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Abstract
With the rapid advancement of large language001
models (LLMs), there is a pressing need for a002
comprehensive evaluation suite to assess their003
capabilities and limitations. Existing LLM004
leaderboards often reference scores reported005
in other papers without consistent settings and006
prompts, which may inadvertently encourage007
cherry-picking favored settings and prompts008
for better results. In this work, we introduce009
GPT-Fathom, an open-source and reproducible010
LLM evaluation suite built on top of OpenAI011
Evals1. We systematically evaluate 10+ lead-012
ing LLMs as well as OpenAI’s legacy models013
on 20+ curated benchmarks across 7 capability014
categories, all under aligned settings. Our retro-015
spective study on OpenAI’s earlier models of-016
fers valuable insights into the evolutionary path017
from GPT-3 to GPT-4. Currently, the commu-018
nity is eager to know how GPT-3 progressively019
improves to GPT-4, including technical details020
like whether adding code data improves LLM’s021
reasoning capability, which aspects of LLM ca-022
pability can be improved by SFT and RLHF,023
how much is the alignment tax, etc. Our analy-024
sis sheds light on many of these questions, aim-025
ing to improve the transparency of advanced026
LLMs.027

1 Introduction028

Recently, the advancement of large language mod-029

els (LLMs) is arguably the most remarkable break-030

through in Artificial Intelligence (AI) in the past031

few years. Based on the Transformer (Vaswani032

et al., 2017) architecture, these LLMs are trained033

on massive Web-scale text corpora. Despite their034

straightforward method of using a self-supervised035

objective to predict the next token, leading LLMs036

demonstrate exceptional capabilities across a range037

of challenging tasks (Bubeck et al., 2023), even038

showing a potential path towards Artificial Gen-039

eral Intelligence (AGI). With the rapid progress of040

LLMs, there is a growing demand for better un-041

derstanding these powerful models, including the042

distribution of their multi-aspect capabilities, lim- 043

itations and risks, and directions and priorities of 044

their future improvement. It is critical to establish 045

a carefully curated evaluation suite that measures 046

LLMs in a systematic, transparent and reproducible 047

manner. Although there already exist many LLM 048

leaderboards and evaluation suites, some key chal- 049

lenges are yet to be addressed: 050

• Inconsistent settings: The evaluation settings, 051

such as the number of in-context example 052

“shots”, whether Chain-of-Thought (CoT; Wei 053

et al. 2022) prompting is used, methods of an- 054

swer parsing and metric computation, etc., often 055

differ across the existing LLM works. More- 056

over, most of the released LLMs do not disclose 057

their prompts used for evaluation, making it diffi- 058

cult to reproduce the reported scores. Different 059

settings and prompts may lead to very different 060

evaluation results, which may easily skew the ob- 061

servations. Yet, many existing LLM leaderboards 062

reference scores from other papers without con- 063

sistent settings and prompts, which may inadver- 064

tently encourage cherry-picking favored settings 065

and prompts for better results. To achieve reliable 066

conclusions, it is crucial to make apples-to-apples 067

LLM comparisons with consistent settings and 068

prompts. 069

• Incomplete collection of models and benchmarks: 070

For the moment, when compared to OpenAI’s 071

leading models such as GPT-4, all the other 072

LLMs (particularly open-source models) exhibit 073

a substantial performance gap. In fact, it takes 074

OpenAI nearly three years to evolve from GPT- 075

3 (released in 2020/06) to GPT-4 (released in 076

2023/03). Existing LLM leaderboards primar- 077

ily focus on the latest models, while missing a 078

retrospective study on OpenAI’s earlier models 079

and its mysterious path from GPT-3 to GPT-4. 080

Besides the coverage of models, many existing 081

works assess LLMs on merely one or a few as- 082

pects of capabilities, which is not sufficient to 083
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provide a comprehensive view to deeply under-084

stand the strength and weakness of the evaluated085

LLMs.086

• Insufficient study on model sensitivity: LLMs are087

known to be sensitive to the evaluation setting088

and the formatting of prompt (Liang et al., 2023).089

However, many existing works only focus on090

the benchmark score under one specific setting,091

while overlooking the impacts of model sensitiv-092

ity on the overall usability of LLMs. In fact, it093

is unacceptable that a slightly rephrased prompt094

could cause the LLM to fail in responding it cor-095

rectly. Due to the lack of systematic study on096

model sensitivity, this potential vulnerability in097

LLMs remains not well understood.098

These challenges hinder a comprehensive under-099

standing of LLMs. To dispel the mist among LLM100

evaluations, we introduce GPT-Fathom, an open-101

source and reproducible LLM evaluation suite de-102

veloped based on OpenAI Evals1. We evaluate 10+103

leading open-source and closed-source LLMs on104

20+ curated benchmarks in 7 capability categories105

under aligned settings. We also evaluate legacy106

models from OpenAI to retrospectively measure107

their progressive improvement in each capability108

dimension. Our retrospective study offers valu-109

able insights into OpenAI’s evolutionary path from110

GPT-3 to GPT-4, aiming to help the community111

better understand this enigmatic path. Our analysis112

sheds light on many community-concerned ques-113

tions (e.g., the gap between OpenAI / non-OpenAI114

models, whether adding code data improves rea-115

soning capability, which aspects of LLM capability116

can be improved by SFT and RLHF, how much is117

the alignment tax, etc.). With reproducible evalu-118

ations, GPT-Fathom serves as a standard gauge to119

pinpoint the position of emerging LLMs, aiming120

to help the community measure and bridge the gap121

with leading LLMs. We also explore the impacts122

of model sensitivity on evaluation results with ex-123

tensive experiments of various settings.124

Benchmarks constantly play a pivotal role in125

steering the evolution of AI and, of course, direct-126

ing the advancement of LLMs as well. There are127

many great existing LLM evaluation suites. By128

comparing GPT-Fathom with previous works, we129

summarize the major difference as follows: 1)130

HELM (Liang et al., 2023) primarily uses answer-131

only prompting (without CoT) and has not in-132

1https://github.com/openai/evals

cluded the latest leading models such as GPT- 133

4 (as of the time of writing); 2) Open LLM 134

Leaderboard (Beeching et al., 2023) focuses on 135

open-source LLMs, while we jointly consider 136

leading closed-source and open-source LLMs; 3) 137

OpenCompass (Contributors, 2023) evaluates lat- 138

est open-source and closed-source LLMs (all re- 139

leased after 2023/03), while we cover both lead- 140

ing LLMs and OpenAI’s earlier models to deci- 141

pher the evolutionary path from GPT-3 to GPT- 142

4; 4) InstructEval (Chia et al., 2023) is designed 143

for evaluating instruction-tuned LLMs, while we 144

evaluate both base and SFT / RLHF models; 5) 145

AlpacaEval (Li et al., 2023) evaluates on simple 146

instruction-following tasks as a quick and cheap 147

proxy of human evaluation, while we provide sys- 148

tematic evaluation of various aspects of LLM ca- 149

pabilities; 6) Chatbot Arena (Zheng et al., 2023) 150

evaluates human user’s dialog preference with a 151

Elo rating system, while we focus on automatic 152

and reproducible evaluation over popular bench- 153

marks; 7) Chain-of-Thought Hub (Fu et al., 2023) 154

focuses on evaluating the reasoning capability of 155

LLMs with CoT prompting, while we support both 156

CoT and answer-only prompting settings and eval- 157

uate various aspects of LLM capabilities. 158

The key contributions of our work are summa- 159

rized as follows: 160

• Systematic and reproducible evaluations under 161

aligned settings: We provide accurate evalua- 162

tions of 10+ leading LLMs on 20+ curated bench- 163

marks across 7 capability categories. We care- 164

fully align the evaluation setting for each bench- 165

mark. Our work improves the transparency of 166

LLMs, and all of our evaluation results can be 167

easily reproduced. 168

• Retrospective study on the evolutionary path from 169

GPT-3 to GPT-4: We evaluate not only leading 170

LLMs, but also OpenAI’s earlier models, to retro- 171

spectively study their progressive improvement 172

and better understand the path towards GPT-4 173

and beyond. Our work is time-sensitive due to 174

the scheduled deprecation of those legacy models 175

announced by OpenAI2. 176

• Identify novel challenges of advanced LLMs: We 177

discover the seesaw phenomenon of LLM capa- 178

bilities, even on the latest GPT-4 model. We also 179

study the impacts of model sensitivity with ex- 180

tensive experiments. We strongly encourage the 181

2https://openai.com/blog/
gpt-4-api-general-availability
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research community to dedicate more efforts to182

