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ABSTRACT

Denoising Diffusion Probabilistic Models (DDPMs) typically rely on zero-mean
white Gaussian noise during both training and sample generation. In this paper,
we demonstrate that image generation in pre-trained DDPMs is not restricted to
Gaussian noise; any zero-mean, symmetrically distributed noise or signal can be
equally effective. We present theoretical and empirical evidence that symmetry,
rather than the specific distribution type, is a sufficient condition for successful
image generation using a pre-trained DDPM. Our findings enable DDPMs to op-
erate more flexibly on resource-constrained devices by utilizing alternative noise
or signal types, making them suitable for applications such as semantic communi-
cation, where symmetrical noise and signals are prevalent. This work establishes
new avenues for efficient and adaptable generative models in real-world environ-
ments.

1 INTRODUCTION

Denoising Diffusion Probabilistic Models (DDPMs) are a powerful category of generative models
that have gained prominence for their ability to produce high-quality images. In contrast to tradi-
tional generative models like Generative Adversarial Networks (GANs) or Variational Autoencoders
(VAEs), DDPMs use a diffusion process inspired by statistical physics (Sohl-Dickstein et al., 2015;
Ho et al., 2020). This approach involves modeling data distributions by reversing a noise-corruption
process that gradually distorts the data over time. The diffusion process consists of two phases: a
forward phase, where Gaussian noise is progressively added to data, and a reverse phase, where a
neural network learns to denoise the data to recover the original distribution.

A typical implementation of DDPMs employs white Gaussian noise during the forward diffusion
and denoising process. However, this reliance on white Gaussian noise may limit flexibility, es-
pecially on devices with computational constraints, such as smartphones, where generating high-
quality white Gaussian noise may be infeasible or unnecessary. This raises a critical question: could
alternative noise distributions, such as colored Gaussian noise or non-Gaussian, symmetric noise
or signal, also support effective image generation? By examining these looser conditions for the
noise distribution in pre-trained DDPMs, we aim to identify configurations that are more suitable
for resource-constrained environments.

In this paper, we focus on exploring how pre-trained DDPMs can operate with non-standard noise
distributions to facilitate image generation on devices with limited computational power. Specif-
ically, we investigate whether symmetric noise or signal can replace white Gaussian noise in the
denoising process without compromising image quality. This line of inquiry could broaden the ap-
plicability of DDPMs, making them more practical for mobile or low-power applications where
starting from scratch to train models is impractical.

The contributions of this paper are as follows:

1. We apply the Information Bottleneck (IB) principle to DDPMs to analyze and derive key
design objectives for improving image generation on computationally constrained devices.
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2. We establish that a symmetric noise distribution suffices for effective image generation in
pre-trained DDPMs, challenging the assumption that white Gaussian noise is essential.

3. We demonstrate that random noise from symmetric distributions can successfully generate
images with DDPMs and that different images can be generated by simply reshuffling noise
samples.

4. We validate that symmetrical random signals are effective for generating samples in
DDPMs, paving the way for optimized usage in resource-limited settings.

5. We extend our findings to semantic communication, where DDPMs generate content under
Additive White Gaussian Noise (AWGN) corruption. Additionally, we show that using an
interleaver is an efficient method for content generation in DDPM-based semantic commu-
nication.

2 RELATED WORK

In DDPMs, white Gaussian noise has traditionally been used for both the forward and reverse pro-
cesses (Ho et al., 2020; Choi et al., 2022). This type of noise is characterized by a flat power
spectral density (PSD) across all frequencies (Kuo, 2018). In (Nachmani et al., 2021), alternative
noise types, such as Gamma noise and a mixture of Gaussian noises, were applied during the diffu-
sion process, leading to performance improvements. Further optimization of DDPMs was achieved
through noise level estimation and scheduling adjustments, as explored in (San-Roman et al., 2021).
The work in (Stevens et al., 2023) examined the removal of structured noise in diffusion models. Ad-
ditionally, (Wyatt et al., 2022) introduced a multi-scale simplex noise diffusion method for anomaly
detection, showing that simplex noise outperformed Gaussian noise in certain tasks. More recently,
blue noise, which has a PSD that increases with frequency, was incorporated into diffusion mod-
els (Huang et al., 2024). This approach integrates correlated noise into model training, resulting in
improved image quality compared to models using white Gaussian noise (Huang et al., 2024). In
Huberman-Spiegelglas et al. (2024), an alternative latent noise space for DDPM was proposed for
editing operations via simple means and an inversion method. In Wen et al. (2024), a generative
change detection (CD) model called GCD-DDPM was proposed to directly generate CD maps by
exploiting DDPM. Recently, Mix-DDPM was proposed to randomly select a Gaussian component
and then add the chosen Gaussian noise to perturb the signals into a known distribution Wang et al.
(2024).

