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Abstract

Alzheimer’s disease (AD) is a progressive neurodegenerative disorder and a
major global health concern. Early and accurate prediction of AD stages, par-
ticularly during the Early and Late Mild Cognitive Impairment (EMCI, LMCI),
is crucial for timely intervention. While deep learning (DL)models have shown
promise, most prior work relies on single-data modality, leading to limited
diagnostic accuracy. This work presents a novel multimodal DLmodel that in-
tegrates neuroimage and tabular clinical data to improve ADdetection. Trained
and tested on the OASIS dataset, the proposed model combines the extracted
embeddings from the image data through a dense network with selected clin-
ical features, identified via SHAP-based feature attribution and cumulative
contribution thresholding. This integration enables a four-way classification
across Normal Cognition (NC), EMCI, LMCI, and AD that surpasses the state-
of-the-art performance with a precision of 96.02%, a recall of 95.84%, and an
F1 score of 95.92%, alongside an overall accuracy of 95.84%.

1 Introduction

Alzheimer’s disease (AD) is an irreversible neurological disorder that leads to cognitive decline.
Over 55 million people worldwide live with AD, and the symptoms include memory loss, be-
havioural instability, vision issues, and reduced mobility. AD is the seventh leading cause of
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death globally (3), and its diagnosis relies on chronic symptom observation, neuroimaging and
clinical tests (16). The AD continuum includes Mild Cognitive Impairment (MCI), with fewer
symptoms (13) and is categorized into Early (EMCI) and Late (LMCI) for mild and severe deficits,
respectively (7), and their early detection is crucial for intervention.
Artificial Intelligence (AI) methods show promise in AD prediction. Early studies relied on
single-modality data (i.e., Magnetic Resonance Imaging (MRI), Positron Emission Tomography
(PET), Computed Tomography (CT), or clinical records) and traditional Machine Learning (ML)
models. Due to their limited performance, the paradigm shifted to more advanced techniques
such as deep learning (DL), ensemble learning and vision transformers (13). However, in re-
ality, physicians use multimodal data (imaging, clinical tests, demographics) for any clinical
diagnosis, highlighting the need for multimodal decision-support systems (5). Implementing
this is challenging due to missing data, heterogeneity, and class imbalance. Notably, few studies
integrate MRI with cross-sectional clinical data, despite its diagnostic value.
To address this issue, this work proposes a framework that emulates the clinical AD diagnostic
workflow, integrating neuroimaging, cognitive assessments, and patient history - through a
consensus SHAP and CCT approach by adopting the OASIS (9) dataset. with twomain contri-
butions: (1) a novel multimodal framework for AD prediction, and (2) an automated clinical
feature selection approach. The rest of the paper, Section 2 reviews related works, while Sections
3 and 4.1 detail the methodology and the results, and Section 5 concludes.

2 Related Works

AD prediction traditionally relies on cognitive assessments, biomarkers, and imaging modalities
like CT, MRI, and PET (14). Tools such as MoCA (10) and MMSE (2) are widely used, while
biomarker testing faces challenges of sensitivity, specificity, and invasiveness (4).
Classical MLmethods (SVM, RF, LR, KNN) have shown strong performance using MRI-derived
features. Acharya et al. (1) achieved 94.54% accuracy with KNN and Shearlet Transform. Shaffi et
al. (14) reported that RF and SVM can rival or outperform DLmodels onMRI data, questioning
DL superiority. More recent approaches leverage Vision Transformers (VTs) with ensemble
strategies for MRI feature extraction (13), though single-modality limits diagnostic accuracy.
With advances in deep learning, multimodal models have emerged. Liu et al. combined CNN-
based imagingwith non-imaging data; Qiu et al. fusedMRI likelihoodmapswith clinical features
(11); Liu et al. proposed cross-attention architectures (8); and Rahim et al. used 3D CNNwith
RNNs (12). Venugopalan et al. integrated imaging, clinical, and genetic data, outperforming
unimodal models but still constrained by missing data (15). Notably, no study has explicitly
combined MRI with clinical history, a gap this work addresses through feature selection and
multimodal integration.

