
Under review as a conference paper at ICLR 2021

DEEPLTRS: A DEEP LATENT RECOMMENDER SYS-
TEM BASED ON USER RATINGS AND REVIEWS

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce a deep latent recommender system named deepLTRS in order to
provide users with high quality recommendations based on observed user ratings
and texts of product reviews. The underlying motivation is that, when a user scores
only a few products, the texts used in the reviews represent a significant source
of information. The addition of review information can alleviate data sparsity,
thereby enhancing the predictive ability of the model. Our approach adopts a
variational auto-encoder architecture as a generative deep latent variable model
for both an ordinal matrix encoding users scores about products, and a document-
term matrix encoding the reviews. Moreover, different from unique user-based
or item-based models, deepLTRS assumes latent representations for both users
and products. An alternated user/product mini-batching optimization structure is
proposed to jointly capture user and product preferences. Numerical experiments
on simulated and real-world data sets demonstrate that deepLTRS outperforms the
state-of-the-art, in particular in contexts of extreme data sparsity.

1 INTRODUCTION AND RELATED WORKS

In recent research on recommendation systems, the collaborative and content-based filtering meth-
ods are widely used for completing a matrix of user ratings about products. Many applications fall
in this context, ranging from e-commerce to the global positioning of IoT devices.

However, problems arise since these user/product matrices are extremely sparse in practice, which
makes the inference of the non-observed entries challenging. A long series of approaches have been
proposed to tackle this issue.

Introduced by Gopalan et al. (2015), hierarchical Poisson factorization (HPF) assumes that the user
ratings follow Poisson distributions with latent user preferences and latent item attributes as parame-
ters. Compared to HPF which is made of a sparsity model (absence of a rating) along with a response
model (rating values), hierarchical compound Poisson factorization (HCPF, Basbug & Engelhardt,
2016) allows to choose the most appropriate response model from a family of additive exponential
dispersion models, and better captures the relationship between sparsity and response models. More
recently, coupled compound Poisson factorization (CCPF, Basbug & Engelhardt, 2017) was intro-
duced as a more general framework capable of selecting an arbitrary data-generating model among
different mixture models, matrix factorization models and linear regression models.

Unfortunately, although the aforementioned models can account for side information additionally
to the user ratings, they do not introduce a modelling framework specific to the product reviews.
However in practice, the product ratings are often paired with reviews that might contain crucial
information about users preferences. Thus, in McAuley & Leskovec (2013), the hidden factors
and hidden topics (HFT) model combines latent rating factors with latent review topics by defining
a transformation. The collaborative topic regression model (CTR, Wang & Blei, 2011) assumes
review documents are generated by a topic model and combines a rating matrix for recommendation.
Nonetheless, when the auxiliary information is very sparse, the performance of CTR is usually
limited. Worse more, both of them suffer from the limitation that the number of latent factors
learned from the score should be equal to the number of latent topics learned from the reviews.

Other deep learning-based models help capture more complex patterns in the data. For instance,
DeepCoNN (Zheng et al., 2017) uses CNNs to learn representations of users and products from re-

1

Under review as a conference paper at ICLR 2021

views and then a regression layer is introduced for the prediction of ratings. However, it assumes that
reviews are available only in the training phase. As an extension of DeepCoNN, TransNet (Cather-
ine & Cohen, 2017) proposes an additional layer that allows the model to also generate approximate
comments during testing.

We introduce here the deep latent recommender system (deepLTRS, Sections 2-3) for the completion
of rating matrices, accounting for both observed ratings and the textual information collected in the
product reviews. DeepLTRS extends the probabilistic matrix factorization (Mnih & Salakhutdinov,
2008) by relying on the idea of latent Dirichlet allocation (LDA, Blei et al., 2003) and its recent
auto-encoding extensions (Srivastava & Sutton, 2017; Dieng et al., 2019). Therefore, our approach
has the following advantages:

• we adopt a variational auto-encoder architecture as a generative deep latent variable model for
both an ordinal matrix encoding the user/product scores, and a document-term matrix encoding
the reviews. The latter helps at automatically capturing preferences based on additional reviews;

• the presence of text information alleviates data sparsity when few ratings are actually available in
the recommender system;

• the numbers of latent factors and latent topics in deepLTRS are no longer limited. In particular,
they can have different values;

• different from unique user-based or item-based models, an alternated row-column mini batch
strategy is proposed to jointly optimize users and products preferences in the model;

• two decoding functions are introduced in our model, one aims at predicting missing ratings and
the other is used to obtain probabilities of word occurrences, which can be further developed for
the prediction of top words in reviews.

