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Abstract

While Large Language Models (LLMs) have001
demonstrated remarkable reasoning ability002
lately, providing a structured, explainable proof003
to ensure explainability, i.e. structured reason-004
ing, still remains challenging. Among two di-005
rections of structured reasoning, we specifically006
focus on backward chaining, where the query is007
recursively decomposed to subgoals by apply-008
ing inference rules. We point out that current009
popular backward chaining implementations010
(Least-to-most prompting and LAMBADA)011
fail to implement the necessary features of012
backward chaining, such as arbitrary-depth re-013
cursion and binding propagation. To this end,014
we propose a novel backward chaining frame-015
work, SymBa (Symbolic Backward Chaining).016
In SymBa, a symbolic solver controls the whole017
proof process, and an LLM searches for the018
relevant natural language premises and trans-019
lates them into a symbolic form for the solver.020
By this LLM-solver integration, while produc-021
ing a completely structured proof that is sym-022
bolically verified, SymBa achieves significant023
improvement in performance, proof accuracy,024
and efficiency in diverse structured reasoning025
benchmarks compared to baselines.026

1 Introduction027

Recently, large language models (LLMs) trained028

with massive amounts of natural language text have029

shown remarkable reasoning ability (Wei et al.,030

2022; Kojima et al., 2022, inter alia.). However,031

LLMs might generate inaccurate and ungrounded032

reasoning paths as the number of reasoning steps in-033

creases (Saparov and He, 2023). To simultaneously034

enhance the accuracy and explainability of gener-035

ated proofs against complex problems, structured036

reasoning, where the model provides an explicit,037

well-structured reasoning path instead of rationales038

in free-form text, has been frequently explored as039

a solution (Creswell et al., 2023; Kazemi et al.,040

2023).041

In general, strategies for reasoning can be typ- 042

ically divided into two categories, forward chain- 043

ing and backward chaining (Poole and Mackworth, 044

2010). Forward chaining reasoners first collect the 045

base facts and repeatedly derive a new fact using 046

logical rules until it finally proves the user’s query. 047

In contrast, backward chaining reasoners start from 048

the query and apply rules that decompose the query 049

into a set of subgoals. These subgoals are recur- 050

sively decomposed until they can be directly proved 051

or refuted using the base facts. 052

In terms of structured reasoning, forward chain- 053

ing methods require a tailored planner module 054

that selects the most likely next reasoning step 055

to prevent proof divergence (Sprague et al., 2023; 056

Creswell et al., 2023; Yang et al., 2022). Conse- 057

quently, these approaches suffer from severe per- 058

formance drop at longer reasoning paths due to 059

planning failure (Kazemi et al., 2023). In contrast, 060

backward chaining methods are guaranteed to ter- 061

minate, which removes the necessity for a planner. 062

However, we claim that current LLM-based 063

backward chaining implementations do not fully 064

implement the backward chaining algorithm, by 065

omitting features like arbitrary-depth recursion 066

and binding propagation (Section 3.1). These fea- 067

tures, necessary for performing sound and accurate 068

backward chaining in diverse settings, are well- 069

defined and can be effectively handled with sym- 070

bolic solvers. 071

To this end, we propose a novel framework, 072

SymBa (Symbolic Backward Chaining), a mod- 073

ular backward chaining approach that integrates 074

a symbolic solver with an LLM. In SymBa, the 075

solver controls the entire reasoning process, and 076

the LLM is instructed to generate a single reasoning 077

step only when the solver fails to prove a subgoal. 078

By interleaving the natural language sentences and 079

corresponding symbolic representations, SymBa 080

can leverage the natural language reasoning abili- 081

ties of LLMs and the logical soundness provided 082
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Figure 1: Brief comparison between natural language-based structured backward chaining methods and SymBa.

by the symbolic solver.083

We directly compare the proposed method with084

LLM-based backward chaining baselines, Least-085

to-most prompting (Zhou et al., 2023) and LAM-086

BADA (Kazemi et al., 2023), in seven diverse087

benchmarks that span over deductive, relational,088

and arithmetic reasoning. SymBa outperforms pre-089

vious methods in terms of task performance, proof090

accuracy, and efficiency, while being able to pro-091

vide a strictly structured proof in both symbolic092

and natural language forms1.093

2 Background094

2.1 Logic programming095

Logic programming is a programming paradigm096

based on formal logic. Generally, each statement097

of a logic program is expressed as a rule, which098

describes an implication relation between terms099

that have boolean truth values.100

h :- p1, ..., pn, not q1, ..., not qm. (1)101

This rule denotes that when every subgoal terms pi102

and not qj are true, the head term h is also proven103

true. A rule with an empty body, a fact, expresses104

that the head term h is unconditionally true.105

For instance, consider the logic program106

in Equation 2. The terms dad(alan, carl)107

and dad(carl, bill) are true by the corre-108

sponding facts. When we substitute vari-109

ables of Rule1 (i.e. bind) using the binding110

{A/alan, B/bill, C/carl}, all subgoals become111

identical to already proved terms, so the respective112

bound head granddad(alan, bill) is also deduced113

1We publicly disclose our implementation of baselines
and SymBa, test data, prompts, and anything necessary to
reproduce this study in the following repository.