3 Methodology

Figure 2 in the appendix represents the proposed framework of the multimodal model. This
framework utilizes the OASIS dataset which provides nine clinical features (age, education, SES,
MMSE, CDR, eTIV, nWBV, ASF, delay). The importance of these featureswas estimated by training
six MLmodels (GB, XGBoost, CatBoost, LightGBM, SVM, LR) and finding the SHAP values subse-
quently (appendix figure 3). In this study, an ensemble-based consensus strategy was designed
by averaging SHAP values for each feature across the applied model to mitigate the bias and
instability of feature importance estimates fromany single algorithm. By integrating perspectives
from both linear (e.g., Logistic Regression, SVM) and nonlinear (e.g., XGBoost, CatBoost) learn-
ers, this method favors features that are consistently important across heterogeneous models,
thereby improving robustness. Additionally, we conducted a statistical analysis (details in the
section 4.1) to determine the threshold for key feature selection, and only these key features
were fed into the multimodal model. Let φm( f ) be the mean absolute SHAP value for feature f
under model m from a set of heterogeneous learnersM . We define the consensus attribution as
φ̄( f ) = 1

|M |
∑

m∈M φm( f ). Sort features by φ̄ and pick the smallest prefix S such that
∑

f ∈S φ̄( f )∑
f φ̄( f )

≥ τ
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with τ= 0.95. This model-agnostic, distribution-aware selector reduces single-model bias and
avoids normality assumptions that make Z -scores brittle under right skew.
In parallel, we utilized preprocessed 2DMRI slices (reorientation, skull stripping, enhancement)
(14), which were collected from raw 3D MRI scanning, and then fed into an image network.
EfficientNet was utilised as a feature extractor from 2D images (6). Its original classification
layer was replaced with a projection head that outputs a 128-dimensional embedding, obtained
through a linear layer followed by ReLU activation and dropout regularization. The early fusion
technique is applied on extracted image features that undergo dense, dropout, and batch-
normalization. In parallel, themetadata is processed as structured inputs using a fully connected
network with a 64-dimensional representation, also regularised with dropout. The outputs from
both branches are concatenated into a 192-dimensional fused representation, which is passed
through a combined head consisting of two fully connected layers (128 and 4 units). The final
Softmax layer is used for a four-way classification, i.e. NC, EMCI, LMCI, and AD.
Let the input image be denoted as I ∈RH×W ×C , where H ,W , andC represent the image height,
width, and number of channels. The classification head is removed, and the image I is passed
through a pre-trained EfficientNet model, fimg. The resulting output zimg is a feature embedding
computed as zimg = fimg(I ) =GlobalAvgPool(φ(I )) ∈Rn , whereφ(I ) ∈Rh×w×d is the output of the
final convolutional block, and global average pooling reduces this to a vector of size n = d . For
EfficientNet, n = 1024.
Alongside the image features, suppose we have l selected features from the tabular data, de-
termined within a 90% confidence interval, represented as F = [ f1, f2, . . . , fl ]. Additionally, each
feature fi ∈ F has m metadata feature vectors represented by mi = [θ1,θ2, . . . ,θd ]⊤ ∈Rd , where
each mi is a selected clinical or demographic feature.
Subsequently, the metadata feature vectors are passed through a two-layer feedforward neural
network: fmeta(mi ) =σ(W2(σ(W1mi +b1))+b2) ∈Rk , where W1 ∈Rh×d and b1 ∈Rh are the first
layer parameters, such as weights and bias, respectively. Similarly,W2 ∈Rk×h and b2 ∈Rk repre-
sent weights and bias of the second layer. σ denotes a nonlinear activation function (e.g., ReLU),
and k is the output dimension of themetadata embedding (e.g., 128). Themetadata embeddings
are concatenated as zmeta = [ fmeta(m1)∥ fmeta(m2)∥ . . . ∥ fmeta(ml )] ∈Rk . Followingly, the image
andmetadata embeddings are concatenated to form a joint representation along the feature
dimension. The combined vector zconcat = [zimg ∥zmeta] ∈ Rn+k fuses both modalities into a
single latent space.
The concatenated vector is passed through a classification head composed of fully connected
layers: ŷ = Softmax(W4(σ(W3zconcat+b3))+b4), where W3 ∈ Rp×(n+k), b3 ∈ Rp , W4 ∈ Rc×p , and
b4 ∈Rc , with c being the number of output classes. The model is trained using the categorical
cross-entropy loss function: L = − 1

