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Abstract

While Large Language Models (LLMs) have
demonstrated remarkable reasoning ability
lately, providing a structured, explainable proof
to ensure explainability, i.e. structured reason-
ing, still remains challenging. Among two di-
rections of structured reasoning, we specifically
focus on backward chaining, where the query is
recursively decomposed to subgoals by apply-
ing inference rules. We point out that current
popular backward chaining implementations
(Least-to-most prompting and LAMBADA)
fail to implement the necessary features of
backward chaining, such as arbitrary-depth re-
cursion and binding propagation. To this end,
we propose a novel backward chaining frame-
work, SymBa (Symbolic Backward Chaining).
In SymBa, a symbolic solver controls the whole
proof process, and an LLM searches for the
relevant natural language premises and trans-
lates them into a symbolic form for the solver.
By this LLM-solver integration, while produc-
ing a completely structured proof that is sym-
bolically verified, SymBa achieves significant
improvement in performance, proof accuracy,
and efficiency in diverse structured reasoning
benchmarks compared to baselines.

1 Introduction

Recently, large language models (LLMs) trained
with massive amounts of natural language text have
shown remarkable reasoning ability (Wei et al.,
2022; Kojima et al., 2022, inter alia.). However,
LLMs might generate inaccurate and ungrounded
reasoning paths as the number of reasoning steps in-
creases (Saparov and He, 2023). To simultaneously
enhance the accuracy and explainability of gener-
ated proofs against complex problems, structured
reasoning, where the model provides an explicit,
well-structured reasoning path instead of rationales
in free-form text, has been frequently explored as
a solution (Creswell et al., 2023; Kazemi et al.,
2023).

In general, strategies for reasoning can be typ-
ically divided into two categories, forward chain-
ing and backward chaining (Poole and Mackworth,
2010). Forward chaining reasoners first collect the
base facts and repeatedly derive a new fact using
logical rules until it finally proves the user’s query.
In contrast, backward chaining reasoners start from
the query and apply rules that decompose the query
into a set of subgoals. These subgoals are recur-
sively decomposed until they can be directly proved
or refuted using the base facts.

In terms of structured reasoning, forward chain-
ing methods require a tailored planner module
that selects the most likely next reasoning step
to prevent proof divergence (Sprague et al., 2023;
Creswell et al., 2023; Yang et al., 2022). Conse-
quently, these approaches suffer from severe per-
formance drop at longer reasoning paths due to
planning failure (Kazemi et al., 2023). In contrast,
backward chaining methods are guaranteed to ter-
minate, which removes the necessity for a planner.

However, we claim that current LLM-based
backward chaining implementations do not fully
implement the backward chaining algorithm, by
omitting features like arbitrary-depth recursion
and binding propagation (Section 3.1). These fea-
tures, necessary for performing sound and accurate
backward chaining in diverse settings, are well-
defined and can be effectively handled with sym-
bolic solvers.

To this end, we propose a novel framework,
SymBa (Symbolic Backward Chaining), a mod-
ular backward chaining approach that integrates
a symbolic solver with an LLM. In SymBa, the
solver controls the entire reasoning process, and
the LLM is instructed to generate a single reasoning
step only when the solver fails to prove a subgoal.
By interleaving the natural language sentences and
corresponding symbolic representations, SymBa
can leverage the natural language reasoning abili-
ties of LLMs and the logical soundness provided



Question. Alan is young. Alan is round. All young, round people are cold. Is this true: Alan is cold.

Chain-of-thought: Least-to-most prompting:

Alan is young and round. Since all Q. Is Alan young and round?
young and round people are cold, A. Yes, Alan is both young and round.
Alan is cold. Therefore, the sentence Q. Is Alan cold

A. Since all young, round people are
cold, Alan is cold.

Q. Is this true: Alan is cold.

Yes, “Alan is cold.” is true.

Final answer: Yes

‘Alan is cold’ is true.

#H#t### Yes

Unstructured outputs + Explicit planning

LAMBADA:
Goal: Alan is cold.
L All young, round people are cold.
F Goal: Alan is young.

L Goal: Alan is round. |

SymBa:
Goal: is(alan, cold)
Y Al young, round people are cold.
| = is(X, cold) :- is(X, young), is(X, round)
F Goal: is(alan, young)
L Alan 15 young.
— is(alan, young).
L Goal: is(alan, round)
Y Alan is round.
— is(alan, round).

+ Modular recursion + Sound symbolic reasoning

Alan is young.

Y Alan is round.

Figure 1: Brief comparison between natural language-based structured backward chaining methods and SymBa.

by the symbolic solver.

We directly compare the proposed method with
LLM-based backward chaining baselines, Least-
to-most prompting (Zhou et al., 2023) and LAM-
BADA (Kazemi et al., 2023), in seven diverse
benchmarks that span over deductive, relational,
and arithmetic reasoning. SymBa outperforms pre-
vious methods in terms of task performance, proof
accuracy, and efficiency, while being able to pro-
vide a strictly structured proof in both symbolic

and natural language forms'.

2 Background

2.1 Logic programming

Logic programming is a programming paradigm
based on formal logic. Generally, each statement
of a logic program is expressed as a rule, which
describes an implication relation between terms
that have boolean truth values.

h - p1,.cey Pn, N0t q1,...,N0t ¢p,. (1)

This rule denotes that when every subgoal terms p;
and not g; are true, the head term h is also proven
true. A rule with an empty body, a fact, expresses
that the head term A is unconditionally true.

For instance, consider the logic program
in Equation 2. The terms dad(alan,carl)
and dad(carl,bill) are true by the corre-
sponding facts. When we substitute vari-
ables of Rulel (i.e. bind) using the binding
{A/alan, B/bill, C'/carl}, all subgoals become
identical to already proved terms, so the respective
bound head granddad(alan, bill) is also deduced

'We publicly disclose our implementation of baselines
and SymBa, test data, prompts, and anything necessary to
reproduce this study in the following repository.

as true.

