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ABSTRACT

We present SEED (Semantic Evaluation for Visual Brain Decoding), a novel met-
ric for evaluating the semantic decoding performance of visual brain decoding
models. It integrates three complementary metrics, each capturing a different
aspect of semantic similarity between images inspired by neuroscientific find-
ings. Using carefully crowd-sourced human evaluation data, we demonstrate that
SEED achieves the highest alignment with human evaluation, outperforming other
widely used metrics. Through the evaluation of existing visual brain decoding
models with SEED, we further reveal that crucial information is often lost in trans-
lation, even in the state-of-the-art models that achieve near-perfect scores on exist-
ing metrics. This finding highlights the limitations of current evaluation practices
and provides guidance for future improvements in decoding models. Finally, to fa-
cilitate further research, we open-source the human evaluation data, encouraging

the development of more advanced evaluation methods for brain decoding.

1 INTRODUCTION

Visual brain decoding focuses on reconstructing visual stimuli from brain signals, such as functional
magnetic resonance imaging (fMRI), thereby bridging the fields of neuroscience and computer vi-
sion. This field of research is pivotal for developing brain-computer interface (BCI) systems (Mai
et al., |2024; [Zhang et al.l 2022; Du et al.| [2022; |Saha et al., [2021) and provides key insights into
the working mechanisms of complex human perceptual systems (Mai et al., [2024). Reflecting its
importance, numerous studies have been dedicated to advancing this domain (Scotti et al., 2023;
2024;|Wang et al.| 2024a; Huo et al.| 2024} Xia et al.| 2024a; Wang et al., [ 2024b; Tian et al.| 2025).

With the recent advent of diffusion-based de-
coding models (Scotti et al., 2023} |2024}; |Wang
et al.l 2024aib; [Huo et al.| 2024} [Tian et al.|
20235)) that boast a near-perfect performance on
all of the percentage-based evaluation metrics,
the endeavor to visually decode brain signals
might seem to be nearly solved, with little to
no room for improvement for future research.
However, upon close inspection, the decoding
results, even from the most recent and state-of-
the-art models, often fail at reconstructing cru-
cial semantic elements in the original image;
e.g., a teddy bear may turn into a cat during the
reconstruction process. (See Fig.[I)

As this example suggests, we observed that cur-
rent evaluation metrics tend to assign relatively
high scores to such flawed reconstructions, po-
tentially misleading researchers and obscuring
the true limitations of these models. This leads
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Figure 1: Current evaluation metrics assess the
semantic similarity between ground-truth and re-
constructions in a way that significantly differs
from human evaluation, often giving relatively
high scores to reconstructions that are semanti-
cally misaligned.

to the following question: Is the current framework to evaluate visual decoding models aligned with
human intuition? To answer that, we first inspected current evaluation metrics and identified a few
limitations: the dependency on the comparison image pool, insufficient difficulty, and the lack of
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human-likeness. In addition, existing related metrics, e.g., FID or SSIM (Wang et al.,2004), are un-
suitable since the evaluation of decoding models requires the comparison between two images that
could be highly dissimilar. Furthermore, we collected human ratings on the semantic similarities of
1,000 ground-truth (GT) and reconstruction image pairs from 22 evaluators. Using these ratings, we
revealed that most existing metrics show a low correlation with human evaluation about the semantic
similarity of GT and its brain-decoded reconstruction, with the exception of the EffNet (Tan & Le|
2019) metric. Our finding underscores the urgent need for improved evaluation criteria.

To that end, inspired by the human visual perception process, we propose a new evaluation met-
ric that primarily focuses on the semantic likeness of two images, SEED (Semantic Evaluation for
Visual Brain Decoding). SEED is a combinatorial metric that integrates two newly proposed met-
rics, Object F1 and Cap-Sim, alongside EffNet, a well-established metric, each resembling different
stages of the human visual perception pipeline.

More specifically, Object F1 is a metric that aims to identify and capture important elements of
the image by automatically detecting and comparing the presence of key objects of the scene using
open-vocabulary image grounding models. Cap-Sim is a metric that compares the similarity of the
generated captions of two images. This metric captures additional semantic factors that might be
overlooked by Object F1, such as backgrounds, pose, and color, offering a complementary evalua-
tion of the high-level image semantics. EffNet is a widely adopted metric leveraging an ImageNet
(Deng et al., 2009) pre-trained EfficientNet (Tan & Lel 2019) model. The metric is known to be
particularly well suited to capture the more global and structural aspects of the scene, thus comple-
menting Object F1 and Cap-Sim.

By carefully comparing our proposed and existing metrics with the collected human evaluation re-
sults, we show that the two new metrics, Object F1 and Cap-Sim, indeed exhibit strong agreement
with human evaluation, and our SEED achieves the highest alignment with human evaluation, com-
pared to all existing metrics. In order to facilitate future research on developing new metrics, we
plan to release the human evaluation results.

Furthermore, our evaluation of recent visual brain decoding models with SEED revealed that even
the most advanced models frequently fail to accurately reconstruct key objects of interest, often
confusing them with similar ones. Even when key objects are correctly identified, the models often
struggle to capture semantic details. We believe these findings can provide valuable guidance for
advancing research in visual brain decoding.

2 BACKGROUND

2.1 VISUAL BRAIN DECODING MODELS

Visual brain decoding refers to the task of reconstructing visual stimuli, such as an image, given
the brain signals of a human subject that is viewing the said visual stimuli. In the early stages
of development of visual decoding models, linear regression-based approaches demonstrated that
visual information can be decoded from brain signals (Kamitani & Tong, 2005} [Haynes & Rees)
2005). With the development of deep learning techniques, more sophisticated decoding becomes
promising, such as GAN (Goodfellow et al., 2020) based visual brain decoding (Seeliger et al.,
2018} |Ozcelik et al.;2022). Recent decoding models adopt latent diffusion models (Rombach et al.,
2022) to produce high-quality decoded images conditioned by brain embeddings or predicted CLIP
(Radford et al., |2021) image embeddings from fMRI signals (Scotti et al., 2023};2024; Wang et al.,
2024bza; [Tian et al., 2025; |Gong et al., 2025). Instead of freezing the pre-trained diffusion mod-
els, NeuroPictor (Huo et al., |2024) fine-tunes the diffusion model to directly condition the image
generation process with brain embeddings.