The framework of deepLTRS is shown in Figure 1. First, the latent representations of users and
products are produced by two encoders separately: the input of the user encoder is obtained by con-
catenating a user-majoring score matrix with a corresponding review matrix; similarly, the entry of
the product encoder is a concatenation of a item-majoring score matrix and a review matrix. Next,
two decoding functions are introduced respectively for ratings and reviews. Finally, through this
network, we obtained a completed score matrix and a word occurrence probability matrix. All pa-
rameters are optimized with a specific alternated row-column mini batch (Section 3.2). Our approach
is tested on simulated and real world data sets (Section 4) and compared with other state-of-the-art
approaches in contexts of extreme data sparsity.

Figure 1: Summary of the deepLTRS model.

2 A RATING-AND-REVIEW BASED RECOMMENDER SYSTEM

2.1 PRELIMINARIES

In this work, we consider data sets involving M users scoring and reviewing P products. Such data
sets can be encoded by two matrices: an ordinal data matrix Y accounting for the scores that users

2

Under review as a conference paper at ICLR 2021

assign to products and a document-term matrix (DTM) W encoding the reviews that users comment
on products.

Ordinal data. The ordinal data matrix Y in NM×P is such that Yij is the score that the i-th
user assigns to the j-th product. This matrix can be very sparse in practice (most of its entries are
missing) corresponding to users not scoring/reviewing some products. Conversely, when a score is
assigned it takes values in {1, . . . ,H} with H > 1. Henceforth, we assume that an ordinal scale is
consistently defined. For instance, when customers evaluate products, 1 always means “very poor”
and H is always associated with “excellent” reviews. The number of ordered levels H is assumed to
be the same for all (not missing) Yij . If it is not the case, a scale conversion pre-processing algorithm
(Gilula et al., 2018) can be employed to normalize the number of levels.

Text data. By considering all the available reviews, it is possible to store all the different vocables
employed by the users into a dictionary of size V . Thenceforth, we denote by W (i,j) a row vector
of size V encoding the review by the i-th user to the j-th product. The v-th entry of W (i,j), denoted
by W (i,j)

v , is the number of times (possibly zero) that the word v of the dictionary appears into the
corresponding review. The document-term matrix W is obtained by row concatenation of all the
row vectors W (i,j).

For the sake of clarity, we assume that the review W (i,j) exists if and only if Yij is observed. Note
that, since each row in W corresponds to one (and only one) not missing entry in Y , the number of
rows in the DTM is the same as the number of observed values in Y .

2.2 GENERATIVE MODELS

It is now assumed that both users and products have latent representations in a low-dimensional
space RD, with D � min{M,P}. In the following, Ri denotes the latent representation of the i-th
user, similarly Cj is the latent representation of the j-th product.

Ratings. The following generative model is now considered for the ratings:

Yij = 〈Ri, Cj〉+ εij ,∀i = 1, ...,M,∀j = 1, ..., P, (1)

where 〈·, ·〉 is the standard scalar product and the residuals εij are assumed to be i.i.d. and normally
distributed random variables, with zero mean and unknown variance η2:

εij ∼ N (0, η2).

In the following, Ri and Cj are seen as random vectors, such that

Ri
i.i.d∼ N (0, ID),∀i

Cj
i.i.d∼ N (0, ID),∀j

(2)

withRi ⊥⊥ Cj . This model is known as probabilistic matrix factorization (PMF, Mnih & Salakhutdi-
nov, 2008). Note that, due to rotational invariance of PMF, the choice of isotropic prior distributions
for Ri and Cj is in no way restrictive (cf. Appendix A).