Regarding modifications to DDPMs, several improvements have been introduced, such as enhanced
noise scheduling and reduced gradient noise (Nichol & Dhariwal, 2021). A Discrete Denoising
Diffusion Probabilistic Model (D3PM) was proposed in (Austin et al., 2021) for discrete data. It-
erative Latent Variable Refinement (ILVR), which generates high-quality images using a reference
image, was introduced in (Choi et al., 2021). In (Zhao et al., 2023), a multimodal image fusion
method using DDPMs was explored, while (Ryu & Ye, 2022) introduced a pyramidal DDPM for
high-resolution image generation. Recently, a multi-task denoising diffusion framework, Diffu-
sionMTL, was proposed in (Ye & Xu, 2024) for refining task prediction. A Denoising Diffusion
Implicit Model (DDIM) was introduced in (Song et al., 2020), featuring a faster reverse denoising
process. Denoising Diffusion Restoration Models (DDRM) (Kawar et al., 2022) leveraged pre-
trained models to solve linear inverse problems, while a Single Image Denoising Diffusion Model
(SinDDM) (Kulikov et al., 2023) employed a multi-scale diffusion process to learn internal image
statistics. Bilateral Denoising Diffusion Models (BDDM) (Lam et al., 2021) reduced the number of
steps required for high-quality sample generation, and Latent Diffusion Models (LDMs) (Rombach
et al., 2022), utilizing autoencoders’ latent space, provided both quality and flexibility, forming the
basis for Stable Diffusion (Bolya & Hoffman, 2023; Tang et al., 2022).

In terms of theoretical studies in DDPMs, the variational lower bound of diffusion models was sim-
plified using the signal-to-noise ratio (Kingma et al., 2021). Sampling from diffusion probabilistic
models (DPMs) was investigated in (Lu et al., 2022), where an exact solution for diffusion ODEs
was proposed. The Higher-Order Denoising Diffusion Solver (GENIE) (Dockhorn et al., 2022) in-
troduced higher-order gradients to accelerate synthesis, while (Bao et al., 2022) proposed an analytic
diffusion probabilistic model for variance estimation without additional training.
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3 INTRODUCTION TO DDPM

The DDPM consists of two processes: the forward diffusion process and the reverse denoising
process (Ho et al., 2020). The model is trained to reverse the forward diffusion process by learning
how to denoise noisy samples step by step.

In the forward diffusion process, noise is progressively added to the data over T steps, transforming a
data sample x0 into pure noise xT . Each step in this process can be described as a small perturbation
of the sample, controlled by a variance schedule βt (Ho et al., 2020):

q(xt|xt−1) = N (xt;
√
1− βtxt−1, βtI) (1)

Starting with a data sample x0, the sample at step t is obtained as (Ho et al., 2020):

q(xt|x0) = N (xt;
√
ᾱtx0, (1− ᾱt)I) (2)

where αt = 1− βt, and ᾱt =
∏t

s=1 αs represents the cumulative product of the variance schedule.
The noise scheduler βt is designed such that at the end of the diffusion process ᾱt → 0, resulting
in (Ho et al., 2020):

q(xT ) ≈ N (xT ;0, I), (3)

The reverse denoising process aims to learn how to denoise a sample xt at each step by predicting
xt−1 from xt. The learned reverse process is parameterized as (Ho et al., 2020):

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (4)

Typically, Σθ is set to a time-dependent constant, and the mean µθ is predicted by a neural network.
The model is trained by minimizing the following variational bound (Ho et al., 2020):

Lvlb = Eq [DKL(q(xt−1|xt, x0)||pθ(xt−1|xt))] (5)

Alternatively, the training objective can be simplified to predict the noise ϵ added at each step (Ho
et al., 2020):

Lsimple = Et,x0,ϵ

[
∥ϵ− ϵθ(xt, t)∥2

]
(6)

where ϵθ(xt, t) is the noise predicted by the model, and ϵ is the true noise added in the forward
process.

