
Mesh-Independent Operator Learning for Partial Differential Equations

Seungjun Lee 1

Abstract
Operator learning, learning the mapping between
function spaces, has been attracted as an alterna-
tive approach to traditional numerical methods
to solve partial differential equations. In this pa-
per, we propose to represent the discretized sys-
tem as a set-valued data without a prior structure
and construct the permutation-symmetric model,
called mesh-independent neural operator (MINO),
to provide proper treatments of input functions
and query coordinates of the solution function.
Our models pre-trained with a benchmark dataset
of operator learning are evaluated by downstream
tasks to demonstrate the generalization abilities
to varying discretization formats of the system,
which are natural characteristics of the continuous
solution of the PDEs.

1. Introduction
Partial Differential equations (PDEs) are one of the most
successful mathematical tools for representing the physical
systems with governing equations over infinitesimal seg-
ments of the domain of interest given some problem-specific
boundary conditions or forcing functions (Mizohata, 1973).
PDEs, globally shared on the entire domain, are interpreted
as how to interact between infinitesimal segments with re-
spect to their geometric structure and values. Because of
the universality on the entire domain, the system can be
analyzed in a continuous way with respect to system inputs
and outputs. In general, identifying appropriate governing
equations for unknown systems is very challenging with-
out domain expertise, however, there still remain numerous
unknown processes for many complex systems. Even if
knowing the governing equation of the system, it requires
unnecessarily lots of time and memory costs to solve with
conventional numerical methods, and sometimes it is in-
tractable to compute in a complex and large-scale system.

In recent years, operator learning, an alternative to the con-

1Seoul National University, Seoul, South Korea. Correspon-
dence to: Seungjun Lee <tl7qns7ch@snu.ac.kr>.

2nd AI4Science Workshop at the 39 th International Conference on
Machine Learning (ICML), 2022. Copyright 2022 by the author(s).

ventional numerical methods, has been getting attention,
pursuing to learn a mapping between infinite-dimensional
input/output function space in a purely data-driven way with-
out any human efforts or problem-specific knowledge of the
system (Nelsen & Stuart, 2021; Li et al., 2020; 2021b; Lu
et al., 2019; 2021; Gupta et al., 2021; Cao, 2021; Kovachki
et al., 2021). Intuitively, for underlying PDE, Lau = f
defined on the continuous bounded domain, Ω, with system
parameters a ∈ A, forcing function f ∈ F , and solution
of the system u ∈ U , the goal of the operator learning is
to approximate the inverse operator G = L−1

a f : A → U
or G : F → U with parametric model Gθ. Then, without
loss of generality, in the case of input being a, the output
function can be computed by u = Gθ(a). Since the operator
Gθ should be able to capture pairwise and high-order inter-
actions between elements of system inputs a to discover the
governing PDEs, Gθ has been approximated by a series of in-
tegral operators with parameterized kernels which iteratively
update the system input to output for representing the global
interactions between the elements (Nelsen & Stuart, 2021;
Li et al., 2020; 2021b; Gupta et al., 2021; Cao, 2021; Ko-
vachki et al., 2021). In practice, continuous measurements
of the input/output functions are infeasible, the observed
data are provided as a set of input-output pairs which are
point-wise finite discretization of the functions. Meanwhile,
the output values at arbitrary query coordinate y can be ex-
pressed as u(y) = [Gθ(a)](y) which can be viewed as the
output of the processing Gθ : A × Y → U from two-part
of input placeholders, a ∈ A and y ∈ Y . Instead of sim-
ply mapping between the input-output pairs, the following
two additional considerations should be considered for the
model with respect to function a, and query coordinate y,
which we call mesh-independent operator learning; (1) the
output of the model should not depend on any discretization
format of the a, and (2) the model should be able to output
a solution at the arbitrary query coordinate y. The mea-
surements of the system are often sparsely and irregularly
distributed due to the geometries of the domain, environ-
mental conditions, or occasionally inoperative equipment.
Also, in popular numerical methods, such as finite element
methods for solving the PDEs, unstructured meshes are of-
ten utilized for the discretization of the domain. Therefore,
unlike fixed sensor locations or uniform grid-like discretiza-
tion, without prior assumptions for data structure, the model
should aggregate global information over the measurements

Submission and Formatting Instructions for ICML 2022

Figure 1. Mesh-independent neural operator.

in themselves to process the [Gθ(a)] which then be reusable
to any cardinality and permutation of the discretization of a.
After that, the model should output the solution [Gθ(a)](y)
at any query coordinates y with encoded [Gθ(a)].

Although there are two representative architectures for orig-
inal operator learning problems, deep operator networks
(DeepONets), and neural operators, they can not be appli-
cable to mesh-independent operator learning. DeepONets
are able to output a solution at any query coordinate y, but
they use the fixed discretization of system inputs a (Lu et al.,
2019; 2021). Neural operators can be adapted to the differ-
ent discretization of the system inputs a, but the experiments
are limited to uniform grid-like discretization and the solu-
tion of the model is not a function of query coordinate y
where the same discretization of the domain is used for input
and output space (Nelsen & Stuart, 2021; Li et al., 2020;
2021b; Gupta et al., 2021; Kovachki et al., 2021). There
has been limited discussion on the generalization abilities
for discretizations with extended variations such as irregular
distributions and arbitrary permutations, which are natural
characteristics of the continuous solution of PDEs.

