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Abstract
Motivated by the fact that many relations cross
the sentence boundary, there has been increas-
ing interest in document-level relation extrac-
tion (RE). Document-level RE requires in-
tegrating information within and across sen-
tences, capturing complex interactions be-
tween mentions of interacting entities. Most
document-level RE methods proposed to date
are pipeline-based, requiring entities as input.
However, previous work has demonstrated that
jointly learning to extract entities and relations
can improve performance and be more effi-
cient due to shared parameters and training
steps. In this paper, we develop a sequence-
to-sequence-based approach that can learn the
sub-tasks of document-level RE — entity ex-
traction, coreference resolution and relation
extraction — in an end-to-end fashion. We
evaluate our approach on several datasets, in
some cases exceeding the performance of ex-
isting methods. Finally, we demonstrate that,
under our model, the end-to-end approach out-
performs a pipeline-based approach. 1

1 Introduction

PubMed, the largest repository of biomedical liter-
ature, contains over 30 million publications and is
adding more than one paper per minute (Church,
2017). Accurate, automated text mining and natu-
ral language processing (NLP) methods are needed
to maximize discovery and unlock structured in-
formation from this massive volume of text. An
important step in this process is relation extrac-
tion (RE), the task of identifying groups of entities
within some text that participate in a semantic rela-
tionship. In the domain of biomedicine, relations of
interest include chemical-induced disease, protein-
protein interactions, and gene-disease associations.

Many methods have been proposed for RE, rang-
ing from rule-based to machine learning-based

1Our code and models will be made publicly available.

(Zhou et al., 2014). Most of this work has focused
on intra-sentence binary RE, where pairs of enti-
ties within a sentence are classified as belonging
to a particular relation (or none). These methods
often ignore commonly occurring complexities like
nested or discontinuous entities, coreferent men-
tions (words or phrases in the text that refer to
the same entity), inter-sentence and n-ary relations
(see Table 1 for examples). The decision not to
model these phenomena is a strong assumption. In
GENIA (Kim et al., 2003), a corpus of PubMed
articles labelled with around 100,000 biomedical
entities, ∼17% of all entities are nested within an-
other entity. Discontinuous entities are particularly
common in clinical text, where ∼10% of mentions
in popular benchmark corpora are discontinuous
(Wang et al., 2021). In the CDR corpus (Li et al.,
2016b), which comprises 1500 PubMed articles
annotated for chemical-induced disease relations,
∼30% of all relations cross sentence boundaries.
In Peng et al. (2017), including inter-sentence rela-
tions when deploying an RE system on PubMed for
large-scale extraction tripled the yield. Some rela-
tions, like drug-gene-mutation interactions, are dif-
ficult to model with binary RE (Zhou et al., 2014).

In response to some of these shortcomings,
there has been a growing interest in document-
level RE. Document-level RE aims to model in-
ter-sentence relations between (potentially corefer-
ent) mentions of entities in a document. A popu-
lar approach involves graph-based methods, which
have the advantage of naturally modelling inter-
sentence relations (Peng et al., 2017; Song et al.,
2018; Christopoulou et al., 2019; Nan et al., 2020;
Minh Tran et al., 2020). However, like all pipeline-
based approaches, these methods assume that the
entities within the text are known. As previous
work has demonstrated—and as we show in §5.2—
jointly learning to extract entities and relations can
improve performance (Miwa and Sasaki, 2014;
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Table 1: Examples of complexities in entity and relation extraction and the proposed linearization schema to model
them. CID: chemical-induced disease. GDA: gene-disease association. DGM: drug-gene-mutation.

Complexities Example Comment

Discontinuous
mentions

Induction by paracetamolDRUG of [bladder and liver tumours]DISEASE. Discontinuous mention
of bladder tumours.

paracetamol @DRUG@ bladder tumours @DISEASE@ @CID@
paracetamol @DRUG@ liver tumours @DISEASE@ @CID@

Coreferent
mentions

Proto-oncogene HER2GENE (also known as erbB-2GENE or neuGENE) plays an
important role in the carcinogenesis and the prognosis of breast cancerDISEASE.

Two coreferent men-
tions of HER2.

her2 ; erbb-2 ; neu @GENE@ breast cancer @DISEASE@ @GDA@

n-ary, inter-
sentence

The deletion mutation on exon-19 of EGFRGENE gene was present in 16
patients, while the L858EMUTATION point mutation on exon-21 was noted in 10.
All patients were treated with gefitinibDRUG and showed a partial response.