Once trained, the model generates samples by starting from Gaussian noise xT ∼ N (0, I) and iter-
atively applying the reverse process to generate progressively less noisy samples (Ho et al., 2020):

xt−1 =
1

√
αt

(
xt −

βt√
1− ᾱt

ϵθ(xt, t)

)
+ σtz (7)

where z ∼ N (0, I) is sampled from a standard Gaussian distribution, and σt controls the noise
variance at each step.

For ease of analysis, let us denote the output from the reverse denoising process as x̂0. In most
cases, the denoised output x̂0 differs from the initial input x0.

4 INFORMATION BOTTLENECK PRINCIPLE FOR DDPM

The Information Bottleneck (IB) principle is a concept from information theory that provides a
framework for compressing data while preserving the most relevant information for a specific
task (Tishby et al., 2000). The IB principle has been explored to gain insights into how deep learn-
ing models (Tishby & Zaslavsky, 2015), particularly deep neural networks (DNNs), generalize from
training data to unseen data. In deep learning, the goal is to learn representations of the input data
X that are useful for predicting the target labels Y . This learning process can be viewed through the
lens of the IB principle, which seeks to balance the compression of input data with the preservation
of predictive information.

The IB principle is applied to deep learning as follows (Tishby & Zaslavsky, 2015):

min
p(T |X)

L(p(T |X)) = I(X;T )− βI(T ;Y ) (8)
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where T represents the hidden layer activations in the neural network; I(X;T ) quantifies how much
information the hidden representation T retains about the input X; and I(T ;Y ) measures how much
information T provides about the target output Y .

In deep networks, each layer progressively transforms the input data into representations that com-
press irrelevant information (reducing I(X;T )) while retaining the information crucial for predict-
ing Y (maximizing I(T ;Y )). This can be viewed as each layer acting like a successive stage in
IB optimization. Research has shown that during the training of deep neural networks, two distinct
phases occur (Tishby & Zaslavsky, 2015):

• Fitting phase: The network fits the training data by increasing I(T ;Y ), ensuring that the
hidden representations capture meaningful patterns in the data.

• Compression phase: The network compresses the information in the input by reducing
I(X;T ), discarding irrelevant details and improving generalization.

The IB principle provides a theoretical framework for understanding how deep learning models
balance fitting the data and generalizing well to new inputs. It offers insights into the trade-off
between model complexity and predictive accuracy, key for avoiding overfitting.

In DDPM, the initial data sample x0, the final diffusion outcome xT , and the denoised estimate x̂0

form a Markov chain:
x0 → xT → x̂0. (9)

The input x0 to the diffusion process can either be a matrix or a vector. If it is a matrix, we can
vectorize it (Barratt, 2018), and assume the vector length is N .

In DDPM design, two key goals should be achieved based on the IB principle:

max I(xT ; x̂0), (10)
min I(x0;xT ). (11)

5 SYMMETRY IS ALL YOU NEED

In this paper, we study image generation based on a trained DDPM, so we focus on (10). The mutual
information I(xT ; x̂0) measures the amount of information that the noisy image xT shares with the
denoised output x̂0:

I(xT ; x̂0) = h(x̂0)− h(x̂0 | xT ) (12)

where h(x̂0) is the differential entropy of x̂0; h(x̂0 | xT ) is the conditional differential entropy of
x̂0 given xT . Our goal is to maximize I(xT ; x̂0) by appropriately choosing the distribution of xT

and designing the denoising process.

A random variable x has a symmetric distribution if its probability density function (PDF) satisfies:

fx(x) = fx(−x) for all x ∈ R (13)

for example, Gaussian Distribution, Laplace Distribution, Uniform Distribution, etc. Such variables
often have the properties: 1) Zero Mean: Symmetric around the mean (often zero). 2) Equal Tail
Behavior: The probability of deviations above and below the mean is the same. 3) Moment Charac-
teristics: Odd moments (about the mean) are zero; even moments capture the distribution’s spread.