Beyond the single modality decoding, recent works aim to simultaneously reconstruct the multiple
modalities, mainly text and images from a fMRI signals (Mai & Zhang, [2023}; Xia et al.| [2024bj
Shen et al., 2024a)).

Furthermore, we note that there is a line of work that mainly focuses on the reconstructing textual
information from the fMRI signals (Chen et al., |2025ab), though they are not main focus of our
work.
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Instead of freezing the pre-trained diffusion models, NeuroPictor (Huo et al., 2024)) fine-tunes the
diffusion model to directly condition the image generation process with brain embeddings.

2.2 CURRENT EVALUATION SCHEMES

Most of the recent decoding literature (Ozcelik & VanRullen, 2023} Scotti et al.l [2023; [Liu et al.,
20255 [Scotti et al.l 2024; [Wang et al., 2024a; |Shen et al., 2024b; Huo et al., 2024; Wang et al.,
2024bj; Xia et al., |2024a) mainly focus on the following eight evaluation metrics: PixCorr, SSIM
(Wang et al.| [2004), AlexNet(2), AlexNet(5) (Krizhevsky et al.l 2012), Inception (Szegedy et al.,
2015)), CLIP (Radford et al., 2021)), EffNet (Tan & Le, 2019), and SWAV (Caron et al.,|[2020).

PixCorr refers to the Pearson correlation between the pixel values of the GT and the reconstruction.
SSIM refers to the structural similarity index measure between the GT and the reconstruction.

AlexNet(2), AlexNet(5), Inception, and CLIP refer to the accuracy of two-way identification tasks
that use the corresponding feature extractor. Specifically, for every GT embedding, the Pearson
correlation with its corresponding reconstruction embedding is compared against its correlation with
each other reconstruction embedding in the test set. The percentage of cases in which the GT
embedding is closer to its correct reconstruction is reported.

The n-way extension of the task utilizing the brain-generated intermediate CLIP embeddings and the
GT CLIP image embeddings, known as image/brain retrieval, is also reported in some works (Scotti
et al.| [2023; 2024; Lin et al.| 2022)). However, the retrieval tasks are not applicable to models such
as NeuroPictor (Huo et al., 2024) as they require the model to generate brain-derived intermediate
CLIP image embeddings during the decoding process.

EffNet and SwWAV refer to the correlation distance between the GT embedding and the reconstruction
embedding, utilizing the corresponding feature extractor.

3 ISSUES WITH EXISTING EVALUATION METHODS

3.1 EMPLOYMENT OF EXISTING RELATED METRICS

When evaluating visual brain decoding models, it is crucial to measure how closely the reconstruc-
tion aligns with the GT, acknowledging potential perceptual and semantic deviations. Unlike typical
image generation tasks, which lack a fixed GT, decoding tasks involve a predetermined target. Con-
sequently, standard metrics for image generation, such as FID, are unsuitable, and a measure that
directly compares the reconstruction to the known image is required.

In this sense, due to the nature of comparing the similarity of two images, the evaluation of the
decoding task more closely resembles traditional image quality assessment, where images are de-
graded by compression, transmission, or other processes. This is precisely the context for which
metrics like SSIM were originally designed, which likely explains why those metrics are widely
used for the evaluation of visual brain decoding models.

However, a key distinction lies in the inherent noisiness of decoding, where reconstructions can
be perceptually different from the GT while retaining a similar semantic theme. This can result in
metrics like SSIM assigning unusually low scores as they are prone to even small distortions, such
as translations and rotations (Nilsson & Akenine-Moller, |2020), let alone the larger distortions often
found in reconstructions.

Consequently, although it might appear that conventional image quality assessment metrics are ide-
ally suited to evaluate decoding models, in practice, they are substantially misaligned from human
evaluation, as demonstrated in Sec. @ Therefore, the focus of evaluation should be geared towards
assessing the semantic qualities of the reconstructions, due to the noisiness of the decoding process.

3.2 TwWO-WAY IDENTIFICATION

Two-way identification metrics (AlexNet(2), AlexNet(5), Inception, CLIP) serve a crucial role in
the evaluation of decoding models, as they occupy half of the eight-metric evaluation scheme. How-
ever, due to their comparative nature, two-way identification metrics contain some inherent flaws.
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Figure 2: The overall process for calculating SEED.

First and foremost, comparing two-way identification scores between models is inappropriate. As
each reconstruction is compared against other reconstructions generated by the decoding model, the
pool of images each reconstruction is compared against differs for each decoding model. This fact
renders the direct comparison of two-way identification scores inappropriate, as each model would
be evaluated under different criteria.

Another issue arises from the difficulty, or lack thereof, of the two-way identification task. Since
the reconstruction only needs to be closer to the GT than another random example, a reasonable
reconstruction easily “wins” the comparison. Due to this, recent decoding models already show
near-perfect performance for most two-way identification metrics. This makes it difficult to differ-
entiate the performance between different decoding models and thus calls for a more challenging
evaluation task.

3.3 LACK OF HUMAN-LIKENESS

Excluding PixCorr and SSIM, all other evaluation metrics rely on abstract features extracted from
pre-trained vision models. Consequently, it is difficult to interpret the rationale behind each eval-
uation from a human perspective, casting doubt on whether they truly align with human percep-
tion—especially while under scrutiny. Our human survey findings indeed reveal that most com-
monly used metrics gauge semantic similarity in ways that deviate notably from human evaluation.
Further details are in Sec.[5.11

4 NEW SEMANTIC EVALUATION METHODS

Given the issues outlined in Sec. [3] there is a clear need for evaluation methods that deliver more
accurate and generalizable assessments for visual brain decoding. To that end, we borrow inspiration
from the human visual attention system to develop new decoding evaluation protocols. Among
neuroscientific literature (Jonides, |1983; [Treisman, |1998; [Zhang, [2019), the common consensus is
that visual perception and attention are a two-stage process.