Ternary DGM relation-
ship crosses a sentence
boundary.

gefitinib @DRUG@ egfr @GENE@ l858e @MUTATION@ @DGM@

Miwa and Bansal, 2016; Gupta et al., 2016; Li
et al., 2016a, 2017; Nguyen and Verspoor, 2019a;
Yu et al., 2020) and may be more efficient due
to shared parameters and training steps. Ideally,
a document-level RE system would be capable of
modelling the complexities we have discussed with-
out strictly requiring entities to be known. End-to-
end methods typically combine task-specific com-
ponents for entity detection, coreference resolution,
and relation extraction that are trained jointly. Most
approaches are restricted to intra-sentence RE (Bek-
oulis et al., 2018; Luan et al., 2018; Nguyen and
Verspoor, 2019b; Wadden et al., 2019) and have
only recently been extended to document-level RE
(Eberts and Ulges, 2021). However, they still focus
on binary relations. A less popular, end-to-end ap-
proach is to frame RE as a sequence-to-sequence
(seq2seq) task (Sutskever et al., 2014). If the in-
formation to extract is appropriately linearized to a
string, seq2seq-based methods are flexible enough
to model all the complexities discussed thus far.
However, existing work stops short, focusing on
intra-sentence binary relations (Zeng et al., 2018;
Zhang et al., 2020; Nayak and Ng, 2020; Zeng
et al., 2020). In this paper, we extend the work
on seq2seq methods to document-level RE with
several important contributions:

• We propose a novel linearization schema that
can handle complexities overlooked by previ-
ous seq2seq-based approaches, like coreferent
mentions and n-ary relations (§3.1).

• Using a strategy we call “entity hinting”, we
demonstrate that our model can be used to
perform document-level RE in a pipeline-like
setup when entities are known (§3.3).

• When given only the raw text, we demonstrate
that our model is able to learn the sub-tasks of
document-level RE — entity extraction, coref-
erence resolution and relation extraction —
jointly, sharing all parameters across the tasks.

• We evaluate our model on several datasets,
in some cases exceeding the performance of
existing document-level RE systems (§5.1).

2 Task definition: document-level
relation extraction

Given a document of S tokens2, a model must ex-
tract all tuples corresponding to a relation, R, ex-
pressed between the entities, E in the document,
(E1, ..., En, R) where n is the arity, or the number
of participating entities, in the relation. Each en-
tity Ei is represented as the set of its coreferent
mentions {eij} in the document, which are often ex-
pressed as aliases, abbreviations or acronyms. All
entities appearing in a tuple have at least one men-
tion in the document. The mentions that express a
given relation are not necessarily contained within
the same sentence. Commonly, E is assumed to be
known and provided as input to a model. We will
refer these methods as “pipeline-based”. In this pa-
per, we are primarily concerned with the situation
where E is not given, and must be predicted by a
model, which we will refer to as “end-to-end”.

3 Our approach: seq2seq learning

3.1 Linearization
To use seq2seq learning for RE, the information to
be extracted must be linearized to a target string.

2S stands for source tokens, to distinguish them from
target tokens, T . See §3.2.
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Figure 1: A seq2seq model for document-level relation extraction. Special tokens are generated by the decoder.
Entity mentions are copied from the input via a copy mechanism. Decoding is initiated by a @START@ token and
terminated when the model generates the @END@ token. Attention connections shown only for the second timestep
to reduce clutter. CID: chemical-induced disease.

There are several desiderata for this linearization.
It should be expressive enough to model the
complexities of entity and relation extraction
without being overly verbose. We propose the
following schema, illustrated with an example:

X: Variants in the estrogen receptor alpha (ESR1) gene

and its mRNA contribute to risk for schizophrenia.

Y : estrogen receptor alpha ; ESR1 @GENE@

schizophrenia @DISEASE@ @GDA@

The input text,X , expresses a gene-disease associa-
tion (GDA) between ESR1 and schizophrenia. In
the corresponding target string Y , each relation be-
gins with its constituent entities. A semicolon sepa-
rates coreferent mentions (;), and entities are termi-
nated with a special token denoting their type (e.g.
@GENE@). Similarly, relations are terminated with a
special token denoting their type (e.g. @GDA@). Two
or more entities can be included before the special
relation token to support n-ary extraction. Entities
can be ordered if they serve specific roles as head
or tail of a relation. For each document, multiple
relations can be included in the target string. En-
tities may be nested or discontinuous in the input
text. In Table 1, we provide examples of how this
schema can be used to model various complexities,
like coreferent entity mentions and n-ary relations.

3.2 Model

The model follows a canonical seq2seq setup. An
encoder maps each token in the input to a contex-
tual embedding. An autoregressive decoder gen-
erates an output, token-by-token, attending to the
outputs of the encoder at each timestep (Figure 1).
Formally, X is the source sequence of length S,
which is some text we would like to extract rela-
tions from. Y is the corresponding target sequence

of length T , a linearization of the relations con-
tained in the source. We seek to model

p(Y |X) =

T∏
t=1

p(yt|X, y<t) (1)

During training, we optimize over the model pa-
rameters θ the sequence cross-entropy loss

`(θ) = −
T∑
t=1

log p(yt|X, y<t; θ) (2)

maximizing the log-likelihood of the training data.3

The main problems with this setup for RE are: 1)
The model might “hallucinate” by generating entity
mentions that do not appear in the source text. 2)
It may generate a target string that does not fol-
low the linearization schema, and therefore cannot
be parsed. 3) The loss function is permutation-
sensitive, enforcing an unnecessary decoding order.