tackling these novel challenges.183

2 Method184

Imagine the ultimate superset of LLM evaluations:185

a holistic collection that evaluates every LLM on186

every benchmark under every possible setting. In187

practice, however, due to resource and time con-188

straints, we are unable to exhaustively fulfill this189

ideal evaluation superset. Instead, we pick repre-190

sentative LLMs, benchmarks and settings to inves-191

tigate open problems. In this section, we discuss192

in detail how we select LLMs, benchmarks and193

settings for our evaluations.194

2.1 LLMs for Evaluation195

The goal of GPT-Fathom is to curate a high-quality196

collection of representative LLMs and benchmarks,197

helping the community better understand OpenAI’s198

evolutionary path and pinpoint the position of fu-199

ture LLMs. To achieve this goal, we mainly con-200

sider evaluating these types of LLMs: 1) OpenAI’s201

leading models; 2) OpenAI’s major earlier mod-202

els3; 3) other leading closed-source models; 4) lead-203

ing open-source models. As a result, we select204

OpenAI’s models (illustrated in Figure 1), PaLM205

2 (Anil et al., 2023), Claude 24, LLaMA (Touvron206

et al., 2023a) and Llama 2 (Touvron et al., 2023b)207

for evaluation. Due to the limited space, refer to208

Appendix A for the detailed model list.209

2.2 Benchmarks for Evaluation210

We consider the following criteria for benchmark211

selection: 1) cover as many aspects of LLM capa-212

bilities as possible; 2) adopt widely used bench-213

marks for LLM evaluation; 3) clearly distinguish214

strong LLMs from weaker ones; 4) align well with215

the actual usage experience of LLMs. Accordingly,216

we construct a capability taxonomy by initially enu-217

merating the capability categories (task types), and218

then populating each category with selected bench-219

marks.220

Knowledge. This category evaluates LLM’s ca-221

pability on world knowledge, which requires not222

only memorizing the enormous knowledge in the223

pretraining data but also connecting fragments of224

knowledge and reasoning over them. We cur-225

rently have two sub-categories here: 1) Ques-226

tion Answering, which directly tests whether the227

3https://platform.openai.com/docs/
model-index-for-researchers

4https://www.anthropic.com/index/claude-2

LLM knows some facts by asking questions. We 228

adopt Natural Questions5 (Kwiatkowski et al., 229

2019), WebQuestions (Berant et al., 2013) and 230

TriviaQA (Joshi et al., 2017) as our benchmarks; 231

2) Multi-subject Test, which uses human exam 232

questions to evaluate LLMs. We adopt popular 233

benchmarks MMLU (Hendrycks et al., 2021a), 234

AGIEval (Zhong et al., 2023) (we use the English 235

partition denoted as AGIEval-EN) and ARC (Clark 236

et al., 2018) (including ARC-e and ARC-c par- 237

titions to differentiate easy / challenge difficulty 238

levels) in our evaluation. 239

Reasoning. This category measures the general 240

reasoning capability of LLMs, including 1) Com- 241

monsense Reasoning, which evaluates how LLMs 242

perform on commonsense tasks (which are typ- 243

ically easy for humans but could be tricky for 244

LLMs). We adopt popular commonsense rea- 245

soning benchmarks LAMBADA (Paperno et al., 246

2016), HellaSwag (Zellers et al., 2019) and Wino- 247

Grande (Sakaguchi et al., 2021) in our evaluation; 248

2) Comprehensive Reasoning, which aggregates 249

various reasoning tasks into one single benchmark. 250

We adopt BBH (Suzgun et al., 2023), a widely used 251

benchmark with a subset of 23 hard tasks from the 252

BIG-Bench (Srivastava et al., 2023) suite. 253

Comprehension. This category assesses the ca- 254

pability of reading comprehension, which requires 255

LLMs to first read the provided context and then an- 256

swer questions about it. This has been a long-term 257

challenging task in natural language understanding. 258

We pick up popular reading comprehension bench- 259

marks RACE (Lai et al., 2017) (including RACE- 260

m and RACE-h partitions to differentiate middle / 261

high school difficulty levels) and DROP (Dua et al., 262

2019) for this category. 263

Math. This category specifically tests LLM’s 264

mathematical capability. Tasks that require math- 265

ematical reasoning are found to be challenging 266

for LLMs (Imani et al., 2023; Dziri et al., 2023). 267

We adopt two popular math benchmarks, namely 268

GSM8K (Cobbe et al., 2021), which consists of 269

8,500 grade school math word problems, and 270

MATH (Hendrycks et al., 2021b), which contains 271

12,500 problems from high school competitions in 272

7 mathematics subject areas. 273

Coding. This category examines the coding capa- 274

bility of LLMs, which is commonly deemed as a 275

core capability of leading LLMs. We pick up popu- 276

5For Natural Questions, we evaluate in the closed-book
setting, where only the question is provided, without a context
document.
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Figure 1: OpenAI’s evolutionary path from GPT-3 to GPT-4. We omit deprecated legacy models such as
code-davinci-001 and only list the models evaluated in GPT-Fathom.

lar benchmarks HumanEval (Chen et al., 2021) and277

MBPP (Austin et al., 2021), both of which are nat-278

ural language to code datasets that require LLMs279

to generate self-contained Python programs that280

pass a set of held-out test cases. Following Chen281

et al. (2021), we adopt the widely used pass@k282

metric: k code samples are generated for each cod-283

ing problem, and a problem is considered solved if284

any sample passes the unit tests; the total fraction285

of problems solved is reported.286

Multilingual. This category inspects the multilin-287

gual capability of LLMs, which is important for288

the usage experience of non-English users. Beyond289

pure multilingual tasks like translation (which we290

plan to support in the near future), we view mul-291

tilingual capability as an orthogonal dimension,292

i.e., LLMs can be evaluated on the intersection293

of a fundamental capability and a specific lan-294

guage, such as (“Knowledge”, Chinese), (“Rea-295

soning”, French), (“Math”, German), etc. Nonethe-296

less, given that most existing benchmarks focus297

solely on English, we currently keep “Multilin-298

gual” as a distinct capability category in paral-299

lel with the others. We then populate it with300

sub-categories and corresponding benchmarks: 1)301

Multi-subject Test, we use the Chinese partition of302

AGIEval (Zhong et al., 2023) denoted as AGIEval-303

ZH, and C-Eval (Huang et al., 2023) which is a304

comprehensive multi-discipline exam benchmark305

in Chinese; 2) Mathematical Reasoning, we adopt306

MGSM6 (Shi et al., 2023), a multilingual version307

6For MGSM, we evaluate the average score over the 10 lan-
guage partitions, including Bengali, Chinese, French, German,
Japanese, Russian, Spanish, Swahili, Telugu and Thai.

of GSM8K that translates a subset of examples 308

into 10 typologically diverse languages; 3) Ques- 309

tion Answering, we adopt a popular multilingual 310

question answering benchmark TyDi QA7 (Clark 311

et al., 2020) that covers 11 typologically diverse 312

languages. 313

Safety. This category scrutinizes LLM’s propen- 314

sity to generate content that is truthful, reliable, 315

non-toxic and non-biased, thereby aligning well 316

with human values. To this end, we currently have 317

two sub-categories: 1) Truthfulness, we employ 318

TruthfulQA8 (Lin et al., 2022), a benchmark de- 319

signed to evaluate LLM’s factuality; 2) Toxicity, we 320

adopt RealToxicityPrompts (Gehman et al., 2020) 321

to quantify the risk of generating toxic output. 322

2.3 Details of Black-box Evaluation 323

Both black-box and white-box evaluation methods 324

are popular for evaluating LLMs. We describe their 325

difference and discuss why we choose the black- 326

box method as follows. 327

Black-box evaluation: Given the test prompt, 328

LLM first generates free-form response; the re- 329

sponse is then parsed into the final answer for com- 330

puting the evaluation metric against the reference 331

answer. For multiple-choice questions, the refer- 332

ence answer is typically the letter of the correct 333

option such as (A), (B), (C) or (D). 334

7For TyDi QA, we evaluate in the no-context setting, where
no gold passage is provided. We evaluate the average score
over the 11 language partitions, including English, Arabic,
Bengali, Finnish, Indonesian, Japanese, Kiswahili, Korean,
Russian, Telugu and Thai.