N

∑N
i=1

∑c
j=1 ytrue,i , j log(ŷi , j ), where ŷi , j and ytrue,i , j are the

model prediction and true label, respectively, and N is the number of training samples. To
enhance model robustness, dropout is employed to reduce overfitting, early stopping is used
to halt training when validation loss stagnates, and model checkpointing ensures the best-
performing model is saved based on validation performance.

4 Results and Discussion

4.1 Experiments and Results

The widely used OASIS dataset was utilized in this research for conducting experiments. Table 1
summarizes the demographic and clinical statistics of the OASIS-1 cross-sectional MRI dataset.
The dataset consists of four diagnostic groups: NC (CDR = 0.0), EMCI (CDR = 0.5), LMCI (CDR =
1.0), and AD (CDR = 2.0). For each group, the table reports the number of subjects, the male-to-
female distribution, the mean age with standard deviation, and the number of available MRI
scans (3–4 per subject). Overall, the dataset includes 436 MRI scans from 168 male and 268
female participants, with a mean age of 51.4±25.3 years.
Preprocessed 2DMRI slices incorporating clinical features were fed into the proposed multi-
modal model. Therefore, a new tabular dataset was developed that linked clinical characteristics
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Figure 1: (a) Grad-CAM visualizes the brain regions and (b) ROC curve for the multimodal
model’s Alzheimer’s disease prediction.

to 2DMRI slices for each patient. Themost significant clinical featureswere identified by training
six MLmodels on tabular clinical data and estimating feature importance using SHAP values
(see Figure 3a–f in the appendix). Global importance scores were then averaged acrossmodels to
obtain the final ranking (Figure 3g in the appendix). Two statistical methods were applied based
on SHAP values: Z-score thresholding and cumulative contribution threshold (CCT). The Z-
score method (z > 1) identified onlyMMSE as significantly important. In contrast, CCT retained
features explaining 95% of total SHAP contribution, selecting MMSE, nWBV, Age, eTIV, and
SES. CCT outperformed Z-score as it accounts for the right-skewed SHAP distribution without
assuming normality.(see Figure 3 and Table 2).

Table 1: Clinical features statistics from the OASIS dataset
Feature Mean ± SD Min–Max Median
Age 51.36 ± 25.27 18.0–96.0 54.0
Educ 3.18 ± 1.31 1.0–5.0 3.0
SES 2.49 ± 1.12 1.0–5.0 2.0

MMSE 27.06 ± 3.7 14.0–30.0 29.0
CDR 0.29 ± 0.38 0.0–2.0 0.0
eTIV 1481.9 ±158.7 1123.0–1992.0 1475.5
nWBV 0.79 ± 0.06 0.644–0.893 0.809
ASF 1.20 ± 0.13 0.881–1.563 1.19
Delay 20.55 ± 23.86 1.0–89.0 11.0

Table 2: Avg. SHAPvalues andCCT
Feature Avg.