as true. 114

Rule1. granddad(A,B) :- dad(A,C), dad(C,B). 115

Fact1. dad(alan, carl) :-. (2) 116

Fact2. dad(carl, bill) :-. 117

2.2 Backward chaining solver 118

Backward chaining solvers (top-down solvers) are 119

logic program interpreters that start from the query 120

term and recursively apply rules until the proof is 121

complete. When a user provides a query term, the 122

solver searches through the database for symbolic 123

rules and facts that might prove the query. A rule 124

or a fact can prove the query only if there exists a 125

binding that can make the query and the head iden- 126

tical, i.e. the query and the head unify. If a rule that 127

unifies with the query is found, the solver recur- 128

sively proves each subgoal. When all subgoals are 129

successfully proven true, the query is also proved. 130

Consider the logic program in Equation 2. If the 131

query is given as granddad(alan, bill), the only 132

statement that has a unifying head is Rule1. To 133

make the rule head and query identical, we apply 134

the binding {A/alan, B/bill} to Rule1, obtain- 135

ing two subgoals dad(alan, C) and dad(C, bill). 136

The first subgoal can be proved by binding C/carl. 137

Subsequently, the binding is dynamically propa- 138

gated to the following subgoals (i.e. binding prop- 139

agation), in this case updating the second subgoal 140

to dad(carl, bill). As this is also true, it can be 141

concluded that the original query is proven. 142

3 Methods 143

3.1 Baselines 144

We select two popular natural language-based back- 145

ward chaining methods as our baseline, namely 146

Least-to-most prompting (Zhou et al., 2023) and 147

LAMBADA (Kazemi et al., 2023). 148
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Least-to-most prompting is a two-stage task149

decomposition method. In the initial Decompose150

stage, the LLM is instructed to decompose the151

given question into sub-questions and order them152

from least complicated to most. The questions are153

passed to the Solution stage, where each question154

is answered in an incremental order. This process155

can be seen as explicitly planning the proof’s struc-156

ture first and executing the plan during the actual157

reasoning later.158

While having more structure in its proof com-159

pared to Chain-of-thought reasoning, as Least-to-160

most prompting performs decomposition only once,161

it is required to predict the total ordering of sub-162

questions in a single run, which is challenging espe-163

cially when there exist multiple potential reasoning164

paths (Patel et al., 2022). We further examine the165

proof accuracy problem of Least-to-most prompt-166

ing in Section 5.2.167

LAMBADA implements a modular backward168

chaining approach that operates on pure natural169

language. When given a query, it tests all facts170

and rules against the query to find out which might171

apply2. If a matching fact is retrieved, it stops172

recursion. If any rules are retrieved, they are then173

bound and decomposed into subgoals. Finally, it is174

ensured that the rule and the query have the same175

negation status.176

While LAMBADA overcomes the limitation of177

Least-to-most prompting by allowing an arbitrary178

decomposition depth, LAMBADA’s capability is179

severely limited due to the lack of binding prop-180

agation. As binding propagation is necessary for181

operations like coreferencing between subgoals (il-182

lustrated in Equation 2) or returning a value, LAM-183

BADA is inherently incapable of various types of184

reasoning including relational reasoning with bridg-185

ing entities (Sinha et al., 2019; Yang et al., 2018)186

and arithmetic reasoning (Cobbe et al., 2021). Be-187

sides the binding propagation problem, we find188

LAMBADA to be highly inefficient compared to189

other methods (Section 5.3).190

3.2 Proposed method191

3.2.1 Symbolic Backward Chaining192

To overcome the limitations of previously proposed193

methods, we propose SymBa (Symbolic Backward194

Chaining), which integrates a symbolic backward195

2While the original paper requires classification of each
sentence as either fact or rule before the actual reasoning, we
do not follow their implementation to ensure a fair compari-
son.

chaining solver and an LLM for natural language 196

reasoning. 197

The workflow of SymBa is briefly illustrated in 198

Figure 2. A symbolic solver is capable of deducing 199

a query if the solver’s database includes every nec- 200

essary statement. However, when the relevant con- 201

text is only given in natural language, the database 202

is initially empty, automatically failing to prove the 203

query. To make progress, the solver calls the LLM 204

to check if the failed query can be entailed from the 205

natural language context. The LLM then generates 206

a statement that unifies with the subgoal, and the 207

solver retries proving the failed subgoal with the 208

updated database. The process is continued until 209

the original query is proved, or every possible rea- 210

soning path fails. Appendix A includes a formal, 211

detailed description of SymBa’s mechanism. 212

Delegating proof control to a symbolic solver 213

has numerous benefits. Most importantly, sym- 214

bolic solvers algorithmically produce sound and 215

formally verified proofs. We compare the proof 216

accuracy to baselines in Section 5.2. Furthermore, 217

SymBa can handle tasks like relational reasoning 218

and mathematical reasoning that LAMBADA fails 219

to address by leveraging the solver’s in-built bind- 220

ing propagation. Finally, solver operations are com- 221

putationally efficient compared to neural network 222

inferences. By performing operations like goal 223

decomposition and binding propagation with sym- 224

bols, SymBa is significantly efficient compared to 225

natural language-based backward chaining meth- 226

ods (Section 5.3). 227

3.2.2 Single-step statement generation 228

In SymBa, the LLM is instructed to generate a logic 229

program statement from the context that might 230

prove the current subgoal. Similar to previous 231

works on structured reasoning that adopt modu- 232

lar strategy (Creswell et al., 2023; Kazemi et al., 233

2023), we divide the single-step statement genera- 234

tion process into five modules: Fact/Rule Search, 235

Fact/Rule Translation, and Symbolic Validation 236

(Figure 3). 237

Fact/Rule Search In the first stage, the LLM is 238

prompted with the symbolic query and the context, 239

and is instructed to generate a description of a rea- 240

soning step that might prove the query in natural 241

language. 242

Fact/Rule Translation Subsequently, the LLM 243

is given the query and the description of the back- 244

ward chaining step (obtained from the Search mod- 245

ule) and generates a symbolic statement. Complet- 246
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Figure 2: Overview of SymBa. The proof process is mainly controlled by a symbolic backward chaining solver
(gray). When a goal is not provable by the solver alone, an LLM (navy) is called and generates a single reasoning
step which is added to the symbolic solver’s database.