Reviews. We now extend PMF by also relying on Ri and Cj to characterize the document-term
matrix W . Following the generative model of LDA in Blei et al. (2003), each document W (i,j)

is drawn from a mixture distribution over a set of K latent topics. The topic proportions in the
document W (i,j) are denoted by θij , a vector lying in the K − 1 simplex.

In deepLTRS, each topic vector of proportions is now assumed to be sampled by decoding layers as
follows

θij = σ(fγ (Ri, Cj)), (3)

where fγ : R2D → RK is a continuous function approximated by a neural network parametrized by
γ and σ(·) denotes the softmax function. We emphasize that all the θij are no longer independent
contrary to the traditional LDA model.

3

Under review as a conference paper at ICLR 2021

Yij

θij

Ri Cj

η2

γ

W (i,j)β

M P

MP

Figure 2: Graphical representation of the generative model (variational parameters are not in-
cluded).

Furthermore, the multinomial PCA formulation of LDA is considered as

p(W (i,j)|θij) ∼ Multinomial(Lij , βθij), (4)

where Lij is the number of words in the review W (i,j) and β ∈ RV×K is the matrix whose entry
βvk is the probability that vocable v occurs in topic k. By construction,

∑V
v=1 βvk = 1,∀k. In

addition, conditionally to the vectors θij , all the reviews {W (i,j)} are independent random vectors.

Finally, we emphasize that given the pair (Ri, Cj), Yij and W (i,j) are not assumed to be inde-
pendent. Instead, we described a framework in which the dependence between them is completely
captured by the latent embedding vectors Ri and Cj . A graphical representation of the generative
model described so far can be seen in Figure 2.

3 VARIATIONAL AUTO-ENCODING INFERENCE

3.1 PROPOSED INFERENCE

A natural inference procedure associated with the generative model proposed would consist in look-
ing for estimates (η2, γ, β) maximizing the (integrated) log-likelihood of the observed data (Y,W).
Unfortunately, this quantity is not directly tractable and we rely on a variational lower bound to
approximate it. Let us consider a joint distribution q(·) over the pair (R,C) of all (Ri)i and (Cj)j .
Thanks to Jensen inequality, it holds that

log p(Y,W |β, η2, γ) ≥Eq(R,C)

[
log

p(Y,W,R,C|β, η2, γ)
q(R,C)

]
=Eq(R,C)

[
log p(W,Y |R,C, β, γ, η2) + log

p(R,C)

q(R,C)

]
=Eq(R,C) [log p(W |R,C, β)] + Eq(R,C)

[
log p(Y |R,C, η2, γ)

]
−DKL(q(R,C)||p(R,C))

(5)

where the DKL term denotes the Kullback-Leibler divergence between the variational posterior
distribution of the latent row vectors (Ri)i, (Cj)j and their prior distribution. The above inequality
holds for every joint distribution q(·) over the pair (R,C). In order to work with a tractable family
of distributions, the following mean-field assumption is made

q(R,C) = q(R)q(C) =

M∏
i=1

P∏
j=1

q(Ri)q(Cj). (6)

4

Under review as a conference paper at ICLR 2021

Moreover, since Ri and Cj follow Gaussian prior distributions (Eq. 2), q(·) is assumed to be as
follows:

q(Ri) = g(Ri;µ
R
i := h1,φ(Yi,W

(i,·)), SRi := h2,φ(Yi,W
(i,·))), (7)

and
q(Cj) = g(Cj ;µ

C
j := l1,ι(Y

j ,W (·,j)), SCj := l2,ι(Y
j ,W (·,j))), (8)

where g(·;µ, S) is the pdf of a Gaussian multivariate distribution with mean µ and variance S.
The two matrices SRi and SCj are assumed to be diagonal matrices with D elements. Moreover,
Yi (respectively Y j) denotes the i-th row (column) of Y , W (i,·) :=

∑
jW

(i,j) corresponds to a
document concatenating all the reviews written by user i and W (·,j) :=

∑
iW

(i,j) corresponds
to all the reviews about the j-th product. The functions h1,φ and h2,φ encode elements of RP+V

to elements of RD. Similarly, l1,ι and l2,ι encode elements of RM+V to elements of RD. These
functions are known as the network encoders parametrized by φ and ι, respectively.