SHAP
CCT

MMSE 0.3692 0.3692
nWBV 0.2665 0.6358
Age 0.2122 0.8479
eTIV 0.0524 0.9004
Educ 0.0341 0.9345
SES 0.0327 0.9672
ASF 0.0318 0.9990
Delay 0.0010 1.0000

To prevent patient data leakage, all 2D slices from a subject were kept in a single split. A stratified
subject-wise hold-out test set (20%) was created. On the remaining 80% of subjects, a 5-fold
StratifiedGroupKFoldwas used for hyperparameter tuning and early stopping. A pre-trained
EfficientNet extracted image features, while a fully connected branch processed metadata; both
were fused for the classification. Training used Adam (10−3), cross-entropy loss, early stopping,
and ran for up to 100 epochs on a P100 GPU. The Adam optimizer with a learning rate of 0.001
was applied. Due to the early stopping criteria, the model stopped training at the 30th epoch.
Tables 3 and 4 compare the proposed multimodal model with ML and DL baselines using
Accuracy, Precision, Recall, Macro-F1 score, and AUC. Table 3 reports the performance of tabular
baselines, CB, XGB, LGBM, GB, LR, and SVM trained only on clinical features. Among these, CB
achieved the best baseline performance with an accuracy of 0.9091 and an AUC of 0.9529. On
the other hand, 4 compares the performance of several convolutional neural networks (CNNs)
against the proposed multimodal approach, including EfficientNet-B0, ResNet50, DenseNet121,
MobileNet-V2, VGG16, and ConvNeXt-Tiny trained with only MRI 2D images. For both of
the cases, the proposed model significantly outperformed all baselines, achieving the highest
accuracy (0.9584), precision (0.9602), recall (0.9584), F1-score (0.9592), and AUC (0.9864). Figure
1 (a) shows the Grad-CAM visualization, highlighting MRI regions most influential in model
predictions, with warmer colors indicating higher importance. Themodel achieved near-perfect
AUCs (0.99 for LMCIandAD, 0.98 forEMCI, and0.96 forCN), demonstrating stronggeneralization
across disease stages.
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Model Accuracy Precision Recall F1-Score AUC
CB 0.904 ± 0.015 0.768 ± 0.022 0.843 ± 0.025 0.805 ± 0.020 0.950 ± 0.012
XB 0.882 ± 0.018 0.720 ± 0.025 0.792 ± 0.024 0.754 ± 0.021 0.946 ± 0.013
LGBM 0.879 ± 0.017 0.725 ± 0.023 0.788 ± 0.026 0.752 ± 0.019 0.941 ± 0.014
GB 0.869 ± 0.020 0.732 ± 0.028 0.692 ± 0.029 0.710 ± 0.025 0.934 ± 0.015
LR 0.848 ± 0.023 0.648 ± 0.030 0.742 ± 0.033 0.689 ± 0.028 0.930 ± 0.018
SVM 0.845 ± 0.025 0.660 ± 0.027 0.698 ± 0.031 0.677 ± 0.026 0.922 ± 0.017
Proposed 0.961 ± 0.017 0.958 ± 0.016 0.962 ± 0.015 0.960 ± 0.014 0.987 ± 0.012

Legend– Acc: Accuracy, Prc: Precision, Rec: Recall, CB: CatBoost, XB: XGBoost, LGBM:
LightGBM, GB: Gradient Boosting, LR: Logistic Regression, SVM: Support Vector Machine.

Table 3: Performance comparison of models (mean ± std over 5 runs) for clinical data.

