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ABSTRACT

Enzymes are crucial catalysts for biochemical reactions, underpinning numerous
biological processes. The efficient identification of specific enzymes from exten-
sive protein libraries is essential for understanding and harnessing these biological
reactions. While traditional computational methods for enzyme screening are time-
consuming and resource-intensive, recent contrastive learning approaches have
shown promise. However, these methods often overlook the inherent hierarchical
classifications within enzymes and reactions, as well as the significance of molecu-
lar structure in catalysis. To address these limitations, we introduce FGW-CLIP,
a novel contrastive learning framework based on optimizing the fused Gromov-
Wasserstein distance. This approach incorporates multiple alignments, including
representation alignment between reactions and enzymes, and internal alignment
within enzyme and reaction representations. By introducing a regularization term,
our method minimizes the Gromov-Wasserstein distance between enzyme and re-
action spaces, enhancing information exchange within these domains. FGW-CLIP
demonstrates superior performance on the widely-used EnzymeMap benchmark,
significantly outperforming existing methods in enzyme virtual screening tasks.
Notably, it achieves state-of-the-art results in both BEDROC and EF metrics, indi-
cating its efficacy in identifying relevant enzymes for given reactions. These results
highlight the potential of our method to advance virtual enzyme screening, offering
a powerful tool for enzyme discovery and characterization.

1 INTRODUCTION

Enzymes play a vital role in various biological processes such as biosynthesis. They act as catalysts,
speeding up chemical reactions in living organisms. However, in the vast protein sequence databases,
such as UniProt, only about 1/5 of proteins have been experimentally verified, and only 0.23% have
received sufficient attention from researchers(Ribeiro et al., 2023). Effective enzymes may be in the
billions of unexplored sequences.

Traditional calculation methods, including sequnce-similarity–based (Altschul et al., 1990; Desai
et al., 2011; Altschul et al., 1997), homology-based (Krogh et al., 1994; Steinegger et al., 2019),
structure-based (Roy et al., 2012; Zhang et al., 2017) methods, consume a large amount of manpower
and material resources. And they are faced with protein annotation errors in calculation methods. In
recent years, machine learning based methods have emerged, primarily utilizing contrastive learning
techniques on the screening of enzymes. CLEAN (Yu et al., 2023b) improved EC number assignment
to enzymes, annotating understudied ones accurately and correcting mislabeled entries. While
CLIPZyme (Mikhael et al., 2024) is a computational framework that encodes and aligns enzyme
structure and reaction pair representations for in-silico enzyme screening. However, they focus on
enzyme-reaction relationship but overlook inherent hierarchical classifications within them and the
importance of molecular structure in catalysis.

In this work, we introduce FGW-CLIP, a novel contrastive learning framework based on the opti-
mization of fused Gromov-Wasserstein distance. This framework incorporates multiple alignment
methods, including representation alignment between reactions and enzymes (similar to CLIP), as
well as internal alignment of enzyme and reaction representations. By introducing regularization
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terms, our method minimizes the Gromov-Wasserstein distance between the enzyme and reaction
spaces during model training, thereby enhancing information interaction in both domains.

We provide theoretical insights into FGW-CLIP from the perspective of optimizing the fused Gromov-
Wasserstein distance. Additionally, we offer empirical support by validating our approach on
the widely-used EnzymeMap benchmark for enzyme virtual screening. FGW-CLIP outperforms
existing baselines, achieving state-of-the-art results on Boltzmann-enhanced discrimination of ROC
(BEDROC) and enrichment factor (EF) metrics.

Our key contributions are as follows:

• We propose a novel framework for enhancing contrastive learning by optimizing the fused
Gromov-Wasserstein distance. This approach considers not only the alignment of reactions
and enzymes but also the internal alignment within each domain. Furthermore, we introduce
a regularization term based on the Gromov-Wasserstein distance to preserve structural
information within individual spaces while maximizing the alignment between reaction and
enzyme spaces.

• We provide theoretical insights into the proposed contrastive learning framework, exploring
the foundations of using fused Gromov-Wasserstein distance in the context of enzyme-
reaction alignment.

• Our framework achieves state-of-the-art results on the widely used EnzymeMap benchmark
dataset. We present detailed ablation studies to demonstrate the importance of incorporating
internal structural information and Gromov-Wasserstein loss in our approach.

