uniformly decomposed into blocks of equal size (e.g., row by row or frame by frame),
we propose a framework where each token in the last block predicts the corresponding token in the
next block, without requiring additional heads or modules. Recent research in the image generation
field has also revisited the token generation order in AR models, leading to faster generation processes.
For example, VAR (Tian et al., 2024) generates 2D token maps progressively from coarse to fine
scales, while MAR (Li et al., 2024) predicts multiple tokens simultaneously in a randomized order
using special [MASK] tokens. Compared to VAR, our method decomposes visual inputs into spatio-
temporal blocks rather than across multiple resolution scales, resulting in more than 2× shorter
token sequences 1 and improved inference efficiency for video generation. In contrast to MAR, our

1Our method uses an average of 256 tokens to represent a 256× 256 frame, while VAR requires 680 tokens.
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approach eliminates the need for mask token modeling, providing a denser supervised signal and
higher training efficiency.

𝒙𝒙𝟏𝟏
(𝟎𝟎)
𝒙𝒙𝟐𝟐

(𝟎𝟎)

𝒙𝒙𝟏𝟏
(𝟏𝟏)
𝒙𝒙𝟐𝟐

(𝟏𝟏)

𝑇𝑇 𝑊𝑊

𝐻𝐻

𝒙𝒙𝟏𝟏
(𝟐𝟐)
𝒙𝒙𝟐𝟐

(𝟐𝟐)

𝐹𝐹𝑇𝑇

𝐹𝐹𝑇𝑇
first frame

Figure 1: 3D discrete token map pro-
duced by our video tokenizer. The in-
put video consists of one initial frame ,
followed by n clips , with each clip

containing FT frames. x
(i)
j indicates

the jth video token in the ith clip.

Block size = 1x1x1
(token-wise, vanilla AR)

Block size = 1x1x3
(row-wise)

Block size = 1x3x3
(frame-wise)

Figure 2: The three examples of block include token-wise,
row-wise, and frame-wise representations. When the block
size is set to 1×1×1, it degenerates into a token, as used in
vanilla AR modeling. Note that the actual token corresponds
to a 3D cube, we omit the time dimension here for clarity.

3 METHOD

In this section, we first introduce our video tokenizer § 3.1, highlighting its two key features: joint
image-video tokenization and temporal causality, both of which facilitate our semi-AR modeling
approach. Next, we provide a detailed comparison between vanilla Next-Token Prediction (NTP)
(§ 3.2) and our Next-Block Prediction (NBP) modeling (§ 3.3). Our NBP framework employs a
block-wise objective function and attention masking, enabling more efficient capture of spatial
dependencies and significantly improving inference speed.

3.1 VIDEO TOKENIZATION

We utilize MAGVITv2 Yu et al. (2024) as our video tokenizer, which is based on a causal 3D CNN
architecture. Given a video X ∈ RT×H×W×3 in RGB space,2 MAGVITv2 encodes it into a feature
map Z ∈ RT ′×H′×W ′×d, where (T ′, H ′,W ′) is the latent size of Z, and d is the hidden dimension
of its feature vectors. After that, we apply a quantizer to convert this feature map Z into a discrete
tokens map Q ∈ VT ′×H′×W ′

(illustrated in Fig. 1), where V represents a visual vocabulary of size
|V| = K. After tokenization, these discrete tokens Q can be passed through a causal 3D CNN
decoder to reconstruct the video X̂. We note that MAGVITv2 has two major advantages:

(1) Joint Image-Video Tokenization. MAGVITv2 allows to tokenize images and videos with
a shared vocabulary. To achieve this, the number of frames in an input video, T , must satisfy
T = 1 + n× FT , meaning the video comprises an initial frame followed by n clips, each containing
FT frames. When n = 0, the video contains only the initial frame, thus simplifying the video to an
image. Both the initial frame and each subsequent clip are discretized into a (1, H ′,W ′) token map.
Therefore, the latent temporal dimension T ′ of the token map Q equals to 1 + n, which achieves
FT times downsampling ratio on the temporal dimension (except for the first frame). Additionally,
H ′ = H

FH
and W ′ = W

FW
, where FH , FW are spatial downsampling factors.