To address 1) we use two modifications: a re-
stricted target vocabulary (§3.2.1) and a copy mech-
anism (§3.2.2). To address 2) we experiment
with several constraints applied during decoding
(§3.2.3). Finally, to address 3) we sort relations ac-
cording to their first appearance in the text (§3.2.4).

3.2.1 Restricted target vocabulary
To prevent the model from “hallucinating” (i.e. gen-
erating entity mentions that do not appear in the
source text) the target vocabulary is restricted to
the set of special tokens needed to model entities
and relations (e.g. ; and @DRUG@). All other tokens
must be copied from the input using a copy mecha-
nism (see §3.2.2). The embeddings of these special
tokens are initialized randomly and learned jointly
with the rest of the models parameters.

3See §4.3 for details about the encoder and decoder.
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3.2.2 Copy mechanism
To enable copying of input tokens during decoding,
we use a copying mechanism (Gu et al., 2016).
The mechanism works by effectively extending the
target vocabulary with the tokens in the source
sequence X , allowing the model to “copy” these
tokens into the output sequence, Y . Our use of
the copy mechanism is similar to previous seq2seq-
based approaches for RE (Zeng et al., 2018, 2020)

3.2.3 Constrained decoding
We experimented with several constraints applied
to the decoder during inference to reduce the like-
lihood of generating syntactically invalid target
strings (i.e. strings that do not follow the proposed
linearization schema). These constraints are ap-
plied by setting the predicted probabilities of in-
valid tokens to a tiny value at each timestep. The
full set of constraints is depicted in Appendix A.
In practice, we found that a trained model rarely
generates invalid target strings, so these constraints
have little effect on final performance. We elected
not to apply them in the rest of our experiments.

3.2.4 Sorting relations
The relations to extract from a given document are
inherently unordered. However, the sequence cross-
entropy loss (Equation 2) is permutation-sensitive
with respect to the predicted tokens. During train-
ing, this enforces an unnecessary decoding order
and may make the model prone to overfit frequent
token combinations in the training set (Vinyals
et al., 2016; Yang et al., 2019). To partially miti-
gate this, we sort relations within the target strings
according to their order of first appearance in the
source text, providing the model with a consistent
decoding order. The order of a relation is deter-
mined by the sum of the end character offsets of
each of its entities. When an entity has more than
one mention, we take the end character offset of
the mention that appears first in the text.

3.3 Entity hinting

Although the proposed model can extract entities
and relations from unannotated text, it is interesting
to consider the case where entities are known
(e.g. as the predictions of an existing system) and
provided to the model as input. To handle this
case, we use a simple strategy that we refer to as
“entity hinting”. This involves prepending entities
to the source text as they appear in the target string.
Taking the example from §3.1, entity hints would

be added as follows:

X: estrogen receptor alpha ; ESR1 @GENE@

schizophrenia @DISEASE@ @HINTS@ Variants in the

estrogen receptor alpha (ESR1) gene and its mRNA

contribute to risk for schizophrenia.

where the special @HINTS@ token demarcates the
end of the entity hint. In our experiments, we
use entity hinting when comparing to existing
document-level RE methods that provide entities
as input to the model (§5.1.1). In §5.2, we make
use of entity hinting to compare a pipeline-based
approach to an end-to-end approach.

4 Experimental setup

4.1 Datasets

We evaluate our approach on several document-
level RE datasets. In Appendix B, we list relevant
details about their annotations.

CDR (Li et al., 2016b) The BioCreative V CDR
task corpus is manually annotated for chemicals,
diseases and chemical-induced disease (CID) rela-
tions. It contains the titles and abstracts of 1500
PubMed articles and is split into equally sized train,
validation and test sets. Given the relatively small
size of the training set (500 examples), we follow
Christopoulou et al. (2019) and others by first tun-
ing the model on the validation set and then training
on the combination of the train and validation sets
before evaluating on the test set.

GDA (Wu et al., 2019) The gene-disease asso-
ciation corpus contains 30,192 titles and abstracts
from PubMed articles that have been automatically
labelled for genes, diseases and gene-disease as-
sociations via distant supervision. The test set is
comprised of 1000 of these examples. Following
Christopoulou et al. (2019) and others, we hold
out a random 20% of the remaining abstracts as a
validation set and use the rest for training.

DGM (Jia et al., 2019) The drug-gene-mutation
corpus contains 4606 PubMed articles that have
been automatically labelled for drugs, genes, mu-
tations and ternary drug-gene-mutation relation-
ships via distant supervision. The dataset is avail-
able in three variants of sentence-, paragraph-, and
document-length text. We train and evaluate our
model on the paragraph-length inputs. Since the
test set does not contain relation annotations on
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the paragraph-level, we report results on the vali-
dation set. We hold out a random 15% of training
examples to form a new validation set for tuning.

DocRED (Yao et al., 2019) DocRED includes
over 5000 human-annotated documents from
Wikipedia. There are 6 entity and 96 relation
types, with ∼40% of relations crossing the sen-
tence boundary, making this one of the most chal-
lenging document-level RE benchmarks to date.
We use the same split as previous work on end-to-
end document-level RE (Eberts and Ulges, 2021),
which has 3,008 documents in the training set, 300
in the validation set and 700 in the test set4.