For entropy h(xT ), symmetric distributions can have high entropy, contributing positively to
I(xT ; x̂0). For conditional entropy h(x̂0 | xT ), a well-designed denoising function can exploit
symmetry to minimize this term.

Symmetric signal and noise have some good properties: 1) Symmetry allows for more accurate pre-
dictions of x̂0 from xT . 2) Symmetric noise models can be inverted effectively during denoising.
3) Symmetry ensures that information is not skewed or lost in certain directions. Symmetric distri-
butions often have higher entropy than skewed distributions for a given variance, enhancing h(x̂0).
So a symmetric xT can lead to a large h(x̂0) and a small h(x̂0 | xT ), maximizing I(xT ; x̂0). The
symmetry can be leveraged to design denoising functions that reduce uncertainty in x̂0 given xT , to
minimize h(x̂0 | xT )
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In the current image generation based on a trained DDPM, Gaussian noise is often used for xT . The
Gaussian distribution maximizes entropy among all distributions with the same variance. However,
when considering mutual information, it is the difference in entropies that matters. Non-Gaussian
symmetric distributions can have entropy levels close to that of the Gaussian. The denoising process
can be tailored to specific symmetric distributions to minimize h(x̂0 | xT ).

In the denoising process, we need to develop a denoising function x̂0 = g(xT ) that effectively
reconstructs x0 from xT , maximizing I(xT ; x̂0). The appropriate denoising function reduces h(x̂0 |
xT ), increasing I(xT ; x̂0).

Any symmetric distribution of xT can be used to maximize I(xT ; x̂0) when the denoising function
is appropriately designed. While Gaussian distributions have desirable properties, they are not the
only distributions that can maximize mutual information in DDPMs. This allows for flexibility in de-
signing DDPMs to handle various types of noise and data characteristics. Using different symmetric
distributions can improve robustness to noise types encountered in practice. While Gaussian distri-
butions maximize entropy, mutual information depends on both h(x̂0) and h(x̂0 | xT ). Balancing
these can be achieved with other symmetric distributions.

This analysis shows that a zero-mean Gaussian distribution for xT is sufficient to satisfy the IB prin-
ciple. Gaussian distribution is a symmetric distribution. If we relax the Gaussian condition and only
require that xT has a symmetric distribution, such as Laplacian, uniform, cosine, or logistic (Johnson
et al., 2000), the DDPM still performs well in the denoising process.

Symmetric distributions (like Laplace or uniform) can approximate Gaussian behavior, especially
when aggregated over many steps. According to the Central Limit Theorem (CLT) (Rosenblatt,
1956; Islam, 2018), when independent random variables from any distribution with finite mean
and variance are added, their sum tends toward a Gaussian distribution, regardless of the original
distribution.

Thus, symmetric noise distributions may produce behavior similar to Gaussian noise because, over
multiple time steps, noise aggregation will tend toward Gaussianity due to the CLT. As long as
the noise distribution is symmetric and has finite variance, it will approach Gaussian behavior as it
propagates through the reverse diffusion steps. Symmetric distributions with finite variance meet
this criterion, allowing the neural network to model both mean and variance effectively.

6 EXPERIMENTS

We used the LSUN-Church dataset (Yu et al., 2015) with a resolution of 3 × 256 × 256 for our
experiments. This dataset is used in the scenario where the forward diffusion involves white Gaus-
sian noise, and the reverse denoising process may employ different noise types, such as Laplacian
noise. Our DDPM design followed the architecture described in (Ho et al., 2020). We conducted
experiments to validate our theoretical findings using random noises and signals, with a 2D UNet
employed for the DDPM (Ronneberger et al., 2015).

Gaussian noise can be either white or colored. In Fig. 1, we illustrate four zero-mean Gaussian
noises with different covariance matrices Kn. These noises share the same average power:

P = tr(Kn), (14)

since their traces are identical. Fig. 1(a) depicts white Gaussian noise with a unitary covariance
matrix, while Figs. 1(b)-(d) show examples of colored Gaussian noise. Notably, Fig. 1(d) illustrates
singular noise, where |Kn| = 0.