Rulel. granddad(A, B) :- dad(A4, C),dad(C, B).
Factl. dad(alan, carl) :-. ()
Fact2. dad(carl,bill) :-.

2.2 Backward chaining solver

Backward chaining solvers (top-down solvers) are
logic program interpreters that start from the query
term and recursively apply rules until the proof is
complete. When a user provides a query term, the
solver searches through the database for symbolic
rules and facts that might prove the query. A rule
or a fact can prove the query only if there exists a
binding that can make the query and the head iden-
tical, i.e. the query and the head unify. If a rule that
unifies with the query is found, the solver recur-
sively proves each subgoal. When all subgoals are
successfully proven true, the query is also proved.
Consider the logic program in Equation 2. If the
query is given as granddad(alan, bill), the only
statement that has a unifying head is Rulel. To
make the rule head and query identical, we apply
the binding { A/alan, B/bill} to Rulel, obtain-
ing two subgoals dad(alan, C') and dad(C,bill).
The first subgoal can be proved by binding C'/carl.
Subsequently, the binding is dynamically propa-
gated to the following subgoals (i.e. binding prop-
agation), in this case updating the second subgoal
to dad(carl,bill). As this is also true, it can be
concluded that the original query is proven.

3 Methods

3.1 Baselines

We select two popular natural language-based back-
ward chaining methods as our baseline, namely
Least-to-most prompting (Zhou et al., 2023) and
LAMBADA (Kazemi et al., 2023).


https://osf.io/g9h42/?view_only=74ab8cc288404502bd2d820820ad9426

Least-to-most prompting is a two-stage task
decomposition method. In the initial Decompose
stage, the LLM is instructed to decompose the
given question into sub-questions and order them
from least complicated to most. The questions are
passed to the Solution stage, where each question
is answered in an incremental order. This process
can be seen as explicitly planning the proof’s struc-
ture first and executing the plan during the actual
reasoning later.

While having more structure in its proof com-
pared to Chain-of-thought reasoning, as Least-to-
most prompting performs decomposition only once,
it is required to predict the total ordering of sub-
questions in a single run, which is challenging espe-
cially when there exist multiple potential reasoning
paths (Patel et al., 2022). We further examine the
proof accuracy problem of Least-to-most prompt-
ing in Section 5.2.

LAMBADA implements a modular backward
chaining approach that operates on pure natural
language. When given a query, it tests all facts
and rules against the query to find out which might
apply?. If a matching fact is retrieved, it stops
recursion. If any rules are retrieved, they are then
bound and decomposed into subgoals. Finally, it is
ensured that the rule and the query have the same
negation status.

While LAMBADA overcomes the limitation of
Least-to-most prompting by allowing an arbitrary
decomposition depth, LAMBADA’s capability is
severely limited due to the lack of binding prop-
agation. As binding propagation is necessary for
operations like coreferencing between subgoals (il-
lustrated in Equation 2) or returning a value, LAM-
BADA is inherently incapable of various types of
reasoning including relational reasoning with bridg-
ing entities (Sinha et al., 2019; Yang et al., 2018)
and arithmetic reasoning (Cobbe et al., 2021). Be-
sides the binding propagation problem, we find
LAMBADA to be highly inefficient compared to
other methods (Section 5.3).

3.2 Proposed method

3.2.1 Symbolic Backward Chaining

To overcome the limitations of previously proposed
methods, we propose SymBa (Symbolic Backward
Chaining), which integrates a symbolic backward

2While the original paper requires classification of each
sentence as either fact or rule before the actual reasoning, we
do not follow their implementation to ensure a fair compari-
son.

chaining solver and an LL.M for natural language
reasoning.

The workflow of SymBa is briefly illustrated in
Figure 2. A symbolic solver is capable of deducing
a query if the solver’s database includes every nec-
essary statement. However, when the relevant con-
text is only given in natural language, the database
is initially empty, automatically failing to prove the
query. To make progress, the solver calls the LLM
to check if the failed query can be entailed from the
natural language context. The LLM then generates
a statement that unifies with the subgoal, and the
solver retries proving the failed subgoal with the
updated database. The process is continued until
the original query is proved, or every possible rea-
soning path fails. Appendix A includes a formal,
detailed description of SymBa’s mechanism.

Delegating proof control to a symbolic solver
has numerous benefits. Most importantly, sym-
bolic solvers algorithmically produce sound and
formally verified proofs. We compare the proof
accuracy to baselines in Section 5.2. Furthermore,
SymBa can handle tasks like relational reasoning
and mathematical reasoning that LAMBADA fails
to address by leveraging the solver’s in-built bind-
ing propagation. Finally, solver operations are com-
putationally efficient compared to neural network
inferences. By performing operations like goal
decomposition and binding propagation with sym-
bols, SymBa is significantly efficient compared to
natural language-based backward chaining meth-
ods (Section 5.3).

3.2.2 Single-step statement generation

In SymBa, the LLM is instructed to generate a logic
program statement from the context that might
prove the current subgoal. Similar to previous
works on structured reasoning that adopt modu-
lar strategy (Creswell et al., 2023; Kazemi et al.,
2023), we divide the single-step statement genera-
tion process into five modules: Fact/Rule Search,
Fact/Rule Translation, and Symbolic Validation
(Figure 3).

Fact/Rule Search In the first stage, the LLM is
prompted with the symbolic query and the context,
and is instructed to generate a description of a rea-
soning step that might prove the query in natural
language.

Fact/Rule Translation Subsequently, the LLM
is given the query and the description of the back-
ward chaining step (obtained from the Search mod-
ule) and generates a symbolic statement. Complet-



’ Question. Alan is young. Bob is round. All young people are cold. 1s this true: is(alan, cold). ‘

Solve: is(alan, cold)

Database:
(empty)

Solve: is(alan, cold)

Database:
is(X, cold) :- is(X, young).

— Fail — Apply Rule

Call LLM
on failure

Add statements
to database

Statement:

is(X, cold) :- is(X, young).
Description:

All young people are cold.