4.2 Evaluation
We evaluate our model using the micro F1-score
by extracting relations from the decoders output.
Similar to prior work, we use a “strict” criteria.
A predicted relation is considered correct if the
relation type and its entities match a ground truth
relation. An entity is considered correct if the entity
type and its mentions match a ground truth entity.
However, since the aim of document-level RE is
to extract relations at the entity-level (as opposed
to the mention-level), we also report performance
using a relaxed criteria (denoted “relaxed” from
here on), where predicted entities are considered
correct if more than 50% of their mentions match
a ground truth entity (see Appendix G).

Existing methods that evaluate on the CDR,
GDA and DGM use the ground truth entity anno-
tations as input. This makes it difficult to directly
compare with our end-to-end approach, which
takes only the raw text as input. To make the com-
parison fairer, we use entity hinting (§3.3) so that
our model has access to the ground truth entity
annotations. We also report the performance of
our method in the end-to-end setting on these cor-
pora to facilitate future comparison. To compare to
existing end-to-end approaches, we use DocRED.

4.3 Implementation, training and
hyperparameters

Implementation We implemented our model in
PyTorch (Paszke et al., 2017) using AllenNLP
(Gardner et al., 2018). As encoder, we use a
pretrained transformer, implemented in the Trans-
formers library (Wolf et al., 2020), which is fine-
tuned during training. When training and evaluat-
ing on biomedical corpora, we use PubMedBERT

4https://github.com/lavis-nlp/jerex

Table 2: Comparison to existing pipeline-based meth-
ods. Performance reported as micro-precision, recall
and F1-scores (%) on the CDR and GDA test sets. Re-
sults below the horizontal line are not comparable to
existing methods. Bold: best scores.

CDR GDA

Method P R F1 P R F1

Christopoulou et al. (2019) 62.1 65.2 63.6 – – 81.5
Nan et al. (2020) – – 64.8 – – 82.2
Lai and Lu (2021) 64.9 67.1 66.0 – – 82.8
Minh Tran et al. (2020) – – 66.1 – – 82.8
Xu et al. (2021) – – 68.7 – – 83.7
Zhou et al. (2021) – – 69.4 – – 83.9
seq2rel (entity hinting) 65.3 66.2 65.8 83.6 85.0 84.3

seq2rel (entity hinting, relaxed) 64.6 65.3 64.9 83.7 85.1 84.4
seq2rel (end-to-end) 39.8 35.6 37.6 54.8 55.2 55.0
seq2rel (end-to-end, relaxed) 52.5 46.9 49.6 70.0 70.5 70.2

(Gu et al., 2020), and BERTBASE (Devlin et al.,
2019) otherwise. As decoder, we use a single-layer
LSTM with randomly initialized weights. We use
multi-head attention (Vaswani et al., 2017) as the
encoder-decoder attention mechanism.

Training All parameters of the model are trained
jointly using the AdamW optimizer (Loshchilov
and Hutter, 2019). The learning rate is linearly
increased for the first 10% of training steps and
linearly decayed to zero afterward. Gradients are
scaled to a vector norm of 1.0 before backpropagat-
ing. The hidden state of the decoder is initialized
with the [CLS] token representation output by the
encoder. As is common, we use teacher forcing,
feeding previous ground truth inputs to the decoder
when predicting the next token in the sequence.
During inference, we generate the output using
beam search decoding (Graves, 2012). Beams are
ranked by mean token log probability. All models
were trained and evaluated on a single NVIDIA
Tesla V100. See Appendix C for hyperparameters.

5 Results

5.1 Comparison to existing methods

In the following sections, we compare our model
to existing document-level RE methods on several
benchmark corpora. We include existing pipeline-
based methods (§5.1.1), n-ary methods, (§5.1.2),
and end-to-end methods (§5.1.3). Details about
these methods are provided in Appendix D.

5.1.1 Existing pipeline-based methods
In Table 2 we list our results on the GDA corpus.
Although our method is designed for end-to-end
RE, we find that it outperforms existing pipeline-

https://github.com/lavis-nlp/jerex
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Figure 2: Data augmentation by concatenation. Perfor-
mance over five runs reported as micro F1-score on the
CDR test set with entity-hinting. At the beginning of
each epoch, we randomly concatenate pairs of existing
training examples and add them to the original train set.
100% corresponds to doubling train set size. Standard
deviation is displayed as a band.

based methods when using entity hinting. We
also report end-to-end performance, which is not
comparable to existing pipeline-based methods but
will facilitate future comparisons. The large per-
formance improvement when using entity hinting
(+29%) confirms that the model benefits from the
hints. The fact that relaxed entity matching makes
a large difference in the end-to-end setting (+15%),
suggests that a significant portion of the model’s
mistakes occur during coreference resolution.