Model Accuracy Precision Recall F1-Score AUC
EN 0.853 ± 0.018 0.875 ± 0.020 0.867 ± 0.019 0.865 ± 0.017 0.967 ± 0.010
RN50 0.839 ± 0.020 0.854 ± 0.021 0.860 ± 0.022 0.857 ± 0.019 0.964 ± 0.011
DN121 0.888 ± 0.016 0.906 ± 0.018 0.897 ± 0.019 0.902 ± 0.017 0.974 ± 0.009
MNV2 0.852 ± 0.019 0.880 ± 0.020 0.865 ± 0.021 0.872 ± 0.018 0.963 ± 0.010
VGG16 0.883 ± 0.017 0.900 ± 0.019 0.896 ± 0.020 0.898 ± 0.018 0.972 ± 0.009
TCN 0.891 ± 0.015 0.909 ± 0.017 0.899 ± 0.018 0.905 ± 0.016 0.973 ± 0.008
Proposed 0.961 ± 0.017 0.958 ± 0.016 0.962 ± 0.015 0.960 ± 0.014 0.987 ± 0.012
Legend– EN: EfficientNet-B0, RN50: ResNet50, DN121: DenseNet121, MNV2: MobileNet-V2,

TCN: ConvNeXt-Tiny.

Table 4: Comparison of deep learning models (mean ± std over 5 runs) for MRI image data.

4.2 Limitations and Future Works

To conduct the experiments, a dataset linking MRI images with clinical data for each patient is
required; therefore, we constructed such a dataset to train our model. Future work will focus on
building additional datasets with similar criteria from open-source multimodal resources (e.g.,
ADNI) and benchmarking our model against other comparable multimodal approaches and
diverse datasets.

5 Conclusion

In conclusion, we introduced a multimodal deep learning framework that integrates MRI
imaging with clinical data to enhance prediction of Alzheimer’s disease (AD) stages. Lever-
aging automated clinical feature selection and OASIS MRI data, the model overcomes lim-
itations of single-modality approaches. It achieved strong performance (Accuracy:95.84%,
Precision: 96.02%, Recall: 95.84%, F1 score: 95.92%), effectively distinguishing normal cog-
nition, EMCI, LMCI, and AD despite class imbalance. This work provides a robust diagnos-
tic tool aligned with clinical practice that supports timely intervention strategies. The code
base of the work is available at this GitHub repository: https://github.com/brai-acslab/
multimodal-explainable-ad-detection.
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A Technical Appendices and Supplementary Material

The figure 2 illustrates the framework of proposedmultimodal model. Firstly, the clinical feature
were collected. Then six different MLmodels, such as: Gradient Boosting, XGBoost, CatBoost,
LightGBM, Support Vector Machine, and Logistic Regression, were trained with the clinical
feature. Followingly, the SHAP feature importance algorithmwas applied to find out the features
that contribute most to the model prediction shown in figure 3. Subsequently, the SHAP feature
importance scores of each feature across different models were averaged to avoid the bias of
a single algorithm. SHAP values presented in figure 3 (a)-(g) ranged from 0.00 to 0.35, with an
interquartile range of 0.05 to 0.21, indicating that most features contributed moderately to the
model’s predictions. A smaller subset reached values up to 0.35, reflecting stronger localized
influence. In the context of Alzheimer’s disease classification, this suggests that while many fea-
tures have balanced effects, a few provide disproportionately higher predictive value, consistent
with key biomarkers. Next, we performed a statistical analysis using the z-score thresholding
and the cumulative contribution threshold (CCT) to define an automated thresholding to select
the key features where CCT performed the best thresholding (Details in section 4.1). With the
defined confidence interval by CCT the key features are selected and are ready to be fed into the
model.
In addition, the 2D MRI images were sliced from 3D MRI scan and then pre-processed (14).
Subsequently, the selected key features and 2DMRI images were fed to the multimodal model
in parallel and the model performs an early fusion strategy to perform the four-way Alzheimer
disease classification.

CD: Clinical Data; 
F: Features;
MLM: Machine Learning 
Model; SA: SHAP Analysis;
FR: Feature Rank;
STA: Statistical analysis; 
IF: Important Features; 
MRIS: MRI Scanning;
FE: Feature Extractor; 
Fl: Flatten; D: Dense; 
F: Feature; SM: SoftMax; 
DO: Dropout; 
BN: Batch Normalisation; 
CC: Concatenatenation.