Therefore, we treat the observational data as an unordered
set without intrinsic data structure but intrinsically satisfying
permutation symmetries when represented as feature vec-
tors. Then, we build the mesh-independent neural operator
(MINO) as presented in Figure 1 with a fully attentional ar-
chitecture consisting of encoder-processor-decoder, inspired
by the variants of Transformer to process data in modality-
agnostic ways (Vaswani et al., 2017; Lee et al., 2019; Jaegle
et al., 2021; 2022; Tang & Ha, 2021). The encoder encodes
the system inputs a to latent space, the processor processes
the pairwise and higher-order interactions between elements
of the latent space, and the decoder decodes the latent space
to output solutions at query coordinates y.

2. Approach
2.1. Preliminaries

Operator learning. Let the observed data be provided as
N instance of input-output pairs, {(ai, ui)}Ni=1, where ai =
ai|Xa and ui = ui|Yu are finite discretization of the domain
for the input function ai ∈ A at Xa = {x1, ..., xna} and
output function ui ∈ U at Yu = {y1, ..., ynu

}, with the
number of discretized points na and nu, respectively. The
goal of the original operator learning is to optimize the
following objective for learning a model Gθ : A → U ,

min
θ
Ea∼µ[L (Gθ(ai), ui)]. (1)

where a ∼ µ is iid on A, and the discretizations of the
input and output space are usually assumed to be the same
(Nelsen & Stuart, 2021; Li et al., 2020; 2021b; Gupta et al.,
2021; Cao, 2021; Kovachki et al., 2021), i.e., Xa = Yu. The
architectures for the operator learning, called neural opera-
tors, usually consist of lifting-iterative updates-projection,
which are corresponding to encoder-processor-decoder, re-
spectively. The lifting v1(x) = P(a(x)) and projection
u(x) = Q(vL(x)) are local transformations usually im-
plemented by element-wise feed-forward neural networks
(Li et al., 2020; 2021b; Kovachki et al., 2021) or problem-
specific convolutional modules (Cao, 2021) for mapping
input features to target dimensional features. The iterative
updates Gl : vl 7→ vl+1, l ∈ [1, L−1] are global transforma-
tions implemented by sequence of kernel integral operations
to capture the interactions between the elements.

Kernel integral operation and attention. Inspired by ker-
nel integral operation for PDEs, the parametric model is
usually constructed by a series of integral operators Gl with
parameterized kernels for representing the global interac-

Submission and Formatting Instructions for ICML 2022

tions between the latent elements,

vl+1(y) = [Gl(vl)](y) =

∫
Ωx

Kl(x, y)vl(x)dx, (2)

where the parameterized kernel Kl defined on Ωx × Ωy.
The transform Gl can be interpreted as mapping a function
vl(x) defined in domain x ∈ Ωx to the function vl+1(y) =
[Gl(vl)](y) defined in domain y ∈ Ωy . Recently, the kernel
integral operation can be successfully approximated by the
attention mechanism of Transformers (Cao, 2021; Kovachki
et al., 2021; Guibas et al., 2021; Pathak et al., 2022). For the
sake of simplicity, let input vectors X ∈ Rnx×dx and query
vectors Y ∈ Rny×dy , then the attention can be expressed as

Att(Y,X,X) = σ(QKT)V ≈
∫

Ωx

(q(y) · k(x))v(x)dx,

(3)
where Q = YW q ∈ Rny×dq , K = XW k ∈ Rnx×dq ,
V = XW v ∈ Rnx×dv , and σ are the query, key, value
matrices, and softmax function, respectively. The attention
mechanism, the weighted sum of V with the attention matrix
σ(QKT), can be interpreted as the kernel integral operation
in which the parameterized kernel is approximated by the
attention matrix (Cao, 2021; Tsai et al., 2019; Xiong et al.,
2021; Choromanski et al., 2021). Here, the number of
rows nx and ny can be considered as the cardinality of
the discretization of Ωx and Ωy, respectively. Also, the
input vectors are projected to query embedding space by the
attention mechanism, Att(Y,X,X). Note that when X =
Y , the mechanism denote the self-attention, Att(X,X,X).

Permutation invariance and equivariance. For a func-
tion whose input can be represented by a set, there
can be two interesting symmetries with respect to any
permutations; permutation-invariance, and permutation-
equivariance. Let F is the function with set-valued inputs
X = {x1, x2, ..., xn}, xi ∈ Rd. Since deep learning mod-
els can not directly treat the set-valued input, the input data
is provided as ordered vectors representing one of n! per-
mutations of X . In practice, with arbitrary permutation
action π to the first dimension of the matrix-represented
X ∈ Rn×d, the permutation-invariance and equivariance
are defined as,

F (πX) = F (X), (permutation-invariance) ,
F (πX) = πF (X), (permutation-equivariance) ,

(4)

where the output of the permutation-invariant function does
not depend on ordering and the cardinality of the input
set, while the ordering and the cardinality of the output of
the permutation-equivariant function remain consistent with
those of the input set. A full mathematical definition and
details of the properties can be found in (Zaheer et al., 2017;
Murphy et al., 2019; Wagstaff et al., 2021; Maron et al.,

2020). It can easily be proved that the output of attention
mechanismAtt(Y,X,X) is permutation-invariant toX and
permutation-equivariant to Y . The permutations acting on
X are erased out of each other by the consecutive matrix
multiplication, while that on Y remains to outputs. Addi-
tionally, it is certain that self-attentionAttention(X,X,X)
is permutation-equivariant to X . Detailed explanations can
be found in Appendix A.1.