ing both the Search and the Translation step yields247

the symbolic representation of the logical rule/fact248

that proves the given query term.249

Symbolic validation We verify the generated250

logic program statement by checking if the state-251

ment is syntactically correct, and if the head of the252

statement unifies to the given query. Note that this253

step is purely symbolic and does not require any254

LLM inference.255

4 Experimental settings256

4.1 Benchmarks257

Deductive reasoning We make use of four rep-258

resentative benchmarks for deductive reasoning,259

namely the ProofWriter family (ProofWriter, Birds-260

Electricity, ParaRules) (Tafjord et al., 2021; Clark261

et al., 2020) and PrOntoQA (Saparov and He,262

2023). Each instance is formulated as a binary clas-263

sification task, deciding whether the given query264

can be proved according to the given rules and facts.265

For ProofWriter, we leverage the most challenging266

subset that contains problems with reasoning depth267

up to 5. For PrOntoQA, we sample examples with268

fictional entities (hardest) and reasoning depth 4.269

Relational reasoning CLUTRR (Sinha et al.,270

2019) is a relational reasoning benchmark based271

on human-written stories about family relations.272

For our experiments, we reformulate the task into273

true-or-false form, where two entities and a relation274

are presented and one should predict if the given275

relation is true or false. We sample from the hardest276

subset where there are up to 9 bridging entities.277

Arithmetic reasoning To evaluate arithmetic 278

reasoning performance, we leverage two bench- 279

marks, namely MAWPS (Koncel-Kedziorski et al., 280

2016) and GSM8k (Cobbe et al., 2021). The goal 281

of these two tasks is to predict the numeric answer 282

to a given question. MAWPS includes synthetic 283

arithmetic problems that can be solved within 1-3 284

elementary operations. In contrast, GSM8k con- 285

tains human-written questions with diverse vocabu- 286

lary and complex solutions. 287

More information regarding data statistics, few- 288

shot example construction, logic program represen- 289

tation, and evaluation of each benchmark can be 290

found in Appendix B. 291

4.2 LLM and Few-shot examples 292

To reproduce baselines and implement SymBa, we 293

use three open- and closed-sourced state-of-the-art 294

LLMs: GPT-4 Turbo, Claude 3 Sonnet, and LLaMa 295

3 70B Instruct. A brief comparison of these models 296

is shown in Table 1. 297

Model Provider Open? Release date
GPT-4 Turbo OpenAI N 11/04/2023
Claude-3 Sonnet Anthropic N 02/29/2024
LLaMa 3 70B Meta Y 04/18/2024

Table 1: Brief information of LLMs applied in this study.
Release date column refers to the version of the specific
checkpoints or API endpoints used for the experiments.

We sample few-shot demonstrations from each 298

training split and manually reformat them as de- 299

fined by each baseline (Appendix B). For SymBa, 300
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Figure 3: Brief illustration of the modules in SymBa’s
single statement generation procedure. When the solver
fails to prove a term (as illustrated in Figure 2), the
single-step statement generation procedure is initiated.
Search modules retrieve plausible reasoning steps from
the context, which is translated to symbolic form by
Translation modules. Statements that passed Symbolic
Validation module are added to the solver’s database.

we combine the Positive and Negative examples to301

reduce hallucination in the Search/Translation mod-302

ules (Figure 4); effects of these Negative examples303

are presented in Section 6.2.304

4.3 Solver305

To implement the algorithm described in Section306

2.2, we develop a custom backward chaining solver307

in Python that is able to process logic programs308

with arithmetic operations. We formally define the309

solver’s algorithm in Appendix A.310

5 Results311

5.1 Task performance312

The main results are presented in Table 2.313

Among the three backward chaining methods com-314

pared (Least-to-most prompting, LAMBADA, and315

SymBa), SymBa demonstrates strong performance316

robust to the type of reasoning (deductive, re-317

lational, and arithmetic) and the base language318

model.319

Figure 4: Examples of Positive/Negative demonstra-
tions included in the prompts for the Search/Translation
module of SymBa.

As the benchmarks incorporate multiple plausi- 320

ble reasoning paths with significant depth, the lim- 321

ited planning ability of Least-to-most prompting 322

hinders performance in large-depth benchmarks, 323

such as ProofWriter, ParaRules, CLUTRR, and 324

GSM8k. While it achieves task performance com- 325

parable to SymBa in some settings, we further show 326

that the proof might not be accurate and faithful 327

due to the propagation of Decomposition errors 328

(Section 6.1). 329

The accuracy LAMBADA achieves in deductive 330

reasoning is also lower than SymBa. As LAM- 331

BADA implements a fully recursive proof gen- 332

eration process, the task performance is less af- 333

fected by the accuracy of the speculative plan- 334

ning. However, the large performance gap in 335

ParaRules, where the model must extract the un- 336

derlying reasoning statement despite the syntac- 337

tic distortion, demonstrates the effectiveness of in- 338

termediate symbolic representations that capture 339

the intended logical meaning. Furthermore, as 340

previously mentioned, LAMBADA cannot reason 341

through relational and arithmetic reasoning bench- 342

marks (CLUTRR, MAWPS, and GSM8k) due to 343

the missing backward propagation. 344

We present complete results including standard 345

deviations in Appendix C. 346

5.2 Proof accuracy 347

One of the key benefits of structured reasoning is 348

that it generates more inspectable outputs (Ribeiro 349

et al., 2023). In this section, we analyze the proof 350

accuracy of three backward chaining methods and 351

Chain-of-Thought prompting in four benchmarks. 352

Following Kazemi et al. (2023), the first 30 cor- 353

rect proofs for positive (non-negated) queries are 354

sampled and examined if they include any false 355

intermediate statements or exclude necessary rea- 356

soning steps. 357
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Model Method Deductive Relational Arithmetic
ProofWriter BirdsElec ParaRules PrOntoQA CLUTRR MAWPS GSM8k