2 RELATED WORK

2.1 CONTRASTIVE LEARNING

Contrastive learning has found extensive applications in vision and multimodal representation learn-
ing. CLIP (Contrastive Language-Image Pretraining) enhances multimodal contrastive learning by
effectively combining image and text information, making it widely applicable in fields such as
image classification, text generation, and human-computer interaction. MLIP (Zhang et al., 2024)
enhances CLIP by integrating spatial and frequency-domain information, improving multimodal
learning through a multi-perspective approach. iCLIP (Wei et al., 2023) bridges the gap between
image classification and contrastive learning, optimizing CLIP for both visual tasks and language-
image pairings. X-MoRe (Eom et al., 2023) refines CLIP’s embeddings to enhance performance in
image-to-text and text-to-image retrieval tasks, improving its adaptability for real-world applications.

2.2 FUSED GROMOV-WASSERSTEIN DISTANCE

The Gromov-Wasserstein (GW) Distance is a metric used in optimal transport theory that measures
the similarity between two metric spaces by considering the structures of the spaces rather than
their individual points. Mémoli (Scetbon et al., 2022) proves that GW 1/2 defines a distance on
the space of metric measure spaces quotiented by measure-preserving isometries. Fused Gromov-
Wasserstein (FGW) (Titouan et al., 2019; Ma et al., 2024)distance extends the Gromov-Wasserstein
metric to calculate transportation distance between two unregistered probability distributions on
different product metric spaces, such as combining graph signals and structures, making it suitable
for attributed graphs.

2.3 ENZYME SCREENING

Enzyme virtual screening and recognition accelerate the discovery of new enzymes and drug can-
didates by accurately identifying functions and efficiently screening potential inhibitors from large
libraries. CLIPZyme (Mikhael et al., 2024) serves as a computational framework and effectively
encode and align representations of enzyme structures and their corresponding reaction pairs for
in-silico enzyme screening. CLEAN (Yu et al., 2023b) improved the assignment of EC numbers to
enzymes, accurately annotating understudied enzymes and correcting mislabeled entries . Moreover,
sequence similarity-based tools or ML models such as BLASTp (Altschul et al., 1990), DeepEC
(Wang et al., 2020), and ProteInfer (Sanderson et al., 2023), can also be used to predict EC numbers.
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Figure 1: Overview of FGW-CLIP Framework

3 METHOD

3.1 OVERVIEW OF FGW-CLIP

Giving huge protein libraries, enzyme screening is to identify enzymes that can catalyze specific
chemical reactions from the libraries. We consider this task as a dense retrieval issue. Trained
encoders produce representations for both reactions and enzymes. Subsequently, reactions are used
as queries, and enzymes are ranked according to their cosine similarity to these reactions. The
top enzymes having the highest similarity are then recognized as the most probable candidates for
catalyzing the given reaction.

We propose FGW-CLIP from the perspective of optimizing the fused Gromov-Wasserstein distance.
As shown in Figure 1, we use the pretrained 3D molecular model, Uni-Mol Zhou et al. (2023), to
encode the molecules in a reaction, and obtain the reaction embedding through a readout function.
For enzymes, we employ the pretrained protein language model, ESM2 Lin et al. (2023), to derive
enzyme sequence embeddings. During subsequent training of FGW-CLIP, the ESM2 model remains
frozen. We perform contrastive learning between reactions and enzymes, where reactions that can
be catalyzed by a given enzyme serve as positive samples, while others serve as negative samples.
Additionally, we capture the intrinsic connections within enzymes and reactions: based on the
Enzyme Commission (EC) number. Specifically, each data point has an EC number. Since enzymes
or reactions can have multiple EC numbers, we add a list of EC numbers to each data point. Taking
reactions as an example, if the original EC number of a reaction is present in the EC number list of
another data point in the batch, we consider them a positive pair; if it is not in the list, they form a
negative pair. To better leverage the structural information inherent in both the enzyme and reaction
spaces, and to ensure consistency between these structures, we introduce a novel regularization term
based on the optimization of the Gromov-Wasserstein distance. Furthermore, we incorporated a loss
function for predicting the EC number of enzymes into the FGW-CLIP framework. We found that
this framework can be easily extended for efficient prediction of enzyme EC numbers.