Thanks to Eqs. 1-4-6-7-8 and by computing the KL divergence in Eq. 5, the evidence lower bound
(ELBO) on the right hand side of Eq. 5 can be further developed as follows:

ELBO(Θ) =
∑
i,j

(
Eq(Ri,Cj)

[
−1

2

(
(Yij − (RTi Cj))

2

η2
+ log η2

)])

+
∑
i,j

(
Eq(Ri,Cj)

[(
W (i,j)

)T
log (βσ(fγ(Ri, Cj)))

])

−
∑
i

[
−1

2

(
tr(SRi) + (µRi)TµRi −D − log |SRi |

)]
−
∑
j

[
−1

2

(
tr(SCj) + (µCj)TµCj −D − log |SCj |

)]
+ ξ

(9)

where Θ := {η2, γ, β, φ, ι} denotes the set of the model and variational parameters and ξ is a
constant term that includes all the elements not depending on Θ.

Unconstrained β. From a practical point of view, when optimizing the ELBO with respect to Θ,
we remove the constraint on the columns of β, that have no longer to lie on the V − 1 simplex. This
assumption corresponds to the ProdLDA model introduced by Srivastava & Sutton (2017) and which
allows to obtain higher quality topics with respect to a standard LDA. In order to obtain consistent
parameters for the multinomial distribution followed by W (i,j), a softmax function σ(·) is applied
to the product βθij instead of θij only.

3.2 ALTERNATED ROW-COLUMN MINI-BATCH OPTIMIZATION

Due to the special architecture of deelLTRS, we introduced an alternated row-column mini-batch
strategy to jointly optimize preferences of users and products.

Performing mini-batch optimization (paired with stochastic gradient descent algorithms) is neces-
sary to reduce the computational burden when working with large data sets. However, the ELBO
in Eq. 9 does not factorize over the number of observations. In more detail, the model sees the pair
(Yij ,W

(i,j)) as one observation. Assuming for simplicity that there is no missing data, the total
number of observations is MP . The ELBO in Eq. 9 is unfortunately not the sum of MP terms due
to the graphical structure of the generative model in Figure 2. Note that this point marks a substan-
tial difference between the model we adopt and standard deep latent variable models (Kingma &
Welling, 2013; Rezende et al., 2014) where the ELBO can be written as the sum of as many terms
as the number of observations.

However, stochastic gradient descent can be performed thanks to the following property. Let us
define

zi := −DKL(q(Ri) ‖ p(Ri)) + Eq(Ri,C)

[
log p(Yi|Ri, C,Θ) + log p(W (i,.)|Ri, C,Θ)

]
, (10)

5

Under review as a conference paper at ICLR 2021

for all i ∈ {1, . . . ,M}, with Yi, Ri and W (i,.) previously defined. We now introduce a new random
variable Z such that

π := P {Z = zi} =
1

M
(11)

for all i. A sample of Z corresponds to a uniformly at random extraction of one row in Y .

Proposition 1. If re-injection is assumed, so that Z1, Z2, . . . are i.i.d. replicates of Z, then:

Eπ
[
∇(η2,γ,β,φ) (MZi)

]
= ∇(η2,γ,β,φ) (ELBO(Θ)) , (12)

where∇x(f) denotes the gradient of a function f(·) with respect to the variable(s) x (cf Appendix B
for proof).

The above proposition states that the gradient of MZi with respect to all parameters but ι (the
column autoencoder’s parameters) is an unbiased estimator of the ELBO’s gradient with respect to
the same parameters. Similarly, the quantity

wj = −DKL(q(Cj) ‖ p(Cj)) + Eq(R,Cj)

[
log p(Y j |R,Cj ,Θ) + log p(W (.,j)|R,Cj ,Θ)

]
, (13)

can be used to introduce an unbiased estimator of∇(η2,γ,β,ι)(ELBO(Θ)), where φ is now left out.