Fl
D

DO
BN

FE F 1 F2 F n

D
DO

D
DO

CC
BN

D
DO

DO

D

CC

SM

Classification
MRIS 3D 2D PP

CD F SA STAFR IFMLM

Figure 2: Proposed framework of multimodal model where two parallel pipelines of tabular data
andMRI scans are preprocessed and fed to the multimodal model.
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Figure 3: SHAP feature importance across different models: (a) Gradient Boosting, (b) XGBoost,
(c) LightGBM, (d) Logistic Regression, (e) CatBoost, and (f) SVM. (g) shows the boxplot of global
SHAP values of different features. The Bar-Summary and Beeswarm represent the mean SHAP
values on the X-axis, and the feature ranks are on the Y-axis.

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do
not remove the checklist: The papers not including the checklist will be desk rejected. The
checklist should follow the references and follow the (optional) supplemental material. The
checklist does NOT count towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions.
For each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
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• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to
the reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also
include it (after eventual revisions) with the final version of your paper, and its final version will
be published with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their
evaluation. While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer
"[No] " provided a proper justification is given (e.g., "error bars are not reported because it would
be too computationally expensive" or "we were unable to find the license for the dataset we
used"). In general, answering "[No] " or "[NA] " is not grounds for rejection. While the questions
are phrased in a binary way, we acknowledge that the true answer is often more nuanced, so
please just use your best judgment and write a justification to elaborate. All supporting evidence
can appear either in the main paper or the supplemental material, provided in appendix. If
you answer [Yes] to a question, in the justification please point to the section(s) where related
material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Check-
list",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the providedmacros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect
the paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction clearly state the contributions—a multi-
modal deep learningmodel integratingMRI and clinical features for ADprediction, with
automated SHAP-based feature selection. The superiority of the multimodal model
over the single modality is directly supported by results (accuracy 95.84%, precision
96.02%, etc.) shown in Section 4.1.
Guidelines:
• The answer NAmeans that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including
the contributions made in the paper and important assumptions and limitations.
A No or NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect
howmuch the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these
goals are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section 4.2 explicitly acknowledges limitations, noting the reliance on
constructing a dataset linking MRI and clinical data, and the need for validation on
larger, more diverse multimodal datasets such as ADNI.
Guidelines:
• The answer NAmeans that the paper has no limitation while the answer Nomeans
that the paper has limitations, but those are not discussed in the paper.
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• The authors are encouraged to create a separate "Limitations" section in their
paper.

• The paper should point out any strong assumptions and how robust the results are
to violations of these assumptions (e.g., independence assumptions, noiseless set-
tings, model well-specification, asymptotic approximations only holding locally).
The authors should reflect on how these assumptions might be violated in practice
and what the implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach
was only tested on a few datasets or with a few runs. In general, empirical results
often depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the
approach. For example, a facial recognition algorithmmay perform poorly when
image resolution is low or images are taken in low lighting. Or a speech-to-text
systemmight not be used reliably to provide closed captions for online lectures
because it fails to handle technical jargon.

• The authors should discuss the computational efficiency of the proposed algo-
rithms and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be
used by reviewers as grounds for rejection, a worse outcomemight be that review-
ers discover limitations that aren’t acknowledged in the paper. The authors should
use their best judgment and recognize that individual actions in favor of trans-
parency play an important role in developing norms that preserve the integrity of
the community. Reviewers will be specifically instructed to not penalize honesty
concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions
and a complete (and correct) proof?
Answer: [NA]
Justification: The paper does not present theoretical results or formal proofs; it is an
empirical deep learning study.
Guidelines:
• The answer NAmeans that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and
cross-referenced.

• All assumptions should be clearly stated or referenced in the statement of any
theorems.