(2) Temporal Causality. The causal 3D CNN architecture ensures that the tokenization and
detokenization of each clip depend only on the preceding clips, facilitating autoregressive modeling
along the temporal dimension, which will be discussed further in § 3.3.

2Images can be considered as “static” videos with T = 1.
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Figure 3: Comparison between a vanilla auto-regressive (AR) framework based on next-token
prediction (left) and our semi-AR framework based on next-block prediction (right). x(i)

j indicates
the jth video token in the ith block, with each block containing L tokens. The dashed line in the
right panel presents that the L tokens generated in the current step are duplicated and concatenated
with prefix tokens, forming the input for the next step’s prediction during inference.

3.2 PRELIMINARY: AUTO-REGRESSIVE MODELING FOR VIDEO GENERATION

Inspired by the success of AR models in the field of NLP, previous work (Yan et al., 2021; Wu
et al., 2021a;b) has extended AR models to video generation. Typically, these methods flatten the 3D

video token input Q ∈ VT ′×H′×W ′
into a 1D token sequence. Let C(t) = {x(t)

1 , x
(t)
2 , . . . , x

(t)
L }

be the set of tokens in the tth clip, where L = H ′ × W ′ = |C(t)| is the total number of tokens

in each clip, and every clip contains an equal number of tokens. Specially, when t = 0, C(0)

denotes the first frame’s tokens. Therefore, the 1D token sequence can be represented as ( C(0)

, . . . , C(T ′) ) = ( x
(0)
1 , x

(0)
2 , . . . , x

(0)
L , . . . , x

(T ′)
1 , x

(T ′)
2 , . . . , x

(T ′)
L ). In the AR framework, the

next-token probability is conditioned on the preceding tokens, where each token x
(t)
l depends only

on its prefix (x
(<t)
l , x

(t)
<l). This unidirectional dependency allows the likelihood of the 1D sequence

to be factorized as:

p
(
x
(0)
1 , . . . , x

(T ′)
L

)
=

T ′∏
t=1

L∏
l=1

p
(
x
(t)
l | x(<t)

l , x
(t)
<l

)
(1)

Since only one token is predicted per step, the inference process can become computationally
expensive and time-consuming, motivating the exploration of more efficient methods, such as semi-
AR models, to improve both speed and scalability.

3.3 SEMI-AR MODELING VIA NEXT BLOCK MODELING

In contrast to text, which consists of variable-length words and phrases, video content can be
uniformly decomposed into equal-sized blocks (e.g., rows or frames). Fig. 2 shows examples of
token-wise, row-wise, and frame-wise block representations. Based on this, we propose a semi-
autoregressive (semi-AR) framework named Next-Block Prediction (NBP), where each token in the
current block predicts the corresponding token in the next block. Fig. 3 illustrates an example of
next-clip prediction, where each clip is treated as a block, and the next clip is predicted based on the
preceding clips. This approach introduces two key differences compared to vanilla NTP modeling:
(1) Change in the generation target. In NBP, the lth token x

(t)
l in the tth clip predicts x(t+1)

l in the
next clip, rather than x

(t)
l+1 as in NTP. (2) Increase in the number of generation targets. Instead of

predicting one token at a time, all L tokens x(t)
1:L simultaneously predict the corresponding L tokens
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Table 1: Video reconstruction results on UCF-101 and K600.

UCF-101 K600

Method Backbone Quantizer Param. # bits rFVD↓ PSNR↑ SSIM↑ LPIPS↓ rFVD↓ PSNR↑ SSIM↑ LPIPS↓
MaskGIT Chang et al. (2022) 2D CNN VQ 53M 10 216 21.5 .685 .1140 - - - -
TATS Ge et al. (2022) 3D CNN VQ 32M 14 162 - - - - - - -
OmniTokenizer Wang et al. (2024) ViT VQ 78M 13 42 30.3 .910 .0733 27 28.5 .883 .0945
MAGVIT-v1 Yu et al. (2023b) 3D CNN VQ 158M 10 25 22.0 .701 .0990 - - - -
MAGVIT-v2 Yu et al. (2024) C.-3D CNN LFQ 158M 18 16.12 - - .0694 - - - -
MAGVIT-v2 Yu et al. (2024) C.-3D CNN LFQ 370M 18 8.62 - - .0537 - - - -