2.2. Mesh-independent operator learning

Problem statement. Most conditions remain the same as
the original operator learning, but we reconsider the repre-
sentations of the discretized input-output pairs, ai = ai|Xa

and ui = ui|Yu . Then, we consider the extended problem
where the discretized points Xa and Yu are allowed to be
arbitrary on the domain along with varying the number of
na and nu for each i. In practice, we aim to build a model
that is applicable to the randomly permuted and varying
number of discretization points during testing, even if the
model is trained with another arbitrary order of observations
with smaller numbers. The goal of mesh-independent op-
erator learning is to learn the model Gθ : A× Y → U that
is expected to make the following test errors small when
training with objective 1,

min
θ
Ea∼µEXa,Yu

[L ([Gθ(ai)](Yu), ui)], (5)

where Xa and Yu can be arbitrary on the domain. When the
discretization of ai is fixed, the problem can be considered
as a problem such as (Lu et al., 2019; 2021), where the
model cannot handle other discretization formats of the
system inputs.

Set representations for the discretizations. Before start-
ing to construct a model, we reconsider the representations
of a = a|Xa

∈ Rna×da , u = u|Yu
∈ Rnu×du and query

coordinates Yu ∈ Rnu×d. Since the representations should
not include their own data structure, we treat a, u, and
Yu as the set representations, instead of treating them as
structured arrays. For a, since our goal is to discover
spatial relationships between the elements of a input set,
the values of a are concatenated with position coordinates,
a = {(x1, a(x1)), ..., (xna

, a(xna
))} ∈ Rna×(d+da) for in-

dicating the value of a(x) at position x, which compensate
the positional information for representing continuous func-
tion as set representation. By the concatenated position co-
ordinates for each value, the output is permutation-invariant
to the representation of the input function a, when the set is
represented as feature vectors, i.e.,

[Gθ(πa)](Yu) = [Gθ(a)](Yu). (6)

Meanwhile, since the u is output of the model at the query
coordinates Yu = {y1, ..., ynu} ∈ Rnu×d, only the values
are used, u = {u(y1), ..., u(ynu)} ∈ Rnu×du . Since the

Submission and Formatting Instructions for ICML 2022

output u(y) is a function of query coordinates, the permuta-
tion operation and the function operations are commutative.
Therefore, the output is permutation-equivariant to the rep-
resentation of the query coordinates Yu, when the set is
represented as vectors, i.e.,

[Gθ(a)](πYu) = π[Gθ(a)](Yu). (7)

Positional embeddings. Instead of using raw position coor-
dinates xi, yj ∈ Rd, we concatenate the Fourier embeddings
for the position coordinates, which is a common strategy
to enrich the positional information (Vaswani et al., 2017;
Mildenhall et al., 2020; Tancik et al., 2020; Sitzmann et al.,
2020). The positional embeddings exploit sine and cosine
functions with frequencies spanning from minimum to the
Nyquist frequencies sufficiently covering the sampling rates
for corresponding dimensions. This simple technique pro-
vides the model with the capability of representing fine-
grained functions or wide-spectral components.

2.3. Architecture

Following (Lee et al., 2019; Jaegle et al., 2021; 2022; Tang
& Ha, 2021), we build our model with a fully attention-
based architecture consisting of encoder-processor-decoder
with modality-agnostic encoder and decoder, called mesh-
independent neural operator (MINO) as presented in Fig-
ure 1. As the critical difference of mesh-independent op-
erator learning from the original one is treating a and y as
the sets without prior assumption on the data structure, the
significant modifications from the existing neural operators
are mostly in the lifting (encoder) and projection (decoder),
while we can use existing building blocks used as iterative
updates in the neural operators to construct the processor.
The encoder encodes the input function a to latent feature
vectors satisfying permutation-invariance, the processor pro-
cesses the pairwise and higher-order interactions between
elements of the latent features vectors, and the decoder de-
codes the latent features to output solutions at a set of query
coordinates Yu satisfying permutation-equivariance. The
model can also be viewed as continuous function regressor
at query set of y conditioned on the encoded a which can
be considered as support set (Finn et al., 2017) or context
set (Kim et al., 2019).

Encoder. We use cross-attention module as the encoder to
encode inputs a ∈ Rna×(d+da) to a smaller number nz of
learnable queries Z0 ∈ Rnz×dz (typically nz < na), then
the result of the module is

Z1 = Genc(a) = Att(Z0, a, a) ∈ Rnz×dh , (8)

which is permutation-invariant to the elements of a and in-
dependent of the size of the input nx. These properties,
which make the model mesh-invariant to a, are a significant
difference from the lifting component in the existing neural

operators, which is not permutation-invariant and outputs
the same size as the inputs nx with element-wise trans-
formation. The encoder is also interpreted as a projection
inputs domain discretized by nx elements to a latent domain
consisting of the smaller number of nz elements, which is
called “inducing points” in (Lee et al., 2019) and reduces
the computational complexity of the following attentional
modules (Jaegle et al., 2021; 2022).

Processor. We use a series of self-attention modules as the
processor each of which takes zl ∈ Rnz×dh as the input of
the query, key, and value components. Then the output of
each self-attention module with l ∈ [1, L− 1] is

Zl+1 = Gl(Zl) = Att(Zl, Zl, Zl) ∈ Rnz×dh , (9)

which is permutation-equivariant to the elements of Zl,
therefore the permutation-invariant property to the elements
of a is preserved through successive modules. Also, the
results Zl+1 have fixed discretization format with fixed or-
dering and number of elements nz which is decoupled from
discretization format of the input function na and output
functions nu. Due to the decoupling property, the whole
architecture can not only capture the global interactions by
the processor but is also applicable to mesh-independent
operator learning independent of discretization formats of
the input and output functions.