8For TruthfulQA, we evaluate in the multiple-choice set-
ting.
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Table 1: Main evaluation results of GPT-Fathom. Note that GPT-Fathom supports various settings for evaluation.
For simplicity, we pick one commonly used setting for each benchmark and report LLMs’ performance under this
aligned setting. We use the Exact Match (EM) accuracy in percentage as the default metric, except when otherwise
indicated. For clarity, we also report the number of “shots” used in prompts and whether Chain-of-Thought (CoT;
Wei et al. 2022) prompting is used. For the AGIEval (Zhong et al., 2023) benchmark, we use the official few-shot
(3-5 shots) setting. For PaLM 2-L, since its API access is not currently available yet, we instead cite the numbers
from PaLM 2 (Anil et al., 2023). Numbers that are not from our own experiments are shown in brackets. Numbers
with ⋆ are obtained from optimized prompts, which is discussed in Section 3.2.

Capability Category Benchmark Setting LLaMA-
65B

Llama 2-
70B

PaLM 2-
L

davinci
(GPT-3)

davinci-
instruct-beta
(InstructGPT)

text-
davinci-

001

code-
davinci-

002

text-
davinci-

002

text-
davinci-

003

gpt-3.5-
turbo-
0301

gpt-3.5-
turbo-
0613

gpt-3.5-
turbo-

instruct-
0914

gpt-4-
0314

gpt-4-
0613

Knowledge

Question Answering

Natural Questions 1-shot 27.7 27.0 (37.5) 17.8 7.1 23.5 29.2 28.2 38.1 39.6 38.8 44.4 48.4 48.6

WebQuestions 1-shot 42.2 38.2 (28.2) 37.3 11.1 42.1 43.3 45.8 55.4 53.0 53.4 58.2 60.3 58.6

TriviaQA 1-shot 73.4 74.0⋆ (86.1) 61.5 51.6 68.0 82.6 78.6 82.5 83.2 84.9 87.2 92.3 92.1

Multi-subject Test

MMLU 5-shot 60.1⋆ 67.8⋆ (78.3) 34.3 39.9 46.7 69.1 62.1 63.7 66.6 67.4 69.6 83.7 81.3

AGIEval-EN few-shot 38.0 44.0 – 22.0 25.1 31.0 48.4 43.6 44.3 43.3 44.5 47.6 57.1 56.7

ARC-e 1-shot 87.2 93.4 (89.7) 57.2 60.6 74.7 92.8 90.1 91.5 94.1 92.7 94.3 98.9 98.6

ARC-c 1-shot 71.8 79.6 (69.2) 35.9 40.9 53.2 81.7 75.7 79.5 82.9 81.7 83.6 94.9 94.6

Reasoning
Commonsense Reasoning

LAMBADA 1-shot 30.9 30.4 (86.9) 53.6 13.8 51.1 84.9 66.0 56.2 67.8 68.2 67.6 78.6 87.8

HellaSwag 1-shot 47.8 68.4 (86.8) 22.8 18.9 34.6 56.4 64.9 60.4 78.9 79.4 82.8 92.4 91.9

WinoGrande 1-shot 54.6 69.8 (83.0) 48.0 49.6 54.6 67.6 65.5 70.6 65.8 55.3 68.0 86.7 87.1

Comprehensive Reasoning BBH 3-shot CoT 58.2 65.0 (78.1) 39.1 38.1 38.6 71.6 66.0 69.0 63.8 68.1 66.8 84.9 84.6

Comprehension Reading Comprehension

RACE-m 1-shot 77.0 87.6 (77.0) 37.0 43.0 54.4 87.7 84.5 86.3 86.0 84.1 87.2 93.5 94.0

RACE-h 1-shot 73.0 85.1 (62.3) 35.0 33.5 44.3 82.3 80.5 79.5 81.4 81.2 82.6 91.8 90.8

DROP 3-shot, F1 56.4 67.6 (85.0) 2.5 8.6 33.1 10.7 47.7 56.4 39.1 53.4 59.1 78.9 74.4

Math Mathematical Reasoning
GSM8K 8-shot CoT 53.6 56.4 (80.7) 12.1 10.8 15.6 60.2 47.3 59.4 78.2 76.3 75.8 92.1 92.1

MATH 4-shot CoT 2.6 3.7 (34.3) 0.0 0.0 0.0 10.2 8.5 15.6 32.0 15.0 28.3 38.6 34.9

Coding Coding Problems
HumanEval 0-shot, pass@1 10.7 12.7 – 0.0 0.1 0.6 24.2 29.3 57.6 53.9 80.0 61.2 66.3 66.4

MBPP 3-shot, pass@1 44.8 58.0 – 4.6 7.6 11.9 67.3 70.2 77.0 82.3 98.0 80.4 85.5 85.7

Multilingual

Multi-subject Test
AGIEval-ZH few-shot 31.7 37.9 – 23.6 23.9 28.0 41.4 38.6 39.3 41.9 38.4 44.4 56.5 56.7

C-Eval 5-shot 10.7 38.0 – 5.5 1.6 20.7 50.3 44.5 49.7 51.8 48.5 54.2 69.2 69.1

Mathematical Reasoning MGSM 8-shot CoT 3.6 4.0 (72.2) 2.4 5.1 7.4 7.9 22.9 33.7 53.5 53.7 48.8 82.2 68.7

Question Answering TyDi QA 1-shot, F1 12.1 18.8 (40.3) 5.7 3.7 9.3 14.3 12.5 16.3 21.2 25.1 25.4 31.3 31.2

Safety
Truthfulness TruthfulQA 1-shot 51.0 59.4 – 21.4 5.4 21.7 54.2 47.8 52.2 57.4 61.4 59.4 79.5 79.7

Toxicity RealToxicityPrompts ↓ 0-shot 14.8 15.0 – 15.6 16.1 14.1 15.0 15.0 9.6 8.0 7.7 12.9 7.9 7.9

             Knowledge

            Reasoning
Comprehension

Math    

Coding       

Multilingual
      Safety

davinci (GPT-3)
davinci-instruct-beta (InstructGPT)

text-davinci-001
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Figure 2: Radar charts to visualize the capabilities of evaluated LLMs. We exclude PaLM 2-L and Claude 2 due to
the missing of reported performance on some benchmarks.

White-box evaluation: Given the test prompt,335

LLM generates per-token likelihood for each op-336

tion; the per-token likelihood is then normalized337

for length and optionally normalized by answer338

context as described in Brown et al. (2020). The339

option with the maximum normalized likelihood is340

then picked as the predicted option.341

GPT-Fathom adopts the black-box method342

throughout all evaluations, since 1) the per-token343

likelihood for input prompt is usually not pro-344

vided by closed-source LLMs; 2) the white-box345

method manually restricts the prediction space,346

thus the evaluation result would be no worse than347

random guess in expectation; while for the black-348

box method, a model with inferior capability of349

instruction following may get 0 score since the350

output space is purely free-form. In our opinion,351

instruction following is such an important LLM 352

capability and should be taken into consideration 353

in evaluation. 354

Base models are known to have weaker capa- 355

bility of instruction following due to lack of fine- 356

tuning. To reduce the variance of black-box eval- 357

uation on base models, we use 1-shot setting for 358

most tasks. With just 1-shot example of question 359

and answer, we observe that stronger base models 360

are able to perform in-context learning to follow 361

the required output format of multiple-choice ques- 362

tions. Due to the limited space, refer to Appendix F 363

for details of sampling parameters, answer parsing 364

method and metric computation for each bench- 365

mark. For the sampling variance under black-box 366

evaluation, refer to Section 3.2 for our extensive 367

experiments and detailed discussions. 368
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3 Experiments369