Unlike GDA, our method underperforms exist-
ing methods on CDR (Table 2). Given that GDA is
46X larger, we speculated that our method might be
underperforming in the low-data regime. To deter-
mine if this is a contributing factor, we artificially
reduce the size of the GDA and CDR training sets
and plot the performance as a curve (Appendix E).
On both corpora, performance increases monotoni-
cally with dataset size. There is no obvious plateau
on CDR even when using all 500 training examples.
Performance only begins to plateau on GDA after
training on ∼14,000 examples. To improve perfor-
mance in the low-data regime, we adapted a data
augmentation technique from neural machine trans-
lation (Kondo et al., 2021; Nguyen et al., 2021).
This technique creates additional training examples
simply by concatenating pairs of existing training
examples (see Appendix F). We re-train on the
CDR corpus, increasing the number of training ex-
amples via augmentation, and plot the performance
as a curve (Figure 2). We find that a small amount
of augmentation can boost in performance by as
much as 1%, but too much can hurt. Together, these
results suggest that our seq2seq based approach can

Table 3: Comparison to existing n-ary methods. Per-
formance reported as micro-precision, recall and F1-
scores (%) on the DGM validation set. Results below
the horizontal line are not comparable to existing meth-
ods. Bold: best scores. † Jia et al. 2019 do not report re-
sults on the validation set, so we re-run their paragraph-
level model.

Method P R F1

Jia et al. (2019) † 68.4 70.6 69.5
seq2rel (entity hinting) 84.5 77.3 80.7

seq2rel (entity hinting, relaxed) 84.8 77.5 81.0
seq2rel (end-to-end) 63.4 56.4 59.7
seq2rel (end-to-end, relaxed) 72.5 64.4 68.2

outperform existing pipeline-based methods when
there are sufficient training examples but underper-
forms relative to existing methods in the low-data
regime. However, this can be partially mitigated
using a simple data augmentation technique.

5.1.2 n-ary relation extraction
In Table 3 we compare against existing n-ary
document-level RE methods on the DGM corpus.
With entity hinting, our method outperforms ex-
isting methods. This result suggests that our lin-
earization schema effectively models n-ary rela-
tions without requiring any changes to the model
architecture or training procedure.

5.1.3 End-to-end methods
In Table 4 we compare against existing end-to-end
approaches on DocRED. To the best of our knowl-
edge, Eberts and Ulges (2021) is the only method to
evaluate an end-to-end approach on DocRED. To
make the comparison fair, we use the same pre-
trained encoder (BERTBASE). We find that our
model underperforms JEREX, mainly due to recall.
We speculate that this is due to the large number
of relations per document, which leads to longer
target strings and, therefore, more decoding steps.
The median length of the target strings in DocRED,
using our linearization, is 205, whereas the next
largest is 21 in GDA. We speculate that improving
the decoder’s ability to process long sequences (e.g.
by switching the LSTM for a Transformer) or mod-
ifying the linearization schema to produce shorter
target strings, may improve recall and close the gap
with existing methods.

5.2 Pipeline vs. End-to-end

In §5.1.1 and §5.1.2, we provide gold-standard en-
tity annotations from each corpus as input to our
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Table 4: Comparison to existing end-to-end methods.
Performance reported as micro-precision, recall and F1-
scores (%) on the DocRED test set. Results below the
horizontal line are not comparable to existing methods.
Bold: best scores.

Method P R F1

JEREX (Eberts and Ulges, 2021) 42.8 38.2 40.4
seq2rel (end-to-end) 43.8 32.0 37.0

seq2rel (end-to-end, relaxed) 53.6 39.2 45.3

Table 5: Comparison of pipeline and end-to-end ap-
proach. Gold hints use gold-standard entity annotations
to insert entity hints in the source text. Silver hints use
the entity annotations provided by PubTator. Pipeline is
identical to silver entity hints, except that we filter out
entity mentions predicted by our model that PubTator
does not predict. The end-to-end model only has access
to the unannotated source text as input. Performance re-
ported as micro-precision, recall and F1-scores (%) on
the CDR test set, with strict and relaxed entity match-
ing criteria. Bold: best scores.

Strict Relaxed

P R F1 P R F1

Gold hints 64.4 65.1 64.7 64.6 65.3 64.9

Silver hints 41.6 35.9 38.5 53.6 46.3 49.7
Pipeline 42.4 29.9 35.0 55.5 39.0 45.7
End-to-end 40.8 36.2 38.4 53.0 47.0 49.9

model (via entity hinting, referred to as “gold” hints
from here on), allowing us to compare to existing
methods that also provide these annotations as in-
put. However, gold-standard entity annotations
are (almost) never available in real-world settings,
such as large-scale extraction on PubMed. In this
setting, there are two strategies: pipeline-based
approaches, where independent systems perform
entity and relation extraction, and end-to-end ap-
proaches, where a single model performs both tasks.
To compare these approaches under our model, we
perform evaluations where an existing entity ex-
traction system is used to determine entity hints
(“silver” hints) and when no entity hints are pro-
vided (end-to-end).5 However, this alone does not
create a true pipeline, as our model can recover
from false negatives in the entity extraction step.
To mimic error propagation in the pipeline setting,
we filter any entity mention predicted by our model
that does not appear in the hints. In Table 6, we
present the results of all four settings (gold and sil-

5Specifically, we use PubTator (Wei et al., 2013). PubTator
provides up-to-date entity annotations for PubMed using state-
of-the-art machine learning systems.