During the first stage, the visual system analyzes basic features of the environment such as color,
orientation, and brightness. This process occurs in parallel, simultaneously dividing attention across
the entire visual field.

Although the specifics may vary from theory to theory, the second stage of visual attention involves
focused attention, which is crucial for binding the separately processed features into coherent, rec-
ognizable objects. In this stage, attention is selectively concentrated on specific locations within the
visual field. When attention is directed to a particular area, the brain integrates the features present
at that location into a unified percept.

We noticed that most existing metrics, especially the ones involving a convolution model, use models
that follow a similar process to the first stage, but not the second stage. This observation motivated
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us to develop two different metrics that each resemble different parts of the second stage, as well as
a metric to unify the two stages, namely: Object F1, Cap-Sim, and SEED.

4.1 OBIJECTF1

We first introduce a metric that focuses on key objects, in order to roughly follow the object-oriented
attention mechanism of the second stage of visual attention. Object F1 is a metric that measures the
similarity of two images based on object presence; that is, objects present in the GT should also be
present in the reconstruction, and objects not present in the GT should also not be present in the
reconstruction. Using image grounding models, it is possible to automatically detect the objects
present in both images and quantify the aforementioned criterion into two proposed metrics: Object
Recall and Object Precision.

We first run all GT and reconstructed images through an image grounding model and obtain the
detection results. The results should contain the list of detected objects with information such as
the category and the confidence value for each object. Given a confidence threshold ¢, which is the
threshold used to determine whether an object is “detected,” we define two preliminary metrics for
each image: Object Recall, and Object Precision,.

Object Recall, measures the proportion of the object categories from the GT that are also present in
the reconstruction. This measures the proportion of objects that are successfully “recalled” in the
reconstruction, formulated as:

# of categories in both GT and recon

Object Recall, =
ject Recall # of categories in GT M

Similarly, Object Precision, measures the proportion of the object categories from the reconstruc-
tion that are also present in the GT. This essentially measures the “precision” of the objects in the
reconstruction, formulated as:

# of categories in both GT and recon

Object Precision, := 2
ject Hrectsion, # of categories in recon @

During the process, we apply the same threshold value to the GT and reconstruction to ensure the
ideal reconstruction (i.e., reconstruction identical to the GT) obtains the best possible score. For
simplicity, if multiple objects of the same category are present in an image, we only consider the
object with the highest score, as we only check for the existence of each object category.

To remove the reliance on a threshold hyperparameter, we calculate Object Recall, and
Object Precision, while moving the threshold, ¢, between 0 and 1 and obtain the averaged values:

recall

tvalid
Object Recall := —— / Object Recall, dt
- 3)
valid
Object Precision := ——— / Object Precision, dt
valid

where ¢l {PeCSON re cutoff thresholds, corresponding to the highest confidence value present in
the GT and reconstruction, respectively. The threshold is cut off in such a way since there would be

no detected objects for higher threshold values.

The final evaluation metric, Object F1, is the harmonic mean of the averaged Object Recall and

Object Precision:
2

Object Recall ™ + Object Precision™

Object F1 = T “)

The threshold-averaging scheme has the added benefit of penalizing reconstructions with objects far
apart from the GT in terms of confidence, as those objects would be marked as incorrect during the
intermediate threshold values. This trait is beneficial for evaluating decoding models, as they often
generate distorted objects (Scotti et al.l [2024) that tend to show lower confidence values than their
GT counterparts.
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We note that the proposed Object F1 fundamentally differs from the Average Precision (AP) in
object detection. AP evaluates detection models by comparing bounding boxes based on IoU for
a single image, whereas Object F1 measures similarity of two images based on object existence,
independent from loU.

To calculate Object F1, we employ MM-Grounding-DINO (Zhao et al., 2024) to detect 82 object
categories; the full list of categories is available in Sec.[B.I] For Object Recall and Object Precision,
to approximate Eq. 3] we move the threshold ¢ from 0 by increments of 0.01, up to the cutoff
thresholds, and average the values.

4.2 CaApP-SIM

Similar to how Object F1 emulates the object-oriented attention mechanism of the second stage of
visual attention, we introduce a metric inspired by the subsequent process within the same stage
that identifies and binds relevant features. Cap-Sim is a metric that measures the similarity between
captions generated by image captioning models for each GT and reconstruction pair. Instead of
relying on abstract features generated by vision models, this approach emphasizes semantic qualities
expressible by natural language since the images are essentially “compressed” into text before being
compared. This method allows us to evaluate semantic factors that are hard to identify through the
existence of objects, such as the background information or attributes of the detected object (pose,
color, etc.). Furthermore, caption-based evaluation provides an interpretable assessment, as captions
are human-readable and closely align with how people describe visual content (He et al.,[2019).

Formally, Cap-Sim is formulated as:

CaP-Sim = COS(etext(C(IGT)>7 elext(C(Irecon))) (5)

where I and I,.c.,, are GT and reconstructions, respectively. The functions e (+) and ¢(-) denote
text encoder and caption generator, respectively, for which we use Sentence Transformer (Reimers
& Gurevych,[2019) and GIT (Wang et al.,[2022)). To the best of our knowledge, we note that caption-
based evaluation of image similarity has not been previously proposed, despite its simplicity.

4.3 SEED

Building on these metrics, we aim to construct a unified evaluation framework that captures the
complementary aspects of human visual attention, each modeled by the individual metrics, and
serves as a reliable standard for assessing decoding models. To this end, we introduce Semantic
Evaluation for Visual Brain Decoding (SEED), a composite metric that integrates Object F1, Cap-
Sim, and EffNet.