The above equations justify a maximization of the ELBO which alternates rows and columns mini-
batching. When performing row mini-batching the whole matrix C is considered (and in general
all columns in Y and all the reviews by product). The optimization is performed with respect to all
the model parameters except for ι. When performing column mini-batching the whole matrix R is
considered (and in general all rows of Y and all the reviews by user). The optimization is performed
with respect to all the model parameters except for φ.

4 NUMERICAL EXPERIMENTS

4.1 SIMULATED DATA AND EFFECT OF THE DATA SPARSITY

This section aims at highlighting the main features of deepLTRS on simulated data and to compare
it with some state-of-the-art methods, in condition of high data sparsity.

Simulation setup. An ordinal data matrix Y with M = 750 rows and P = 600 columns is
simulated according to a latent continuous cluster model. The rows and columns of Y are randomly
assigned to two latent groups, in equal proportions. Then, for each pair (i, j) corresponding to
an entry of Y , a Gaussian random variable Zij is sampled as Table 1. In addition, the following
thresholds t0 = −∞, t1 = 1.5, t2 = 2.5, t3 = 3.5, t4 = +∞ are used to sample the note
Yij ∈ {1, ..., 4} as

Yij =

4∑
k=1

k1(Zij)]tk−1,tk[(14)

Next, four different texts from the BBC news (denoted by A, B, C, D) are used to build a message
associated to the note Yij according to the scheme summarized in Table 2.

Thus, when the user i in cluster X(R)
i = 2 rates the product j in cluster X(C)

j = 1, a random
variable Zij ∼ N (3, 1) is sampled, Yij is obtained via Eq.14 and the review W (i,j) is built by
random extraction of words from message C. All the sampled messages have an average length of
100 words. Finally and in order to introduce some noise, only 80% of words are extracted from the
main topics, while the remaining 20% is extracted from the other topics uniformly at random.

cluster 1 cluster 2
cluster 1 ∼ N (2, 1) ∼ N (3, 1)
cluster 2 ∼ N (3, 1) ∼ N (2, 1)

Table 1: Score assignments for simulated data.

cluster 1 cluster 2
cluster 1 A B
cluster 2 C D

Table 2: Topic assignments for simulated data.

6

Under review as a conference paper at ICLR 2021

0.5 0.6 0.7 0.8 0.9 1.0
Effect of the sparsity for deepLTRS and deepLTRS without texts

0.75

1.00

1.25

1.50

1.75

2.00

2.25

Te
st

 R
M

SE

deepLTRS
deepLTRS (no texts)

Figure 3: Comparison of deepLTRS with and
without text information.

0.5 0.6 0.7 0.8 0.9 1.0
Effect of the sparsity for four different models

1.0

1.5

2.0

2.5

Te
st

 R
M

SE

HFT
HPF
CCPF-PMF
deepLTRS

Figure 4: Test RMSE of models with different
sparsity level on simulated data.

DeepLTRS with and without text data. We first run a simulation to highlight the interest in using
the reviews to make more accurate predictions of the ratings. To do so, 10 data sets are simulated
according to the above simulation setup, with sparsity rates varying in the interval [0.5, 0.99]. The
ratio of the training, validation and test set is divided into 80%, 10% and 10%. Figure 3 shows
the evolution of the test RMSE of deepLTRS (with D = K = 50), with and without using text
data, versus the data sparsity level. One can observe that, even though both models suffer the high
data sparsity (increasing RMSE), the use of the text greatly helps deepLTRS in maintaining a high
prediction accuracy for data sets with many missing values. Furthermore, the use of text reviews
greatly reduce the variance of predictions.