Decoder. We use cross-attention module as the decoder to
decode the latent vectors from the processor ZL ∈ Rnz×dh

at query coordinates Yu ∈ Rnu×d. Then the final output of
the entire architecture is

[Gθ(a)](Yu) = Gdec(ZL) = Att(Yu, ZL, ZL) ∈ Rnu×du ,
(10)

which is permutation-equivariant to the elements of Yu,
therefore every solution uj corresponds to query coordi-
nates yj . This property makes the model applicable to any
arbitrary discretization format of Yu. Since the result from
the processor is independent of the discretization format of
input function a, the model is also applicable to any arbitrary
discretization format of a.

3. Related Works
3.1. Neural networks for PDEs

There has been increasing interest in utilizing neural net-
works for PDEs that can be divided into several lines. In
(Raissi et al., 2019; Sirignano & Spiliopoulos, 2018; Karni-
adakis et al., 2021), neural networks were used as approxi-
mations of the solution when given the boundary conditions
and collocations points constrained to known governing
equations of the system, called physics-informed neural net-
works. It can be an alternative to traditional PDE solvers,
yielding mesh-independent and relatively high-fidelity so-
lutions. However, these methods require full knowledge of

Submission and Formatting Instructions for ICML 2022

the PDEs, and the trained model is usually not reusable for
new systems, otherwise requires expensive re-training for
every new boundary condition. Meanwhile, several studies
have been conducted to learn reusable governing operators
for generalization to new systems. DeepONet pursues to
learn the coefficients and basis of the operators by two sub-
networks, respectively (Lu et al., 2019; 2021). The random
feature models (Nelsen & Stuart, 2021) and message pass-
ings on graphs (Li et al., 2020) are used to approximate
the governing integral operators. Fourier neural operator
(FNO) utilizes fast Fourier transform to efficiently compute
the integral operator in Fourier space (Li et al., 2021b). Fur-
thermore, (Gupta et al., 2021) uses multi-wavelet transform
to approximate the kernel of the operators. Close to our
works, (Cao, 2021) use Transformer-style architectures to
approximate the integral operation, but they use problem-
specific feature extractors and decoding regressors which
make the model biased toward specific equations. Most of
these lines of work only focus on approximating the gov-
erning operator for PDEs mapping between two function
spaces. However, there has been limited discussion on the
representations of the discretizations of the system which
are naturally mesh-independent and infinite-dimensional
but represented by structured arrays for compatibility with
modern deep learning models.

3.2. Set representation learning

In recent years, it has been witnessed that neural networks
on sets gained attention starting from learning simple oper-
ations on unordered sets (e.g., sum or max) and process-
ing the point clouds (Zaheer et al., 2017; Ravanbakhsh
et al., 2016; Qi et al., 2017). The elements of the set
are transformed into new representations through element-
wise feed-forward neural networks which are permutation-
equivariance. Then, the representation of the set is ob-
tained by aggregation across the entire elements of the set
by permutation-invariant functions, such as sum-pooling
(Zaheer et al., 2017) or max-pooling (Qi et al., 2017). How-
ever, a theoretical study has been investigated to claim
the limitations of the representation power of the meth-
ods (Wagstaff et al., 2019; Jurewicz & Derczynski, 2021).
Additionally, the methods make it difficult for the model
to learn pairwise and higher-order interactions between the
elements of the sets, which are lost during those pooling
operations. More recently, several groups have suggested
more sophisticated models for treating set-valued inputs
through modifying Transformers (Vaswani et al., 2017).
Set Transformer uses a cross-attention module considered
as learnable parameterized pooling operations to project
set-valued input into smaller latent vectors, which ensure
handling arbitrary cardinality and permutation of the in-
puts (Lee et al., 2019). Perceiver uses a similar strategy by
emphasizing the efficiency of computational cost and the

property of modality-agnostic which can be applied to a
wide range of large-scale input modalities, such as images,
point clouds, audio, and video (Jaegle et al., 2021). Further-
more, beyond simple outputs like classification, Perceiver
IO uses another cross-attention module to decode complex
outputs modalities which can be applied to the domains of
language, optical flow, audio-visual sequence, and game
environments (Jaegle et al., 2022). A similar strategy is also
applied to reinforcement learning (Tang & Ha, 2021).

4. Experiments
Our experiments are conducted on several PDE benchmark
to investigate the flexibility and generalization abilities of
MINO through various downstream tasks. We select two
representative models for original operator learning, FNO
(Li et al., 2021b) and DeepONet (Lu et al., 2019) as the main
baselines. While we follow their training procedures of (Li
et al., 2021b), we extend the test sets with varying discretiza-
tion formats of the test sets (originally given by equally
spaced grids) with respect to the discretization points of
a and u (or Y); (1) same grids, (2) super-resolutions on
solutions u, (3) permuted grids of inputs a, (4) permuted
and partially masked grids of inputs a.

First, (1) is the original settings of the existing operator
learnings which evaluate the performance under supervised
learning settings. Second, (2) is also discussed in previ-
ous works of both FNO and DeepONet (Li et al., 2021b; Lu
et al., 2019) which evaluate the performance under zero-shot
learning settings where the solutions are provided in unseen
locations during training. However, the same discretization
formats of inputs a are required during train and test time
for DeepONet. Also, the same discretization formats with
equally spaced grids of a and u are required for FNO. In
order to remove the structural bias of the discretization of
a and u, in (3) and (4), we randomly permute the elements
of a, resulting in every a having different order. Addition-
ally, some portions of inputs a in (4) are randomly masked,
so that all observations of a are considered to be arbitrary
sampled formats of a. (4) is also considered as continuous
function regression u(y) at query y conditioned on masked
a which can be considered as few-shot samples of a (Finn
et al., 2017; Kim et al., 2019). From the viewpoint of contin-
uous function regression, the solutions u(y) are evaluated
on all given grids.