Note that EffNet is a slightly modified metric by calculating correlation, not correlation distance,
converting it into a higher-is-better metric like the other two;

EffNet := corr(eimg(IaT); €img(Irecon)) (6)
where the function ejn,(-) is the image encoder, EffNet.

The overall procedure to compute SEED and its components for a given image pair is depicted in
Fig.[2l We simply take the average of the three metrics to calculate SEED:

SEED := (Object F1 + Cap-Sim + EffNet) / 3 7

4.4 HUMAN EVALUATION OF IMAGE SIMILARITY

We collected 5-point Likert scale ratings from 22 human evaluators to assess the alignment of current
evaluation metrics with human evaluation. They assessed both the semantic and perceptual similarity
between GT and their reconstructions for 1,000 test set images in Natural Scenes Dataset (NSD)
(Allen et al.l 2022) used by |Scotti et al.| (2024)), where the reconstructions were generated by the
MindEye2 model released by the original author, with 250 reconstructions sequentially sampled
from each of the four subjects (subject 1, 2, 5, and 7), following the order: the first 250 from
subject 1, the next 250 from subject 2, and so on. The intraclass correlation (ICC(2, n)) (Koch,
2004) between the human evaluation results is 0.84 (p = 0), indicating a sufficiently high inter-rater
agreement. Further detailed information on the collection of human ratings is provided in Sec. [A]
and we will release the survey results to facilitate future research on similar topics.
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Table 1: The meta-evaluation results on NSD Table 2: The meta-evaluation results of recon-
with MindEye2. The best results are_bolded. structions of the GOD dataset with Mind-Vis.

SwAV was calculated similarly to Eq. @ The best results are bolded.
Metric Pairwise Acc. Kendall Pearson Metric Pairwise Acc. Kendall Pearson
PixCorr 53.8% .075 117 PixCorr 51.3% .029 .078
SSIM 54.5% .090 112 SSIM 49.2% -.013 -.103
AlexNet(2) 55.0% 185 187 AlexNet(2) 66.0% 377 492
AlexNet(5) 49.5% 236 258 AlexNet(5) 65.8% 423 445
Inception 63.8% .330 475 Inception 62.6% 324 .356
CLIP 66.4% 368 436 CLIP 63.2% 338 .309
EffNet 78.0% 559 748 EffNet 72.5% 453 .661
SwAV 69.7% 394 .576 SwAV 68.6% 376 498
Object F1 75.8% 516 708 Object F1 66.0% 322 431
Cap-Sim 73.8% AT7 .666 Cap-Sim 68.7% 376 577
SEED 81.0% 621 813 SEED 73.7% 477 706

5 EXPERIMENTAL RESULTS

5.1 ALIGNMENT WITH HUMAN EVALUATION

Following Lin et al.| (2024), we adopt pairwise accuracy (Deutsch et al., [2023), Kendall’s Tau-b,
and Pearson correlation to meta-evaluate each metric based on the human ratings of the semantic
similarity between images. We meta-evaluated eight metrics widely used in prior works (Scotti
et al.;2023;2024; |Wang et al.|, [2024aib; [Tian et al.} 2025). Additionally, we explored alternative ap-
proaches for measuring the semantic similarity between images based on visual question answering
models, detailed in Sec.

The meta-evaluation results, presented in Tab.[I] indicate that most existing metrics exhibit low cor-
relation with human evaluation, except for EffNet. Furthermore, the alternative approaches do not
perform as effectively as Object F1 or Cap-Sim. Notably, SEED achieves the highest agreement with
human evaluation with statistical significance. To assess the statistical significance of the improve-
ment of SEED over EffNet, which shows strong alignment among existing metrics, We performed
bootstrapping along the evaluator axis (sample size = 22) for 1,000 iterations and computed the
confidence intervals of the differences in each meta-evaluation metric between SEED and EffNet.
The 95% confidence intervals for pairwise accuracy, Kendall’s Tau-b, and Pearson correlation were
[0.03,0.07], [0.02,0.04], and [0.04, 0.08], respectively, all of which do not include zero. These
results indicate that the performance improvement of SEED over EffNet is statistically significant.

We note that the combination of the three metrics is essential to achieve the highest alignment with
human evaluations. A detailed analysis is provided in Sec.|[C.3]

5.2 ROBUSTNESS OF SEED

Because several factors in SEED may influence the 08 — —
evaluation process, we conduct experiments to ex-
amine its robustness under different scenarios. o7
0.6 =
Robustness to dataset and decoding model. One ¢ 03
major factor affecting meta-evaluation would be the & 4
choice of dataset and decoding model that serves as 03
the evaluation target. To perform meta-evaluation on 0.2
a different setting, we collected human evaluations o1
from 10 student volunteers for 50 reconstructions
generated by Mind-Vis (Chen et al., 2023)) on the 00 pgirwise Kendall Pearson
General Object Decoding (GOD) dataset (Horikawal Acc.

& Kamitani, 2017). The ICC values for semantic
similarity was 0.93 (p = 0), indicating high agree-
ment among raters. We used the full list of 50 test

Figure 3: Meta-evaluation results with differ-
ent choices of off-the-shelf models.
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set class names to compute Object F1. As shown in
Tab. 2] SEED again achieved the highest alignment with human evaluation, demonstrating that it
generalizes well across datasets and decoding models.

Robustness to the choice of off-the-shelf models. We next evaluated whether SEED’s perfor-
mance depends on the specific choice of image grounding model, caption generator ¢(-), or text
encoder ey (-). We substituted the original components with Yolo-World (Cheng et al., [2024) for
image grounding, BLIP-2 2023) for caption generation, and Qwen3-Embedding-0.6B
(Zhang et al | [2025)) for text encoding. Meta-evaluation results across all eight model combinations
are summarized in Fig. [3] The barplots indicate that performance differences across all choices are
minimal, confirming that SEED is robust to the selection of these off-the-shelf models.