3.1 Overall Performance370

Table 1 summarizes the main evaluation results of371

GPT-Fathom. For PaLM 2-L, since its API access372

is not currently available yet, we instead cite the373

numbers from PaLM 2 (Anil et al., 2023). By374

averaging the benchmark scores of each capability375

category, Figure 2 plots radar charts to visualize the376

capabilities of evaluated LLMs. Table 2 compares377

the performance of Claude 2 and OpenAI’s latest378

models. We’re still on the waitlist of Claude 2’s379

API access, so we evaluate OpenAI’s latest models380

(including Web-version GPT-3.5 and GPT-4) under381

the same settings used by Claude 24.382

From the overall performance of OpenAI’s383

models, we observe a remarkable leap from384

GPT-3 to GPT-4 across all facets of capabili-385

ties, with the GPT-3.5 series serving as a piv-386

otal intermediary stage, which was kicked off by387

code-davinci-002, a fairly strong base model pre-388

trained on a hybrid of text and code data. In the389

following section, we conduct detailed analysis on390

the progressive performance of OpenAI’ models,391

as well as the performance of other leading closed-392

source / open-source LLMs. Our study aims to un-393

veil OpenAI’s mysterious path from GPT-3 to GPT-394

4, and shed light on many community-concerned395

questions.396

3.2 Analysis and Insights397

OpenAI vs. non-OpenAI LLMs. The overall398

performance of GPT-4, which is OpenAI’s lead-399

ing model, is crushing the competitors on most400

benchmarks. As reported in Table 1, PaLM 2-401

L clearly outperforms gpt-3.5-turbo-0613 on402

“Reasoning” and “Math” tasks, but still falls behind403

gpt-4-0613 on all capability categories except for404

“Multilingual”. As described in Anil et al. (2023),405

PaLM 2 is pretrained on multilingual data across406

hundreds of languages, confirming the remarkable407

multilingual performance achieved by PaLM 2-L.408

Table 2 indicates that Claude 2 indeed stands409

as the leading non-OpenAI model. Compared to410

gpt-4-0613, Claude 2 achieves slightly worse per-411

formance on “Knowledge” and “Comprehension”412

tasks, but slightly better performance on “Math”413

and “Coding” tasks. Noticeably, the upgraded414

gpt-3.5-turbo-0613 has significantly improved415

on coding benchmarks compared to its predeces-416

sor gpt-3.5-turbo-0301 with striking pass@1417

scores: 80.0 on HumanEval and 98.0 on MBPP.418

Although such improvement have yet to manifest 419

in gpt-4-0613, we observe a similar leap of cod- 420

ing benchmark scores on the Web-version GPT-49. 421

Closed-source LLMs vs. open-source LLMs. 422

LLaMA (Touvron et al., 2023a) and Llama 2 (Tou- 423

vron et al., 2023b) have been widely recognized 424

as the most powerful open-source LLMs, which 425

largely facilitate the open-source community to 426

develop advanced LLMs. Following their official 427

performance report, we pick the largest variants 428

of their base models (LLaMA-65B and Llama 2- 429

70B) as the leading open-source LLMs for eval- 430

uation. As expected, Llama 2-70B outperforms 431

LLaMA-65B on most benchmarks, especially on 432

“Reasoning” and “Comprehension” tasks. The 433

radar chart in Figure 2c highlights the capabil- 434

ity distribution of Llama 2-70B, which surpasses 435

gpt-3.5-turbo-0613 on “Comprehension” and 436

achieves similar performance on “Safety” but still 437

underperforms for the rest of dimensions, espe- 438

cially on “Math”, “Coding” and “Multilingual”. 439

We strongly encourage the open-source community 440

to improve these capabilities of open-source LLMs. 441

Seesaw phenomenon of LLM capabilities. By 442

comparing the performance of OpenAI API models 443

dated in 2023/03 and 2023/06, we note the pres- 444

ence of a so-called “seesaw phenomenon”, where 445

certain capabilities exhibit improvement, while a 446

few other capabilities clearly regress. As reported 447

in Table 1, we observe that gpt-3.5-turbo-0613 448

significantly improves on coding benchmarks com- 449

pared to gpt-3.5-turbo-0301, but its score on 450

MATH dramatically degrades from 32.0 to 15.0. 451

GPT-4 also shows similar phenomenon, where 452

gpt-4-0314 achieves 78.6 on LAMBADA and 453

gpt-4-0613 boosts its performance to a remark- 454

able 87.8, but its score on MGSM plummets from 455

82.2 to 68.7. OpenAI also admits10 that when they 456

release a new model, while the majority of metrics 457

have improved, there may be some tasks where the 458

performance gets worse. The seesaw phenomenon 459

of LLM capabilities is likely a universal challenge, 460

not exclusive to OpenAI’s models. This challenge 461

may obstruct LLM’s path towards AGI, which ne- 462

cessitates a model that excels across all types of 463

tasks. Therefore, we invite the research commu- 464

nity to dedicate more efforts to tackling the seesaw 465

phenomenon. 466

9We detail the comparison of OpenAI API-based vs. Web-
version in Appendix C.

10https://openai.com/blog/
function-calling-and-other-api-updates
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Table 2: Performance of Claude 2 and OpenAI’s latest models under aligned settings. Note that the Web-version
models (evaluated in 2023/09) could be updated at anytime and may not have the same behavior as the dated
API-based models.

Capability Category Benchmark Setting Claude 2
gpt-3.5-
turbo-
0613

Web-version
GPT-3.5

gpt-4-
0613

Web-version
GPT-4

Web-version
GPT-4

Advanced Data Analysis
(Code Interpreter)

Knowledge

Question Answering TriviaQA 5-shot (87.5) 80.6 80.5 92.7 90.8 88.8

Multi-subject Test
MMLU 5-shot CoT (78.5) 67.1 61.8 82.7 80.0 81.5
ARC-c 5-shot (91.0) 84.1 79.6 94.9 94.4 95.1

Comprehension Reading Comprehension RACE-h 5-shot (88.3) 82.3 80.0 92.0 90.0 90.8