While results for experiments already discussed on these
baselines are obtained from the related literature, results for
the extended tasks that have not been discussed before are
reproduced from their original codes. Note that the n/a result
will occur when the baselines cannot be applicable for some
downstream tasks. The implementation details and more
experimental results are described in the Appendix A.3, A.4.

Submission and Formatting Instructions for ICML 2022

Table 1. Relative L2 errors on Burgers’ equation under different settings.
Train grids Test grids Models

a, u a u DeepONet FNO MINO
(1) 1024 1024 0.1582 0.0160 0.0104
(2) 1024 8192 0.1584 n/a 0.0106
(2) 1024 8192 8192 n/a 0.0139 0.0090
(3) 1024, perm 1024 0.9914 0.9852 0.0104
(4) 512 (50% mask), perm 1024 n/a n/a 0.0479

Table 2. Relative L2 errors on Darcy flow under different settings.
Train grids Test grids Models

a, u a u DeepONet FNO MINO
(1) 85×85 85×85 0.0765 0.0108 0.0172
(2) 85×85 421×421 0.0766 n/a 0.0173
(2) 85×85 421×421 421×421 n/a 0.0098 0.0170
(3) 85×85, perm 85×85 0.2532 0.2978 0.0172
(4) 3612 (50% mask), perm 85×85 n/a n/a 0.0272

4.1. Burgers’ equation

First, we consider a benchmark problem of 1D Burgers’
equation which is a non-linear parabolic PDE combining
the terms of convection and diffusion. The equation with
periodic boundary conditions is

∂tu(x, t) + ∂x(u2(x, t)/2) = ν∂xxu(x, t),

u(x, 0) = u0(x),

where u0 ∼ µ is the initial state generated from µ =
N (0, 625(−∆ + 25I)−2) and ν = 0.1 is the viscosity co-
efficient. The goal of operator learning is to learn mapping
the initial state to the solution at time one, G : u0 7→ u(·, 1).

The quantitative results for Burgers’ equation are shown
in Table 1. It is shown that MINO outperforms the others
not only in original tasks for operator learning, (1) same
grids, and (2) super-resolution tasks but also in extended
tasks, (3) permuted input, and (4) permuted and partially
masked input tasks. In particular, in (3), the performances
of baselines are drastically degraded by the permutation
operations to input elements which destroy the structural
bias of the discretization, while MINO is not affected. Even
more, in (4), MINO can robustly cope with the discretized
inputs of reduced size through random masking operations,
while the baselines are not applicable to this task. Addition-
ally, Figure 2 visualizes the ground truth output solutions
(green lines) and the predictions of MINO at fine-grained
query locations (red dashed lines) given the varying size of
discretized inputs (blue points) for Burgers’ equation. This
visualization is reminiscent of few-shot regression problems
u(y) at query locations y where the support set is given by
relatively few samples of discretized inputs a which should
be mapped to output space u through series of integral trans-

Figure 2. Ground truth solutions (green lines) and predictions of
MINO at query locations (red dashed lines) given the varying size
of discretized inputs (blue points) for Burgers’ equation.

Submission and Formatting Instructions for ICML 2022

forms. As presented, the more shots are given, the closer
the predictions are to the ground truth.

4.2. Darcy flow

Second, we consider another benchmark problem of 2D
steady-state Darcy flow which is a second-order elliptic
PDE describing the flow of fluid through a porous medium.
The equation of Darcy flow on the unit box is

−∇ · (a(x)∇u(x)) = f(x),

u(x) = 0,

where u is density of the fluid, a ∼ µ is the diffusion field
generated from µ = N (0, (−∆+9I)−2) with fixed forcing
function f = 1. The goal of operator learning is to learn
mapping the diffusion field to the solution of the density,
G : a 7→ u.

Figure 3. Discretized inputs with varying sizes (left column), their
corresponding predictions of MINO at query locations (middle
column), and absolute error with the ground truth (right column)
for Darcy flow.

The quantitative results for Darcy flow are shown in Table 2.
It is shown that MINO shows slightly worse but competitive
performances than FNO in the original tasks, (1) and (2).
This is because FNO explicitly exploits structural bias of the
2D-structured array with equally spaced grids, while MINO
do not use structural bias but implicitly learn it through
the Nerf-style positional encodings (Vaswani et al., 2017;
Mildenhall et al., 2020; Tancik et al., 2020; Sitzmann et al.,

2020). However, in extended tasks, (3) and (4), MINO
outperforms the others due to the same reason explained
at those of Burgers’ equation. Additionally, Figure 3 visu-
alizes discretized inputs with varying sizes (left column),
their corresponding predictions of MINO at fine-grained
query locations (middle column), and absolute error with
the ground truth (right column) for Darcy flow. As also
presented, MINO is robust under arbitrary discretization
formats with varying sizes, even for few samples.

4.3. Navier-Stokes equation

Third, we consider another benchmark problem of 2D
Navier-Stokes equation describing the dynamics of a vis-
cous, incompressible fluid. The equation in vorticity form
on the unit torus is

∂tw(x, t) + u(x, t) · ∇w(x, t) = ν∆w(x, t) + f(x),

∇ · u(x, t) = 0,

w(x, 0) = w0(x),

where u is the velocity field, w = ∇ × u is
the vorticity field, w0 ∼ µ is the initial vorticity
field generated from µ = N (0, 73/2(−∆ + 49I)−2.5)
with periodic boundary conditions, ν is the viscos-
ity coefficient and forcing function is kept f(x) =
0.1 (sin (2π (x1 + x2)) + cos (2π (x1 + x2))).