Query: is(alan, cold)
Context:

Alan is young. Bob is round.
All young people are cold.

Solve: is(alan, young)

Database:
is(X, cold) :- is(X, young).

Solve: is(alan, young)

Database:
is(X, cold) :- is(X, young).
is(alan, young).

— Fail — Apply Fact

Call LLM
on failure

Add statements
to database

Statement:
is(alan, young).
Description:
Alan is young.

Query: is(alan, young)
Context:

Alan is young. Bob is round.
All young people are cold.

Figure 2: Overview of SymBa. The proof process is mainly controlled by a symbolic backward chaining solver
(gray). When a goal is not provable by the solver alone, an LLM (navy) is called and generates a single reasoning

step which is added to the symbolic solver’s database.

ing both the Search and the Translation step yields
the symbolic representation of the logical rule/fact
that proves the given query term.

Symbolic validation We verify the generated
logic program statement by checking if the state-
ment is syntactically correct, and if the head of the
statement unifies to the given query. Note that this
step is purely symbolic and does not require any
LLM inference.

4 Experimental settings

4.1 Benchmarks

Deductive reasoning We make use of four rep-
resentative benchmarks for deductive reasoning,
namely the ProofWriter family (ProofWriter, Birds-
Electricity, ParaRules) (Tafjord et al., 2021; Clark
et al., 2020) and PrOntoQA (Saparov and He,
2023). Each instance is formulated as a binary clas-
sification task, deciding whether the given query
can be proved according to the given rules and facts.
For ProofWriter, we leverage the most challenging
subset that contains problems with reasoning depth
up to 5. For PrOntoQA, we sample examples with
fictional entities (hardest) and reasoning depth 4.
Relational reasoning CLUTRR (Sinha et al.,
2019) is a relational reasoning benchmark based
on human-written stories about family relations.
For our experiments, we reformulate the task into
true-or-false form, where two entities and a relation
are presented and one should predict if the given
relation is true or false. We sample from the hardest
subset where there are up to 9 bridging entities.

Arithmetic reasoning To evaluate arithmetic
reasoning performance, we leverage two bench-
marks, namely MAWPS (Koncel-Kedziorski et al.,
2016) and GSM8k (Cobbe et al., 2021). The goal
of these two tasks is to predict the numeric answer
to a given question. MAWPS includes synthetic
arithmetic problems that can be solved within 1-3
elementary operations. In contrast, GSM8k con-
tains human-written questions with diverse vocabu-
lary and complex solutions.

More information regarding data statistics, few-
shot example construction, logic program represen-
tation, and evaluation of each benchmark can be
found in Appendix B.

4.2 LLM and Few-shot examples

To reproduce baselines and implement SymBa, we
use three open- and closed-sourced state-of-the-art
LLMs: GPT-4 Turbo, Claude 3 Sonnet, and LLaMa
3 70B Instruct. A brief comparison of these models
is shown in Table 1.

Model | Provider | Open? | Release date
GPT-4 Turbo OpenAl N 11/04/2023
Claude-3 Sonnet | Anthropic N 02/29/2024
LLaMa 3 70B Meta Y 04/18/2024

Table 1: Brief information of LLMs applied in this study.
Release date column refers to the version of the specific
checkpoints or API endpoints used for the experiments.

We sample few-shot demonstrations from each
training split and manually reformat them as de-
fined by each baseline (Appendix B). For SymBa,



Call LLM
on failure

Query: is(alan, cold)
Context:
Alan is young. Bob is round. All young people are cold.

Fact Search Rule Search

Description (fact):
No applicable fact.

Fact Translation

Description (rule):
All young people are cold.

Rule Translation

Rule:

Large Language Model is(X, cold) :- is(X. young).

Symbolic validation

Statement:

is(X, cold) :- is(X, young).
Description:

All young people are cold.

Add statements
to database

Figure 3: Brief illustration of the modules in SymBa’s
single statement generation procedure. When the solver
fails to prove a term (as illustrated in Figure 2), the
single-step statement generation procedure is initiated.
Search modules retrieve plausible reasoning steps from
the context, which is translated to symbolic form by
Translation modules. Statements that passed Symbolic
Validation module are added to the solver’s database.

we combine the Positive and Negative examples to
reduce hallucination in the Search/Translation mod-
ules (Figure 4); effects of these Negative examples
are presented in Section 6.2.

4.3 Solver

To implement the algorithm described in Section
2.2, we develop a custom backward chaining solver
in Python that is able to process logic programs
with arithmetic operations. We formally define the
solver’s algorithm in Appendix A.

5 Results

5.1 Task performance

The main results are presented in Table 2.
Among the three backward chaining methods com-
pared (Least-to-most prompting, LAMBADA, and
SymBa), SymBa demonstrates strong performance
robust to the type of reasoning (deductive, re-
lational, and arithmetic) and the base language
model.

Search

Context: Alan is young. All young people are cold.
Pos is(alan, cold) = Al young people are cold.
Neg is(alan, red) — No applicable rules.

Translation

Description: Ail young people are cold.

Pos is(alan, cold) = is(X, cold) :- is(X, young).
Neg is(alan, red) = is(X, cold) - is(X, young).

Figure 4: Examples of Positive/Negative demonstra-
tions included in the prompts for the Search/Translation
module of SymBa.

As the benchmarks incorporate multiple plausi-
ble reasoning paths with significant depth, the lim-
ited planning ability of Least-to-most prompting
hinders performance in large-depth benchmarks,
such as ProofWriter, ParaRules, CLUTRR, and
GSM8k. While it achieves task performance com-
parable to SymBa in some settings, we further show
that the proof might not be accurate and faithful
due to the propagation of Decomposition errors
(Section 6.1).