Math Mathematical Reasoning GSM8K 0-shot CoT (88.0) 60.2 61.3 83.9 79.8 72.0

Coding Coding Problems HumanEval 0-shot, pass@1 (71.2) 80.0 69.6 66.4 84.8 85.2

Impacts of pretraining with code data. Codex-467

12B (Chen et al., 2021) represents OpenAI’s pre-468

liminary effort to train LLMs on code data. De-469

spite its modest model size, Codex-12B demon-470

strates notable performance on coding problems.471

Following this initial attempt, OpenAI trains a472

brand new base model code-davinci-002 on a473

mixture of text and code data, which kicks off474

the new generation of GPT models, namely the475

GPT-3.5 Series. As reported in Table 1, the per-476

formance of code-davinci-002 surges on all ca-477

pability categories, compared to the GPT-3 Se-478

ries, which is also visualized in Figure 2a and479

2b. On some reasoning tasks such as LAMBADA480

and BBH, code-davinci-002 shows fairly strong481

performance that even beats gpt-3.5-turbo-0301482

and gpt-3.5-turbo-0613. This suggests that in-483

corporating code data into LLM pretraining could484

universally elevate its potential, particularly in the485

capability of reasoning.486

Impacts of SFT and RLHF. InstructGPT (Ouyang487

et al., 2022) demonstrates the effectiveness of su-488

pervised fine-tuning (SFT) and reinforcement learn-489

ing from human feedback (RLHF) approaches to490

aligning language models, which can largely im-491

prove the win rate of head-to-head human evalu-492

ation. By applying SFT and its variant FeedME3493

to GPT-3 base model davinci, the obtained494

model text-davinci-001 significantly improves495

on most benchmarks, as illustrated in Figure 2a.496

However, when the base model becomes stronger,497

we notice the opposite effect: text-davinci-002498

performs slightly worse than code-davinci-002499

on most benchmarks, except on coding bench-500

marks. This phenomenon can also be observed on501

open-source models: SFT boosts the performance502

of LLaMA-65B on MMLU (Touvron et al., 2023a),503

while all SFT models within the extensive Llama2-504

70B family on the Open LLM Leaderboard (Beech-505

ing et al., 2023) show only marginal improvements506

on MMLU. This implies that SFT yields more bene-507

fits for weaker base models, while for stronger base 508

models, it offers diminishing returns or even incurs 509

an alignment tax on benchmark performance. 510

On top of the SFT model text-davinci-002, 511

by applying RLHF with PPO algorithm (Schul- 512

man et al., 2017), the obtained model 513

text-davinci-003 has comparable or slightly 514

worse performance on most benchmarks compared 515

to the strong base model code-davinci-002, ex- 516

cept for coding benchmarks. To better understand 517

the impacts of SFT and RLHF, we further break 518

down the performance on coding benchmarks 519

in Table 3. Intriguingly, while SFT and RLHF 520

models excel in the pass@1 metric, they slightly 521

underperform in pass@100. We interpret these 522

results as follows: 1) A larger k in the pass@k 523

metric, such as pass@100, gauges the intrinsic 524

ability to solve a coding problem, while pass@1 525

emphasizes the capability for one-take bug-free 526

coding; 2) SFT and RLHF models still have to pay 527

the alignment tax, exhibiting a minor performance 528

drop in pass@100. This trend aligns with their 529

slightly worse performance across other tasks; 530

3) SFT and RLHF can effectively distill the 531

capability of pass@100 into pass@1, signifying 532

a transfer from inherent problem-solving skills 533

to one-take bug-free coding capability; 4) While 534

smaller models, such as code-cushman-001 535

(Codex-12B) and gpt-3.5-turbo-0301, display 536

limited intrinsic capability in terms of pass@100, 537

their pass@1 scores can be dramatically improved 538

by SFT and RLHF. This is good news for research 539

on low-cost small-size LLMs. 540

Based on the observations above and recognizing 541

that the state-of-the-art LLMs can inherently tackle 542

complicated tasks (albeit possibly succeed after 543

many sampling trials), we anticipate that LLMs 544

have yet to reach their full potential. This is be- 545

cause techniques like SFT and RLHF can consis- 546

tently enhance their performance with significantly 547

reduced sampling budget, translating their intrinsic 548

7



Table 3: Breakdown of coding performance with temperature T = 0.8 and topp = 1.0.
Benchmark Setting code-cushman-001 (Codex-12B) code-davinci-002 text-davinci-002 text-davinci-003 gpt-3.5-turbo-0301 gpt-4-0314

HumanEval
0-shot, pass@1 21.2 24.2 29.3 57.6 53.9 66.3
0-shot, pass@10 52.8 68.9 71.9 81.3 72.2 79.6
0-shot, pass@100 79.3 91.5 89.0 89.6 78.7 82.9

MBPP
3-shot, pass@1 50.2 67.3 70.2 77.0 82.3 85.5
3-shot, pass@80 94.8 97.5 95.7 96.1 95.3 95.3

Table 4: Benchmark performance with different prompt templates.

Benchmark Setting Prompt Template LLaMA-
65B

Llama 2-
70B

code-
davinci-

002

text-
davinci-

002

text-
davinci-

003

gpt-3.5-
turbo-
0301

gpt-4-
0314

TriviaQA 1-shot
<q1>\nAnswer: <a1>\n<q>\nAnswer: 75.4 74.0 82.9 77.6 81.6 77.8 92.0
Q: <q1>\nA: <a1>\nQ: <q>\nA: 73.4 55.5 82.6 78.6 82.5 83.2 92.3

MMLU 5-shot
<q1>\nAnswer: <a1>\n . . . <q5>\nAnswer: <a5>\n<q>\nAnswer: 60.1 67.8 68.3 64.5 65.3 67.7 82.0
Q: <q1>\nA: <a1>\n . . . Q: <q5>\nA: <a5>\nQ: <q>\nA: 55.7 64.8 68.3 63.5 65.4 66.6 83.7

capabilities into higher and higher one-take pass549

rates on reasoning-intensive tasks.550

Impacts of the number of “shots”. Our ablation551

study (refer to Appendix D) on the influence of552

the number of “shots” (in-context learning exam-553

ples) shows that, performance generally improves554

with an increased number of “shots”, however, the555

improvement rate quickly shrinks beyond 1-shot,556

particularly for stronger models. This indicates that557

1-shot example typically works well for most tasks,558

which aligns with our primary evaluation setting.559

Impacts of CoT prompting. Our studies on the560

impacts of CoT prompting (refer to Appendix E)561

shows that the influence of CoT prompting varies562

across benchmarks. On knowledge-intensive tasks,563

like MMLU, CoT has minimal or even slightly564

negative impact. While for reasoning-intensive565

tasks such as BBH and GSM8K, CoT prompting566

markedly enhances LLM performance.567

Prompt sensitivity. Many existing works neglect568

the impacts of prompt sensitivity on the overall569

usability of LLMs. For advanced LLMs, it is unac-570

ceptable that a minor alteration of the prompt (with-571

out changing the inherent meaning) could cause the572

LLM to fail in solving the problem. Many existing573

LLM leaderboards reference scores from other pa-574

pers without consistent settings and prompts, which575

may inadvertently encourage cherry-picking fa-576

vored settings and prompts for better results. In con-577

trast, we primarily present our own evaluation re-578

sults under aligned settings and prompts in Table 1579

and 2, and highlight exceptions where numbers580

are either sourced from other papers (with brack-581

ets) or obtained from optimized prompts (with582

stars). To figure out the influence of switching583

prompt templates on the benchmark performance584

of LLMs, we conduct experiments and report the re-585

sults in Table 4. We observe that open-source mod-586

els LLaMA-65B and Llama 2-70B exhibit greater587

prompt sensitivity. For instance, a slight change of 588

the prompt template results in the score of Llama 589

2-70B on TriviaQA plummeting from 74.0 to 55.5. 590

We urge the community to place greater emphasis 591

on the prompt-sensitive issue and strive to enhance 592

the robustness of LLMs. 593

Sampling variance. In the decoding process 594

of LLMs, various hyperparameters including the 595

temperature T and the nucleus sampling (Holtz- 596

man et al., 2020) parameter topp can influence 597

the sampling behavior. In our evaluations, we set 598

topp = 1.0 and T = 0 on nearly all tasks, with the 599

exception of coding benchmarks where T = 0.8. 600

Our further investigation (refer to Appendix G) on 601

sampling hyperparameters shows that LLMs (es- 602

pecially base models) tend to underperform with 603

a higher temperature T . On coding benchmarks, 604

although a higher temperature T still hurts the 605

pass@1 metric, it boosts the pass@100 metric due 606

to higher coverage of the decoding space with more 607

randomness. As for topp, our results indicate that 608

it has marginal influence on the performance of 609

fine-tuned LLMs. 610

4 Conclusions 611

We present GPT-Fathom, an open-source and repro- 612

ducible evaluation suite that comprehensively mea- 613

sures the multi-dimensional capabilities of LLMs 614

under aligned settings. Our retrospective study on 615

OpenAI’s models helps the community better un- 616

derstand the evolutionary path from GPT-3 to GPT- 617

4, and sheds light on many community-concerned 618

questions, such as the gap between leading closed- 619

source / open-source LLMs, the benefits of pre- 620

training with code data, the impacts of SFT and 621

RLHF, etc. Moreover, we identify novel challenges 622

of advanced LLMs, such as prompt sensitivity and 623

the seesaw phenomenon of LLM capabilities. 624
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Appendix915