5.3 ANALYSIS OF WORST-CASE JUDGMENTS

To understand why SEED improves upon its TR
components, we present case studies of the : s e  etric  Rank
“worst-case judgments” for each component of
SEED, despite their high agreement with hu-
man evaluation. In this context, “worst-case
judgments” refer to images whose metric-based
ranking differs significantly from the human
evaluation ranking. Rankings were computed
from each metric’s numeric scores and from hu-
man ratings, where human ratings were normal-
ized per evaluator and then averaged per im-
age. The examples shown in Fig. [ are chosen
among the worst-case judgments for each met-
ric, where the other two metrics made a human-
aligned decision, which somewhat mitigates the
discrepancy. Additional examples are available

in Sec.[D.3l

Fig. [ (a) shows a case where Object F1 sig-
nificantly deviates from human evaluation and ) o .
other metrics by assigning a score of 0. This Figure 4: Visualizations (out of 1000 pairs) of

disparity arises because Object F1 fails to cap- Worst-case judgments for (a) Object F1, (b) Cap-
ture global scene information, relying solely on Sim, and (c) EffNet.
detected animals (sheep in the GT and cow in the reconstruction).

Object F1 995
Cap-Sim 151
EffNet 113

Metric Rank
Human 107
Object F1 266
Cap-Sim 761
EffNet 4

Metric Rank
Human 270
Object F1 352
Cap-Sim 449
EffNet 964

Recon

Fig. @] (b) shows a case where Cap-Sim significantly deviates from the others, where the caption
generated by GIT is [A man on skis standing on a snowy hill.] and [A woman on skis is waving while
skiing.] for the GT and the reconstruction, respectively. The low similarity likely results from the
change of gender or the described action, despite other metrics as well as humans assigning a high
similarity.

Fig. E| (c) shows a case where EffNet significantly deviates from the others. Although it is difficult
to pin down the exact reason, one possible explanation is the fact that the two images have different
ImageNet Top-1 predictions from the EffNet model: American egret for the GT and Coucal for the
reconstruction. We hypothesize that the EffNet tends to over/underestimate the correlation between
two images with the same/different class predictions.

To validate this suspicion, we compared the average z-normalized EffNet and the human semantic
evaluation scores of the image pairs with the same/different EffNet ImageNet Top-1 predictions.
For images from the same class, EffNet yields an average score of 0.755, whereas human evaluators
score 0.313 on average. For images of different classes, the average scores are -0.333 for EffNet and
-0.138 for humans. This indicates that EffNet produces overestimated assessments, depending on
the ImageNet classes, and we believe this explains EffNet’s low correlation for cases like Fig. 4 (c).
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SEED: 0.591 | Object F1: 0.949
GT Recon

GT Caption: a bird flying over the water in the ocean

i Recon Caption: a bird standing on the grass in the sun.

MindBrid UniBin BrainGuar

Figure 6: An example of reconstruction which
captures objects correctly but misses semantic

Figure 5: Examples of the semantic near-miss details.

phenomenon.

5.4 FAILURE MODE DISCOVERY

Semantic near-miss phenomenon. One common failure mode of current decoding models is the
semantic near-miss phenomenon, in which the reconstruction misrepresents the specific object cat-
egory from the GT, yet still captures the broader supercategory. For example, if the GT contains a
dog, the reconstruction might include a cat or other animals (See Fig.[5]). While this car is in the
wrong category, it remains within the correct supercategory, animal.

We quantify this by re-using the object detection pipeline used in Object F1. We calculate the Object
Recall (Eq.[T) and the Relaxed Object Recall, which measures the proportion of the object categories
from the GT where its supercategory (instead of the specific category) is present in the reconstruc-
tion. The gap between those two represents the rate of the semantic near-miss phenomenon.

We computed the semantic near-miss rate of salient object categories at a confi-
dence threshold of 0.3 for five existing decoding models in Sec. |[E| and observed rates ranging from
17.5% to 20.6%. Such a high incidence indicates that current decoding models often struggle with
fine-grained object differentiation, capturing only coarse semantic details.

Captured objects while missing semantic details. We identify another failure mode in which
the model reconstructs the main objects but overlooks crucial semantic details. To analyze this, we
focus on reconstructions with high Object F1 but low overall SEED, specifically those satisfying
Object F1 > 0.7 and Object F1 — SEED > 0.2. While the exact thresholds are somewhat arbitrary
and can be varied, our goal here is not to fixate on specific cutoff values but to demonstrate how
such criteria enable systematic identification of failure modes. This criterion isolates cases where
low Cap-Sim and EffNet scores reduce the SEED average. Such cases indicate that while the model
successfully reconstructs objects, it often fails to capture other details such as backgrounds, pose,
or color. Fig.[f]illustrates one such example, where the reconstruction correctly captures a bird but
fails to reconstruct the background as well as its pose.

Using this criterion, we measured the proportion of reconstructions. The ratio ranges from 8.3%
to 10.7% across the five decoding models evaluated in Sec. [E] suggesting that a sizable fraction
of reconstructions, while correctly identifying the main objects, still fail to recover fine-grained
semantic details.

Potential remedies. While we do not propose solutions for these failure modes, we believe that
our findings suggest several promising research directions. First, more systematic error analysis
with SEED could provide actionable guidance for data collection. For example, if a model reliably
reconstructs objects but frequently mismatches backgrounds, this would suggest collecting images
with greater background diversity. Similarly, to address the semantic near miss phenomenon, one
could gather datasets containing images with subtle differences between them. Second, training
strategies could aim to disentangle object reconstruction from semantic detail reconstruction. Most
current decoding models use CLIP image embeddings as regression targets, which may conflate
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these two aspects and contribute to the failures. Future methods may therefore benefit from decou-
pling object-level supervision from supervision for other details.

6 CONCLUSION & LIMITATIONS

In this work, we introduce SEED, a novel framework designed to assess the semantic decoding
performance of decoding models. Through comprehensive experiments, we show that existing eval-
uation metrics often diverge from human judgments, whereas our proposed metric exhibits stronger
alignment and improved reliability.