The accuracy LAMBADA achieves in deductive
reasoning is also lower than SymBa. As LAM-
BADA implements a fully recursive proof gen-
eration process, the task performance is less af-
fected by the accuracy of the speculative plan-
ning. However, the large performance gap in
ParaRules, where the model must extract the un-
derlying reasoning statement despite the syntac-
tic distortion, demonstrates the effectiveness of in-
termediate symbolic representations that capture
the intended logical meaning. Furthermore, as
previously mentioned, LAMBADA cannot reason
through relational and arithmetic reasoning bench-
marks (CLUTRR, MAWPS, and GSMS8Kk) due to
the missing backward propagation.

We present complete results including standard
deviations in Appendix C.

5.2 Proof accuracy

One of the key benefits of structured reasoning is
that it generates more inspectable outputs (Ribeiro
et al., 2023). In this section, we analyze the proof
accuracy of three backward chaining methods and
Chain-of-Thought prompting in four benchmarks.
Following Kazemi et al. (2023), the first 30 cor-
rect proofs for positive (non-negated) queries are
sampled and examined if they include any false
intermediate statements or exclude necessary rea-
soning steps.



Model Method Deductive Relational Arithmetic
ProofWriter | BirdsElec | ParaRules | PrOntoQA | CLUTRR | MAWPS | GSM8k
Least-to-most 71.5 88.2 71.8 87.5 81.5 84.3 60.6
GPT-4 LAMBADA 69.7 83.4 59.7 96.0 X X X
SymBa 79.8 94.4 79.2 96.3 84.3 86.7 63.8
Least-to-most 60.3 75.7 54.0 86.0 77.0 94.2 59.3
Claude-3 | LAMBADA 69.3 62.7 57.7 67.0 X X X
SymBa 77.6 77.3 69.0 91.0 85.0 94.1 67.4
Least-to-most 614 71.0 66.7 95.0 72.0 89.0 61.5
LLaMa-3 | LAMBADA 64.0 82.3 62.1 90.8 X X X
SymBa 70.4 92.9 71.7 93.3 90.5 87.9 67.0

Table 2: Average accuracy (%) on four runs per each benchmark, LLM model, and reasoning method. Boldface
indicates that the score is significantly higher than others (confidence 95%). LAMBADA is incapable of handling

relational and arithmetic benchmarks.

Proof accuracy% (GPT-4)
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Figure 5: Proof accuracy on four reasoning benchmarks.
In the first 30 examples that each method got correct,
SymBa and LAMBADA achieved the highest proof
accuracy, while Least-to-most achieved the lowest.

Results are presented in Figure 5. It is shown that
two modular methods (LAMBADA and SymBa)
generate the most accurate proofs, where Least-
to-most prompting demonstrates significantly de-
graded proof accuracy. Such behavior can be at-
tributed to shortcuts, where it has failed to predict
the decomposition order but reached the correct
conclusion. Figure 6 illustrates the case where
Least-to-most produces incorrect reasoning paths.

In summary, we show that the modular approach
can significantly contribute to the proof accuracy
as previously claimed in Creswell et al. (2023) and
Kazemi et al. (2023).

5.3 Efficiency

To compare the efficiency, we report the token us-
age, API cost, and execution time for completing
300 examples in ProofWriter following Kazemi
et al. (2023).

The results are presented in Table 3. SymBa
achieves 9x token/cost efficiency and 22x speed
compared to LAMBADA. While LAMBADA uses

Query: Is Danzelle niece of Harry?
Gold reasoning path:

Kevin I Debra

‘ .

T )
Dale T Morgan Brian Valerie

Least-to-most prompting:

Q. Who is Danielle's father?

A. Dale.

Q. Who is the brother of #12

A. Unknown. > Planning failure
Q. Danzelle can be inferred as the niece of Llarry.

A. Yes. > Shortcut exploitation

Figure 6: Example of shortcuts by Least-to-most
prompting, sampled from CLUTRR. Even though the
proof planning is completely inaccurate.

| Tokens | Cost($) | Time(h)
CoT 202,420 8.02 0.62
Least-to-most | 1,485,989 47.14 1.18
LAMBADA 6,625,623 | 221.72 23.96
SymBa 880,106 27.22 1.15

Table 3: Token/cost/time consumption (lower the better)
for 300 examples in ProofWriter benchmark in GPT-4
Turbo. Regarding the cost, the OpenAl API used in this
study charges $0.03 per 1,000 input tokens and $0.05
per 1,000 output tokens.

an LLM to perform unification checks and subgoal
decomposition, these processes are delegated to
the symbolic solver in SymBa, which results in
significantly reduced LLM inference costs.
Despite that SymBa requires multiple LLM in-
ferences per each reasoning step, SymBa is even
more efficient than Least-to-most prompting, a non-
modular approach. While Least-to-most prompting
can be optimized by dynamically appending the
questions to intermediate sequences during the in-
ference, currently available commercial LLM APIs



do not support such functionality.

6 Analysis

6.1 Error analysis

We manually classify the errors observed from
SymBa into three categories: Search-Hallucination,
Search-Miss, and Translation. Definitions of the
error types are shown in Table 4.

Error Type Definition

Search-Hallucination ~ The generated description is not

in the context, or unrelated to the
query.

A relevant description stated in
the context was not retrieved.
Symbolic statement is unfaith-
fully translated from the descrip-
tion (i.e. syntax error, misleading
symbol names).

Search-Miss

Translation

Table 4: Description of three error classes observed
from SymBa. If multiple errors occur simultaneously in
one example, we select the error that appears first.

Error type distribution of SymBa (GPT-4)

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

ProofWriter BirdsElec ParaRules PrOntoQA CLUTRR MAWPS  GSM8k

Search-Halucination ®Search-Miss ® Translation etc.

Figure 7: Error analysis results for SymBa. We sampled
30 proofs that resulted in wrong answers and manually
classified them according to Table 4.

As presented in Figure 7, the distribution of er-
rors highly varies along the datasets. It implies that
each benchmark poses unique challenges depend-
ing on numerous factors, such as reasoning type
and lexical diversity.