A Details of Evaluated LLMs916

The LLMs selected for evaluation are organized as917

follows.918

1. OpenAI’s models (illustrated in Figure 1):919

• GPT-3 Series: 1) davinci (GPT-3; Brown et al.920

2020), the first GPT model ever with over921

100B parameters; 2) davinci-instruct-beta922

(InstructGPT SFT; Ouyang et al. 2022), a super-923

vised fine-tuned (SFT) model on top of GPT-3;924

3) text-davinci-001, a more advanced SFT925

model with the FeedME technique (as explained926

by OpenAI3, FeedME means SFT on human-927

written demonstrations and on model samples928

rated 7/7 by human labelers on an overall qual-929

ity score); 4) code-cushman-001 (Codex-12B;930

Chen et al. 2021), a smaller experimental model931

specifically fine-tuned on code data.932

• GPT-3.5 Series: 1) code-davinci-002, a933

base model pretrained on a mixture of text934

and code data; 2) text-davinci-002, a SFT935

model with the FeedME technique on top of936

code-davinci-002; 3) text-davinci-003,937

a refined model using PPO (Schulman938

et al., 2017) on top of text-davinci-002;939

4) gpt-3.5-turbo-0301, a chat-optimized940

model on top of text-davinci-003; 5)941

gpt-3.5-turbo-0613, an updated API version942

in lieu of gpt-3.5-turbo-0301; 6) Web-version943

GPT-3.5, which is currently (at the time of writ-944

ing in 2023/09) serving ChatGPT on OpenAI’s945

website; 7) gpt-3.5-turbo-instruct-0914,946

a model trained similarly to the previous947

InstructGPT models such as the text-davinci948

series, while maintaining the same speed and949

pricing as the gpt-3.5-turbo models11.950

• GPT-4: 1) gpt-4-0314, the initial API version of951

GPT-4, which is a new GPT generation with strik-952

ing performance improvements over GPT-3.5;953

2) gpt-4-0613, an updated API version in lieu954

of gpt-4-0314; 3) Web-version GPT-4, which955

is currently (at the time of writing in 2023/09)956

serving GPT-4 on OpenAI’s website; 4) Web ver-957

sion GPT-4 Advanced Data Analysis (Code Inter-958

preter), a recently upgraded Web-version GPT-4959

with functionalities of advanced data analysis960

and sandboxed Python code interpreter.961

11https://platform.openai.com/docs/models/
gpt-3-5

2. Other leading closed-source models: 962

• PaLM 2 (Anil et al., 2023): released by Google 963

in 2023/05, which is a set of strong LLMs 964

with huge improvements over its predecessor 965

PaLM (Chowdhery et al., 2022). For fair compar- 966

ison, we plan to evaluate the largest model in the 967

PaLM 2 family, which is PaLM 2-L. However, 968

since its API access is not currently available 969

yet, we instead evaluate other models under the 970

same settings of PaLM 2-L and cite the reported 971

performance. 972

• Claude 2: released by Anthropic in 2023/07, 973

which is currently commonly recognized as the 974

most competitive LLM against OpenAI’s lead- 975

ing models. We’re still on the waitlist of its API 976

access, so we evaluate OpenAI’s latest models 977

under the same settings of Claude 2 and cite the 978

reported performance. 979

3. Leading open-source models: 980

• LLaMA (Touvron et al., 2023a): released by 981

Meta in 2023/02, which is a set of powerful open- 982

source LLMs with different model sizes. We 983

evaluate LLaMA-65B, the largest variant of its 984

base model. 985

• Llama 2 (Touvron et al., 2023b): released by 986

Meta in 2023/07, which is the upgraded version 987

of LLaMA. We evaluate the largest variant of its 988

base model, which is Llama 2-70B. 989

B Details of Benchmark Datasets 990

In Table 5, we clarify the source of few-shot 991

prompts and test samples for each benchmark. 992

C OpenAI API-based vs. Web-version 993

LLMs. 994

According to OpenAI’s blog12, the dated API mod- 995

els (such as gpt-4-0613) are pinned to unchanged 996

models, while the Web-version models are sub- 997

ject to model upgrades at anytime and may not 998

have the same behavior as the dated API-based 999

models. We then compare the performance of 1000

OpenAI API-based and Web-version models in 1001

Table 2. We observe that the dated API mod- 1002

els gpt-3.5-turbo-0613 and gpt-4-0613, con- 1003

sistently perform slightly better than their front- 1004

end counterparts, i.e., Web-version GPT-3.5 (serv- 1005

ing ChatGPT) and Web-version GPT-4. Notice- 1006

ably, the latest GPT-4 Advanced Data Analysis 1007

12https://openai.com/blog/
function-calling-and-other-api-updates

12

https://platform.openai.com/docs/models/gpt-3-5
https://platform.openai.com/docs/models/gpt-3-5
https://openai.com/blog/function-calling-and-other-api-updates
https://openai.com/blog/function-calling-and-other-api-updates


Table 5: Source of few-shot samples and test samples in our evaluations.

Benchmark Source of few-shot samples Source of test samples

Natural Questions sampled from train split validation split
WebQuestions sampled from train split test split
TriviaQA sampled from train split validation split

MMLU few-shot samples from benchmark;
CoT samples from Chain-of-Thought Hub (Fu et al., 2023) test split

AGIEval benchmark provided benchmark
ARC sampled from validation split test split
LAMBADA sampled from test split rest of test split
HellaSwag sampled from train split validation split
WinoGrande sampled from train split validation split
BBH benchmark provided test split
RACE sampled from validation split test split
DROP sampled from train split validation split
GSM8K CoT samples from Chain-of-Thought Hub (Fu et al., 2023) test split
MATH CoT samples from Minerva (Lewkowycz et al., 2022) test split
HumanEval n/a test split
MBPP benchmark provided test split
C-Eval samples in dev split test split
MGSM benchmark provided benchmark
TyDi QA sampled from train split validation split
TruthfulQA n/a validation split
RealToxicityPrompts n/a sampled from train split

(previously known as Code Interpreter) has sig-1008

nificantly improved the coding benchmark perfor-1009

mance, which achieves a striking 85.2 pass@11010

score on HumanEval.1011

D Impacts of the number of “shots”.1012

To explore the influence of the number of “shots”1013

(in-context learning examples) on LLM benchmark1014

performance, we carry out an ablation study, with1015

the results summarized in Table 6. As expected,1016

performance generally improves with an increased1017

number of “shots”, however, the improvement rate1018

quickly shrinks beyond 1-shot in-context exam-1019

ples, particularly for stronger models. For instance,1020

gpt-4-0314 achieves 94.9 on ARC-c with 1-shot1021

example, and only marginally increases to 95.61022

with 25-shot examples. This indicates that 1-shot1023

example typically works well for most tasks, which1024

aligns with our primary evaluation setting.1025

E Impacts of CoT prompting.1026

We further explore the impact of using Chain-of-1027

Thought prompting on LLM benchmark perfor-1028

mance. As illustrated in Table 7, the influence1029

of CoT prompting varies across benchmarks. On1030

tasks that are knowledge-intensive, like MMLU, 1031

CoT has minimal or even slightly negative impact 1032

on performance. However, for reasoning-intensive 1033

tasks, such as BBH and GSM8K, CoT prompt- 1034

ing markedly enhances LLM performance. For 1035

instance, on the GSM8K with 8-shot examples, 1036

gpt-4-0314 elevates its score from 45.7 to an im- 1037

pressive 92.1 when CoT prompting is employed. 1038

F Details of Evaluation 1039

F.1 Sampling Hyperparameters 1040

For coding evaluations, we sample 100 responses 1041

per question with temperature T = 0.8. For all 1042

the other evaluations, we use T = 0. The default 1043

topp = 1.0 is applied across all of our evaluations. 1044

F.2 Evaluation Prompts 1045

We provide our evaluation prompts for all the 1046

benchmarks in Table 8. For few-shot settings, ear- 1047

lier LLMs with short context window may have 1048

the out-of-context issue when feeding the prompts. 1049

To address this issue, we use as many “shots” as 1050

possible to fit in the context window of LLMs. 1051
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Table 6: Ablation study on number of “shots”.

Benchmark Setting
code-

davinci-
002

text-
davinci-

002

text-
davinci-

003

gpt-3.5-
turbo-
0301

gpt-4-
0314

MMLU
3-shot 67.9 62.9 65.2 65.8 82.0
5-shot 68.3 63.5 65.4 66.6 83.7

ARC-c

0-shot 78.0 72.4 75.8 81.4 93.7
1-shot 81.7 75.7 79.5 82.9 94.9
5-shot 84.6 79.3 82.3 84.5 94.8
25-shot 85.3 79.8 84.4 84.5 95.6

HellaSwag
0-shot 39.2 53.3 40.1 59.8 79.4
1-shot 56.4 64.9 60.4 78.9 92.4
10-shot 73.4 66.4 65.3 79.8 92.5

Table 7: Ablation study on CoT prompting.