We assume that the system is under Markov process that the
vorticity field at time t+dt is described as wt+dt = Gdt ·wt,
where the operator Gdt during unit time step dt is not de-
pend on time (Li et al., 2021a). When we set the unit time
step dt = 1, the vorticity field at time t is denoted as wt =
Gdec · [Gt−1 · · · · ·G1] ·Genc(w0) where Genc and Gdec are the
encoder and decoder implemented by cross-attentional mod-
ules, respectively, and Gdt = G1 = · · · = Gt−1 are identical
processors implemented by the same self-attentional mod-
ules. The goal of operator learning is to learn mapping the
initial vorticity up to time T , G : w0|(0,1)2 7→ w|(0,1)2×(0,T].
The models are trained with minimizing the object
Ew0∼µ

[
1
T

∑T−1
t=0 L(Gdec · Gdt · Genc(wt), wt+1)

]
. The

quantitative results for the Navier-Stokes equation are shown
in Table 3. Due to the problem-specific structural bias, FNO
shows better performance in the original tasks, but MNIO
shows better performance and is applicable in more gener-
alized tasks, (3) and (4). Additionally, Figure 4 visualizes
that discretized initial vorticity field with the reduced size is
encoded and processed iteratively with the same processors
in latent space. The latent features are decoded to output the
predictions of vorticity field at the corresponding time.

5. Conclusion
In this work, we raise potential issues with existing operator
learning models for PDEs in the perspective of discretiza-

Submission and Formatting Instructions for ICML 2022

Table 3. Relative L2 errors on Navier-Stokes equation under different settings.
Train grids Test grids Models

a, u a u FNO MINO (ours)
(1) 64×64 64×64 0.0110 0.0349
(3) 64×64 64×64, perm 64×64 0.7106 0.0349
(4) 2048 (50% mask), perm 64×64 n/a 0.0544

Figure 4. Discretized input with reduced size is encoded, processed iteratively, and decoded to output the predictions of vorticity field for
the Navier-Stokes equation at the corresponding time.

tion for the continuous input/output functions of the systems
when the observations are irregular and have discrepancies
between training and testing measurement formats. Dis-
cretized functions are treated as set-valued data without
prior data structure but with permutation symmetric mod-
ules and concatenated positional encodings to access posi-
tional structure with compact and continuous queries. To
solve the issues, we propose MNIO constructed by fully-
attentional modules and evaluate it to original tasks and
extended downstream tasks compared with other existing
representative models. The results show that our model is
not only competitive in original operator learning tasks but
also robustly applicable in extended tasks which are natural
consequences of continuous solutions for physical systems
but not compatible with existing representative models.

References
Ba, J. L., Kiros, J. R., and Hinton, G. E. Layer normalization.

arXiv preprint arXiv:1607.06450, 2016.

Cao, S. Choose a transformer: Fourier or galerkin. Advances
in Neural Information Processing Systems, 34, 2021.

Choromanski, K. M., Likhosherstov, V., Dohan, D., Song,
X., Gane, A., Sarlos, T., Hawkins, P., Davis, J. Q., Mo-
hiuddin, A., Kaiser, L., Belanger, D. B., Colwell, L. J.,
and Weller, A. Rethinking attention with performers. In

International Conference on Learning Representations,
2021.

Finn, C., Abbeel, P., and Levine, S. Model-agnostic meta-
learning for fast adaptation of deep networks. In Interna-
tional conference on machine learning, pp. 1126–1135.
PMLR, 2017.

Guibas, J., Mardani, M., Li, Z., Tao, A., Anandkumar, A.,
and Catanzaro, B. Adaptive fourier neural operators:
Efficient token mixers for transformers. arXiv preprint
arXiv:2111.13587, 2021.

Gupta, G., Xiao, X., and Bogdan, P. Multiwavelet-based
operator learning for differential equations. Advances in
Neural Information Processing Systems, 34, 2021.

Hendrycks, D. and Gimpel, K. Gaussian error linear units
(gelus). arXiv preprint arXiv:1606.08415, 2016.

Jaegle, A., Gimeno, F., Brock, A., Vinyals, O., Zisserman,
A., and Carreira, J. Perceiver: General perception with it-
erative attention. In International Conference on Machine
Learning, pp. 4651–4664. PMLR, 2021.

Jaegle, A., Borgeaud, S., Alayrac, J.-B., Doersch, C.,
Ionescu, C., Ding, D., Koppula, S., Zoran, D., Brock,
A., Shelhamer, E., Henaff, O. J., Botvinick, M., Zisser-
man, A., Vinyals, O., and Carreira, J. Perceiver IO: A
general architecture for structured inputs & outputs. In

Submission and Formatting Instructions for ICML 2022

International Conference on Learning Representations,
2022.

Jurewicz, M. and Derczynski, L. Set-to-sequence meth-
ods in machine learning: a review. Journal of Artificial
Intelligence Research, 71:885–924, 2021.

Karniadakis, G. E., Kevrekidis, I. G., Lu, L., Perdikaris,
P., Wang, S., and Yang, L. Physics-informed machine
learning. Nature Reviews Physics, 3(6):422–440, 2021.

Kim, H., Mnih, A., Schwarz, J., Garnelo, M., Eslami, A.,
Rosenbaum, D., Vinyals, O., and Teh, Y. W. Attentive
neural processes. In International Conference on Learn-
ing Representations, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kovachki, N., Li, Z., Liu, B., Azizzadenesheli, K., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Neural
operator: Learning maps between function spaces. arXiv
preprint arXiv:2108.08481, 2021.