Among the benchmarks, we focus on
ProofWriter and Birds-Electricity, which are
both deductive reasoning benchmarks yet display
completely different error distributions. While
rules in Proof Writer often contain variables (e.g.
*If someone is red then they are round’), 99.6%
of the rules from Birds-Electricity are bound (e.g.
*If wire is metal then wire conducts electricity’).
From this observation, we hypothesize that the
higher ratio of unbound rules leads to elevated
Search-miss errors.

Rule Search Recall% (ProofWriter, GPT-4)

Bound rules 92.42

Unbound rules 50.91

0 20 40 60 80 100

Figure 8: Recall of the Rule Search module in bound
and unbound ProofWriter rules.

We compare the recall of the Rule Search mod-
ule in isolation, based on whether the target rule is
bound or not (Figure 8). Rule Search achieves a
recall of approximately 51% when the target rule is
not bound, which is significantly lower than that of
bound rules (~92%). It proves that the boundness
of the provided rules seriously affects Search-Miss
errors, possibly due to the low lexical overlap of
unbound rules compared to bound rules (Shinoda
et al., 2021; Liu et al., 2020).

6.2 Ablation study

As an ablation study, we selectively manipulate the
modules or in-context demonstrations and examine
the performance of four tasks.

Modules To analyze the contribution of each
module, we selectively remove some and compare
the performance. In the -Search setting, we re-
move Fact/Rule Search by merging it to Fact/Rule
Translation, so that the symbolic statement is di-
rectly generated from the context and the query
without intermediate textual representations. In the
-Unify setting, we disable the Symbolic Validation
module by not checking if the generated statement
unifies to the query.

Negative in-context examples We also test the
effects of the Negative in-context examples illus-
trated in Figure 4. In the -SearchNeg setting, we
remove Negative examples from the Search mod-
ule, while in -TransNeg we remove Negative ex-
amples from the Translation module.

| PW | BE | CLUTRR | GSM8k

SymBa 79.8 94.4 84.3 63.8
-Search -22.7 -5.2 +2.4 +3.0
-Unify -6.9 -1.6 -8.7 -0.1
-SearchNeg | -8.8 | -29.8 +2.7 +4.1
-TransNeg 24 | -120 -13.8 +1.5

Table 5: Ablation results on four benchmarks using
GPT-4 Turbo. All ablation results are 4-run.

As presented in Table 5, the effects of each set-
ting highly vary along the datasets. In ProofWriter
variants, the performance significantly drops for all



settings. It is notable that in CLUTRR and GSM8Kk,
some ablation settings achieve similar or even bet-
ter performance compared to the original setting.
However, we observe common issues related to
the proof accuracy in these settings. In GSMS8k,
the model often directly outputs the answer in-
stead of providing structured explanations, while
in CLUTRR the model makes extreme Search-
Hallucination and Translation errors (Figure 9). To
summarize, the modular approach and negative in-
context examples are both necessary for SymBa’s
robustness and accuracy in multi-step reasoning.

Question: Nancy is returning her overdue books to

the library. ... How much does she have to pay total?

Gold:

answer(X) :- overdue_charge_per_book(A),
number_of_overdue_books(B),
flat_fee_for_overdue_books(C),
X=(A*B)+C

—-SearchNeg:

answer(6). Shortcut

Question: ... April had picked her daughter Melba
out the cutest new dress to wear on her birthday.
Gold:

isRelationOf{(melba, daughter, april).
-Search:

isRelationOf{(melba, daughter, april).
L . . . Contradictory
isRelationOf{(melba, mother, april).

isRelationOf{april, daughter, melba).

Figure 9: Examples of erroneous logic program state-
ments, sampled from -SearchNeg in GSM8k and
-Search in CLUTRR. Ablated versions often fail to
produce a faithful reasoning path where SymBa gener-
ates a correct proof (denoted as Gold).

7 Related works

7.1 Backward chaining

Backward chaining has not much been explored in
the era of LLM and in-context learning compared
to forward chaining. At the time of writing, the
only work that explicitly claims to be an LLM-
based backward chaining method is LAMBADA.

Alternatively, some backward chaining methods
use relatively small models directly fine-tuned with
in-domain data (Tafjord et al., 2022; Bostrom et al.,
2022). These methods train individual modules for
rule generation and verification, achieving strong
results but on behalf of the costly construction of
in-domain data for training.

Furthermore, as previously described in Section
3.1, approaches based on task decomposition (Zhou

et al., 2023; Khot et al., 2023; Radhakrishnan et al.,
2023) can be viewed as a type of backward chain-
ing (Huang and Chang, 2023). Nonetheless, these
methods tend to demonstrate relatively low proof
accuracy due to planning failure (Radhakrishnan
etal., 2023, Section 5.2 of this work), while SymBa
is capable of providing a fully structured proof with
high accuracy.

7.2 LLM and Logic programming

Integrating logic programming and LLMs for multi-
step reasoning is a recently emerging topic (Pan
et al., 2023; Yang et al., 2023; Olausson et al., 2023,
inter alia.), triggered by the improvement in rea-
soning and code generation ability of LLMs. The
majority of these works implement a similar two-
stage approach: (1) convert the problem formulated
in natural language into a logic program, and (2)
run an external solver to prove the query.

SymBa differs from these methods as the solver
is integrated into the loop instead of operating in
separate stages. It is reported that these methods
often choose incompatible representations for the
same concept or fail to discover information that
does not surface in the premises (Olausson et al.,
2023), as they generate the code without any hier-
archical cues about how statements are structured.
These issues can be potentially mitigated by the
backward chaining of SymBa, as it ensures that all
subgoals are addressed at least once and that the
generated statement unifies with the query.

8 Conclusion

We introduce SymBa, a novel backward chaining
method for diverse structured reasoning. While
current backward chaining implementations based
on LLMs either overly limit the recursion depth or
cannot perform relational and arithmetic reasoning,
our method integrates a symbolic solver with LLM
that removes both limitations.