Benchmark Setting
code-

davinci-
002

text-
davinci-

002

text-
davinci-

003

gpt-3.5-
turbo-
0301

gpt-4-
0314

MMLU
5-shot 68.3 63.5 65.4 66.6 83.7
5-shot CoT 62.8 54.8 64.2 67.5 82.2

BBH
3-shot 52.8 48.2 51.7 51.9 70.8
3-shot CoT 71.6 66.0 69.0 63.8 84.9

GSM8K

5-shot 18.3 15.4 15.9 38.7 46.6
5-shot CoT 56.3 47.5 57.3 78.0 91.6
8-shot 18.3 15.4 15.8 39.1 45.7
8-shot CoT 60.2 47.3 59.4 78.2 92.1

F.3 Answer Parsing and Metric Computation1052

In this section, we outline the methods employed1053

to parse the answers of the models from their re-1054

sponses for different tasks:1055

Multiple-choice questions. We inspect the out-1056

put for options such as (A), (B), (C), (D), etc. The1057

option corresponding to a match is determined. If1058

no matches are found, the first character of the1059

output is chosen as the selected option.1060

Coding problems. We evaluate LLMs on Hu-1061

manEval and MBPP as the coding benchmarks.1062

Our assessment leverages the code evaluation1063

methodology implemented by Hugging Face (Wolf1064

et al., 2020). This approach adheres to the eval-1065

uation framework outlined in Chen et al. (2021),1066

which estimate the pass@k metric using n samples1067

(n > k) to reduce the variance. We use n = 1001068

for all the evaluations on coding benchmarks.1069

LAMBADA. Utilizing regular expressions, we1070

extract the first word and compare it with the1071

ground truth.1072

DROP. The model’s performance is gauged us-1073

ing the F1 score, without any post-processing such1074

as case normalization.1075

TyDi QA. Similarly, the F1 score is employed to1076

measure performance.1077

Closed-book question answering. This category1078

encompasses Natural Questions, WebQuestions,1079

and TriviaQA. We check if the model’s output1080

aligns with any of the provided candidate answers.1081

MGSM. The final number in the output is ex-1082

tracted as the model’s answer.1083

GSM8K. The initial step is to extract the first1084

number following the CoT prompt “So the answer1085

is”. If no number is identified, a regular expression 1086

is utilized to extract the final number. 1087

MATH. In line with the official benchmark set- 1088

tings, we initially filter the answers to retain only 1089

the last boxed element. The content within the 1090

boxed braces is then taken as the answer. 1091

G Sampling Variance 1092

The decoding process of LLMs is repeatedly sam- 1093

pling the next token from the LLM output distri- 1094

bution. Various hyperparameters, including the 1095

temperature T and the nucleus sampling (Holtz- 1096

man et al., 2020) parameter topp, can be adjusted 1097

to modify the sampling behavior. In our evalua- 1098

tions, we set topp = 1.0 and T = 0 on nearly all 1099

tasks, with the exception of coding benchmarks 1100

where T = 0.8. We further investigate the sam- 1101

pling variance of evaluation results, examining the 1102

effects of the sampling hyperparameters. In Table 9 1103

and 10, we report the mean and stand deviation 1104

of benchmark scores over 3 runs, with different 1105

settings of T and topp. expected, a higher temper- 1106

ature T introduces greater variance in benchmark 1107

scores, since the output becomes less deterministic. 1108

Notably, LLMs (especially base models) tend to 1109

underperform with a higher temperature T . On 1110

coding benchmarks, although a higher tempera- 1111

ture T still hurts the pass@1 metric, it boosts the 1112

pass@100 metric due to higher coverage of the de- 1113

coding space with more randomness. As for topp, 1114

our results indicate that it has marginal influence 1115

on the performance of fine-tuned LLMs. Similarly, 1116

a notable exception is observed on coding bench- 1117

marks, where a higher topp diminishes the pass@1 1118

metric but largely enhances the pass@100 metric. 1119
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Table 8: Evaluation prompts used for all the benchmarks.

Benchmark Prompt

Natural Questions Please answer the question:

WebQuestions Please answer the question:

TriviaQA Follow the given examples and answer the question:

MMLU The following are multiple choice questions (with answers) about {subtask}

AGIEval - English MC Follow the given samples and answer the following multiple choice question.

AGIEval - English IMC (Indefinite MC) Follow the given samples and answer the following multiple select question.

AGIEval - English Cloze Follow the given samples and answer the following cloze question.

AGIEval - Chinese MC 回答下列选择题

AGIEval - Chinese IMC (Indefinite MC) 回答下列多选题

AGIEval - Chinese Cloze 回答下列填空题

ARC The following are multiple choice questions (with answers) about commonsense reasoning.

LAMBADA Please answer with the word which is most likely to follow:

HellaSwag Complete the description with an appropriate ending.

WinoGrande Choose the option that fill in the blank best.

BBH {Use the prompt from the benchmark}

RACE The following are question (with answers) about reading comprehension.

DROP The following are question (with answers) about reading comprehension.

GSM8K Follow the given examples and answer the question.

MATH Follow the given examples and answer the question.

HumanEval Complete the code:

MBPP {Use the prompt from the benchmark}

C-Eval 以下是中国关于{task name}考试的单项选择题，请选出其中的正确答案。

MGSM Follow the given examples and answer the question.

TyDi QA Follow the given examples and answer the question.

TruthfulQA Answer the following multiple choice questions.

RealToxicityPrompts n/a

H Complete Results of LLaMA / Llama 21120

Family1121

We evaluate the entire LLaMA / Llama 2 family,1122

including models ranging from 7B to 65B / 70B1123

parameters, and report the complete results in Ta-1124

ble 11.1125

I Our Results vs. Official Scores1126

To verify the correctness of our implementation,1127

we first compare our evaluation results with the1128

officially reported scores from GPT-4 technical1129

report (OpenAI, 2023) and Microsoft’s early ex-1130

periments with GPT-4 (Bubeck et al., 2023). To1131

ensure an apple-to-apple comparison, we align the1132

evaluation settings on each benchmark, as summa-1133

rized in Table 12. This head-to-head comparison1134

demonstrates that our evaluation results are con-1135

sistent with the official scores, within a margin of1136

slight deviation. Since the official prompts and in-1137

context examples for evaluation are not publicly1138

             Knowledge

            Reasoning
Comprehension

Math    

Coding       

Multilingual
      Safety

LLaMA-7B
LLaMA-13B
LLaMA-30B
LLaMA-65B

Llama 2-7B
Llama 2-13B
Llama 2-70B

Figure 3: Radar charts to visualize the capabilities of
LLaMA and Llama 2 family models.
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Table 9: Benchmark performance with different temperature T and topp = 1.0. We report the mean and standard
deviation of scores over 3 runs under each setting.

Benchmark Setting
code-davinci-002 text-davinci-003 gpt-3.5-turbo-0301

T = 0.0 T = 0.5 T = 1.0 T = 0.0 T = 0.5 T = 1.0 T = 0.0 T = 0.5 T = 1.0

MMLU 5-shot 68.3± 0.0 65.8± 0.0 59.8± 0.4 65.4± 0.0 65.2± 0.2 65.1± 0.3 66.6± 0.0 68.2± 0.1 67.9± 0.1

GSM8K 8-shot CoT 60.2± 0.0 57.7± 0.3 31.2± 1.5 59.4± 0.0 59.9± 1.8 57.2± 0.3 78.2± 0.0 78.9± 0.0 77.5± 0.8

HumanEval
0-shot, pass@1 30.3± 0.0 29.4± 0.6 15.6± 0.4 60.1± 0.0 58.6± 0.2 55.3± 0.1 61.4± 0.0 57.3± 0.1 50.8± 0.2

0-shot, pass@100 31.1± 0.0 88.8± 0.9 86.8± 1.8 61.6± 0.0 87.4± 1.8 92.7± 1.2 62.8± 0.0 75.2± 0.3 79.1± 1.0

Table 10: Benchmark performance with different temperature T and topp. We report the mean and standard
deviation of scores over 3 runs under each setting.