Table 6: Ablation study results. Performance reported
as micro-precision, recall and F1-scores (%) on the
CDR validation set, with and without entity hinting.
∆: difference to the full models F1-score. Bold: best
scores.

Entity hinting End-to-end

P R F1 ∆ P R F1 ∆

Full model 64.9 63.6 64.2 – 38.6 33.7 36.0 –

- pretraining 39.4 26.5 31.7 -32.5 11.0 7.9 9.2 -26.8
- fine-tuning 45.9 38.3 41.7 -22.5 25.6 20.8 22.9 -13.1
- sorting relations 62.7 56.2 59.3 -5.0 37.5 30.0 33.3 -2.7
- vocab restriction 62.8 59.9 61.3 -2.9 40.1 33.3 36.4 +0.4

ver entity hints, pipeline and end-to-end) on CDR.
First, we find that using gold entity hints sig-

nificantly outperforms all other settings. This is
expected, as the gold-standard entity annotations
are high-quality labels produced by domain experts.
Using silver hints significantly drops performance,
likely due to a combination of false positive and
false negatives from the entity extraction step. In
the pipeline setting, where there is no recovery
from false negatives in the entity extraction step,
performance falls by over 3%. Under our model,
the end-to-end setting significantly outperforms the
pipeline setting (due to a large boost in recall) and
performs comparably to using silver entity hints.
Together, our results suggest that performance re-
ported using gold-standard entity annotations can
be overly optimistic and corroborate previous work
demonstrating the benefits of jointly learning entity
and relation extraction (Miwa and Sasaki, 2014;
Miwa and Bansal, 2016; Gupta et al., 2016; Li
et al., 2016a, 2017; Nguyen and Verspoor, 2019a;
Yu et al., 2020).

5.3 Ablation
In Table 6, we present the results of an ablation
study on the CDR corpus. We perform the analysis
twice, once with entity hinting (see §3.3) and once
without. Unsurprisingly, we find that fine-tuning
a pretrained encoder has a large impact on perfor-
mance. Training the same encoder from scratch
reduces performance by 26.8-32.5% (depending on
whether entity hints are used or not). Using the
pretrained weights without fine-tuning drops per-
formance by 13.1-22.5%. Deliberately ordering the
relations within each target string has a large posi-
tive impact, boosting performance by 2.7%-5.0%.
This is likely because the sequence cross-entropy
is permutation-sensitive; sorting relations removes
ambiguity as to the order they should be decoded
(see §3.2.4). Lastly, we find that restricting the tar-
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get vocabulary (see §3.2.1) improves performance
when entity hints are used but slightly reduces per-
formance in the end-to-end setting. The motivation
for restricting the vocabulary was to prevent hal-
lucination, as it forces the model to copy entity
mentions from the source text. The results suggest
that, in the end-to-end setting, hallucination is less
of a problem than initially assumed.

6 Discussion

6.1 Related work

Seq2seq learning for RE has been explored in
prior work. CopyRE (Zeng et al., 2018) uses an
encoder-decoder architecture with a copy mech-
anism, similar to our approach, but is restricted
to intra-sentence relations. Additionally, because
CopyRE’s decoding proceeds for exactly three
timesteps per relation, the model is limited to gener-
ating binary relations between single token entities.
The ability to decode multi-token entities was ad-
dressed in follow-up work, CopyMTL (Zeng et al.,
2020). A similar approach was published concur-
rently but was again limited to intra-sentence binary
relations (Nayak and Ng, 2020). None of these ap-
proaches deal with the complexities of document-
level RE, where many relations cross the sentence
boundary, and coreference resolution is critical.

More generally, our paper is related to a recently
proposed “text-to-text” framework (Raffel et al.,
2020). In this framework, a task is formulated so
that the inputs and outputs are both text strings, en-
abling the use of the same model, loss function and
even hyperparameters across many seq2seq, classi-
fication and regression tasks. This framework has
recently been applied to biomedical literature to
perform named entity recognition, relation extrac-
tion (binary, intra-sentence), natural language infer-
ence, and question answering (Phan et al., 2021).
Our work can be seen as an attempt to formulate the
task of document-level RE within this framework.

6.2 Limitations and future work

Permutation-sensitive loss Our approach
adopts the sequence cross-entropy loss (Equa-
tion 2), which is sensitive to the order of predicted
tokens, enforcing an unnecessary decoding
order on the inherently unordered relations. To
partially mitigate this problem, we order relations
within the target string according to order of
first appearance in the source text, providing the
model with a consistent decoding order that can

be learned (see §3.2.4, §5.3). Previous work
has addressed this issue with various strategies,
including reinforcement learning (Zeng et al.,
2019), unordered-multi-tree decoders (Zhang
et al., 2020), and non-autoregressive decoders (Sui
et al., 2020). However, these works are limited to
binary intra-sentence relation extraction, and their
suitability for document-level RE has not been
explored. An exciting future direction would be to
modify our approach such that the arbitrary order
of relations is not enforced during training.