In the following sections, we provide a more detailed explanation of the core components and
training strategies. In Section 3.2, we introduce the molecular encoder, Uni-Mol and the enzyme
encoder, ESM2. In Section 3.3, we delve into the training strategy of FGW-CLIP for contrastive
learning between reactions and enzymes. In Section 3.4, we analyze FGW-CLIP from the perspective
of optimizing the fused Gromov-Wasserstein distance, offering insights into its methodological
advantages.
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3.2 PRETRAINING BACKBONE OF REACTION AND ENZYME

For the reaction representation, Uni-Mol is utilized to encode the molecules, and the reaction
embedding is obtained via a readout function. Uni-Mol integrates 3D structural information during
encoding, which is crucial in the catalytic process, as some enzymes interact with intermediate
products to exert their catalytic function. Uni-Mol is pretrained on large-scale molecules and their
conformations. It leverages distance-based attention bias to integrate the 3D information of molecules
into the encoding. This 3D incorporation allows Uni-Mol to excel in tasks like molecular property
prediction and protein-ligand binding pose prediction. We obtain the embedding of the entire molecule
using a CLS token and normalize it with Euclidean norm.

For enzyme encoding, we use ESM2, a protein language model pretrained on millions of protein
sequences. One of its key strengths is its ability to handle longer sequences and generate detailed
embeddings, making it highly suitable for various protein-related tasks, such as structure and function
prediction. In our framework, we leverage the pretrained ESM2 model to encode enzyme sequences,
using the average of all residue embeddings to represent the entire protein, and it remains frozen
during subsequent training.

3.3 TRAINING STRATEGY OF FGW-CLIP

3.3.1 CONTRASTIVE LEARNING STRATEGY

In this section, we introduce the contrastive learning strategy used in FGW-CLIP. We utilize the
reaction-enzyme catalysis data from EnzymeMap, where each data entry consists of a reaction, the
enzyme that catalyzes it, and an EC number. We perform contrastive learning between reactions and
enzymes.

Since the relationship between reactions and enzymes is not strictly one-to-one, we construct a
ground truth label matrix from the data. In this matrix, the rows represent reactions and the columns
represent enzymes. If a reaction can be catalyzed by a specific enzyme, the corresponding position
in the matrix is set to 1; otherwise, it is set to 0. We set the index dataset Ei, Ri of reaction i and
enzyme i. The loss function is formulated as follows, following the InfoNCE loss:

Lreaction-enzyme =
1

2

N∑
i=1

− ∑
j∈Ri

log
e(sim(ri,ej)/τ)∑N
k=1 e

(sim(ri,ek)/τ)
−

∑
j∈Ei

log
e(sim(ei,rj)/τ)∑N
k=1 e

(sim(ei,rk)/τ)

 (1)

In addition to modeling the catalytic relationship between reactions and enzymes, we also consider
the internal relationships within enzymes and reactions. We set the index dataset Ii of item i. The
InfoNCE loss for this internal relationship modeling is given as:

Linternal = −
N∑
i=1

∑
j∈Ii

log
e(sim(xi,xj)/τ)∑N
k=1 e

(sim(xi,xk)/τ)
(2)

Here, xi and xj represent the embeddings of either enzymes or reactions that share the same EC
number, while xk includes all possible embeddings in the same batch.

3.3.2 EC PREDICTION

The Enzyme Commission (EC) number is a standardized numerical classification scheme for enzymes
based on the chemical reactions they catalyze. Each EC number consists of four hierarchical levels
that describe the enzyme’s function in increasing specificity. By identifying the EC numbers, we
can narrow down the possible enzymes that could catalyze specific reactions, thereby improving the
efficiency and accuracy of enzyme screening.

In our approach, we utilize the enzyme’s representation to predict the EC classes at all four hierarchical
levels. For each level, a separate classification head is employed, and we use cross-entropy loss for
the predictions. The loss for a single level i is defined as:
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Llevel i = −
Ci∑
c=1

yc log(pc) (3)

Here, Ci represents the number of classes at level i, yc is the true label (one-hot encoded), and pc is
the predicted probability for class c.

The total EC classification loss is the sum of the losses for the four levels:

LEC = Llevel 1 + Llevel 2 + Llevel 3 + Llevel 4 (4)

This multi-level classification allows us to capture the hierarchical nature of enzyme functions. By
incorporating the EC classification head, we not only improve enzyme screening but also ensure that
the learned enzyme embeddings contain rich functional information.

3.3.3 REGULARIZATION LOSS FOR GW DISTANCE OPTIMIZATION

To advance the alignment between the reaction space and the enzyme space, we introduce an
additional regularization term motivated by the goal of minimizing the Gromov-Wasserstein (GW)
distance.