Benchmark. The same experimental setup was used to benchmark deepLTRS by comparing it
to some state-of-the-art methods: HFT (McAuley & Leskovec, 2013), HPF (Gopalan et al., 2015)
and CCPF (Basbug & Engelhardt, 2017). Since CCPF has many choices of combination between
sparsity and response models, we chose one example with better performance. Figure 4 shows
the evolution of the test RMSE of deepLTRS (with texts and D = K = 50) and its competitors.
Although HFT accounts for the text reviews, it does not respond well to our simulated scenario and
turns out to be very sensitive to the data sparsity. HPF also appears to be quite sensitive to the data
sparsity and it always performs worse than CCPF and deepLTRS. CCPF and deepLTRS present
less sensitivity to the sparsity as the changes in the RMSE are small along with the sparsity level
and deepLTRS outperforms CCPF here. Let us recall that the simulation setup does not follow the
deepLTRS generative model and therefore does not favour any method here.

4.2 AMAZON FINE FOOD DATA

We now consider applying deepLTRS to a real-world data set consisting of fine food reviews from
Amazon. The data sets can be downloaded freely on the dedicated website1. Here, deepLTRS is
compared with previously mentioned models: HFT, HPF, CCPF and TransNet.

Data and pre-processing. This data set spans over a period of more than 10 years, including all
568, 464 reviews up to October 2012. All records include product and user information, ratings,
time of the review and a plain-text review. In the data pre-processing step, we only considered users
with more than 20 reviews and products reviewed by more than 50 users to obtain more meaningful
information. Retained data were processed by removing all punctuations and numbers. The final
data set has M = 1643 users, P = 1733 products, a vocabulary with V = 5733 unique words and
32811 text reviews in total. The data sparsity is here of 0.989%.

Settings. Five independent runs of the algorithm were performed. For each run, we randomly
selected 80% of the data as the training set, 10% samples for validation and the remaining 10%
data as the test set. We trained our model for 100 epochs. As a method for stochastic optimization,
we adopt an Adam optimizer, with a learning rate lr = 2e−3. The RMSE is calculated on both
the validation and test set. Detailed architecture of our network is described in the supplementary

1Amazon Fine Food reviews https://snap.stanford.edu/data/web-FineFoods.html

7

https://snap.stanford.edu/data/web-FineFoods.html

Under review as a conference paper at ICLR 2021

Table 3: Test RMSE on Amazon Fine Food data.
Model Run 1 Run 2 Run 3 Runt 4 Run 5 Average

HFT 1.4241 1.5327 1.4737 1.4228 1.3850 1.4477 (±0.0465)
HPF 2.9486 2.9682 2.9311 2.9428 2.9734 2.9528 (±0.0144)
CCPF-PMF 1.2695 1.2964 1.3035 1.2923 1.2950 1.2913 (±0.0105)
TransNet 1.3772 1.3806 1.3781 1.3776 1.3782 1.3783 (±0.0012)
deepLTRS 1.1364 1.2595 1.2445 1.1710 1.2475 1.2118 (±0.0489)

material (cf Appendix D). Reported test RMSE is obtained when the RMSE on the validation set
was the lowest.

Rating prediction. Table 3 presents the test RMSE for deepLTRS (with D = K = 50) and its
competitors on the predicted ratings for the Amazon fine food data. Once again, deepLTRS has better
performance than other models, with an average test RMSE equal to 1.2118. Since HFT is restricted
by the numbers of latent factors and topics should be the same value, we set D = K = 50, even a
larger K value can enable us to obtain better results. Results presented demonstrate the advantage
of our model which jointly takes into account both users and products preferences.

Interpretability. In order to deeper understand the meaning of latent representations, we provide
in Figure 5 the visualisation of users latent positions on two specific latent variables (var. 3 and
11) that can be easily interpreted according to average ratings (left) and numbers of reviews (right)
the users give to products. Indeed, it clearly appears that var. 11 well captures the rating scales of
Amazon users whereas var. 3 seems to encode the users activities (number of reviews). A similar
analysis were done on product latent representations (cf Figure 6 in the supplementary material).