Input length restriction Due to the pretrained
encoder’s input size limit (512 tokens), our ex-
periments are conducted on paragraph-length text.
Our model could be extended to full documents
by swapping its encoder with any of the recently
proposed “efficient transformers” (Tay et al., 2021).
Future work could evaluate such a model’s ability
to extract relations from full scientific papers.

Pretraining the decoder In our model, the en-
coder is pretrained, while the decoder is trained
from scratch. Several recent works, such as T5
(Raffel et al., 2020) and BART (Lewis et al.,
2020), have proposed pretraining strategies for en-
tire encoder-decoder architectures, which can be
fine-tuned on downstream tasks. An interesting fu-
ture direction would be to fine-tune such a model on
document-level RE using our linearization schema.

7 Conclusion

In this paper, we extend seq2seq methods for rela-
tion extraction to document-level RE. We propose
a novel linearization schema for entities and rela-
tions that is capable of modelling coreferent men-
tions and inter-sentence relations (prerequisites for
document-level RE) and n-ary relations. We also
propose a simple strategy for providing the model
with entity annotations as input that we call en-
tity hinting. We include comparisons to existing
pipeline-based and end-to-end methods on several
benchmark corpora, in some cases exceeding their
performance. In future work, we hope to develop
strategies to improve performance in the low-data
regime, and cases where there are a large number
of relations per document.
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A Constrained decoding

In Figure 3, we illustrate the rules used to constrain
decoding. At each timestep t, given the prediction
of the previous timestep t− 1, the predicted class
probabilities of tokens that would generate a syn-
tactically invalid target string are set to a tiny value.
In practice, we found that a trained model rarely
generates invalid target strings, so these constraints
have little effect on final performance. Therefore,
we elected not to apply them in our experiments.

B Details about dataset annotations

In Table 7, we list which modelling complexities
(e.g. nested and discontinuous mentions) are con-
tained within each corpora used in our evaluations.

C Hyperparameters

In Table 8, we list the hyperparameter values used
during evaluation on each corpus.

D Baselines

This section contains detailed descriptions of all
methods we compare to in the main paper.

D.1 Pipeline-based methods
These methods are pipeline-based, assuming the
entities are provided as input. Many of them con-
struct a graph with dependency parsing, heuristics,
or structured attention, and then performance infer-
ence with graph neural networks (Kipf and Welling,
2017).

• Christopoulou et al. (2019) propose EoG, an
edge-orientated graph neural model. The
nodes of the graph are constructed from men-
tions, entities, and sentences. Edges between
nodes are initially constructed using heuristics.
An iterative algorithm is then used to generate
edges between nodes in the graph. Finally,
a classification layer takes the representation
of entity-to-entity edges as input to determine
whether those entities express a relation or
not. We compare to EoG in the pipeline-based
setting on the CDR and GDA corpora.

• Nan et al. (2020) propose LSR (Latent Struc-
ture Refinement). A “node constructor” en-
codes each sentence of an input document and
outputs contextual representations. Represen-
tations that correspond to mentions and tokens
on the shortest dependency path in a sentence

are extracted as nodes. A “dynamic reasoner”
is then applied to induce a document-level
graph based on the extracted nodes. The clas-
sifier uses the final representations of nodes
for relation classification. We compare to LSR
in the pipeline-based setting on the CDR and
GDA corpora.

• Lai and Lu (2021) propose BERT-GT, which
combines BERT with a graph transformer.
Both BERT and the graph transformer accept
the document text as input, but the graph trans-
former requires the neighbouring positions for
each token, and the self-attention mechanism
is replaced with a neighbour–attention mecha-
nism. The hidden states of the two transform-
ers are aggregated before classification. We
compare to BERT-GT in the pipeline-based
setting on the CDR and GDA corpora.

• Minh Tran et al. (2020) propose EoGANE
(EoG model Augmented with Node Represen-
tations), which extends the edge-orientated
model proposed by Christopoulou et al. (2019)
to include explicit node representations which
are used during relation classification. We
compare to EoGANE in the pipeline-based
setting on the CDR and GDA corpora.

• SSAN (Xu et al., 2021) propose SSAN (Struc-
tured Self-Attention Network) which inherits
the architecture of the transformer encoder
(Vaswani et al., 2017), but adds a novel struc-
tured self-attention mechanism to model the
coreference and co-occurrence dependencies
between an entities mentions. We compare
to SSAN in the pipeline-based setting on the
CDR and GDA corpora.

• Zhou et al. (2021) propose ALTOP (Adap-
tive Thresholding and Localized cOntext Pool-
ing) which extends extends BERT with two
modifications. Adaptive thresholding, which
learns an optimal threshold to apply to the re-
lation classifier. Localized context pooling,
which uses the pretrained self-attention layers
of BERT to create an entity embedding from
its mentions and their context. We compare
to ALTOP in the pipeline-based setting on the
CDR and GDA corpora.