In Fig. 1, observe that white Gaussian noise (Fig. 1a) exhibits no directional preference. In contrast,
colored noises (Figs. 1b-d) have directional biases. These noises exhibit stronger power (higher

eigenvalue of Kn) in the direction
[
1
1

]
compared to the orthogonal direction

[
−1
1

]
. The singular

noise (Fig. 1d) has power 2 in the stronger direction and power 0 in the weaker direction.

We performed the denoising process over 1000 iterations. Fig. 2 illustrates the generated samples
by DDPM using the four different Gaussian noises across several iterations. All types of Gaussian
noise performed well in generating the church images. However, the skies generated by singular
noise had no clouds, reflecting the absence of detail in certain regions.
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(a) (b) (c) (d)

Figure 1: Illustration of Gaussian noise. (a) White Gaussian noise with zero-mean and Kn =[
1 0
0 1

]
, (b) Colored Gaussian noise with zero-mean and Kn =

[
1 0.7
0.7 1

]
, (c) Colored Gaussian

noise with zero-mean and Kn =

[
1 0.9
0.9 1

]
, (d) Singular Gaussian noise with zero-mean and

Kn =

[
1 1
1 1

]
.

We also used Laplacian noise (with power 1) to generate samples, as shown in Fig. 3, row 1. Since
the noise follows a Laplacian distribution, applying an interleaver to the noise will not alter its dis-
tribution. Block Interleaving is a technique used in signal processing, data transmission, and error
correction to enhance the robustness of data against burst errors, where a cluster of adjacent data
elements may be corrupted simultaneouslySadjadpour et al. (2001)Takeshita & Costello (2000)Yin
et al. (2019). The process involves breaking data into smaller, evenly-sized blocks and rearranging
them in a way that distributes sequential elements across non-adjacent positions. This redistribution
of data is particularly beneficial in noisy environments, as it allows errors to be spread across mul-
tiple blocks, making them appear more random Yin et al. (2020). This, in turn, makes the errors
easier to detect and correct.

In the context of image processing and deep learning, block interleaving can be used to rearrange
image data to modify the spatial distribution of noise or features. By interleaving noisy image
blocks, noise patterns become more uniformly dispersed, aiding in smoother noise removal and
higher quality outputs. We applied 4× 8 and 16× 8 block interleavers to the noise and used them to
generate samples with the trained DDPM. The results, shown in rows 2 and 3 of Fig. 3, indicate that
the interleaved noise produced entirely different church images. This demonstrates that same noise
distribution can generates different images by simply reshuffling the noises.

In addition to Laplacian noise, we explored three other symmetric noise types—uniform, cosine,
and logistic—for image generation in DDPM. In Fig. 4 (row 1), we plot the generated outputs of
DDPM with uniform noise in the range [−

√
3,
√
3] so that the noise has a power of 1. In Fig. 4

(row 2), we plot the generated outputs of DDPM with cosine noise, which was normalized to have a
power of 1. In Fig. 4 (row 3), we plot the generated outputs of DDPM with logistic noise, which was
normalized to have a power of 1. Note that all noises with symmetrical distributions successfully
generated churches using DDPM.

More experimental results (ablation study, random signals for image generation, and application to
semantic communications) are provided in the Appendix.

7 CONCLUSIONS AND FUTURE WORK

In this paper, we applied the IB principle to DDPMs, analyzing two essential design objectives
within the DDPM framework. We demonstrated that symmetric distributions are sufficient for image
generation in pre-trained DDPMs, providing empirical validation that random noise with symmet-
ric properties can effectively generate diverse images through simple reshuffling. Additionally, we
showed that symmetrical random signals can be reliably utilized for image generation in DDPMs,
underscoring the robustness of this approach. Further, we extended DDPMs to semantic communi-
cation, where symmetric random signals, even when corrupted by AWGN, enabled efficient content
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iteration 900 iteration 950 iteration 1000

Figure 2: Generated outputs of DDPM with zero-mean white Gaussian noise (row 1), zero-mean

colored Gaussian noise with covariance matrix
[
1 0.7
0.7 1

]
(row 2), zero-mean colored Gaussian

noise with covariance matrix
[
1 0.9
0.9 1

]
(row 3), and singular Gaussian noise with covariance ma-

trix
[
1 1
1 1

]
(row 4).

generation. The integration of an interleaver further improved the efficacy of DDPM-based seman-
tic communication. These findings suggest new possibilities for optimizing DDPM architectures
by simplifying noise generation, enhancing both efficiency and performance, and broadening the
application scope in communication systems.