Our results reveal a growing mismatch between the goals of modern visual brain decoding and the
metrics currently used to evaluate it. Although recent diffusion-based models can achieve near-
perfect scores on traditional identification metrics and display high similarity scores, our human-
aligned analyses show that these models often overlook substantial semantic errors, including miss-
ing objects, incorrect categories, and failures to capture contextual details, which are overlooked by
traditional metrics. This indicates that the field may be overestimating progress due to evaluation
tools that no longer reflect the true complexity of the task.

SEED addresses this gap by providing a more human-consistent measure of semantic fidelity, in-
tegrating object-level, caption-level, and other fine-grained semantic cues. Beyond offering a more
reliable evaluation metric, SEED reveals distinct failure modes, such as semantic near-misses and
losses of fine detail, thereby enabling more targeted model development.

More broadly, our findings highlight that as decoding models mature, so too must our evaluation
practices. We hope that SEED encourages the community to adopt richer, human-aligned evaluation
frameworks and to develop models that capture objects, attributes, and other semantic details in a
more faithful and robust manner.

Limitations and future work. Nonetheless, our approach has its limitations. As SEED depends
on the off-the-shelf models, SEED may inherit systematic errors from the existing models. One
such example is provided in Sec. [D.2] where all metrics of SEED fail to make a human-aligned
judgment when an unusual or malformed image is given as the reconstruction, which in turn leads
to the failure of SEED. Training evaluation models or devising metrics that are more robust to these
scenarios could be a promising future direction.

In addition, because SEED was designed with a stronger emphasis on evaluating image semantics,
it may become less effective once precise assessment of perceptual details is required as brain de-
coding technology matures. While we currently regard accurate semantic decoding as the higher
priority, we expect that, as models improve and reliably capture high-level semantics, the focus
will naturally shift toward perceptual fidelity. At that stage, an evaluation method better suited to
detecting fine-grained perceptual aspects should be introduced.

REPRODUCIBILITY STATEMENT

For the reproducibility of our study, we detailed the model used for computation of SEED in Sec. 4]
and how to compute SEED. In addition, we will disclose the human evaluation results upon accep-
tance for the reproduction of the meta-evaluation results.
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SEED: Towards More Accurate Semantic Evaluation for Visual
Brain Decoding

Appendix

THE USE OF LARGE LANGUAGE MODELS (LLMS)

We utilized LLMs for the purpose of polishing our manuscript only.

A COLLECTION OF HUMAN EVALUATIONS

We used the Amazon Mechanical Turk (MTurk) platform as well as additional student evaluators to
collect human ratings on the semantic and perceptual similarity between GT and its reconstruction.
A screenshot of the survey window is shown in Fig.

Evaluate the Semantic similarity

Evaluate how similar the main idea or meaning of the two images are.
1: Not similar at all, 5: Matches almost exactly

01 02 O3 04 O5
Evaluate the Visual similarity

Evaluate how visually similar the two images are. Consider the textures, colors, object locations, composition, and overall
appearance.

1: Not similar at all, 5: Matches almost exactly

01 02 03 04 O5

Figure 7: A screenshot of our Amazon MTurk survey window.

Referring to |Otani et al.| (2023)), we applied the following filter for worker requirements when cre-
ating the MTurk project: 1) Master: Good-performing and granted AMT Masters. Each annotator
was paid $0.03 for evaluating the semantic and perceptual similarity of a single pair of GT and its
reconstruction image. We gathered a total of 22 ratings for each of the 1,000 pairs.

The intraclass correlation (ICC(2, n)) (Kochl [2004) for the perceptual similarity evaluation results
was 0.79 with p = 0, which indicates high inter-rater agreement.

B CHOOSING CANDIDATE OBJECT CATEGORIES FOR OBJECT DETECTION

B.1 FULL LIST OF OBJECT CATEGORIES

The list of object categories, which was used for object detection, is composed of 80 COCO cat-
egories plus 2 additional human categories (man and woman). The resulting 82 categories can be
further classified into 30 “Salient” and 52 “Inconspicuous” objects as per |Xia et al.| (2024b).

The 30 salient objects are: [person, man, woman, bird, cat, dog, horse, sheep, cow, elephant, bear,
zebra, giraffe, bicycle, car, motorcycle, airplane, bus, train, truck, boat, bench, chair, couch, bed,
dining table, toilet, sink, refrigerator, clock]

The 52 inconspicuous objects are: [traffic light, fire hydrant, stop sign, parking meter, backpack,
umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball
glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana,
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apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, potted plant, tv, laptop, mouse,
remote, keyboard, cell phone, microwave, oven, toaster, book, vase, scissors, teddy bear, hair drier,
toothbrush].

B.2 CHOOSING CATEGORIES WITH VLM

The rapid development of vision-language models (VLM) made us wonder if the process of choosing
object categories could be delegated to VLMs instead of using a fixed set of objects. To answer
this question, we use an open-sourced Qwen2.5-VL-7B-Instruct (Bai et al., 2025) model to extract
the object categories instead of using the aforementioned 82. We gave the model each GT and
reconstruction image separately; we experimented with different text prompts, but the following was
the most effective: Generate a list of objects and background features that are present in the image.
Only answer in a comma-separated list of objects. Do not include any other text or explanation.
With the extracted object categories, we calculated the Object Recall with the categories of the GT
and the Object Precision with the categories of the reconstruction image, separately for each image
pair. Compared to the fixed list of 82 categories, which is the one used in the manuscript, this
strategy performed slightly worse, although still significantly outperformed existing metrics.

Table 3: The meta-evaluation results while using a fixed set of 82 categories versus VLM-generated
object categories.

Metric Pairwise Acc. Kendall Pearson
Object F1 75.8% 516 708
Object F1 (VLM) 73.7% 473 .658
SEED 81.0% 621 813
SEED (VLM) 80.4% .607 .800

C ADDITIONAL ANALYSES

C.1 INCORPORATION OF LOCATION, SIZE, AND NUMBER INFORMATION

Table 4: The meta-evaluation results of Object F1 with incorporation of additional information.