This regularization is essential to maintain the internal structure of both spaces while aligning them
effectively. The complete loss function is given as:

LGW = −
N∑

i,j,i′,j′=1

sim(ei, rj) · simd(rj , rj′) · sim(ri′ , ej′) · simd(ei, ei′) (5)

Here, sim(ei, rj) represents the similarity between enzyme (ei) and reaction (rj) embeddings.
simd(rj , r

′
j) and simd(ei, e

′
i) denote the internal similarities within the reaction and enzyme spaces,

respectively. These internal similarities are detached during training, meaning their gradients are
not propagated to avoid interfering with the optimization of other terms. This objective encourages
alignment between the reaction and enzyme spaces using the internal structural information of each
space.

3.4 FGW-CLIP: ENHANCING CLIP BY OPTIMIZING GROMOV-WASSERSTEIN DISTANCE

By integrating the training objectives in Section 3.3, we can derive the overall training objective for
FGW-CLIP, denoted as LFGW, as follows:

LFGW = (1− α)(Lreaction-enzyme + Lreaction + Lenzyme)− 2αLGW + λLEC

The loss function involves multiple terms. Based on the approach outlined in Shi et al. (2023)Zhou
et al. (2024), we establish a connection between LFGW and the fused Gromov-Wasserstein distance
optimization problem under a specific constraint through the proposition 1.

Proposition 1 Given encoder fψ1
for data field X1 and encoder fψ2

for data field X2, xψ1
represents

the l2 normalized embeddings of X1 from fψ1
, while xψ2

represents the l2 normalized embeddings of
X2 from fψ2

. Γf1 represents the label on X1, Γf2 represents the label on X2, Γcor represents the
label on the pairs (X1, X2). FGW-CLIP could be derived from optimizing a specific constraint-fused
Gromov-Wasserstein distance as follows:

min
θ,ψ1,ψ2

{
(1− α)KL(Γcor||Γθ) + αGW (Γψ1

d ,Γψ2

d ,Γθ)

+ λ1KL(Γf1 ||Γψ1) + λ2KL(Γf2 ||Γψ2)− λceCE(yψ1, fψ1(X1))
}

subject to Γθ = arg min
Γ∈U(acor)

(
⟨Cθ,Γ⟩ − τH(Γ)

)
,

Γψ1 = arg min
Γ∈U(aψ1 )

(
⟨Cψ1 ,Γ⟩ − τH(Γ)

)
,

Γψ2 = arg min
Γ∈U(aψ2 )

(
⟨Cψ2 ,Γ⟩ − τH(Γ)

)
,

(6)
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where KL(X||Y ) =
∑
ij

xij log
xij
yij

− xij + yij represents the Kullback-Leibler divergence, and

H(Γ) = −
∑
i,j

Γij(log(Γij) − 1) represents entropic regularization. Γθ,Γψ1 ,Γψ2 ∈ RN×N
+ ,

Cθ, Cψ1 , Cψ2 ∈ RN×N
+ are cost matrix and Cθ(i, j) = c− xψ1,ix

T
ψ2,j

, Cψ1(i, j) = c− xψ1,ix
T
ψ1,j

,
Cψ2(i, j) = c − xψ2,ix

T
ψ2,j

. aψ1 , aψ2 , acor represent the label vector of dataset X1, X2 and pair
dataset (X1, X2). Γψ1

d ,Γψ2

d represent the values of Γψ1 ,Γψ2 respectively, with the gradients de-

tached, GW (Γψ1

d ,Γψ2

d ,Γθ) =
n∑

i,j=1

n∑
i′,j′=1

|Γψ1

d (i, i′)− Γψ2

d (j, j′)|2Γθ(i, j)Γθ(i′, j′) is the Gromov-

Wasserstein distance. CE is the cross-entropy loss of data field X1, which is added to facilitate a
specific classification task as a regularization term.

The proof is provided in the Appendix A.2. In LFGW , we utilize Γψ1 and Γψ2 to learn the structural
information of two data domains X1 and X2, respectively. Through the optimization of the Gromov-
Wasserstein distance, structural alignment at the domain level is achieved. We consider this overall
structural alignment information as a supplement and enhancement to the existing label alignment
information between the two domains X1 and X2. By optimizing this fused Gromov-Wasserstein
distance, we can better extend the generalization capability of the CLIP model and alleviate the issue
of insufficient effective labels between domains X1 and X2.