By the solver-LLM integration, we achieve high
performance in various tasks compared to back-
ward chaining baselines. Furthermore, SymBa pro-
vides a structured proof in both symbols and natural
language with high accuracy and efficiency.

From both theoretical and empirical perspectives,
we believe that SymBa significantly extends the
horizon of LLM-based backward chaining.



9 Limitations

While SymBa significantly improves the perfor-
mance and efficiency of LLM-based backward
chaining, it still holds limitations inherited from
LLMs, backward chaining, and symbolic reason-
ing.

To begin with, LLMs often produce counterfac-
tual and inconsistent information, and can poten-
tially cause risk when used in domains where high
precision and factuality are required. While SymBa
reduces errors by leveraging the symbolic solver
and applying a modular approach, the single-step
statement generation based on LLM is still subjec-
tive to producing false reasoning steps that might
lead to the wrong conclusion.

Furthermore, even though backward chaining is
inherently free from infinite recursion, a naively
implemented backward chaining system might still
require substantial computation in fact-intensive
tasks such as knowledge base question answer-
ing (KBQA) (Yih et al., 2016; Gu et al., 2021).
This might be mitigated by hybrid forward and
backward chaining (Hong et al., 2022) or by us-
ing sophisticated planning algorithms for symbolic
solvers (Lu et al., 2012; Yang et al., 2023). We
leave this direction as future work.

Lastly, some reasoning problems may not be able
to be formulated in logic programming notations
as in this study. Most notably, solving high-order
logic problems generally requires meta-predicates
that reason over the database, such as call/N in
Prolog (Chen et al., 1993), which cannot be han-
dled using the current algorithm of SymBa. Be-
sides high-order logic, some reasoning tasks (e.g.
Dalvi et al., 2021; Zellers et al., 2019) require rea-
soning with complex linguistic expressions and
highly pragmatic assumptions, which might not be
effectively expressed using logic programming.
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A Formal definition of SymBa

In this section, we provide an algorithmic descrip-
tion of SymBa. SymBa can be viewed as an ex-
tension of the SLDNF resolution (Selective Linear
Definite resolution with Negation as Failure) al-
gorithm (Apt and Doets, 1992) typically used in
top-down solvers like SWI-Prolog (Wielemaker
etal., 2012). A simplified pseudo-code for SymBa
is presented in Algorithm 1. The notations used
throughout this section are presented in Table 6.

Notation Definition

h,p,q Term (proposition)
T Set of all terms
B Binding (mapping from variables to vari-

ables/constants)

B List of bindings.
B Set of all bindings.
S Statement (rule, fact)

s.head  Rule head (term)

s.body Rule body (list of terms)
C Context written in natural language

Table 6: Notations used in Appendix A.

Before proceeding to the algorithm, we intro-
duce three procedures about unification and bind-
ing, namely UNIFY : T x T — {0, 1}, BINDING :
TxT — B,and BIND : T xB — T. As
described in Section 2.2, two terms are said to
unify if there is a valid binding that makes the
terms identical. UNIFY returns a boolean value
indicating whether the two terms unify or not.
BINDING returns the binding of two terms if they
unify. BIND takes a term (possibly containing
variables) and a binding as its argument, and re-
turns the bound term after substituting the vari-
ables from the term to the corresponding values.
By definition, for any two terms p and ¢ that
satisfy UNIFY(p, ¢), BIND(p, BINDING(p, q))
BIND(q, BINDING(p, ¢)) should always hold.

SOLVE is the main procedure of SymBa. It re-
ceives a query term g as a parameter and refers to
the global database (set of statements) D to com-
pute B ¢inal, the list of all provable bindings for g. If
Bina is not empty, it implies that ¢ can be proved
on D. Otherwise, the query cannot be proved.

Negation is handled first, in Lines 5-12. In the
negation-as-failure semantics, the negation not ¢
succeeds when ¢ fails, and vice versa. Therefore,
whenever the query is negated (i.e. not gpos), its
non-negative dual (i.e. gpos) is proved first (Line
6). When the proof succeeds, the negated goal
should be failed, therefore an empty list (B ;yq1) is
returned (Line 8). When the proof fails, an empty
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binding is added to the B;,, to indicate success
of the original query.

The main loop is shown in Lines 13-31. First, the
statements that have heads unifying with the query
are selected from the database. The initial binding
By is the binding between the statement’s head
and the query. For each subgoal p;, we bind the
subgoal using the previous binding B;_1; (Line
19). The partially bound subgoal p;; is proved
by recursively calling SOLVE, which returns a list
of bindings for p;; (Line 20). The new bindings
B, ; ; are added to original binding B; ; (Line 22),
which are then propagated to the next subgoal ps 1.
When all subgoals are proved, the query is proved,
and the bindings are added to the answer set (Line
27). Note that if the query contains variables, these
bindings can be used to bind the query to obtain the
list of possible ’solutions’, as presented in Lines
41-45.

Single-step statement generation, the novel
mechanism of SymBa, is shown in Lines 32-38.
The flag ¢s Proved denotes whether the solver has
succeeded in finding a statement that unifies with
the query. If the value is false, the single-step state-
ment generation (SINGLESTEPSTMTGEN) process
described in Section 3.2 is called, which is expected
to return a new statement S,,.,, from the context C'
and the query q. If the procedure succeeds, Syeqy 1S
added to D, and the solver re-attempts to solve ¢
with the updated database.

If the negation-as-failure succeeded (Line 10), it
cannot be determined if the positive query is truly
unprovable because queries that have never been
previously addressed will always fail. Therefore,
the s Proved flag remains false in this case, which
will later invoke the single-step statement genera-
tion.

For brevity, here we do not further describe addi-
tional features, namely comparison operators, odd
loop on negation (OLON) (Marple et al., 2017),
goal tabling (to prevent duplicate calls and infinite
recursion), and proof tree generation. Full imple-
mentation of SymBa can be found in this reposi-
tory.