Options

. . . Pairwise Acc. Kendall Pearson
Existence Size Location Number‘ airwise Ace enda €arso

v 75.8% 516 708
v v 75.8% 517 709
v v 75.9% 517 710
v v 74.7% 493 .648

We incorporate location, size, and number information into Object F1 to determine whether each
factor contributes to the improvement of alignment with human evaluations, as outlined below:

Size weighting We weight object categories based on their bounding box size, with larger sizes
receiving higher weights. An object that fills the entire image would be weighted twice as much as
an object with zero area, with scaling linearly.

Location weighting We weight object categories based on their proximity to the center of the image,
with objects closer to the center receiving higher weights. An object at the center would be weighted
twice as much as an object at the edge of the image, with scaling linearly.

Number count During recall and precision calculation, each object category receives partial credit
if the number of detected object categories is either underestimated or overestimated, depending on
the error.

The results are summarized in Tab.[4] Since none of these weighting schemes seemed to improve
the metric, they were not included in the final version in order to avoid needlessly complicating the
metric.
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C.2 ADDITIONAL RESULTS OF SEC.[5.1]

Table 5: The meta-evaluation results of each metric. The best results are bolded.

Metric Pairwise Acc. Kendall Pearson
Object F1 75.8% 516 708
Cap-Sim 73.8% 477 .683
EffNet 78.0% .559 748
Object F1+ Cap-Sim 78.3% .566 768
Object F1+ EffNet 80.1% .602 794
Cap-Sim+ EffNet 79.2% .583 787
BLIP VQAScore 71.3% 427 .566
GIT VQAScore 71.7% 434 574
SEED 81.0% 621 813

We present additional meta-evaluation results for all possible combinations of components of SEED
in Tab. [5] In addition, we explored alternative options for measuring the semantic similarity: CLIP-
FlanT5 VQA scores with BLIP/GIT generated captions for GT images. Indeed, it
can be observed that SEED demonstrates the best agreement with human evaluations.

C.3 COMBINATION OF EVALUATION METRICS

0.6

Pixcorr 021 033 036 036 020 044 039

SSIM 022 032 036 044 026 047 043
0.5

Alex(2) 022 034 035 022 020 021 021

Alex(5)1 021 022 022 024 036 040 031 028 031 030
-0.4

Inception{ 033 032 034 036 033 041 034 033034 034
CLIP1 036 036 035 040 041 037 0.38 037 037 037 o3

EffNet{ 036 044 022 031 0.34 0.38 [§ 0.54

SwAV{ 020 026 020 028 0.33 0.37 [ 0.39

Ob]ectFI-°-44 0.47 0.21 0.31 0.34 0.37 [EeRIoIN0RT¢)

Cap-Sim- 039 043 021 030 034 037 UEERIE

Pixcorr SSIM Alex(2)Alex(5) Incep. CLIP EffNet SwAV O.Fl Cap-Sim

Figure 8: The heatmap of correlations between metric combinations and human evaluation, mea-
sured by Kendall’s Tau-b. The green outline indicates combinations within current metrics.

To investigate possible candidate metrics that could be included in SEED, we computed the corre-
lation with human evaluations for each possible metric combination, as shown in Fig.[8] The com-
bination is calculated by simply averaging the two metrics. The highest-performing metrics come
from the combination of Object F1, Cap-Sim, and EffNet, with each combination outperforming
the individual components. This result naturally prompts the combination of those three to obtain
SEED.

One interesting observation is that it is impossible to create a superior evaluation metric by combin-
ing existing metrics; all possible combinations within existing metrics are not better than standalone
EffNet. A better metric emerges only when combined with Object FI or Cap-Sim. We believe that
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Metric Rank

Human 990 Metric Rank
PixCorr 12 Human 755
SSIM 75 Inception 17
Alex(2) 157 CLIP ©
Alex(5) 168 SEED 546
SEED 964

Metric Rank

Human 3 Metric Rank

PixCorr 746 Human 270
SSIM 331 EffNet 964
Alex(2) 828 SWAV 866
Alex(5) 726 SEED 568
SEED 47 . -

Recon GT Recon

Figure 9: Examples of worst-case judgments for other metrics

this is one indirect evidence that our proposed metrics evaluate the reconstructions from a different
angle from EffNet, making it possible for them to work as a complementary metric for each other.

D ADDITIONAL EXAMPLES AND ANALYSIS OF WORST-CASE JUDGMENTS

D.1 WORST-CASE JUDGMENTS FOR OTHER METRICS

Discussions of worst-case judgments in Sec. [5.3] were focused on individual metrics of SEED in
order to provide insight as to why SEED performed better than its components. In Fig. [0} we provide
some worst-case judgments for the existing metrics (PixCorr, SSIM, AlexNet, Inception, and CLIP)
to analyze cases where those metrics make mistakes and how SEED might improve upon them.

Fig. E] (a) and (b) represent cases where the four low-level metrics, PixCorr, SSIM, Alex(2), and
Alex(5), either overestimates or underestimates the similarity of the two images. It is fairly straight-
forward to see why those misjudgments came to be for these low-level metrics: for (a), we can see
the reconstruction put a malformed airplane in place of the traffic light while the general shape and
the background matches the GT. This semantic mismatch made humans as well as SEED to rank
this pair very low, while the metrics ranked this pair relatively high since the general shape and color
of these match pretty well. For (b), we can see both pictures depict a surfing man, while the specific
shape of the waves and the general color tone of the two quite differ. This probably led to humans
and SEED to highly rank this pair while the low-level metrics to generally rank this pair low.