Ours C.-3D CNN FSQ 370M 16 15.50 29.3 .893 .0648 6.73 31.3 .944 .0828

x
(t+1)
1:L in the next clip. Accordingly, the NBP objective function can be expressed as:

p
(
x
(0)
1 , . . . , x

(T ′)
L

)
=

T ′∏
t=1

p

(
x
(t)
1:L | x

(0)
1:L , . . . , x

(t−1)
1:L

)
(2)

By adjusting the block size, the framework can generate videos using different generation units. To
ensure the effectiveness of this approach, three key components are designed:

(1) Initial Condition. In NTP models, a special token (e.g., [begin_of_video]) is typically
used as the initial condition. In the NBP setting, we can add a block of special tokens to serve as the
initial condition for generating the first block. However, to simplify learning and enhance control over
the generated video, we use the first frame C(0) as the initial condition. In practice, following Girdhar
et al. (2023), users can upload an image as the first frame, or call a off-the-shelf text-to-image model
(e.g., SDXL (Podell et al., 2023)) to generate it. Besides, both NTP and NBP models can accept
various inputs (e.g., text) as conditions (see Fig. 3).

Text Video Block 1 Video block 2

Te
xt

Vi
de

o 
Bl
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k 

1
Vi
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o 

Bl
oc

k 
2

Text Video

Te
xt

Vi
de

o

(1) Causal Attention Mask (2) Block-wise Attention Mask (Ours)

Figure 4: Causal attention mask in NTP modeling
v.s. block-wise attention mask in NBP modeling.

(2) Block-wise Attention. To better capture
spatial dependency, we allows tokens to attend
to all tokens within the same block via bidi-
rectional attention. Fig. 4 compares traditional
causal attention in NTP modeling with block-
wise attention in NBP modeling.

(3) Inference Process. To illustrate the infer-
ence process of next-block prediction, we con-
sider a scenario where each block corresponds
to a clip. As shown in the right panel of Fig. 3,
during inference, the last L tokens of the current
output represents the predicted tokens for the
next block. These tokens are retained and con-
catenated with clip prefix, forming the input for
the next step. By transitioning from token-by-token to block-by-block prediction, the NBP framework
leverages parallelization, reducing the number of generation steps by a factor of L, thereby decreasing
computational cost and accelerating inference.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

Video Tokenizer. In contrast to the official implementation of MAGVITv2, which utilizes LFQ (Yu
et al., 2024) as its quantizer, we adopt FSQ (Mentzer et al., 2023) due to its simplicity and reduced
number of loss functions and hyper-parameters. Following the original paper’s recommendations,
we set the FSQ levels to [8, 8, 8, 5, 5, 5], and the size of the visual vocabulary is 64K. Moreover, we
employ PatchGAN (Isola et al., 2016) instead of StyleGAN (Karras et al., 2018) to enhance training
stability. The reconstruction performance of our tokenizer is presented in Table 1, and additional
training details are available in the Appendix A.2. We note that MAGVITv2 is not open-sourced, we
have made every effort to replicate its results. Our tokenizer surpasses OmniTokenizer Wang et al.
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Table 2: Comparison of next-token prediction (NTP) and next-block prediction (NBP) models in
terms of performance and speed, evaluated on the K600 dataset (5-frame condition, 12 frames (768
tokens) to predict). Inference time was measured on a single A100 Nvidia GPU. All models are
implemented by us under the same setting and trained for 20 epochs. FPS denote “frame per second”.

Model Size Modeling Method # Block size FVD ↓ # Forward steps Inference speed (FPS) ↑

700M NTP 1 (1×1×1) 38.5 768 0.80
NBP (Ours) 16 (1×1×16) 33.6 48 8.89

1.2B NTP 1 (1×1×1) 32.2 768 0.75
NBP (Ours) 16 (1×1×16) 28.6 48 6.70

3B NTP 1 (1×1×1) 28.1 768 0.60
NBP (Ours) 16 (1×1×16) 26.5 48 4.29

(2024), MAGVITv1 Yu et al. (2023b), and other models in performance. However, due to limited
computational resources, we did not pre-train on ImageNet (Russakovsky et al., 2014) or employ a
larger visual vocabulary (e.g., 262K as in the original MAGVITv2), which slightly impacts our results
compared to the official MAGVITv2. Nevertheless, we note that the primary objective of this paper
is to validate the semi-AR framework, rather than to achieve state-of-the-art tokenizer performance.