4 EXPERIMENT

4.1 ENZYME VIRTUAL SCREENING

4.1.1 DATASETS

EnzymeMap Based on the original EnzymeMap dataset (Heid et al., 2023), it involves biochemical
reactions linked to UniProt IDs and EC numbers. There are 46,356 enzyme-driven reactions with
16,776 unique chemical reactions, 12,749 enzymes, 2,841 EC numbers, and 394 reaction rules in the
EnzymeMap dataset. We split the dataset into training, validation, and test sets based on the reaction
rule IDs, with a ratio of 0.8/0.1/0.1, containing 34,427, 7,287, and 4,642 entries, respectively, the
same as in CLIPZyme.

Enzyme Screening Set This dataset integrated the EnzymeMap dataset, Brenda release 2022 2
(Chang et al., 2020), and UniProt release 2022 01 (Yu et al., 2023a), and filtered out the sequences
that are longer than 650 amino acids. It includes a total of 261,907 protein sequences. Enzyme
screening Set is used as a virtual screening database, where we use the reactions from the EnzymeMap
test set as queries to perform screening in it.

4.1.2 BASELINE

In this task, we use the state-of-the-art method CLIPZyme(Mikhael et al., 2024) as the baseline,
which is a contrastive learning approach for enzyme screening. We follow the experimental setup of
CLIPZyme and use the same datasets.

4.1.3 EVALUATION METRIC

For this task, we utilize the BEDROC (Boltzmann-Enhanced Discrimination of ROC) (Truchon &
Bayly, 2007) score and the enrichment factor (EF) as evaluation metrics. We calculate BEDROC at
α = 85 and α = 20, and focus on EF in the top 5% and 10% of the predictions, to align with the
evaluation protocol in CLIPZyme.

4.1.4 RESULTS

Table 1 shows the performance comparison between FGW-CLIP and the current SOTA baseline
CLIPZyme on EnzymeMap, with the best results highlighted in bold. We also compared the results of
CLIPZyme using different protein and reaction encoders. CGR(Hoonakker et al., 2011) is a method
for obtaining reaction representations based on graph structures. ESM indicates that ESM is used
for finetuning to obtain enzyme representations. CGR The results for CLIPZyme are consistent
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Table 1: Enzyme virtual screening performance on EnzymeMap. The higher the BEDROC and EF,
the better.

Method BEDROC85(%) BEDROC20(%) EF0.05 EF0.1

CLIPZyme (ESM) 36.91 53.04 11.93 6.84
CLIPZyme (CGR) 38.91 57.58 13.16 7.73

CLIPZyme 44.69 62.98 14.09 8.06
FGW-CLIP 48.66 66.69 14.91 8.18

with those reported in their original paper. As shown in the table, FGW-CLIP achieves the best
performance across all four metrics for BEDROC and EF, with significant improvements of about 4%
on both BEDROC85 and BEDROC20. This demonstrates the advantage of FGW-CLIP in optimizing
the fused GW distance through contrastive learning, focusing on both the alignment between reactions
and enzymes and the internal relationships within enzymes and reactions.

Table 2: Ablation studies performance on EnzymeMap. Exclude enzymes that appeared in the
training set from the screening set.

Exclusion Criteria Method BEDROC85(%) BEDROC20(%) EF0.05 EF0.1

Exact Match Clipzyme 39.13 58.86 13.40 7.81
FGW-CLIP 45.14 61.43 13.57 7.61

We also evaluate the generalization capabilities of FGW-CLIP and the baseline CLIPZyme. Specif-
ically, we conduct an experiment focusing on unseen enzymes. We exclude any enzymes in the
screening set that appeared in the training set. Table 2 presents the results, showing that FGW-CLIP
outperforms CLIPZyme on 3 out of the 4 evaluation metrics, and is nearly close on EF0.1. Notably,
FGW-CLIP achieves a significant lead in BEDROC, indicating its ability to identify relevant enzymes
in the absence of prior exposure to them. This indicates the strength of FGW-CLIP in capturing the
essential features of enzyme-reaction interactions.

4.2 ABLATION STUDY

Table 3: Ablation study of different training strategies on FGW-CLIP’s performance on EnzymeMap.
“R” represents the reaction, “E” represents the enzyme, and “ ” indicates the use of contrastive
learning between both sides. “EC” represents the addition of an EC prediction head.