B Dataset details

This section describes the sampling, preprocessing,
and evaluation of benchmarks. Table 7 presents
brief information and statistics about the seven
benchmarks used in this paper.

All datasets used in this study allow free


https://osf.io/g9h42/?view_only=74ab8cc288404502bd2d820820ad9426
https://osf.io/g9h42/?view_only=74ab8cc288404502bd2d820820ad9426
https://osf.io/g9h42/?view_only=74ab8cc288404502bd2d820820ad9426

Algorithm 1 Algorithm of SymBa

1: global D < empty set

2: procedure SOLVE(q) > Input: query term, Returns: list of bindings
3: Bfmal < empty list
4: 1sProved < false
5: if ¢ is negated (i.e. not gy,s) then
6: Bpos < SOLVE(qpos)
7: if B, is empty then
8: return empty list > NAF fail
9: else
10: Append empty binding to Binal
11: end if
12: end if
13: S « {s € D | UNIFY(s.head, q)} > Set of statements that have heads unifying with ¢
14: fors € Sdo
15: By < [BINDING(s.head, q)]
16: for p; € s.body = [p1, ..., pr] do
17: By < empty list
18: for Bt—l,i € B = [Bt_l’g, ey Bt—l,[] do
19: Pt,i < BIND(p;, Bi—1,i) > Apply bindings from head & previous subgoals
20: B:i < SOLVE(p ;) > Solve the partially bound subgoal
21: for Bt,i,j S Bm = [Bt_LQ, ceey Btfl’J] do
22: By« BiijUBi_1; > Update the binding
23: end for
24: Extend B, ; to B;
25: end for
26: end for
27: Extend Bt to Byinai
28: if Bt is not empty then
29: 1sProved < true
30: end if
31: end for
32: if s Proved then > Subgoal success
33: return B
34: else > Subgoal failure
35: Snew < SINGLESTEPSTMTGEN(C, q)
36: Add s,y to D
37: return SOLVE(q)
38: end if
39: end procedure
40:
41: C' < user input

: Qingt < user input
: B < SOLVE(q)
. for dfinal S {BIND(qim‘t,B”B c B} do

print qfinal

: end for
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Dataset |  Type | Testsize | Avg. steps | Avg. sents | N-shot |
ProofWriter (Tafjord et al., 2021) Deductive 300 4.52 19.12 3
Birds-Electricity (Ibid.) Deductive 300 2.08 13.77 3
ParaRules (Clark et al., 2020) Deductive 300 4.37 10.56 3
PrOntoQA (Saparov and He, 2023) Deductive 100 4.00 21.84 3
CLUTRR (Sinha et al., 2019) Relational 100 4.86 5.20 3
MAWPS (Koncel-Kedziorski et al., 2016) | Arithmetic 300 3.06 3.20 5
GSMS8k (Cobbe et al., 2021) Arithmetic 270 9.22 4.87 5

Table 7: Statistics of each test set. Avg. steps denotes the average number of statements (facts and rules) required to
prove the goal, and Avg. sents is the average number of sentences that each context contains. N-shot denotes the
number of few-shot examples to prompt LLMs in this study.

use, modification, and redistribution for non-
commercial applications.

B.1 ProofWriter family

Test split sampling From the Proof Writer fam-
ily, we sample the evaluation set from the test
split of the closed-world assumption subset (CWA).
Specifically, for ProofWriter, we use the dep5 sub-
set, which has a deepest maximum reasoning depth
of 5. Since a single context includes multiple ques-
tions, we first sample 300 contexts and randomly
sample a question from it. As a result, we obtain
300 (context, question) tuples for each dataset).

In-context demonstrations We randomly sam-
ple 3 examples from ProofWriter-dep3 and -dep2
data that contain shorter contexts to test the length
generalization ability of each method. For CoT
prompting and Least-to-most prompting, we pro-
vide the pre-order traversal of the golden proof tree
provided for each instance, with stopwords like
since and so that are known to enhance the perfor-
mance in CoT prompting (Kazemi et al., 2023). For
LAMBADA, we use the prompt format provided
in the original paper, which is populated with the
sampled in-context examples.

Logic program We consistently apply
verb(subject,object) format to both datasets.
For instance, Bald eagle does not eat the mouse.
translates to not eats(bald_eagle,mouse).
Note that we apply the same format for adjective
facts. For example, the corresponding symbolic
form for Alan is young. is is(alan,young),
opposed to another commonly wused form
young(alan) or young(alan,true) (Olausson
et al., 2023; Pan et al., 2023).

As a common practice for measuring the rea-
soning ability in out-of-distribution data (Birds-
Electricity, ParaRules) using in-domain data
(ProofWriter) (Tafjord et al., 2021), we use the
prompts and examples sampled from ProofWriter
train split for the other two benchmarks.
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Evaluation We use the true/false labels provided
with the original dataset without modification.

B.2 PrOntoQA

Test split sampling We sample the test set using
the original script from Saparov and He (2023),
using fictional entity names (e.g. Every yumpus is
a jompus.). However, due to an unresolved issue
of the script, the script only allows to generate a
reasoning chain of a maximum of four steps.

In-context demonstrations Similar to the
ProofWriter family, we use few-shot demonstra-
tions with 8 premises, which is significantly lower
than average (NN premises).

We use identical logic program formats and
evaluation criteria for PrOntoQA with other
ProofWriter variants.

B.3 CLUTRR

Test split sampling We randomly sample 100
examples from the test split of CLUTRR v1. To
generate false labels, we sample half of the exam-
ples and alter the relation label of the gold triplet
to a random one.

In-context demonstrations We randomly sam-
ple 3 stories from the train split that only contains
2-3 relations to test the length generalization ability
of each methods. For CoT, we provide a golden
chain of kinship relations that connect the two
queried entities. For Least-to-most prompting, each
decomposed question contains information about
an entity and a relation, asking for the bridging
entity. (e.g. Who is the father of Andrea?)