• The proofs can either appear in the main paper or the supplemental material, but
if they appear in the supplemental material, the authors are encouraged to provide
a short proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be comple-
mented by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the
main experimental results of the paper to the extent that it affects the main claims
and/or conclusions of the paper (regardless of whether the code and data are provided
or not)?
Answer: [Yes]
Justification: Section 3 (Methodology) and Appendix 5 describe preprocessing, SHAP-
based feature selection, model architecture, and training setup (optimizer, early stop-
ping, dropout, GPU type). These details enable reproduction.
Guidelines:
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• The answer NAmeans that the paper does not include experiments.
• If thepaper includes experiments, aNoanswer to this questionwill not beperceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/ormodel, the authors should describe the steps
taken to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various
ways. For example, if the contribution is a novel architecture, describing the archi-
tecture fully might suffice, or if the contribution is a specific model and empirical
evaluation, it may be necessary to either make it possible for others to replicate the
model with the same dataset, or provide access to the model. In general. releasing
code and data is often one good way to accomplish this, but reproducibility can
also be provided via detailed instructions for how to replicate the results, access to
a hosted model (e.g., in the case of a large language model), releasing of a model
checkpoint, or other means that are appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all
submissions to provide some reasonable avenue for reproducibility, which may
depend on the nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear

how to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should

describe the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there

should either be a way to access this model for reproducing the results or a way
to reproduce the model (e.g., with an open-source dataset or instructions for
how to construct the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for repro-
ducibility. In the case of closed-source models, it may be that access to the
model is limited in someway (e.g., to registered users), but it should be possible
for other researchers to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient
instructions to faithfully reproduce the main experimental results, as described in
supplemental material?
Answer: [Yes]
Justification: The paper provides a reference to the data used in the experiment. Addi-
tionally, a GitHub link is provided to access the code base for the reproduction of the
results.
Guidelines:
• The answer NAmeans that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might
not be possible, so “No” is an acceptable answer. Papers cannot be rejected simply
for not including code, unless this is central to the contribution (e.g., for a new
open-source benchmark).

• The instructions should contain the exact command and environment needed to
run to reproduce the results. See the NeurIPS code and data submission guidelines
(https://nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including
how to access the raw data, preprocessed data, intermediate data, and generated
data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible,
they should state which ones are omitted from the script and why.
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• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to
the paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The paper specifies experiments ran on a P100 GPU for up to 100 epochs,
with early stopping at epoch 30
Guidelines:
• The answer NAmeans that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of
detail that is necessary to appreciate the results and make sense of them.

• The full details can be provided either with the code, in appendix, or as supplemen-
tal material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other
appropriate information about the statistical significance of the experiments?
Answer: [No]
Justification: Results report performance metrics (accuracy, precision, recall, F1, AUC)
but do not include error bars or statistical significance tests (Tables 3 and 4).
Guidelines:
• The answer NAmeans that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars,
confidence intervals, or statistical significance tests, at least for the experiments
that support the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated
(for example, train/test split, initialization, random drawing of some parameter, or
overall run with given experimental conditions).

• Themethod for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard
error of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the
hypothesis of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables
or figures symmetric error bars that would yield results that are out of range (e.g.
negative error rates).

• If error bars are reported in tables or plots, The authors should explain in the text
how they were calculated and reference the corresponding figures or tables in the
text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the
computer resources (type of compute workers, memory, time of execution) needed to
reproduce the experiments?
Answer: [Yes]
Justification: The paper specifies experiments ran on a P100 GPU for up to 100 epochs,
with early stopping at epoch 30.
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Guidelines:
• The answer NAmeans that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal
cluster, or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individ-
ual experimental runs as well as estimate the total compute.

• The paper should disclosewhether the full research project requiredmore compute
than the experiments reported in the paper (e.g., preliminary or failed experiments
that didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: The research complies with the NeurIPS Code of Ethics. It uses de-
identified, publicly available OASIS MRI/clinical data, avoiding privacy risks.
Guidelines:
• The answer NA means that the authors have not reviewed the NeurIPS Code of
Ethics.