Lee, J., Lee, Y., Kim, J., Kosiorek, A., Choi, S., and
Teh, Y. W. Set transformer: A framework for attention-
based permutation-invariant neural networks. In Interna-
tional Conference on Machine Learning, pp. 3744–3753.
PMLR, 2019.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Stuart,
A., Bhattacharya, K., and Anandkumar, A. Multipole
graph neural operator for parametric partial differential
equations. Advances in Neural Information Processing
Systems, 33:6755–6766, 2020.

Li, Z., Kovachki, N., Azizzadenesheli, K., Liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Markov
neural operators for learning chaotic systems. arXiv
preprint arXiv:2106.06898, 2021a.

Li, Z., Kovachki, N. B., Azizzadenesheli, K., liu, B., Bhat-
tacharya, K., Stuart, A., and Anandkumar, A. Fourier neu-
ral operator for parametric partial differential equations.
In International Conference on Learning Representations,
2021b.

Lu, L., Jin, P., and Karniadakis, G. E. Deeponet: Learning
nonlinear operators for identifying differential equations
based on the universal approximation theorem of opera-
tors. arXiv preprint arXiv:1910.03193, 2019.

Lu, L., Jin, P., Pang, G., Zhang, Z., and Karniadakis, G. E.
Learning nonlinear operators via deeponet based on the
universal approximation theorem of operators. Nature
Machine Intelligence, 3(3):218–229, 2021.

Maron, H., Litany, O., Chechik, G., and Fetaya, E. On learn-
ing sets of symmetric elements. In International Con-
ference on Machine Learning, pp. 6734–6744. PMLR,
2020.

Mildenhall, B., Srinivasan, P. P., Tancik, M., Barron, J. T.,
Ramamoorthi, R., and Ng, R. Nerf: Representing scenes
as neural radiance fields for view synthesis. In European
conference on computer vision, pp. 405–421. Springer,
2020.

Mizohata, S. The theory of partial differential equations.
CUP Archive, 1973.

Murphy, R., Srinivasan, B., Rao, V., and Riberio, B. Janossy
pooling: Learning deep permutation-invariant functions
for variable-size inputs. In International Conference on
Learning Representations, 2019.

Nelsen, N. H. and Stuart, A. M. The random feature model
for input-output maps between banach spaces. SIAM
Journal on Scientific Computing, 43(5):A3212–A3243,
2021.

Pathak, J., Subramanian, S., Harrington, P., Raja, S.,
Chattopadhyay, A., Mardani, M., Kurth, T., Hall, D.,
Li, Z., Azizzadenesheli, K., et al. Fourcastnet: A
global data-driven high-resolution weather model us-
ing adaptive fourier neural operators. arXiv preprint
arXiv:2202.11214, 2022.

Qi, C. R., Su, H., Mo, K., and Guibas, L. J. Pointnet: Deep
learning on point sets for 3d classification and segmenta-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, pp. 652–660, 2017.

Raissi, M., Perdikaris, P., and Karniadakis, G. E. Physics-
informed neural networks: A deep learning framework for
solving forward and inverse problems involving nonlinear
partial differential equations. Journal of Computational
physics, 378:686–707, 2019.

Ravanbakhsh, S., Schneider, J., and Poczos, B. Deep
learning with sets and point clouds. arXiv preprint
arXiv:1611.04500, 2016.

Sirignano, J. and Spiliopoulos, K. Dgm: A deep learning al-
gorithm for solving partial differential equations. Journal
of computational physics, 375:1339–1364, 2018.

Sitzmann, V., Martel, J., Bergman, A., Lindell, D., and Wet-
zstein, G. Implicit neural representations with periodic
activation functions. Advances in Neural Information
Processing Systems, 33, 2020.

Tancik, M., Srinivasan, P., Mildenhall, B., Fridovich-Keil,
S., Raghavan, N., Singhal, U., Ramamoorthi, R., Barron,

Submission and Formatting Instructions for ICML 2022

J., and Ng, R. Fourier features let networks learn high fre-
quency functions in low dimensional domains. Advances
in Neural Information Processing Systems, 33, 2020.

Tang, Y. and Ha, D. The sensory neuron as a transformer:
Permutation-invariant neural networks for reinforcement
learning. Advances in Neural Information Processing
Systems, 34, 2021.

Tsai, Y.-H. H., Bai, S., Yamada, M., Morency, L.-P., and
Salakhutdinov, R. Transformer dissection: A unified
understanding of transformer’s attention via the lens of
kernel. arXiv preprint arXiv:1908.11775, 2019.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones,
L., Gomez, A. N., Kaiser, Ł., and Polosukhin, I. At-
tention is all you need. Advances in neural information
processing systems, 30, 2017.

Wagstaff, E., Fuchs, F., Engelcke, M., Posner, I., and Os-
borne, M. A. On the limitations of representing functions
on sets. In International Conference on Machine Learn-
ing, pp. 6487–6494. PMLR, 2019.

Wagstaff, E., Fuchs, F. B., Engelcke, M., Osborne, M. A.,
and Posner, I. Universal approximation of functions on
sets. arXiv preprint arXiv:2107.01959, 2021.

Xiong, Y., Zeng, Z., Chakraborty, R., Tan, M., Fung, G.,
Li, Y., and Singh, V. Nyströmformer: A nystöm-based
algorithm for approximating self-attention. In Proceed-
ings of the... AAAI Conference on Artificial Intelligence.
AAAI Conference on Artificial Intelligence, volume 35,
pp. 14138. NIH Public Access, 2021.

Zaheer, M., Kottur, S., Ravanbakhsh, S., Poczos, B.,
Salakhutdinov, R. R., and Smola, A. J. Deep sets. Ad-
vances in neural information processing systems, 30,
2017.