GPT-4
Least-to-most 71.5 88.2 71.8 87.5 81.5 84.3 60.6
LAMBADA 69.7 83.4 59.7 96.0 X X X
SymBa 79.8 94.4 79.2 96.3 84.3 86.7 63.8

Claude-3
Least-to-most 60.3 75.7 54.0 86.0 77.0 94.2 59.3
LAMBADA 69.3 62.7 57.7 67.0 X X X
SymBa 77.6 77.3 69.0 91.0 85.0 94.1 67.4

LLaMa-3
Least-to-most 61.4 71.0 66.7 95.0 72.0 89.0 61.5
LAMBADA 64.0 82.3 62.1 90.8 X X X
SymBa 70.4 92.9 71.7 93.3 90.5 87.9 67.0

Table 2: Average accuracy (%) on four runs per each benchmark, LLM model, and reasoning method. Boldface
indicates that the score is significantly higher than others (confidence 95%). LAMBADA is incapable of handling
relational and arithmetic benchmarks.

Figure 5: Proof accuracy on four reasoning benchmarks.
In the first 30 examples that each method got correct,
SymBa and LAMBADA achieved the highest proof
accuracy, while Least-to-most achieved the lowest.

Results are presented in Figure 5. It is shown that358

two modular methods (LAMBADA and SymBa)359

generate the most accurate proofs, where Least-360

to-most prompting demonstrates significantly de-361

graded proof accuracy. Such behavior can be at-362

tributed to shortcuts, where it has failed to predict363

the decomposition order but reached the correct364

conclusion. Figure 6 illustrates the case where365

Least-to-most produces incorrect reasoning paths.366

In summary, we show that the modular approach367

can significantly contribute to the proof accuracy368

as previously claimed in Creswell et al. (2023) and369

Kazemi et al. (2023).370

5.3 Efficiency371

To compare the efficiency, we report the token us-372

age, API cost, and execution time for completing373

300 examples in ProofWriter following Kazemi374

et al. (2023).375

The results are presented in Table 3. SymBa376

achieves 9x token/cost efficiency and 22x speed377

compared to LAMBADA. While LAMBADA uses378

Figure 6: Example of shortcuts by Least-to-most
prompting, sampled from CLUTRR. Even though the
proof planning is completely inaccurate.

Tokens Cost($) Time(h)
CoT 202,420 8.02 0.62
Least-to-most 1,485,989 47.14 1.18
LAMBADA 6,625,623 221.72 23.96
SymBa 880,106 27.22 1.15

Table 3: Token/cost/time consumption (lower the better)
for 300 examples in ProofWriter benchmark in GPT-4
Turbo. Regarding the cost, the OpenAI API used in this
study charges $0.03 per 1,000 input tokens and $0.05
per 1,000 output tokens.

an LLM to perform unification checks and subgoal 379

decomposition, these processes are delegated to 380

the symbolic solver in SymBa, which results in 381

significantly reduced LLM inference costs. 382

Despite that SymBa requires multiple LLM in- 383

ferences per each reasoning step, SymBa is even 384

more efficient than Least-to-most prompting, a non- 385

modular approach. While Least-to-most prompting 386

can be optimized by dynamically appending the 387

questions to intermediate sequences during the in- 388

ference, currently available commercial LLM APIs 389
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do not support such functionality.390

6 Analysis391

6.1 Error analysis392

We manually classify the errors observed from393

SymBa into three categories: Search-Hallucination,394

Search-Miss, and Translation. Definitions of the395

error types are shown in Table 4.396

Error Type Definition
Search-Hallucination The generated description is not

in the context, or unrelated to the
query.

Search-Miss A relevant description stated in
the context was not retrieved.

Translation Symbolic statement is unfaith-
fully translated from the descrip-
tion (i.e. syntax error, misleading
symbol names).

Table 4: Description of three error classes observed
from SymBa. If multiple errors occur simultaneously in
one example, we select the error that appears first.

Figure 7: Error analysis results for SymBa. We sampled
30 proofs that resulted in wrong answers and manually
classified them according to Table 4.

As presented in Figure 7, the distribution of er-397

rors highly varies along the datasets. It implies that398

each benchmark poses unique challenges depend-399

ing on numerous factors, such as reasoning type400

and lexical diversity.401

Among the benchmarks, we focus on402

ProofWriter and Birds-Electricity, which are403

both deductive reasoning benchmarks yet display404

completely different error distributions. While405

rules in ProofWriter often contain variables (e.g.406

’If someone is red then they are round’), 99.6%407

of the rules from Birds-Electricity are bound (e.g.408

’If wire is metal then wire conducts electricity’).409

From this observation, we hypothesize that the410

higher ratio of unbound rules leads to elevated411

Search-miss errors.412

Figure 8: Recall of the Rule Search module in bound
and unbound ProofWriter rules.

We compare the recall of the Rule Search mod- 413

ule in isolation, based on whether the target rule is 414

bound or not (Figure 8). Rule Search achieves a 415

recall of approximately 51% when the target rule is 416

not bound, which is significantly lower than that of 417

bound rules (∼92%). It proves that the boundness 418

of the provided rules seriously affects Search-Miss 419

errors, possibly due to the low lexical overlap of 420

unbound rules compared to bound rules (Shinoda 421

et al., 2021; Liu et al., 2020). 422

6.2 Ablation study 423

As an ablation study, we selectively manipulate the 424

modules or in-context demonstrations and examine 425

the performance of four tasks. 426

Modules To analyze the contribution of each 427

module, we selectively remove some and compare 428

the performance. In the -Search setting, we re- 429

move Fact/Rule Search by merging it to Fact/Rule 430

Translation, so that the symbolic statement is di- 431

rectly generated from the context and the query 432

without intermediate textual representations. In the 433

-Unify setting, we disable the Symbolic Validation 434

module by not checking if the generated statement 435

unifies to the query. 436

Negative in-context examples We also test the 437

effects of the Negative in-context examples illus- 438

trated in Figure 4. In the -SearchNeg setting, we 439

remove Negative examples from the Search mod- 440

ule, while in -TransNeg we remove Negative ex- 441

amples from the Translation module. 442

PW BE CLUTRR GSM8k
SymBa 79.8 94.4 84.3 63.8
-Search -22.7 -5.2 +2.4 +3.0
-Unify -6.9 -1.6 -8.7 -0.1
-SearchNeg -8.8 -29.8 +2.7 +4.1
-TransNeg -2.4 -12.0 -13.8 +1.5