• If the authors answerNo, they should explain the special circumstances that require
a deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special
consideration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: Positive societal impact: earlier AD diagnosis can aid intervention and
treatment. Negative risk is addressed as reliance on limited datasets.
Guidelines:
• The answer NAmeans that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

• Examples of negative societal impacts include potential malicious or unintended
uses (e.g., disinformation, generating fake profiles, surveillance), fairness consider-
ations (e.g., deployment of technologies that could make decisions that unfairly
impact specific groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not
tied to particular applications, let alone deployments. However, if there is a direct
path to any negative applications, the authors should point it out. For example, it
is legitimate to point out that an improvement in the quality of generative models
could be used to generate deepfakes for disinformation. On the other hand, it is
not needed to point out that a generic algorithm for optimizing neural networks
could enable people to train models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology
is being used as intended and functioning correctly, harms that could arise when
the technology is being used as intended but gives incorrect results, and harms
following from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible miti-
gation strategies (e.g., gated release of models, providing defenses in addition to
attacks, mechanisms formonitoringmisuse, mechanisms tomonitor how a system
learns from feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
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Question: Does thepaperdescribe safeguards that havebeenput inplace for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language
models, image generators, or scraped datasets)?
Answer: [NA]
Justification: The work does not release high-risk generative models or large-scale
datasets requiring safeguards.
Guidelines:
• The answer NAmeans that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released
with necessary safeguards to allow for controlled use of the model, for example by
requiring that users adhere to usage guidelines or restrictions to access the model
or implementing safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The
authors should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers
do not require this, but we encourage authors to take this into account and make a
best faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned
and properly respected?
Answer: [Yes]
Justification: The OASIS dataset is cited properly (9).
Guidelines:
• The answer NAmeans that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or
dataset.

• The authors should state which version of the asset is used and, if possible, include
a URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms
of service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in
the package should be provided. For popular datasets, paperswithcode.com/
datasets has curated licenses for some datasets. Their licensing guide can help
determine the license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license
of the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out
to the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the docu-
mentation provided alongside the assets?
Answer: [Yes]
Justification: The code base and data are well documented throughout the manuscript
and the appendix, along with a link to the GitHub repository.
Guidelines:
• The answer NAmeans that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of
their submissions via structured templates. This includes details about training,
license, limitations, etc.
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• The paper should discuss whether and how consent was obtained from people
whose asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can
either create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does
the paper include the full text of instructions given to participants and screenshots, if
applicable, as well as details about compensation (if any)?
Answer: [NA]
Justification: This hasn’t been done within this research.
Guidelines:
• The answer NAmeans that the paper does not involve crowdsourcing nor research
with human subjects.

• Including this information in the supplemental material is fine, but if the main
contribution of the paper involves human subjects, then asmuch detail as possible
should be included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, cura-
tion, or other labor should be paid at least the minimumwage in the country of
the data collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants,
whether such risks were disclosed to the subjects, and whether Institutional Review
Board (IRB) approvals (or an equivalent approval/review based on the requirements of
your country or institution) were obtained?
Answer: [NA]
Justification: Publicly accessible dataset was used; therefore, the IRB was needed for
this work.
Guidelines:
• The answer NAmeans that the paper does not involve crowdsourcing nor research
with human subjects.

• Depending on the country in which research is conducted, IRB approval (or equiv-
alent) may be required for any human subjects research. If you obtained IRB
approval, you should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institu-
tions and locations, and we expect authors to adhere to the NeurIPS Code of Ethics
and the guidelines for their institution.

• For initial submissions, donot include any information thatwouldbreak anonymity
(if applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM
is used only for writing, editing, or formatting purposes and does not impact the core
methodology, scientific rigorousness, or originality of the research, declaration is not
required.
Answer: [NA]
Justification: LLMs were not used in this work.
Guidelines:
• The answer NAmeans that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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