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5
V3

V
11

Avg. rating

●

●

●

●

●

1

2

3

4

5
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

−0.8

−0.4

0.0

0.4

0.0 0.5 1.0 1.5
V3

V
11

Review nb

●

●

●

high (>30)

low (<=5)

medium

Figure 5: Latent representation of users on var. 3 and 11, according to average ratings (left) and
numbers of reviews (right) given to products.

5 CONCLUSION

We introduced the deepLTRS model for recommendation using both the ordinal and text data avail-
able. Our approach adopted a variational auto-encoder architecture as the generative deep latent
variable model for both an ordinal matrix encoding the user/product ratings, and a document-term
matrix encoding the reviews. DeepLTRS presented the advantage in jointly learning representations
of users and products through the alternated mini-batching optimization. Numerical experiments on
simulated and real-world data sets showed that our model outperforms competitors in the context of
high data sparsity. The further ability of deepLTRS to predict the top words used by reviewers to
comment products will be inspected in future works.

REFERENCES

Mehmet Basbug and Barbara Engelhardt. Hierarchical compound poisson factorization. In Interna-
tional Conference on Machine Learning, pp. 1795–1803, 2016.

8

Under review as a conference paper at ICLR 2021

Mehmet E Basbug and Barbara E Engelhardt. Coupled compound poisson factorization. arXiv
preprint arXiv:1701.02058, 2017.

Yoshua Bengio and Yann LeCun. Scaling learning algorithms towards AI. In Large Scale Kernel
Machines. MIT Press, 2007.

D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

Rose Catherine and William Cohen. Transnets: Learning to transform for recommendation. In
Proceedings of the eleventh ACM conference on recommender systems, pp. 288–296, 2017.

Adji B Dieng, Francisco JR Ruiz, and David M Blei. Topic modeling in embedding spaces. arXiv
preprint arXiv:1907.04907, 2019.

Zvi Gilula, Robert McCulloch, Ya?acov Ritov, and Oleg Urminsky. A study into mechanisms of
attitudinal scale conversion: A stochastic ordering approach. 2018.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Prem Gopalan, Jake M Hofman, and David M Blei. Scalable recommendation with hierarchical
poisson factorization. In Proceedings of the Thirty-First Conference on Uncertainty in Artificial
Intelligence, pp. 326–335, 2015.

Geoffrey E. Hinton, Simon Osindero, and Yee Whye Teh. A fast learning algorithm for deep belief
nets. Neural Computation, 18:1527–1554, 2006.

Diederik P Kingma and Max Welling. Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114, 2013.

Julian McAuley and Jure Leskovec. Hidden factors and hidden topics: understanding rating dimen-
sions with review text. In Proceedings of the 7th ACM conference on Recommender systems, pp.
165–172, 2013.

Andriy Mnih and Russ R Salakhutdinov. Probabilistic matrix factorization. In Advances in neural
information processing systems, pp. 1257–1264, 2008.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In Proceedings of the 31st International Con-
ference on International Conference on Machine Learning-Volume 32, pp. II–1278. JMLR. org,
2014.

Akash Srivastava and Charles Sutton. Autoencoding variational inference for topic models. arXiv
preprint arXiv:1703.01488, 2017.

Chong Wang and David M. Blei. Collaborative topic modeling for recommending scientific ar-
ticles. KDD ’11, New York, NY, USA, 2011. Association for Computing Machinery. ISBN
9781450308137. doi: 10.1145/2020408.2020480. URL https://doi.org/10.1145/
2020408.2020480.

Lei Zheng, Vahid Noroozi, and Philip S. Yu. Joint deep modeling of users and items using reviews
for recommendation, 2017.

A ROTATIONAL INVARIANCE IN PMF

From Eqs.1-2 it easily follows that

Yij ∼ N (0, D + η2). (15)

Now, instead of assuming isotropic prior distributions for Ri and Cj , we set

Ri
i.i.d∼ N (0,ΣR), ∀i

Cj
i.i.d∼ N (0,ΣC), ∀j

9

https://doi.org/10.1145/2020408.2020480
https://doi.org/10.1145/2020408.2020480

Under review as a conference paper at ICLR 2021

with ΣR and ΣC being symmetric positive definite matrices. Then

ΣR = QRΛRQ
T
R,

with ΛR being the diagonal matrix with the eigenvalues of ΣR on the main diagonal and QR the
orthogonal matrix of the corresponding eigenvectors. Similarly

ΣC = QCΛCQ
T
C .