Table 5: Ablation results on four benchmarks using
GPT-4 Turbo. All ablation results are 4-run.

As presented in Table 5, the effects of each set- 443

ting highly vary along the datasets. In ProofWriter 444

variants, the performance significantly drops for all 445
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settings. It is notable that in CLUTRR and GSM8k,446

some ablation settings achieve similar or even bet-447

ter performance compared to the original setting.448

However, we observe common issues related to449

the proof accuracy in these settings. In GSM8k,450

the model often directly outputs the answer in-451

stead of providing structured explanations, while452

in CLUTRR the model makes extreme Search-453

Hallucination and Translation errors (Figure 9). To454

summarize, the modular approach and negative in-455

context examples are both necessary for SymBa’s456

robustness and accuracy in multi-step reasoning.457

Figure 9: Examples of erroneous logic program state-
ments, sampled from -SearchNeg in GSM8k and
-Search in CLUTRR. Ablated versions often fail to
produce a faithful reasoning path where SymBa gener-
ates a correct proof (denoted as Gold).

7 Related works458

7.1 Backward chaining459

Backward chaining has not much been explored in460

the era of LLM and in-context learning compared461

to forward chaining. At the time of writing, the462

only work that explicitly claims to be an LLM-463

based backward chaining method is LAMBADA.464

Alternatively, some backward chaining methods465

use relatively small models directly fine-tuned with466

in-domain data (Tafjord et al., 2022; Bostrom et al.,467

2022). These methods train individual modules for468

rule generation and verification, achieving strong469

results but on behalf of the costly construction of470

in-domain data for training.471

Furthermore, as previously described in Section472

3.1, approaches based on task decomposition (Zhou473

et al., 2023; Khot et al., 2023; Radhakrishnan et al., 474

2023) can be viewed as a type of backward chain- 475

ing (Huang and Chang, 2023). Nonetheless, these 476

methods tend to demonstrate relatively low proof 477

accuracy due to planning failure (Radhakrishnan 478

et al., 2023, Section 5.2 of this work), while SymBa 479

is capable of providing a fully structured proof with 480

high accuracy. 481

7.2 LLM and Logic programming 482

Integrating logic programming and LLMs for multi- 483

step reasoning is a recently emerging topic (Pan 484

et al., 2023; Yang et al., 2023; Olausson et al., 2023, 485

inter alia.), triggered by the improvement in rea- 486

soning and code generation ability of LLMs. The 487

majority of these works implement a similar two- 488

stage approach: (1) convert the problem formulated 489

in natural language into a logic program, and (2) 490

run an external solver to prove the query. 491

SymBa differs from these methods as the solver 492

is integrated into the loop instead of operating in 493

separate stages. It is reported that these methods 494

often choose incompatible representations for the 495

same concept or fail to discover information that 496

does not surface in the premises (Olausson et al., 497

2023), as they generate the code without any hier- 498

archical cues about how statements are structured. 499

These issues can be potentially mitigated by the 500

backward chaining of SymBa, as it ensures that all 501

subgoals are addressed at least once and that the 502

generated statement unifies with the query. 503

8 Conclusion 504

We introduce SymBa, a novel backward chaining 505

method for diverse structured reasoning. While 506

current backward chaining implementations based 507

on LLMs either overly limit the recursion depth or 508

cannot perform relational and arithmetic reasoning, 509

our method integrates a symbolic solver with LLM 510

that removes both limitations. 511

By the solver-LLM integration, we achieve high 512

performance in various tasks compared to back- 513

ward chaining baselines. Furthermore, SymBa pro- 514

vides a structured proof in both symbols and natural 515

language with high accuracy and efficiency. 516

From both theoretical and empirical perspectives, 517

we believe that SymBa significantly extends the 518

horizon of LLM-based backward chaining. 519

8



9 Limitations520

While SymBa significantly improves the perfor-521

mance and efficiency of LLM-based backward522

chaining, it still holds limitations inherited from523

LLMs, backward chaining, and symbolic reason-524

ing.525

To begin with, LLMs often produce counterfac-526

tual and inconsistent information, and can poten-527

tially cause risk when used in domains where high528

precision and factuality are required. While SymBa529

reduces errors by leveraging the symbolic solver530

and applying a modular approach, the single-step531

statement generation based on LLM is still subjec-532

tive to producing false reasoning steps that might533

lead to the wrong conclusion.534

Furthermore, even though backward chaining is535

inherently free from infinite recursion, a naively536

implemented backward chaining system might still537

require substantial computation in fact-intensive538

tasks such as knowledge base question answer-539

ing (KBQA) (Yih et al., 2016; Gu et al., 2021).540

This might be mitigated by hybrid forward and541

backward chaining (Hong et al., 2022) or by us-542

ing sophisticated planning algorithms for symbolic543

solvers (Lu et al., 2012; Yang et al., 2023). We544

leave this direction as future work.545

Lastly, some reasoning problems may not be able546

to be formulated in logic programming notations547

as in this study. Most notably, solving high-order548

logic problems generally requires meta-predicates549

that reason over the database, such as call/N in550

Prolog (Chen et al., 1993), which cannot be han-551

dled using the current algorithm of SymBa. Be-552

sides high-order logic, some reasoning tasks (e.g.553

Dalvi et al., 2021; Zellers et al., 2019) require rea-554

soning with complex linguistic expressions and555

highly pragmatic assumptions, which might not be556

effectively expressed using logic programming.557
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A Formal definition of SymBa793