Method BEDROC85(%) BEDROC20(%) EF0.05 EF0.1

R E 45.94 61.11 13.28 7.41
R E + R R 48.08 63.92 13.89 7.89
R E + EC 45.25 63.93 14.46 7.97

R E + R R + E E + EC 45.83 64.17 14.37 8.12
FGW-CLIP 48.66 66.69 14.91 8.18

We conducted comprehensive ablation studies to evaluate the components of FGW-CLIP. First, we
evaluate the impact of different training strategies. From R E and R E + R R, it can be observed that
removing R R significantly affects the BEDROC, indicating that capturing the internal relationships
between enzymes is crucial for enzyme screening. Comparing R E to FGW-CLIP, removing EC
impacts the EF, suggesting that predicting EC numbers helps the model better focus on relevant
enzyme properties. From R E+R R+E E+EC to FGW-CLIP, it can be seen that the complete FGW-
CLIP framework brings significant improvements. This addition further elevated the performance
across all metrics, underscoring the importance of optimizing the Gromov-Wasserstein distance in
aligning the reaction and enzyme spaces effectively.

In addition, we also explore the impact of different α weights and various approaches to incorporating
the GW loss into the FGW-CLIP framework. Table 4 presents the results of these ablation studies.
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Table 4: Ablation studies performance on EnzymeMap.

Method BEDROC85(%) BEDROC20(%) EF0.05 EF0.1

α = 0.05 45.59 63.84 14.21 8.24
α = 0.3 47.46 64.86 14.29 8.02
α = 0.5 47.44 64.31 14.18 7.89

Label, α = 0.1 47.08 65.28 14.64 8.08
No detach, α = 0.1 47.63 64.96 14.39 8.06

Detach, α = 0.1 (FGW-CLIP) 48.66 66.69 14.91 8.18

First, we experimented with different α weights for the GW loss. We found that an α value of 0.1
yielded the best performance. When α = 0.05, the effect of the GW loss was minimal, indicating
that the influence of the GW loss on aligning the reaction-enzyme space was too weak. Conversely,
when α = 0.5, the performance decreased, suggesting that a high α disrupted the alignment of the
reaction-enzyme space and hindered the learning of the internal structures of enzymes and reactions.
Next, we investigated different ways of incorporating the GW loss into the FGW-CLIP framework.
The method labeled as ‘Label‘ involves using the labels from the internal contrastive learning (as
defined in Eq.2) to replace the similarity matrices simd(rj , rj′) and simd(ei, ei′) in Eq.5. The method
labeled as ‘No detach‘ refers to not detaching the similarity matrices simd(rj , rj′) and simd(ei, ei′)
in Eq.5, allowing them to participate in gradient backpropagation and adding an optimization term
for these matrices.

As shown in the table, our current approach of detaching the similarity matrices provides the best
results, making it the optimal choice for building the FGW-CLIP framework. This method balances
the alignment of the reaction-enzyme spaces while preserving the internal structures, confirming the
effectiveness of our design.

Furthermore, to visually demonstrate the distinctions between embeddings learned by FGW-CLIP
and those from pretrained ESM2 checkpoint, we present a comparative visualization in Figure 2. The
enzymes depicted are sourced from EnzymeMap, with distinct colors representing different top-level
EC numbers ranging from EC 1 to EC 6. Upon comparison, the classification boundaries in Figure
2 generated by FGW-CLIP exhibit greater clarity, and the intra-class molecular distances appear
more appropriately scaled. Notably, some clusters subdivide into multiple subclusters, potentially
reflecting the inherent hierarchical structure within the molecular compositions.

100 75 50 25 0 25 50 75 100

100

50

0

50

100

(a) Representations from pretrained checkpoint

100 50 0 50 100

100

50

0

50

100

(b) Representations learned by FGW-CLIP

Figure 2: t-SNE visualization of enzyme representations learned by pretrained checkpoint versus
FGW-CLIP. Different colors represent different top-level EC numbers ranging from EC 1 to EC 6
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5 CONCLUSION

In this work, we proposed FGW-CLIP, a novel contrastive learning framework that enhances enzyme
screening through fused Gromov-Wasserstein distance (FGW) optimization. Our method optimizes
fused Gromov-Wasserstein distance to align the reaction and enzyme spaces more effectively while
preserving the internal structures of both. We conduct contrastive learning between reactions and
enzymes, enzymes and enzymes, along with reactions and reactions. We also introduce an auxiliary
loss to predict EC number. Finally, we add the GW loss to form the complete FGW-CLIP framework.
In this framework, the model can effectively capture the intricate relationships between enzymes and
reactions, leading to a more accurate and robust outcome. We conduct extensive experiments on the
EnzymeMap dataset, where FGW-CLIP demonstrated its superiority over the state-of-the-art baseline.
Notably, our method achieved significant improvements in key evaluation metrics such as BEDROC
and EF, indicating its strong generalization capability and effectiveness in enzyme screening tasks.