Building on the use of DDPMs for semantic communication, future work could explore more so-
phisticated interleaving techniques that leverage the unique properties of diffusion models. Future
work could delve deeper into the design of specialized interleavers and explore error correction
mechanisms that work synergistically with DDPMs. This could lead to improved robustness against
channel impairments such as fading or interference in wireless communication systems. While we
demonstrated the efficacy of symmetric noise distributions for DDPM-based generation, optimiz-
ing the structure and characteristics of this noise for specific communication tasks remains an open
question. Tailoring noise generation methods to fit particular data types or communication channels
could improve both efficiency and quality of generated content.

Another key challenge is understanding how diffusion models perform under extreme channel con-
ditions, such as low-SNR environments or highly dynamic fading scenarios. Future research could
explore whether adaptive noise scheduling within DDPMs can enhance signal recovery when com-
munication conditions are unstable. Additionally, investigating hybrid approaches that combine
DDPMs with other generative models, such as normalizing flows or VAEs, may yield more efficient
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iteration 900 iteration 950 iteration 1000

Figure 3: Generated outputs of DDPM using Laplacian noise (row 1), Laplacian noise with 4 × 8
block interleaver (row 2), and Laplacian noise with 16× 8 block interleaver (row 3).

iteration 900 iteration 950 iteration 1000

Figure 4: Generated outputs of DDPM with uniform noise in [−
√
3,
√
3] (row 1). Generated outputs

of DDPM with cosine noise (row 2). Generated outputs of DDPM with logistic noise (row (3).

transmission methods. The integration of reinforcement learning with diffusion-based semantic
communication is another promising avenue, allowing for dynamic adaptation to varying network
conditions. Finally, extending DDPMs to handle multimodal data (e.g., text, images, audio) in se-
mantic communication frameworks presents another interesting research direction. Future work
could investigate how DDPMs could be adapted to encode and transmit semantically relevant infor-
mation across multiple data types within a single framework, improving efficiency and versatility.
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A MORE EXPERIMENTAL RESULTS

A.1 ABLATION STUDY

We studied two asymmetrically distributed noises—Gamma noise and exponential noise. In Fig. 5,
we plot the generated outputs of DDPM with Gamma noise, which was normalized to have a power
of 1. In Fig. 6, we plot the generated outputs of DDPM with exponential noise, which was also
normalized to have a power of 1. As seen in Figs. 5 and 6, asymmetrically distributed noises failed
to generate any images.

iteration 900 iteration 950 iteration 1000

Figure 5: Generated outputs of DDPM with Gamma noise.

iteration 900 iteration 950 iteration 1000

Figure 6: Generated outputs of DDPM with exponential noise.

Recognizing that asymmetrical noise tends to degrade generation quality, we adapted these noise
types by centering their distributions around zero, effectively making them symmetrical. This was
achieved by adjusting each noise sample to have a mean of zero, aligning the noise distribution
around x = 0. In Figs. 7 and 8, we illustrate the performance of the processed Gamma noise
and exponential noise, respectively. Observe that with this adjustment, the previously asymmetri-
cal noise distributions performed comparably to symmetrical noise distributions commonly used in
DDPMs. This finding suggests that symmetry around zero plays a crucial role in enabling effective
noise removal and high-quality sample generation in DDPMs.

iteration 900 iteration 950 iteration 1000

Figure 7: Generated outputs of DDPM with processed Gamma noise (zero-mean).

A.2 EXPERIMENTAL RESULTS WITH RANDOM SIGNALS

In our study, we extended traditional DDPM sample generation approaches by using structured
random signals instead of purely random noise, investigating both symmetric and asymmetric
equal-probability signals. Specifically, we used symmetric signals with values from {−1,+1} and

12



Published as a workshop paper at DeLTa Workshop (ICLR 2025)

iteration 900 iteration 950 iteration 1000

Figure 8: Generated outputs of DDPM with processed exponential noise (zero-mean).