In this section, we provide an algorithmic descrip-794

tion of SymBa. SymBa can be viewed as an ex-795

tension of the SLDNF resolution (Selective Linear796

Definite resolution with Negation as Failure) al-797

gorithm (Apt and Doets, 1992) typically used in798

top-down solvers like SWI-Prolog (Wielemaker799

et al., 2012). A simplified pseudo-code for SymBa800

is presented in Algorithm 1. The notations used801

throughout this section are presented in Table 6.802

Notation Definition
h, p, q Term (proposition)
T Set of all terms
B Binding (mapping from variables to vari-

ables/constants)
B List of bindings.
B Set of all bindings.
s Statement (rule, fact)

s.head Rule head (term)
s.body Rule body (list of terms)
C Context written in natural language

Table 6: Notations used in Appendix A.

Before proceeding to the algorithm, we intro-803

duce three procedures about unification and bind-804

ing, namely UNIFY : T× T→ {0, 1}, BINDING :805

T × T → B, and BIND : T × B → T. As806

described in Section 2.2, two terms are said to807

unify if there is a valid binding that makes the808

terms identical. UNIFY returns a boolean value809

indicating whether the two terms unify or not.810

BINDING returns the binding of two terms if they811

unify. BIND takes a term (possibly containing812

variables) and a binding as its argument, and re-813

turns the bound term after substituting the vari-814

ables from the term to the corresponding values.815

By definition, for any two terms p and q that816

satisfy UNIFY(p, q), BIND(p, BINDING(p, q)) =817

BIND(q, BINDING(p, q)) should always hold.818

SOLVE is the main procedure of SymBa. It re-819

ceives a query term q as a parameter and refers to820

the global database (set of statements) D to com-821

puteBfinal, the list of all provable bindings for q. If822

Bfinal is not empty, it implies that q can be proved823

on D. Otherwise, the query cannot be proved.824

Negation is handled first, in Lines 5-12. In the825

negation-as-failure semantics, the negation not q826

succeeds when q fails, and vice versa. Therefore,827

whenever the query is negated (i.e. not qpos), its828

non-negative dual (i.e. qpos) is proved first (Line829

6). When the proof succeeds, the negated goal830

should be failed, therefore an empty list (Bfinal) is831

returned (Line 8). When the proof fails, an empty832

binding is added to the Bfinal to indicate success 833

of the original query. 834

The main loop is shown in Lines 13-31. First, the 835

statements that have heads unifying with the query 836

are selected from the database. The initial binding 837

B0 is the binding between the statement’s head 838

and the query. For each subgoal pt, we bind the 839

subgoal using the previous binding Bt−1,i (Line 840

19). The partially bound subgoal pt,i is proved 841

by recursively calling SOLVE, which returns a list 842

of bindings for pt,i (Line 20). The new bindings 843

Bt,i,j are added to original binding Bt,i (Line 22), 844

which are then propagated to the next subgoal pt+1. 845

When all subgoals are proved, the query is proved, 846

and the bindings are added to the answer set (Line 847

27). Note that if the query contains variables, these 848

bindings can be used to bind the query to obtain the 849

list of possible ’solutions’, as presented in Lines 850

41-45. 851

Single-step statement generation, the novel 852

mechanism of SymBa, is shown in Lines 32-38. 853

The flag isProved denotes whether the solver has 854

succeeded in finding a statement that unifies with 855

the query. If the value is false, the single-step state- 856

ment generation (SINGLESTEPSTMTGEN) process 857

described in Section 3.2 is called, which is expected 858

to return a new statement snew from the context C 859

and the query q. If the procedure succeeds, snew is 860

added to D, and the solver re-attempts to solve q 861

with the updated database. 862

If the negation-as-failure succeeded (Line 10), it 863

cannot be determined if the positive query is truly 864

unprovable because queries that have never been 865

previously addressed will always fail. Therefore, 866

the isProved flag remains false in this case, which 867

will later invoke the single-step statement genera- 868

tion. 869

For brevity, here we do not further describe addi- 870

tional features, namely comparison operators, odd 871

loop on negation (OLON) (Marple et al., 2017), 872

goal tabling (to prevent duplicate calls and infinite 873

recursion), and proof tree generation. Full imple- 874

mentation of SymBa can be found in this reposi- 875

tory. 876

B Dataset details 877

This section describes the sampling, preprocessing, 878

and evaluation of benchmarks. Table 7 presents 879

brief information and statistics about the seven 880

benchmarks used in this paper. 881

All datasets used in this study allow free 882
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Algorithm 1 Algorithm of SymBa

1: global D ← empty set
2: procedure SOLVE(q) ▷ Input: query term, Returns: list of bindings
3: Bfinal ← empty list
4: isProved← false
5: if q is negated (i.e. not qpos) then
6: Bpos ← SOLVE(qpos)
7: if Bpos is empty then
8: return empty list ▷ NAF fail
9: else