In the future, we aim to incorporate enzyme structures into the model and explore further optimization
of enzyme functions. Additionally, we plan to investigate the application of FGW-CLIP in other
biochemical tasks.
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A APPENDIX

A.1 EVALUATION METRICS

Here we introduce the two metrics we use to evaluate the efficiency of the enzyme virtual screening
task. The BEDROC score is a modified version of the AUC of the ROC curve, which places a
stronger emphasis on early enrichment (i.e., at high-ranking positions). This is particularly important
in drug discovery, where experimental testing is costly, and being able to identify potentially active
compounds early on can save significant time and resources. The calculation formula of BEDROC is
shown as follows :

BEDROC =

∑n
i=1 e

−αri/N

Ra(1−e−α)
eα/N−1

× Ra sinh(α/2)

cosh(α/2)− cosh (α/2− αRa)
+

1

1− eα(1−Ra)

where n is the number of active compounds; N is the total number of compounds; R=n/N is the ratio
of the number of active compounds to the total number of compounds; ri is the ranking position of
the ith active compound according to the scoring ranking.

Enrichment Factor (EF) is another metric to evaluate model performance, which calculates the fold
increase in the proportion of active compounds among the top n% of predicted compounds compared
to the proportion of active compounds in the entire dataset. A higher EF value indicates better
performance of the model in predicting active compounds.

EF =

∑n
i=1 δi
χn

where δi =

{
1, ri ≤ χN

0, ri > χN

χ is the fraction of the ordered list thatis considered and goes from 0 to 1.

A.2 PROOF FOR FGW-CLIP

First, we establish a lemma for the loss 1 induced by the inverse optimal transport problem.

Lemma 2 The loss in Equation 1 can be derived from the following optimization problem:

min
θ

KL(P̂ ||P θ)

subject to P θ = arg min
P∈U(a)

(
⟨Cθ, P ⟩ − τH(P )

) (7)

where Cθ ∈ RN×N , Cθ(i, j) = c − sij(θ) and P̂ (i, j) =
fij
N , where fij are label which equals

to 1 when xi and xj are related else 0. Ii denotes the index associated with xi. U(a) = {Γ ∈
RN×N

+ |Γ1N = a} . Here a denotes a vector whose elements are the sums of labels, specifically
defined as a(i) =

∑N
j=1 fij .

We introduce the lagrangian of equation 2 as follows:

L(P, d) = (⟨Cθ, P ⟩ − τH(P )−
N∑
i=1

di(

N∑
j=1

(Pij − ai)) (8)

The KKT conditions can be obtained as follows:

∂L(P, d)

∂Pij
= Cθ

ij + τ logPij − di = 0 (9)

Given that
∑N
j=1 Pij = ai, we can derive the following expression:

Pij =
aie

−Cθij/τ∑N
j=1 e

−Cθij/τ
(10)
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By solving the optimization problem 7 according to definition, we can obtain the following results:

Liot = − 1

N

N∑
i=1

ailog(

∑
j∈Ii e

−Cθij/τ∑N
j=1 e

−Cθij/τ
) + Constant (11)

To simplify the problem, we disregard ai and constant in Liot in practical applications, resulting in
the following expression:

Liot = −
N∑
i=1

log(

∑
j∈Ii e

−Cθij/τ∑N
j=1 e

−Cθij/τ
) (12)

A.2.1 PROOF FOR PROPOSITION 1

According to lemma 2, we can transform the original optimization problem into the following
problem:

min
θ,ψ1,ψ2

{
− (1− α)

N∑
i=1

∑
j∈Ii

log(
e−C

θ
ij/τ∑N

j=1 e
−Cθij/τ

) + αGW (Γψ1

d ,Γψ2

d ,Γθ)

− λ1

N∑
i=1

∑
j∈Ii

log(
e−C

ψ1
ij /τ∑N

j=1 e
−Cψ1

ij /τ
)− λ2

N∑
i=1

∑
j∈Ii

log(
e−C

ψ2
ij /τ∑N

j=1 e
−Cψ2

ij /τ
)− λceCE(yψ1, fψ1(X1))

}
(13)

For the GW term, we can simplify it according to the definition as follows:

GW (Γψ1

d ,Γψ2

d ,Γθ) = (Γψ1

d ◦ Γψ1

d aψ1)⊤aψ1 + (Γψ2

d ◦ Γψ2

d aψ2)⊤aψ2 − 2tr(Γθ⊤Γψ1

d ΓθΓψ2

d ) (14)

which ◦ Hadamard product. Disregarding the constant terms, we can simplify the optimization
objective as follows:

GW (Γψ1

d ,Γψ2

d ,Γθ) = −2tr(Γθ⊤Γψ1

d ΓθΓψ2

d ) (15)

Considering the symmetric positions of i and j, a classic technique is to transform the original
optimization problem into the following form:

min
θ,ψ1,ψ2

{
− 1− α

2
(

N∑
i=1

∑
j∈Ii

log(
e−C

θ
ij/τ∑N

j=1 e
−Cθij/τ

) +

N∑
j=1

∑
i∈Jj

log(
e−C

θ
ij/τ∑N

i=1 e
−Cθij/τ

))− 2αtr(Γθ⊤Γψ1

d ΓθΓψ2

d )

− λ1

N∑
i=1

∑
j∈Ii

log(
e−C

ψ1
ij /τ∑N

j=1 e
−Cψ1

ij /τ
)− λ2

N∑
i=1

∑
j∈Ii

log(
e−C

ψ2
ij /τ∑N

j=1 e
−Cψ2

ij /τ
)− λceCE(yψ1, fψ1(X1))

}
(16)

The above expression is consistent with the form of the overall loss obtained by FGW-CLIP. Given
that i ∈ Ii, j ∈ Jj and Cθ(i, j) = c− xψ1,ix

T
ψ2,j

, by reorganizing equation 16, it can be observed
that:

min
θ,ψ1,ψ2

{
− 1− α

2
(

N∑
i=1

∑
j∈Ii

(xψ1,ix
T
ψ2,j − c)/τ +

N∑
j=1

∑
i∈Jj

(xψ2,ix
T
ψ1,j − c)/τ) + αGW (Γψ1

d ,Γψ2

d ,Γθ)

+
1− α

2
(

N∑
i=1

∑
j∈Ii

log(

N∑
j=1

e−C
θ
ij/τ ) +

N∑
j=1

∑
i∈Jj

log(

N∑
i=1

e−C
θ
ij/τ ))

− λ1

N∑
i=1

∑
j∈Ii

log(
e−C

ψ1
ij /τ∑N

j=1 e
−Cψ1

ij /τ
)− λ2

N∑
i=1

∑
j∈Ii

log(
e−C

ψ2
ij /τ∑N

j=1 e
−Cψ2

ij /τ
)− λceCE(yψ1, fψ1(X1))

}
(17)
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Since xψ1
, xψ2

are L2 normalized, disregarding constants, we can derive that:

min
θ,ψ1,ψ2

{1− α

2
(

N∑
i=1

∑
j∈Ii

|xψ1,i − xψ2,j |2/τ2 +
N∑
j=1

∑
i∈Jj

|xψ2,i − xψ1,j |2/τ2) + αGW (Γψ1

d ,Γψ2

d ,Γθ)

+
1− α

2
(

N∑
i=1

∑
j∈Ii

log(

N∑
j=1

e−C
θ
ij/τ ) +

N∑
j=1

∑
i∈Jj

log(

N∑
i=1

e−C
θ
ij/τ ))

− λ1

N∑
i=1

∑
j∈Ii

log(
e−C

ψ1
ij /τ∑N

j=1 e
−Cψ1

ij /τ
)− λ2

N∑
i=1

∑
j∈Ii

log(
e−C

ψ2
ij /τ∑N

j=1 e
−Cψ2

ij /τ
)− λceCE(yψ1, fψ1(X1))

}
(18)

From the equation, we can deduce that LFGW is the optimization of a specific fused Gromov-
Wasserstein distance under regularization conditions.

A.3 EXPERIMENT DETAILS

For the training of FGW-CLIP, we use Adam optimizer at a learning rate of 0.001. The batch size
is 32, and the training is conducted on 4 NVIDIA GeForce RTX 4090 24G GPUs. For the reaction
part, the molecular encoder parameters are the same as those of Uni-Mol. The readout function is
sum. For the enzyme part, the encoder used is ESM2, which is frozen during the training process.
We added a linear layer after the embedding output by ESM2 to help with mapping. The training
epoch is 100, and the last checkpoint is selected.

A.4 LIMITATION

Currently, the framework scenario is only limited to the case of enzyme screening. In the future, it
will be applied to more extensive enzyme prediction and design tasks.
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