{−2,−1, 0,+1,+2}, as well as asymmetric signals with values from {−12,+2,+4,+6}, all cen-
tered around a mean of zero. As shown in Fig. 9, symmetric signals enabled the DDPM to generate
clear, detailed images, such as church structures, whereas asymmetric signals failed to produce co-
herent images. This outcome suggests that the symmetry of input signals around zero is critical
for generating high-quality samples, as it allows the model to maintain a balanced distribution that
aligns well with DDPM’s training assumptions. Consequently, our findings highlight that symmet-
rical, zero-centered signals are effective substitutes for random noise in DDPM sample generation,
potentially broadening the scope of signal types usable in diffusion models for structured image
synthesis.

iteration 900 iteration 950 iteration 1000

Figure 9: Generated outputs of DDPM using symmetric random signals from {−1,+1} (row 1),
{−2,−1, 0,+1,+2} (row 2), and asymmetric random signals from {−12,+2,+4,+6} (row 3).

This observation is important because many real-world signals, such as communication signals (e.g.,
PAM, QAM), are symmetric (Proakis & Salehi, 2008; Goldsmith, 2005). The ability of symmetric
signals to successfully generate samples using DDPM may have implications for semantic commu-
nications (Luo et al., 2022).

A.3 APPLICATION TO SEMANTIC COMMUNICATION

In this experiment, we consider both random signals and noises. The principle that ”symmetry is
all you need” in DDPM sample generation can be applied to a variety of real-world applications,
including semantic communication. Many communication signals are symmetric, and noise distri-
butions often exhibit symmetry (Proakis & Salehi, 2008; Rappaport, 2024). We have demonstrated
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that such symmetric signals and noise can successfully generate images using DDPM. Semantic
communication is an emerging concept in the communications field, where the focus shifts from
transmitting raw data (bits) to transmitting meaningful information (semantics). The goal of seman-
tic communication is to convey the intended meaning or interpretation of the message (Shi et al.,
2021; Luo et al., 2022). This approach is particularly useful in applications such as human-machine
interaction, natural language processing, and autonomous systems, where context and understanding
are critical.

In Fig. 10, we plot the histogram of 4-PAM (Pulse Amplitude Modulation) signals corrupted by
additive white Gaussian noise (AWGN) with signal-to-noise ratio (SNR) at 10dB. The resulting
signal follows a Gaussian mixture distribution Liu et al. (2010)Rasmussen (1999). A Gaussian
mixture distribution is a weighted sum of multiple Gaussian distributions, each with its own mean
and variance. It’s clear that the resulting signals are symmetrical.

Figure 10: Histogram of 4-PAM signals corrupted by AWGN with SNR = 10dB.

In Fig. 11, we illustrate the generated images of DDPM using 4-PAM signals corrupted by AWGN
with SNR at 10dB, 5dB, and 0dB. Observe that the generated image qualities are consistently
good regardless the SNR, which demonstrates that DDPM has strong capability to handle noises.
Traditionally communication channels with low SNR always perform worse than the channels with
higher SNR because signals are corrupted by AWGN, so channel coding is always used to overcome
the noise Costello & Forney (2007)Xu et al. (2021). Recently, joint souce and channel coding
was applied to semantic communications Xu et al. (2023). We have demonstrated that DDPM
performance is not very sensitive to the noise level in semantic communications, so channel coding
may not needed for DDPM-based semantic communication.

Interleaver has been widely used in channel coding for wireless communications Tarable et al.
(2004)Sridharan et al. (2008). We applied block interleavers with sizes 4×8, 8×8, and 16×8 to 4-
PAM signals corrupted by AWGN at SNR = 10dB, and the generated images are illustrated in Fig.
12. Observe that different styles of churches are generated. This shows that DDPM-based semantic
communication relies more on the space relations of noisy signals rather than on their SNR values
in the channel. This observation will help effective content generation in semantic communications.
In Liang (2025), Vision Language Models were successfully applied to semantic communication
without using channel coding.
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Figure 11: Generated outputs of DDPM using 4-PAM signals+AWGN with SNR = 10dB (row 1),
SNR = 5dB (row 2), and SNR = 0dB (row 3).

iteration 900 iteration 950 iteration 1000

Figure 12: Generated outputs of DDPM using 4-PAM signals+AWGN with SNR = 10dB but with
different interleavers, 4× 8 (row 1), 8× 8 (row 2), and 16× 8 (row 3).
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