Submission and Formatting Instructions for ICML 2022

A. Appendix
A.1. Permutation-symmetric property of attention

Here, we attempt to explain that the attention module Attention(Y,X,X) in Equation 3 is permutation-invariant to X and
permutation-equivariant to Y . Let the permutation matrix to the element (first) dimension, P ∈ Rn×n. First, when the
permutation matrix P is multiplied to the X , the output of the attention is

Attention(Y, PX,PX) = σ
(
QKT

)
V

= σ
(
YW q

(
PXW k

)T)
PXW v

= σ
(
YW q

(
XW k

)T
PT
)
PXW v

= σ
(
YW q

(
XW k

)T) (
PTP

)
XW v

= σ
(
YW q

(
XW k

)T)
XW v

= Attention(Y,X,X),

(11)

which states that the Attention(Y,X,X) is permutation-invariant to X . Also, when the permutation matrix P is multiplied
to the Y , the output of the attention is

Attention(PY,X,X) = σ
(
QKT

)
V

= σ
(
PYW q

(
XW k

)T)
XW v

= Pσ
(
YW q

(
XW k

)T)
XW v

= PAttention(Y,X,X),

(12)

which states that the Attention(Y,X,X) is permutation-equivariant to Y . Thus, it is easily proved that self-attention
Attention(X,X,X) is permutation-equivariant to X ,

Attention(PX,PX,PX) = PAttention(X,PX,PX) = PAttention(X,X,X). (13)

A.2. Attention modules

Following (Jaegle et al., 2021; 2022), mesh-independent neural operator (MINO) consists of two types of attention modules,
cross- and self-attention modules, which implement the respective attention mechanisms. The attention modules have the
following shared structure, which takes two input arrays, a query input Y ∈ Rny×dy and a key-value input X ∈ Rnx×dx ,

O = Y +Att(LayerNorm(Y), LayerNorm(X), LayerNorm(X)),

Attention(Y,X,X) = O + FF (LayerNorm(O)),
(14)

where LayerNorm is layer normalization (Ba et al., 2016), FF consists of two channel-wise feedforward neural networks
with a GELU nonlinearity (Hendrycks & Gimpel, 2016), and the exact calculation of attention array Att is

Att(Xq, Xk, Xv) = softmax

(
QKT√
dq

)
V, (15)

where Q = XqW q ∈ Rny×dq , K = XkW k ∈ Rnx×dq , and V = XvW v ∈ Rnx×dv for a single headed attention. In the
case of multi-headed attention, several outputs from different learnable parameters are concatenated and projected with the
linear transformation. For avoiding confusion, the Equation 3 is the simplification of the attention module in Equation 14.

A.3. Implementation details

Burgers’ equation. For the positional encodings, equally spaced 64 frequency from min 1 to max 64 are used. For the
encoder, a 8-headed cross-attention module is used, and the number of the elements (first) and channel (second) dimension

Submission and Formatting Instructions for ICML 2022

of latent space are 256 and 64, respectively. For the processor, a 8-headed self-attention module with the same channel
dimension of latent’s is used. For the decoder, a 8-headed cross-attention module with the channel dimension of 64 is used.

Darcy flow. For the positional encodings, equally spaced 32 frequency bins from min 1 to max 64 for x1, x2 of the diffusion
field a(x1, x2) are used. For the encoder, a single-headed cross-attention module is used, and the number of the elements
(first) and channel (second) dimension of latent space are 256 and 64, respectively. For the processor, four 8-headed
self-attention modules with the same channel dimension of latent’s are used. For the decoder, a single-headed cross-attention
module with the channel dimension of 64 is used.

Navier-Stokes equation. For the positional encodings, equally spaced 12 frequency bins from min 1 to max 32 for x1, x2

of the vorticity field at each time w(x1, x2) are used. For the encoder, a single-headed cross-attention module is used, and
the number of the elements (first) and channel (second) dimension of latent space are 128 and 64, respectively. For the
processor, two 8-headed self-attention modules with the same channel dimension of latent’s are used. For the decoder, a
single-headed cross-attention module with the channel dimension of 64 is used.

A.4. Additional Results

Original benchmarks on Burgers’ equation and Darcy flow for different resolutions are presented in Figure 5, Table 4, and
Table 5, where all of the results except ours are brought from (Li et al., 2021b).

Figure 5. Benchmarks on (a) Burgers’ equation, and (b) Darcy Flow for different resolutions.

Table 4. Benchmarks on 1D Burgers’ equation
Models s = 256 s = 512 s = 1024 s = 2048 s = 4096 s = 8192

FCN 0.0958 0.1407 0.1877 0.2313 0.2855 0.3238
PCANN 0.0398 0.0395 0.0391 0.0383 0.0392 0.0393

GNO 0.0555 0.0594 0.0651 0.0663 0.0666 0.0699
LNO 0.0212 0.0221 0.0217 0.0219 0.0200 0.0189

MGNO 0.0243 0.0355 0.0374 0.0360 0.0364 0.0364
FNO 0.0149 0.0158 0.0160 0.0146 0.0142 0.0139

MINO (ours) 0.0105 0.0109 0.0104 0.0092 0.0090 0.0099

Table 5. Benchmarks on 2D Darcy Flow
Models s = 85 s = 141 s = 211 s = 421

FCN 0.0253 0.0493 0.0727 0.1097
PCANN 0.0299 0.0298 0.0298 0.0299

GNO 0.0346 0.0332 0.0342 0.0369
LNO 0.0520 0.0461 0.0445 -

MGNO 0.0416 0.0428 0.0428 0.0420
FNO 0.0108 0.0109 0.0109 0.0098

MINO (ours) 0.0172 0.0173 0.0177 0.0182