For the high-level metrics, it was more difficult to pinpoint the causes for any mistakes or find
a reliable pattern between the mistakes, compared to the low-level metrics, due to their abstract
nature. Nevertheless, in Fig.[9|(c) and (d), we show the worst-case judgments for the four high-level
metrics, further grouped based on their evaluation method. (c) shows a worst-case judgment for
the 2-way identification methods, Inception and CLIP. We can see that the reconstruction depicts
a slightly disfigured hand, while the object held by the hand was changed from a remote control
to a smartphone. This difference likely led to humans and SEED to not favor the reconstruction,
while Inception and CLIP might have overvalued the reconstruction since it still features a hand. (d)
shows a worst-case judgment for the two correlation distance metrics, EffNet and SwAV, which is
an example brought from Fig. E (c). We can see that SWAV made a misjudgment similar to EffNet.
We suspect the cause for this mistake is similar, since SWAV was also trained using ImageNet.

D.2 WORST-CASE JUDGMENTS FOR SEED

Of course, SEED is not a flawless evaluation metric. SEED has the potential to make a misjudgment
when its three elements all make a misjudgment for one reason or another, which is displayed in
Fig. Here we can see the GT is an image with a person holding a red umbrella, while the recon-
sturction is a slightly ambiguous image with a yellow/blue umbrella-like object on top of a wooden
object, with a lake on the background. Humans slightly favored this reconstruction since the general
pose of the image is similar and the umbrella was somewhat reconstructed. However, all elements
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Metric Rank
Human 314
Object F1 793
Cap-Sim 847
EffNet 773
SEED 849

a yellow and blue
towel sitting on top
of a wooden bench.

a person holding a red
umbrella over a wall.

GT Recon

Figure 10: Example of worst-case judgment for SEED

of SEED undervalued this reconstruction, which consequently led to SEED to also undervalue the
reconstruction. If we look into the reason, Object F1 gave a poor score since the person from the
GT is missing while the yellow/blue umbrella was detected as a boat instead, probably due to the
wooden protrusion and the watery background. Cap-Sim gave a poor score for a similar reason; the
person was missing from the reconstruction caption, the yellow/blue umbrella was identified as a
towel, and the wooden bench was added to the caption. While it is difficult to know the rationale,
EffNet gave a poor score, presumably due to the background and the color of the umbrella of the
reconstruction being different.

As illustrated by this example, SEED has a chance to fail when the reconstruction is distorted or
has some unusual features. This essentially puts the models in an out-of-distribution setting, and
they may make a decision that is not aligned with a typical human judgment. Improving the object
grounding model or the image captioning model of SEED to better generalize to these distorted
images, or advancing the brain decoding models to not produce distorted images in the first place
would help in these scenarios.

D.3 ADDITIONAL WORST-CASE JUDGMENTS FOR SEED ELEMENTS

Here, we present additional examples of the worst-case judgments discussed in Sec.[5.3]

Table 6: Evaluation results with pre-trained models provided by authors. SNM represents the
proportion of “semantic near-miss.” SDM quantifies the proportion of “semantic detail misses”,
defined as the fraction of cases with Object F1 > 0.7 and Object F1 — SEED > 0.2. *MindEye2
was evaluated with 18 additional images, following the original work.

Method High-Level Object F11 Cap-Simt SEED{ SNM SDM

Incept CLIPT EffNet] SwAV |
MindEye2* (Scotti et al. 95.1% 932% 617 340 517 542 481 175 107
NeuroPictor (Huo et al.|[2024] ~ 94.6%  93.5%  .637 350 481 512 452 191 097
MindBridge qévm |2024a) 92.6% 947% 702 411 440 A70 403 203 .083
UniBrain (Wang et al[2024b] ~ 92.3%  93.7% 695 406 453 488 415 206 .093
BrainGuard m ‘| 2025 94.8%  94.8% 645 374 489 525 456 192092
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Metric Rank

Human 195
Object F1 836
Cap-Sim 339

EffNet 355
Metric Rank
Human 32

Object F1 252
Cap-Sim 776

EffNet 135
Metric Rank
Human 252

Object F1 133
Cap-Sim 216
EffNet 814

Recon

Figure 11: Additional examples of worst-case judgments

Fig.[T1](a) illustrates a case where Object F1 significantly deviates from human evaluation, assigning
a score of 0. This discrepancy arises because the detected category from the GT is Sink, while
the detected category from the reconstruction is 7oilet. Since Object F1 evaluates similarity based
solely on the presence of the detected category, it assigns a zero score, despite the reconstruction
successfully generating an image that represents the concept of a restroom.

Fig. [T1] (b) illustrates a case where Cap-Sim assigns a low similarity score between two images.
The captions generated by GIT for the GT and the reconstruction are [A group of people walking
across a snow covered field.] and [A person riding skis on a snowy surface.], respectively. This low
similarity is likely due to the different actions that people in the image are taking, despite human
and other evaluation metrics considering them similar.

Fig.[IT](c) presents a case where the EffNet metric produces an extremely low correlation between
two images. The ImageNet Top-1 predictions for the GT and the reconstruction are Container ship
and Traffic light, respectively. This example highlights how EffNet can yield an incorrect evaluation
due to misclassification.

Although the main objects in both images resemble a yacht-like boat, EffNet assigns them to dif-
ferent classes. We believe this occurs because the class yacht is not included in the 1,000 ImageNet
categories. Consequently, EffNet predicts the GT as a Container ship, likely focusing on the ship
behind the yacht, while misclassifying the reconstruction as Traffic light, a completely irrelevant
class.

E RE-EVALUATION OF EXISTING DECODING MODELS

We report the performance of existing visual decoding models evaluated with SEED in Tab. [6] We
report the evaluation results of five recent decoding models: MindEye2, NeuroPictor, MindBridge,
UniBrain, and BrainGuard. We directly evaluated the pre-trained models provided by the authors of
each work. The evaluation metrics consist of four existing evaluation metrics alongside our proposed
Object F1, Cap-Sim, SEED, and the semantic near-miss rate. Note that MindEye2 was evaluated
with 18 additional test image pairs as per the original work due to the sequential disclosure of the
NSD dataset.
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