Generator Training Details. We train decoder-only transformers on 17-frame videos with a
resolution of 128×128, using the UCF-101 (Soomro et al., 2012) and K600 (Carreira et al., 2018)
datasets. With spatial downsampling factors of FH = FW = 8 and temporal downsampling of FT =
4, the resulting 3D token map for each video sample has dimensions (T ′, H ′,W ′) = (5, 16, 16),
yielding a total of 1280 tokens. We train our model for 100K steps with a total batch sizes of
256 and 64 respectively. Model sizes range from 700M to 3B parameters, with training spanning
approximately two weeks on 32 NVIDIA A100 GPUs. The full model configuration and training
hyper-parameters are provided in Appendix A.2. We train the models from scratch, rather than
initializing from a pre-trained LLM checkpoint, as these text-based checkpoints provide minimal
benefit for video generation (Zhang et al., 2023). We use LLaMA (Touvron et al., 2023) vocabulary
(32K tokens) as the text vocabulary and merge it with the video vocabulary (64K tokens) to form the
final vocabulary. Since our primary focus is video generation, we compute the loss only on video
tokens, which leads to improved performance.

Evaluation protocol. We evaluate our models on UCF-101 and K600 datasets. Standard metrics
such as Fréchet Video Distance (FVD) Unterthiner et al. (2018) are used to assess video quality,
while frame-level metrics including PSNR, SSIM Wang et al. (2004) and LPIPS Zhang et al. (2018)
are also reported. Additional evaluation details are provided in Appendix A.4.

4.2 COMPARISON OF NEXT-TOKEN PREDICTION AND NEXT-BLOCK PREDICTION

0k 200k 400k 600k 800k 1000k
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Figure 5: Validation loss of various size of semi-
AR models from 700M to 3B.

We first conduct a fair comparison between next-
token prediction (NTP) and our next-block pre-
diction (NBP) under the same experimental set-
ting. Table 2 highlights the superiority of our
approach in three key aspects: generation qual-
ity, inference efficiency, and scalability.

Generation Quality. Across all model sizes,
NBP with a 1×1×16 block size consistently
outperforms NTP models in terms of genera-
tion quality (measured by FVD). For instance,
the 700M NBP model achieves an FVD of 33.6,
outperforming the NTP model by 4.9 points.
Furthermore, a NBP model with only 1.2B pa-
rameters achieves a comparable performance to
a 3B NTP model (28.6 vs. 28.1 FVD). This sug-
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Table 3: Comparions of class-conditional generation results on UCF-101 and frame prediction results
on K600. MTM indicates mask token modeling. Our model on K600 is trained for 77 epochs, we
gray out models that use significantly more training computation (e.g., those trained for over 300
epochs) for a fair comparison.

Type Method #Param UCF-101 K600
FVD↓ PSNR↑ SSIM↑ LPIPS↓ FVD↓ PSNR↑ SSIM↑ LPIPS↓

GAN DVD-GAN (Clark et al., 2019) N/A - - - - 31.1 - - -

Diffusion VideoFusion (Luo et al., 2023) N/A 173 - - - - - - -
Diffusion Make-A-Video (Singer et al., 2022) N/A 81.3 - - - - - - -
Diffusion HPDM-L (Skorokhodov et al., 2024) 725M 66.3 - - - - - - -

MTM Phenaki Villegas et al. (2022) 227M - - - - 36.4 - - -
MTM MAGVIT Yu et al. (2023b) 306M 76 - - - 9.9 - - -
MTM MAGVITv2 Yu et al. (2024) 840M 58 - - - 4.3 - - -