Benchmark Setting topp
code-davinci-002 text-davinci-003 gpt-3.5-turbo-0301

T = 0.5 T = 1.0 T = 0.5 T = 1.0 T = 0.5 T = 1.0

MMLU 5-shot
0.2 68.3± 0.1 68.3± 0.1 65.4± 0.1 65.5± 0.1 68.4± 0.1 68.4± 0.0

0.7 66.9± 0.6 65.7± 0.5 65.3± 0.2 65.4± 0.2 68.2± 0.1 68.4± 0.2

1.0 65.8± 0.0 59.8± 0.4 65.2± 0.2 65.1± 0.3 68.2± 0.1 67.9± 0.1

GSM8K 8-shot CoT
0.2 60.0± 0.7 60.4± 0.7 59.6± 0.4 59.7± 0.5 78.8± 0.3 78.6± 0.2

0.7 58.9± 1.0 57.3± 0.4 59.7± 0.5 60.6± 0.7 78.9± 0.1 78.6± 1.1

1.0 57.7± 0.3 31.2± 1.5 59.9± 1.8 57.2± 0.3 78.9± 0.1 77.5± 0.8

HumanEval

0-shot, pass@1
0.2 29.2± 0.0 15.8± 0.4 58.5± 0.3 55.1± 0.4 61.4± 0.2 61.3± 0.1

0.7 29.5± 0.1 15.6± 0.2 58.7± 0.2 54.9± 0.1 58.0± 0.1 57.6± 0.2

1.0 29.4± 0.6 15.6± 0.4 58.6± 0.2 55.3± 0.1 57.3± 0.1 50.8± 0.2

0-shot, pass@100
0.2 89.4± 0.3 88.6± 1.8 85.6± 1.3 91.5± 1.0 62.8± 0.0 62.8± 0.0

0.7 88.8± 1.4 89.6± 1.6 85.1± 2.3 91.1± 0.1 73.8± 0.6 74.4± 0.6

1.0 88.8± 0.9 86.8± 1.8 87.4± 1.8 92.7± 1.2 75.2± 0.3 79.1± 1.0

available, the slight deviation is totally reasonable.1139

We also notice that the performance gain with in-1140

context examples beyond 1-shot is pretty marginal,1141

which aligns with our primary evaluation setting in1142

Table 1.1143

We also compare our evaluation results with the1144

official scores reported in LLaMA (Touvron et al.,1145

2023a) and Llama 2 (Touvron et al., 2023b). Simi-1146

larly, in Table 13, we report the benchmarks whose1147

official evaluation settings match our settings, and1148

compare our results with the official scores. We1149

observe that on some benchmarks, such as BBH,1150

our results are higher than the official scores; while1151

on some other benchmarks, such as TriviaQA and1152

MATH, our results are lower than the official scores.1153

This phenomenon is consistent with our conclu-1154

sion that LLaMA and Llama 2 are pretty prompt-1155

sensitive (refer to Table 4). To be more specific,1156

take MATH as an example, since we use the exact1157

same setting and prompt as we evaluate OpenAI1158

models on this benchmark, and our evaluation re-1159

sult of GPT-4 matches the official scores (Table 12),1160

we argue that the prompt sensitivity of LLaMA / 1161

Llama 2 models explains the performance gap of 1162

our evaluation and their official scores. 1163

For coding benchmarks HumanEval and MBPP, 1164

the official LLaMA and Llama 2 papers use differ- 1165

ent temperature T to evaluate pass@1 (T = 0.1) 1166

and pass@100 (T = 0.8). In contrast, we follow 1167

OpenAI’s setting on coding evaluation (Chen et al., 1168

2021) and uniformly use T = 0.8 for all our eval- 1169

uations on coding benchmarks. This explains the 1170

performance difference of our results and the offi- 1171

cial scores of LLaMA and Llama 2 on HumanEval 1172

and MBPP. 1173

Limitations 1174

While this work brings forth novel insights on LLM 1175

evaluation, it presents certain limitations. Firstly, 1176

although we cover 7 main capability categories in 1177

our study, there are still new advanced capability as- 1178

pects that we did not cover with the development of 1179

LLMs. In the future, we plan to support more capa- 1180

bility aspects, such as long-context understanding, 1181
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Table 11: Complete evaluation results of LLaMA and Llama 2 family models.

Capability Category Benchmark Setting LLaMA-
7B

Llama 2-
7B

LLaMA-
13B

Llama 2-
13B

LLaMA-
30B

LLaMA-
65B

Llama 2-
70B

Knowledge

Question Answering
Natural Questions 1-shot 17.6 19.8 20.8 27.6 24.0 27.7 27.0
WebQuestions 1-shot 37.0 38.3 37.6 42.8 39.0 42.2 38.2
TriviaQA 1-shot 52.0 61.1 66.6 70.0 73.5 73.4 74.0

Multi-subject Test

MMLU 5-shot 25.1 41.0 38.5 49.5 51.0 60.1 67.8
AGIEval-EN few-shot 19.1 25.7 27.0 35.7 34.7 38.0 44.0
ARC-e 1-shot 30.0 62.3 67.6 76.4 82.4 87.2 93.4
ARC-c 1-shot 26.7 48.6 49.1 55.7 60.8 71.8 79.6

Reasoning
Commonsense Reasoning

LAMBADA 1-shot 19.0 38.0 47.0 56.4 32.5 30.9 30.4
HellaSwag 1-shot 24.6 25.4 28.9 37.2 31.3 47.8 68.4
WinoGrande 1-shot 50.4 50.2 48.1 52.1 51.3 54.6 69.8

Comprehensive Reasoning BBH 3-shot CoT 33.7 38.4 39.1 46.2 49.6 58.2 65.0

Comprehension Reading Comprehension
RACE-m 1-shot 26.7 45.8 52.4 57.9 65.3 77.0 87.6
RACE-h 1-shot 29.1 39.5 48.5 55.1 64.1 73.0 85.1
DROP 3-shot, F1 9.6 7.7 8.7 9.3 9.8 56.4 67.6

Math Mathematical Reasoning
GSM8K 8-shot CoT 13.9 17.2 18.4 28.6 35.1 53.6 56.4
MATH 4-shot CoT 0.4 0.1 0.4 0.5 0.5 2.6 3.7

Coding Coding Problems
HumanEval 0-shot, pass@1 7.0 14.6 9.7 15.8 7.2 10.7 12.7
MBPP 3-shot, pass@1 23.7 39.2 29.5 46.0 38.5 44.8 58.0

Multilingual
Multi-subject Test

AGIEval-ZH few-shot 22.3 23.4 23.5 29.7 28.4 31.7 37.9
C-Eval 5-shot 11.5 10.3 14.8 28.9 10.1 10.7 38.0

Mathematical Reasoning MGSM 8-shot CoT 2.7 2.3 2.8 4.1 3.1 3.6 4.0

Question Answering TyDi QA 1-shot, F1 2.4 3.6 3.2 4.5 3.8 12.1 18.8

Safety
Truthfulness TruthfulQA 1-shot 37.6 31.0 29.5 38.0 44.5 51.0 59.4

Toxicity RealToxicityPrompts ↓ 0-shot 14.5 14.8 14.9 14.8 14.7 14.8 15.0

multi-turn conversation, open-domain generation,1182

LLM agent and even multi-modal capability. Sec-1183

ondly, with the development of LLMs, there are1184

more and more powerful LLMs released, and we1185

did not cover all these models. In the future, we1186

plan to continue working on evaluating new LLMs,1187

both close-source and open-source.1188
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Table 12: Comparison of our evaluation results and GPT-4 officially reported scores. The official score of MATH is
obtained from Bubeck et al. (2023), which is marked with ⋆.

Benchmark Setting
gpt-4-
0314

(our evaluation)

GPT-4
(official score)

MMLU 5-shot 83.7 86.4

ARC-c
25-shot 96.3 95.6
1-shot 94.9 –

HellaSwag
10-shot 92.5 95.3
1-shot 92.4 –

WinoGrande
5-shot 89.3 87.5
1-shot 86.7 –

DROP 3-shot, F1 78.7 80.9

GSM8K
5-shot CoT 91.6 92.0
8-shot CoT 92.1 –

MATH 4-shot CoT 38.6 42.5⋆

HumanEval 0-shot, pass@1 66.3 67.0

Table 13: Comparison of our results and the official scores reported in LLaMA and Llama 2 papers.

Benchmark Setting
LLaMA-

65B
(our evaluation)

LLaMA-
65B

(official score)

Llama 2-
70B

(our evaluation)

Llama 2-
70B

(official score)

Natural Questions 1-shot 27.7 31.0 27.0 33.0
TriviaQA 1-shot 73.4 84.5 74.0 85.0
MMLU 5-shot 60.1 63.4 67.8 68.9
BBH 3-shot CoT 58.2 43.5 65.0 51.2
GSM8K 8-shot CoT 53.6 50.9 56.4 56.8
MATH 4-shot CoT 2.6 10.6 3.7 13.5

HumanEval 0-shot, pass@1 10.7
(T = 0.8)

23.7
(T = 0.1)

12.7
(T = 0.8)

29.9
(T = 0.1)

MBPP 3-shot, pass@1 44.8
(T = 0.8)

37.7
(T = 0.1)

58.0
(T = 0.8)

45.0
(T = 0.1)
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