D.2 n-ary relation extraction
These methods are explicitly designed for the ex-
traction of n-ary relations, where n > 2.
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Figure 3: A diagram depicting the syntactically valid predictions during decoding at each timestep t. The class
log probabilities of all other possible predictions are set to a tiny value to prevent the model from producing a
syntactically invalid target string. BOS is the special beginning-of-sequence token, COPY denotes any token copied
from the source text, and COREF is the special token used to separate coreferent mentions (i.e. ;). ENTITY is
any special entity token (e.g. @GENE@) and RELATION any special relation token (e.g. @GDA@ for gene-disease
association). n̂ents denotes the number of entities predicted by the current timestep and nents the expected arity
of the relation. The special end-of-sequence token, EOS (not shown) is always considered syntactically valid, and
therefore its class log probability is never modified.

Table 7: Evaluation datasets used in this paper with details about their annotations.

Corpus Nested Mentions? Discontinuous Mentions? Coreferent mentions? Inter-sentence relations? n-ary relations?

CDR (Li et al., 2016b) 3 3 3 3 7

GDA (Wu et al., 2019) 3 7 3 3 7

DGM (Jia et al., 2019) 7 7 3 3 3

DocRED (Yao et al., 2019) 7 7 3 3 7

Figure 4: Effect of training set size on performance.
Performance reported as micro F1-scores obtained on
the CDR and GDA validation sets, with and without
entity hinting. The absolute number of training exam-
ples are displayed for each corpus. Some labels are
excluded to reduce clutter.

• Jia et al. (2019) propose a multiscale neural
architecture, which combines representations
learned over text spans of varying scales and
for various sub-relations. We compare to Jia
et al. (2019) in the pipeline-based setting on
the n-ary DGM corpus.

D.3 End-to-end methods

These methods are capable of performing the sub-
tasks of document-level RE in an end-to-end fash-
ion with only the document text as input.

• Eberts and Ulges (2021) propose JEREX,
which extends BERT with four task-specific
components that use BERTs outputs to per-
form entity mention localization, coreference
resolution, entity classification, and relation
classification. They present two versions of
their relation classifier, denoted “global re-
lation classifier” (GRC) and “multi-instance
relation classifier” (MRC). We compare to
JEREX-MRC in the end-to-end setting on the
DocRED corpus.

E Effect of training set size

In Figure 4 we artificially reduce the size of the
training set and plot the resulting performance on
the validation set as a curve. We perform this analy-
sis for the CDR and GDA corpus, with and without
entity hinting.
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Table 8: Hyperparameter values used for each corpus. Hyperparameters values when using entity hinting, if they
differ from the values used without entity hinting, are shown in parentheses.

Hyperparameter CDR GDA DGM DocRED

Batch size 4 (1) 8 6 4
Epochs 50 (30) 20 (15) 20 40
Encoder LR 2e-5 5e-5 (2e-5) 2e-5 2e-5
Decoder LR 3e-4 (5e-4) 5e-4 (2e-4) 2e-4 1e-4
Target embedding size 256 256 256 256
No. heads in encoder-decoder multi-head attention 6 6 6 6
Beam size 2 (6) 2 2 8
Length penalty 1.5 (10.0) 1.0 1.0 5.0
Max decoding steps 128 96 72 400

import random

# Load (original) train data
train_data = load_train_data()
# Shuffle the data
random.shuffle(train_data)

n = len(train_data)

# Accumulate tuples of concatenated
# source (X) and target (Y) strings
aug_data = []
for i, j in zip(range(n - 1), range(1, n)):

x_i, y_i = train_data[i]
x_j, y_j = train_data[j]
aug_data.append((x_i + x_j, y_i + y_j))

# Add the augmented data to the original data
train_data = train_data + aug_data

Listing 1: Pseudocode for the augmentation by concate-
nation technique in a Python-like style.

F Augmentation by concatenation

To improve performance in the low-data regime, we
adopt a simple data augmentation technique from
low-resource machine translation (Kondo et al.,
2021; Nguyen et al., 2021). This technique cre-
ates additional training examples by concatenating
pairs of existing examples together. In 1, we pro-
vide Python pseudocode depicting the method. In
practice, we randomly sample some fraction of
the original dataset (e.g. 25%) at the beginning of
each epoch to create the augmented data from. The
examples created via augmentation are added to
the original training set. We found that creating
new augmented data in each epoch outperformed
creating the augmented data once before training
began.

G Relaxed entity matching

The aim of document-level RE is to extract rela-
tions at the entity-level. However, it is common

to evaluate these methods with a “strict” matching
criteria, where a predicted entity P is considered
correct if and only if all its mentions exactly match
a corresponding gold entities mentions, i.e. P = G.
This penalizes model predictions that miss even a
single coreferent mention, but are otherwise cor-
rect. A relaxed criteria, proposed in prior work
(Jain et al., 2020) considers P to match G if more
than 50% of P’s mentions belong to G, that is

|P ∩ G|
|P|

> 0.5

In the main paper, alongside the strict criteria, we
report performance using this relaxed entity match-
ing strategy (denoted “relaxed”).