AR LVT Rakhimov et al. (2020) 50M - - - - 224.7 - - -
AR ViTrans Weissenborn et al. (2020) 373M - - - - 170.0 - - -
AR CogVideo Hong et al. (2023) 9.4B 626 - - - 109.2 - - -
AR ViVQVAE Walker et al. (2021) N/A - - - - 64.3 - - -
AR TATS Ge et al. (2022) 321M 332 - - - - - - -
AR OmniTokenizer Wang et al. (2024) 227M 314 - - - 34.2 - - -
AR OmniTokenizer Wang et al. (2024) 650M 191 - - - 32.9 21.4 .781 .061

Semi-AR NBP (Ours) 700M 55.0 22.6 .708 .115 25.5 21.1 .724 .070
Semi-AR NBP (Ours) 1.2B 34.0 23.4 .749 .113 23.0 21.2 .727 .069
Semi-AR NBP (Ours) 3B 20.7 24.6 .749 .109 19.5 21.2 .728 .068

gests that the block size of 1×1×16 is a more effective generation unit for auto-regressive modeling
in video domain.

Inference Efficiency. For generating a 12-frame video (128×128 resolution, 768 tokens), a 700M
NTP model requires 768 forward step during inference, taking 15.04 seconds (FPS=0.80). In contrast,
our NBP model with a 1×1×16 block size predicts all tokens in a row simultaneously, requiring
only 48 steps and 1.35 seconds to generate the video (FPS=8.89)—over 11 times faster than the NTP
model. Since NBP modifies only the target output and attention mask, it is compatible with most
efficient AR inference frameworks, such as Flash Attention (Dao et al., 2022), offering potential for
further speed improvements.

Scalability. As model size increases from 700M to 1.2B and 3B parameters, the FVD of NBP
models improves from 33.6 to 28.6 and 26.5, respectively. This demonstrates that NBP exhibits
similar scalability to NTP models, with the potential for even greater performance as model size and
computational resources increase. Fig. 5 and Fig. 14 present the validation loss curves and generation
examples for different model sizes, respectively. As the models grow larger, the generated content
exhibits greater stability and enhanced visual detail.

4.3 BENCHMARKING WITH PREVIOUS SYSTEMS

Table 3 presents our model’s performance compared to strong baselines using various modeling
approaches, including GAN, diffusion, mask token modeling (MTM), and vanilla auto-regressive
(AR) methods. For UCF-101, the evaluation task is class-conditional video generation, where models
generate videos based on a given class name. Since our method utilizes an image as initial visual
condition, alongside the classname, we take the first frame from the training videos into condition
additionly. This ensures no information leakage from the test set. Our Semi-AR model, with
700M parameters, achieves an FVD of 55.0, surpassing HPDM-L (Skorokhodov et al., 2024) and
MAGVITv2 Yu et al. (2024) by 11.3 and 3 FVD points, respectively.

For K600, the evaluation task is frame prediction, where all models predict future frames based on
the same 5-frame condition from the validation set. Our 700M model achieves an FVD of 25.5,
outperforming the strongest AR baseline, OmniTokenizer, by 7.4 FVD points. While our model
exhibits a performance gap compared to MAGVITv2, it achieves this result with significantly lower
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Figure 6: Video reconstruction results (17 frames 128×128 resolution at 25 fps and shown at 6.25
fps) of OmniTokenizer and our method.
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Figure 7: Frame prediction results of OmniTokenizer and our method. The left part is the condition,
the right part is predicted subsequent sequence.

training computation (e.g., 77 epochs vs. MAGVITv2’s 360 epochs). Scaling up the model size
narrows this gap, with a 6-point improvement in FVD observed. Given the strong scalability of our
semi-AR framework, we believe that with larger model sizes and increased training volumes, our
approach could surpass MAGVITv2, akin to how large language models (LLMs) (Brown et al., 2020)
have outperformed BERT (Devlin, 2018) in NLP.

4.4 VISUALIZATIONS

Video Reconstruction. Fig. 6 compares the video reconstruction results of OmniTokenizer (Wang
et al., 2024) and our tokenizer. Our method significantly outperforms the baseline in both image
clarity and motion stability.

Video Generation. Fig. 7 and 10 showcase the frame prediction results generated by our model.
The visualizations demonstrate that our model accurately predicts subsequent frames with high clarity
and temporal coherence, even in scenarios involving large motion dynamics. Fig. 13 shows more
generation results of our 3B model.