10: Append empty binding to Bfinal
11: end if
12: end if
13: S ← {s ∈ D | UNIFY(s.head, q)} ▷ Set of statements that have heads unifying with q
14: for s ∈ S do
15: B0 ← [BINDING(s.head, q)]
16: for pt ∈ s.body = [p1, ..., pT ] do
17: Bt ← empty list
18: for Bt−1,i ∈ Bt−1 = [Bt−1,0, ..., Bt−1,I ] do
19: pt,i ← BIND(pt, Bt−1,i) ▷ Apply bindings from head & previous subgoals
20: Bt,i ← SOLVE(pt,i) ▷ Solve the partially bound subgoal
21: for Bt,i,j ∈ Bt,i = [Bt−1,0, ..., Bt−1,J ] do
22: Bt,i,j ← Bt,i,j ∪Bt−1,i ▷ Update the binding
23: end for
24: Extend Bt,i to Bt
25: end for
26: end for
27: Extend BT to Bfinal
28: if BT is not empty then
29: isProved← true
30: end if
31: end for
32: if isProved then ▷ Subgoal success
33: return Bfinal
34: else ▷ Subgoal failure
35: snew ← SINGLESTEPSTMTGEN(C, q)
36: Add snew to D
37: return SOLVE(q)
38: end if
39: end procedure
40:

41: C ← user input
42: qinit ← user input
43: B ← SOLVE(q)
44: for qfinal ∈ {BIND(qinit, B)|B ∈ B} do
45: print qfinal
46: end for
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Dataset Type Test size Avg. steps Avg. sents N-shot
ProofWriter (Tafjord et al., 2021) Deductive 300 4.52 19.12 3
Birds-Electricity (Ibid.) Deductive 300 2.08 13.77 3
ParaRules (Clark et al., 2020) Deductive 300 4.37 10.56 3
PrOntoQA (Saparov and He, 2023) Deductive 100 4.00 21.84 3
CLUTRR (Sinha et al., 2019) Relational 100 4.86 5.20 3
MAWPS (Koncel-Kedziorski et al., 2016) Arithmetic 300 3.06 3.20 5
GSM8k (Cobbe et al., 2021) Arithmetic 270 9.22 4.87 5

Table 7: Statistics of each test set. Avg. steps denotes the average number of statements (facts and rules) required to
prove the goal, and Avg. sents is the average number of sentences that each context contains. N-shot denotes the
number of few-shot examples to prompt LLMs in this study.

use, modification, and redistribution for non-883

commercial applications.884

B.1 ProofWriter family885

Test split sampling From the ProofWriter fam-886

ily, we sample the evaluation set from the test887

split of the closed-world assumption subset (CWA).888

Specifically, for ProofWriter, we use the dep5 sub-889

set, which has a deepest maximum reasoning depth890

of 5. Since a single context includes multiple ques-891

tions, we first sample 300 contexts and randomly892

sample a question from it. As a result, we obtain893

300 (context, question) tuples for each dataset).894

In-context demonstrations We randomly sam-895

ple 3 examples from ProofWriter-dep3 and -dep2896

data that contain shorter contexts to test the length897

generalization ability of each method. For CoT898

prompting and Least-to-most prompting, we pro-899

vide the pre-order traversal of the golden proof tree900

provided for each instance, with stopwords like901

since and so that are known to enhance the perfor-902

mance in CoT prompting (Kazemi et al., 2023). For903

LAMBADA, we use the prompt format provided904

in the original paper, which is populated with the905

sampled in-context examples.906

Logic program We consistently apply907

verb(subject, object) format to both datasets.908

For instance, Bald eagle does not eat the mouse.909

translates to not eats(bald_eagle, mouse).910

Note that we apply the same format for adjective911

facts. For example, the corresponding symbolic912

form for Alan is young. is is(alan, young),913

opposed to another commonly used form914

young(alan) or young(alan, true) (Olausson915

et al., 2023; Pan et al., 2023).916

As a common practice for measuring the rea-917

soning ability in out-of-distribution data (Birds-918

Electricity, ParaRules) using in-domain data919

(ProofWriter) (Tafjord et al., 2021), we use the920

prompts and examples sampled from ProofWriter921

train split for the other two benchmarks.922

Evaluation We use the true/false labels provided 923

with the original dataset without modification. 924

B.2 PrOntoQA 925

Test split sampling We sample the test set using 926

the original script from Saparov and He (2023), 927

using fictional entity names (e.g. Every yumpus is 928

a jompus.). However, due to an unresolved issue 929

of the script, the script only allows to generate a 930

reasoning chain of a maximum of four steps. 931

In-context demonstrations Similar to the 932

ProofWriter family, we use few-shot demonstra- 933

tions with 8 premises, which is significantly lower 934

than average (NN premises). 935

We use identical logic program formats and 936

evaluation criteria for PrOntoQA with other 937

ProofWriter variants. 938

B.3 CLUTRR 939

Test split sampling We randomly sample 100 940

examples from the test split of CLUTRR v1. To 941

generate false labels, we sample half of the exam- 942

ples and alter the relation label of the gold triplet 943

to a random one. 944

In-context demonstrations We randomly sam- 945

ple 3 stories from the train split that only contains 946

2-3 relations to test the length generalization ability 947

of each methods. For CoT, we provide a golden 948

chain of kinship relations that connect the two 949

queried entities. For Least-to-most prompting, each 950

decomposed question contains information about 951

an entity and a relation, asking for the bridging 952

entity. (e.g. Who is the father of Andrea?) 953

Logic program and expert system We in- 954

troduce 39 manually crafted rules about fam- 955

ily relationships. To reduce excessive recur- 956

sion, we use separate predicate names for the 957

base fact and inferred relations. For instance, 958

’George is the father of Andrea.’ is trans- 959

lated as isRelationOf(george, father, andrea) 960

if it is a fact directly from the context, or 961
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relation(george, father, andrea) if it is in-962

ferred by more than one bridging entities. Note963

that the predicate name for the latter casts no ef-964

fect on the performance as it is only used for the965

symbolic solver and not the LLM.966

Examples of the expert system rules are967

presented as follows. Note that the semicolon(;)968

denotes that the rule conditions are satisfied when969

either of the groups is satisfied (disjunction).970

971

relation(A, R, B) :-
isRelation(A, R, B).

relation(A, son, B) :-
isRelationOf(A, brother, C),
relation(C, (son;daughter), B).

relation(A, daughter, B) :-
isRelationOf(A, sister, C),
relation(C, (son;daughter), B).