Logic program and expert system We in-
troduce 39 manually crafted rules about fam-
ily relationships. To reduce excessive recur-
sion, we use separate predicate names for the
base fact and inferred relations. For instance,
"George is the father of Andrea.” is trans-
lated as isRelationOf(george, father,andrea)
if it is a fact directly from the context, or



relation(george, father,andrea) if it is in-
ferred by more than one bridging entities. Note
that the predicate name for the latter casts no ef-
fect on the performance as it is only used for the
symbolic solver and not the LLM.

Examples of the expert system rules are
presented as follows. Note that the semicolon(;)
denotes that the rule conditions are satisfied when
either of the groups is satisfied (disjunction).

relation(A, R, B) :-
isRelation(A, R, B).

relation(A, son, B) :-
isRelationOf(A, brother, C),
relation(C, (son;daughter), B).

relation(A, daughter, B) :-
isRelationOf(A, sister, C),
relation(C, (son;daughter), B).

Evaluation Each model is instructed to predict
if the label is correct or not (randomized).

B4 MAWPS

Test split sampling We use the first 300 exam-
ples from the original test split.

In-context demonstrations Five few-shot ex-
amples are randomly sampled from the train split.
We manually create annotations as the benchmark
does not include a reasoning chain.

Logic program We denote the mean-
ing of each numeric value with predicates
of arity 1, as in number_of_oranges(_) or
fraction_of_trombone_section(_). We use
answer (X)) to express the final answer in all exam-
ples and evaluate if the variable X is successfully
bound to the right numeric value (e.g. answer(5)).?
Facts denote the base value mentioned in the
text (e.g. number_of_yellow_flowers(10)), and
rules express the arithmetic relations between each
value (e.g. fraction_of_trumpet_section(X)
- fraction_of_trombone_section(A),
X =Ax4).

Evaluation We use the numeric answer provided
with the original dataset. If the answer is not a nu-
meric string (e.g. 25,000 or 42 pages), they are
considered incorrect. While Standard prompting
exceptionally suffers from this constraint, we claim

SWhile previous approaches in logic programming-
integrated LLMs use an additional step to specify which pred-
icate corresponds to the final answer (Pan et al., 2023), we do
not introduce this mechanism for universality.
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that it is not unfair as each method is equally pre-
sented with 5-shot examples in the correct format.

B.S GSMS8k

Test split sampling We use the test split used
in Yang et al. (2023), which contains 270 exam-
ples and is a subset of the original test split from
Cobbe et al. (2021). We calculate the number of
reasoning steps presented in Table 7 based on the
semi-structured solutions included in the dataset.

In-context demonstrations We randomly sam-
ple 5 questions from the train split. For CoT
prompting, we used the answer column from the
original dataset and removed the external call snip-
pets (equations that are wrapped in double angle
brackets «...»). For Least-to-most prompting, we
reformulate the answer column from the ‘Socratic’
version of the dataset that formulates the reason-
ing chain as consecutive sequence of questions and
answers.

We use identical logic program formats and eval-
uation criteria for GSM8k with MAWPS.

C Complete results

Table 8 presents the complete results of the main
experiment (Section 5.1). We also report the perfor-
mance of Standard prompting (generating the an-
swer without any rationales) and Chain-of-thought
prompting for comparison.



Model | Method : . Performance
ProofWriter | BirdsElec | ParaRules [ PrOntoQA | CLUTRR | MAWPS | GSMS8k
Standard 63.2+043 77.8+1.17 61.3+1.10 83.0+0.82 72.0+4.00 T94.24058 29.4+1.381
CoT 70.5+2.13 81.2+1.41 60.5+1.03 96.8+1.26 184.5+120 | 199.14040 | 79424100
GPT-4 Least-to-most 71.5+2.10 88.2+0.76 71.8+071 87.5+129 81.5+058 84.3+056 60.6+1.96
LAMBADA 69.7+1.18 83.4+1.20 59.7+130 96.0+1.41 X X X
SymBa 79.8+1.06 94.4+0.62 79.2+1.12 96.3+1.26 84.3+2.06 86.7+0.69 63.8+0.74
Standard 61.3+0.00 66.0+0.00 61.3+0.00 796.0+0.00 80.0+000 | 196.3+0.00 17.0+0.00
CoT 67.0+2.00 73.340.00 57.3+0.00 196.0-+0.00 67.0+0.00 88.0+000 | 192.240.00
Claude-3 [ Least-to-most 60.3£0.00 75.7+000 | 57.3+000 86.0+0.00 67.0+000 | 94.2+015 | 59.3x0.00
LAMBADA 69.3+0.00 62.7+0.00 57.7+0.00 67.0+0.00 X X X
SymBa 77.6+0.00 77.3+0.00 69.0-£0.00 91.0+0.00 85.0-t0.00 94.1+0.15 67.4+0.00
Standard 63.6+0.50 78.7+0.00 65.3+0.00 799.0+0.00 75.0+0.00 796.31000 | 26.240.00
CoT 64.8+126 | 79.0£120 | 63.0+167 | 925412 | 77.0000 | 195.0+000 | 789.5+135
LLaMa-3 [ Least-to-most 61.4+034 71.0+0.00 66.7+0.00 95.0-0.00 72.0+0.00 89.0-0.00 61.5+0.00
LAMBADA 64.0+1.63 82.340.00 62.1+1.10 90.8+0.50 X X X
SymBa 70.4+1.26 92.9-+1.10 71.7+0.00 93.3+050 90.5-+0.58 87.9+0.70 67.0+0.00

Table 8: Average accuracy (%) and standard deviation on 4-runs per each benchmark and reasoning methods.
Boldface font indicates that the score is significantly higher than other backward chaining methods, which is
equivalent to the boldface in Table 2. Daggers represent that non-structured methods (Standard, Chain-of-thought)
achieves significantly higher score than the best structured backward chaining results. 95% confidence applies to
both notations. Note that the temperature was set to O for all runs, which results in zero standard deviation in some
settings.
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