4.5 ABLATION STUDY AND ANALYSIS

In this subsection, we conduct an ablation study on block size and analyze the attention patterns in
our NBP models.

Ablation Study on Block Size. We experiment with different block sizes, ranging from
[1, 16, 64, 256] 3, to assess their impact on model performance. A block size of 1, 16, and 256

3The full 3D size of the blocks are 1×1×1, 1×1×16, 1×4×16, 1×16×16, respectively.
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corresponds to token-by-token (NTP), row-by-row, and clip-by-clip generation, respectively. Fig. 8
demonstrates the training loss curves for various block sizes. As block size decreases, learning be-
comes easier due to the increased prefix conditioning, which simplifies the prediction task. However,
using the smallest block size (i.e., a single token) does not yield optimal performance. As shown in
Fig. 9, a block size of 16 achieves the best generation quality, with an FVD improvement of 3.5 points,
reaching 25.5. Block size plays a critical role in balancing generation quality (FVD) and efficiency
(FPS). While larger blocks (e.g., 1×16×16) result in faster inference speeds (up to 17.14 FPS),
performance degrades, suggesting that generating an entire clip in one step is overly challenging.
Additionally, inference decoding methods significantly influence results. As demonstrated in Fig. 15,
traditional Top-P Top-K decoding can lead to screen fluctuations, as it struggles to model spatial
dependencies within large blocks, highlighting the need for improved decoding strategies in NBP
scenarios.
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Figure 8: Training loss of various block sizes
from 1 to 256.
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Figure 9: Generation quality (FVD, lower is better)
and inference speed (fps, higher is better) of various
block sizes from 1 to 256.

Analysis of Attention Pattern. We analyze the attention pattern in our NBP framework using an
example of next-clip prediction, where each block corresponds to a clip. Fig. 11 shows the attention
weights on UCF-101. Unlike the lower triangular distribution observed in AR models, our attention
is characterized by a staircase pattern across blocks. In addition to high attention scores along the
diagonal, the map reveals vertical stripe-like highlighted patterns, indicating that tokens at certain
positions receive attention from all tokens. Fig. 12 illustrates the spatial attention distribution for a
specific query (marked by red ×). This query can attend to all tokens within the clip, rather than
being restricted to only the preceding tokens in a raster-scan order, enabling more effective spatial
dependency modeling.

．

 

Figure 10: Visualization of frame prediction results of our method.
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Figure 11: Attention weights of next-clip prediction on UCF-101. The horizontal and vertical axis
represent the keys and queries, respectively. Two red lines on each axis divide the axis into three
segments, corresponding to the text (classname), the first clip, and the second clip. The brightness of
each pixel reflects the attention score. We downweight the attention to text tokens by 5× to provide a
more clear visualization.

               

 

  

  

  

  

   

   

    

    

    

    

               

 

  

  

  

  

   

   

     

     

     

     

     

     

Figure 12: Spatial attention distribution for a specific query (represented by red ×) on UCF-101.

5 CONCLUSION

In this paper, we introduced a novel approach to video generation called Next Block Prediction
using a semi-auto-regressive modeling framework. This framework offers a more efficient and
scalable solution for video generation, combining the advantages of parallelization with improved
spatial-temporal dependency modeling. This method not only accelerates inference but also maintains
or improves the quality of generated content, demonstrating strong potential for future applications in
multimodal AI.
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Table 4: Model sizes and architecture configurations of our generation model. The configurations are
following LLaMA (Touvron et al., 2023).

Model Parameters Layers Hidden Size Heads

NBP-XL 700M 24 1536 16
NBP-XXL 1.2B 24 2048 32
NBP-3B 3B 32 3072 32

A IMPLEMENTATION DETAILS

A.1 TASK DEFINITIONS

We introduce the tasks used in our training and evaluation. Each task is characterized by a few
adjustable settings such as interior condition shape and optionally prefix condition. Given a video of
shape T ×H ×W , we define the tasks as following:

• Class-conditional Generation (CG)

– Prefix condition: class label.

• Class-conditional Frame Prediction (CFP)

– Prefix condition: class label.
– Interior condition: t frames at the beginning; t = 1.