...

Evaluation Each model is instructed to predict972

if the label is correct or not (randomized).973

B.4 MAWPS974

Test split sampling We use the first 300 exam-975

ples from the original test split.976

In-context demonstrations Five few-shot ex-977

amples are randomly sampled from the train split.978

We manually create annotations as the benchmark979

does not include a reasoning chain.980

Logic program We denote the mean-981

ing of each numeric value with predicates982

of arity 1, as in number_of_oranges(_) or983

fraction_of_trombone_section(_). We use984

answer(X) to express the final answer in all exam-985

ples and evaluate if the variable X is successfully986

bound to the right numeric value (e.g. answer(5)).3987

Facts denote the base value mentioned in the988

text (e.g. number_of_yellow_flowers(10)), and989

rules express the arithmetic relations between each990

value (e.g. fraction_of_trumpet_section(X)991

:- fraction_of_trombone_section(A),992

X = A ∗ 4.).993

Evaluation We use the numeric answer provided994

with the original dataset. If the answer is not a nu-995

meric string (e.g. 25,000 or 42 pages), they are996

considered incorrect. While Standard prompting997

exceptionally suffers from this constraint, we claim998

3While previous approaches in logic programming-
integrated LLMs use an additional step to specify which pred-
icate corresponds to the final answer (Pan et al., 2023), we do
not introduce this mechanism for universality.

that it is not unfair as each method is equally pre- 999

sented with 5-shot examples in the correct format. 1000

B.5 GSM8k 1001

Test split sampling We use the test split used 1002

in Yang et al. (2023), which contains 270 exam- 1003

ples and is a subset of the original test split from 1004

Cobbe et al. (2021). We calculate the number of 1005

reasoning steps presented in Table 7 based on the 1006

semi-structured solutions included in the dataset. 1007

In-context demonstrations We randomly sam- 1008

ple 5 questions from the train split. For CoT 1009

prompting, we used the answer column from the 1010

original dataset and removed the external call snip- 1011

pets (equations that are wrapped in double angle 1012

brackets «...»). For Least-to-most prompting, we 1013

reformulate the answer column from the ‘Socratic’ 1014

version of the dataset that formulates the reason- 1015

ing chain as consecutive sequence of questions and 1016

answers. 1017

We use identical logic program formats and eval- 1018

uation criteria for GSM8k with MAWPS. 1019

C Complete results 1020

Table 8 presents the complete results of the main 1021

experiment (Section 5.1). We also report the perfor- 1022

mance of Standard prompting (generating the an- 1023

swer without any rationales) and Chain-of-thought 1024

prompting for comparison. 1025
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Model Method Performance
ProofWriter BirdsElec ParaRules PrOntoQA CLUTRR MAWPS GSM8k

GPT-4

Standard 63.2±0.43 77.8±1.17 61.3±1.10 83.0±0.82 72.0±4.00
†94.2±0.58 29.4±1.81

CoT 70.5±2.13 81.2±1.41 60.5±1.03 96.8±1.26
†84.5±1.29

†99.1±0.49
†94.2±1.00

Least-to-most 71.5±2.10 88.2±0.76 71.8±0.71 87.5±1.29 81.5±0.58 84.3±0.56 60.6±1.96

LAMBADA 69.7±1.18 83.4±1.20 59.7±1.30 96.0±1.41 X X X
SymBa 79.8±1.06 94.4±0.62 79.2±1.12 96.3±1.26 84.3±2.06 86.7±0.69 63.8±0.74

Claude-3

Standard 61.3±0.00 66.0±0.00 61.3±0.00
†96.0±0.00 80.0±0.00

†96.3±0.00 17.0±0.00

CoT 67.0±2.00 73.3±0.00 57.3±0.00
†96.0±0.00 67.0±0.00 88.0±0.00

†92.2±0.00

Least-to-most 60.3±0.00 75.7±0.00 57.3±0.00 86.0±0.00 67.0±0.00 94.2±0.15 59.3±0.00

LAMBADA 69.3±0.00 62.7±0.00 57.7±0.00 67.0±0.00 X X X
SymBa 77.6±0.00 77.3±0.00 69.0±0.00 91.0±0.00 85.0±0.00 94.1±0.15 67.4±0.00

LLaMa-3

Standard 63.6±0.50 78.7±0.00 65.3±0.00
†99.0±0.00 75.0±0.00

†96.3±0.00 26.2±0.00

CoT 64.8±1.26 79.0±1.29 63.0±1.67 92.5±4.12 77.0±0.00
†95.0±0.00

†89.5±1.35

Least-to-most 61.4±0.34 71.0±0.00 66.7±0.00 95.0±0.00 72.0±0.00 89.0±0.00 61.5±0.00

LAMBADA 64.0±1.63 82.3±0.00 62.1±1.10 90.8±0.50 X X X
SymBa 70.4±1.26 92.9±1.10 71.7±0.00 93.3±0.50 90.5±0.58 87.9±0.70 67.0±0.00

Table 8: Average accuracy (%) and standard deviation on 4-runs per each benchmark and reasoning methods.
Boldface font indicates that the score is significantly higher than other backward chaining methods, which is
equivalent to the boldface in Table 2. Daggers represent that non-structured methods (Standard, Chain-of-thought)
achieves significantly higher score than the best structured backward chaining results. 95% confidence applies to
both notations. Note that the temperature was set to 0 for all runs, which results in zero standard deviation in some
settings.
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