Then, the two random vectors Ri := Λ
− 1

2

R QTRRi and Cj := Λ
− 1

2

C QTCCj are independent and follow
an isotropic Gaussian distribution each. Thus, if we set

Yij = R
T

i Cj + εij ,

we recover the marginal distribution in Eq. 15.

B PROOF OF PROPOSITION 1

Proof. First, let us notice that, due to the definition of zi and the assumption in Eq. 6, it holds that

∇(η2,γ,β,φ)zi = ∇(η2,γ,β,φ)

−DKL(q(Ri) ‖ p(Ri)) +

P∑
j=1

(
Eq(Ri,Cj)[log p(Yij |Ri, Cj ,Θ)]

)
.

+

P∑
j=1

(Eq(Ri,Cj)[log p(W (i,j))|Ri, Cj ,Θ)])

 .
(16)

Then, Eq. 11 leads to

Eπ
(
∇(η2,γ,β,φ)MZi

)
=

M∑
i=1

∇(η2,γ,β,φ)zi

and replacing Eq. 16 into the above equation we obtain Eq. 12, recalling that∇(η2,γ,β,φ)(·) does not
include the partial derivative with respect to ι. Thus

∇(η2,γ,β,φ) (−DKL(q(Cj) ‖ p(Cj)) = 0.

C ADDITIONAL FIGURES FOR AMAZON DATA

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

● ●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

● ●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●
●

●

●

●●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−0.6

−0.3

0.0

0.3

−0.5 0.0
V11

V
46

Avg. rating

●

●

●

●

2

3

4

5

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●

● ●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

● ●

●

●

●●
●

●

●

●●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●
●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●
●

●●
●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●●

●
●

●

●

●

● ●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●●
●

●●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

● ●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●
●

● ●

●●
●

●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

● ●●
●

●

●

●●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

−0.6

−0.3

0.0

0.3

−0.5 0.0
V11

V
46

Review nb

●

●

●

high (>100)

low (<=25)

medium

Figure 6: Latent representation of products on var. 11 and 46, according to average rating (left) and
number of reviews (right) they receive from users.

10

Under review as a conference paper at ICLR 2021

D ARCHITECTURE OF DEEPLTRS

We detailed here the deepLTRS architecture as following.

Firstly, in the user encoder, the first hidden layer has init dim R = (P + V) neurons, where
P is equal to the number of products, and V is the number of words in the text vocabulary; the
second hidden layer has mid dim = 50 neurons. In the product encoder, the first hidden layer has
init dim C = (M + V) neurons, where M is equal to the number of users; the second hidden
layer has the same neurons and operations as in the user encoder. Softplus activation function are
applied in each layer, followed by a dropout with a ratio of 0.2 and batch normalization.

Secondly, for the decoding phase, the first two layers have 2 × int dim and 80 neurons separately,
where int dim = init dim R when decoding for users and int dim = init dim C for prod-
ucts. The number of neurons in the third layer depends on the number of topics, here we used
nb of topics = 50. Two decoding functions are introduced, one is used to decode the rating ma-
trix, and the other is applied on review matrix. In addition, Relu activation function, a dropout
with a ratio of 0.2 and batch normalization are applied. In order to obtain the probability of word
occurrence, a Softmax function is used in the end.

11

	Introduction and related works
	A rating-and-review based recommender system
	Preliminaries
	Generative models

	Variational auto-encoding inference
	Proposed inference
	Alternated row-column mini-batch optimization

	Numerical experiments
	Simulated data and effect of the data sparsity
	Amazon Fine Food data

	Conclusion
	Rotational invariance in PMF
	Proof of Proposition ??
	Additional figures for Amazon data
	Architecture of deepLTRS