• Frame Prediction (FP)

– Interior condition: t frames at the beginning; t = 5 for K600 dataset.

As we stated in § 4.3, for UCF-101, other baselines perform the CG task, while our models perform
the CFP task, as our method utilizes an image as initial visual condition, alongside the classname. We
take the first frame from the training videos into condition additionly. This ensures no information
leakage from the test set. For K600, all the methods perform the FP task.

A.2 MODEL CONFIGURATION

Video Tokenizer. Our video tokenizer shares the same model architecture with MAGVITv2 Yu
et al. (2024).

Decoder-only Generator. Table 4 shows the configuration for decoder-only generator. We use
separate position encoding for text and video. We do not use advanced techniques in large language
models, such as rotary position embedding (RoPE) (Su et al., 2024), SwiGLU MLP, or RMS
Norm (Touvron et al., 2023), which we believe could bring better performance.

A.3 TRAINING

Video Tokenizer. Table 5 shows training configurations of our video tokenizer.

Decoder-only Generator. Table 6 shows training configurations of our video generator.

For both tokenizer and generator training, the video samples are all 17 frames, frame stride 1,
128×128 resolution.

A.4 EVALUATION

Evaluation metrics. The FVD Unterthiner et al. (2018) is used as the primary evaluation metric.
We follow the official implementation4 in extracting video features with an I3D model trained

4https://github.com/google-research/google-research/tree/master/
frechet_video_distance
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Table 5: Training configurations of video tokenizer.

Hyper-parameters UCF101 K600

Video FPS 8 8
Latent shape 5×16×16 5×16×16
Vocabulary size 64K 64K
Embedding dimension 6 6
Initialization Random Random
Peak learning rate 5e-5 1e-4
Learning rate schedule linear linear
Warmup ratio 0.01 0.01
Perceptual loss weight 0.1 0.1
Generator adversarial loss weight 0.1 0.1
Optimizer Adam Adam
Batch size 256 256
Epoch 2000 100

on Kinetics-400 Carreira & Zisserman (2017). We further include image quality metrics: PSNR,
SSIM Wang et al. (2004) and LPIPS Zhang et al. (2018) (computed by the VGG features).

Sampling protocols. We follow the sampling protocols from previous works Yu et al. (2024); Ge
et al. (2022); Clark et al. (2019) when eveluating on the standard benchmarks, i.e. UCF-101, and
Kinetics-600. We sample 17-frame clips from each dataset without replacement to form the real
distribution in FVD and extract condition inputs from them to feed to the model. We continuously run
through all the samples required (e.g., 40,000 for UCF-101) with a single data loader and compute
the mean and standard deviation for 4 folds.

Below are detailed setups for each dataset:

• UCF-101:
– Dataset: 9.5K videos for training, 101 classes.
– Number of samples: 10,000×4.
– Resolution: 128×128.
– Real distribution: random clips from the training videos.

• Kinetics-600:
– Dataset: 384K videos for training and 29K videos for evaluation.
– Number of samples: 50,000×4.
– Generation resolution: 128×128.
– Evaluation resolution: 64×64, via central crop and bilinear resize.

B VISUALIZATION

We provide additional visualization of video generation results. Fig. 13 shows results of our 3B
model. Fig. 14 shows results of various model size (700M, 1.2B and 3B). Fig. 15 shows results of
various block size (1×1×1, 1×1×16 and 1×16×16).
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Table 6: Training configurations of video generator (base model).

Hyper-parameters UCF101 K600

Video FPS 8 16
Latent shape 5×16×16 5×16×16
Vocabulary size 96K (including 32K text tokens) 64K
Initialization Random Random
Peak learning rate 6e-4 1e-3
Learning rate schedule linear linear
Warmup steps 5,000 10,000
Weight decay 0.01 0.01
Optimizer Adam (0.9, 0.98) Adam (0.9, 0.98)
Batch size 256 64
Epoch 2560 77

Figure 13: Visualization of video generation results of our 3B model.
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Figure 14: Visualization of video generation results of various model size (700M, 1.2B and 3B).
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Figure 15: Visualization of video generation results of various block size (1×1×1, 1×1×16 and
1×16×16).
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