

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 SEED: TOWARDS MORE ACCURATE SEMANTIC EVAL- UATION FOR VISUAL BRAIN DECODING

005 **Anonymous authors**

006 Paper under double-blind review

ABSTRACT

011 We present SEED (Semantic Evaluation for Visual Brain Decoding), a novel met-
012 ric for evaluating the semantic decoding performance of visual brain decoding
013 models. It integrates three complementary metrics, each capturing a different
014 aspect of semantic similarity between images inspired by neuroscientific find-
015 ings. Using carefully crowd-sourced human evaluation data, we demonstrate that
016 SEED achieves the highest alignment with human evaluation, outperforming other
017 widely used metrics. Through the evaluation of existing visual brain decoding
018 models with SEED, we further reveal that crucial information is often lost in trans-
019 lation, even in the state-of-the-art models that achieve near-perfect scores on exist-
020 ing metrics. This finding highlights the limitations of current evaluation practices
021 and provides guidance for future improvements in decoding models. Finally, to fa-
022 cilitate further research, we open-source the human evaluation data, encouraging
023 the development of more advanced evaluation methods for brain decoding.

1 INTRODUCTION

027 Visual brain decoding focuses on reconstructing visual stimuli from brain signals, such as functional
028 magnetic resonance imaging (fMRI), thereby bridging the fields of neuroscience and computer vi-
029 sion. This field of research is pivotal for developing brain-computer interface (BCI) systems (Mai
030 et al., 2024; Zhang et al., 2022; Du et al., 2022; Saha et al., 2021) and provides key insights into
031 the working mechanisms of complex human perceptual systems (Mai et al., 2024). Reflecting its
032 importance, numerous studies have been dedicated to advancing this domain (Scotti et al., 2023;
033 2024; Wang et al., 2024a; Huo et al., 2024; Xia et al., 2024a; Wang et al., 2024b; Tian et al., 2025).

034 With the recent advent of diffusion-based de-
035 coding models (Scotti et al., 2023; 2024; Wang
036 et al., 2024a;b; Huo et al., 2024; Tian et al.,
037 2025) that boast a near-perfect performance on
038 all of the percentage-based evaluation metrics,
039 the endeavor to visually decode brain signals
040 might seem to be nearly solved, with little to
041 no room for improvement for future research.
042 However, upon close inspection, the decoding
043 results, even from the most recent and state-of-
044 the-art models, often fail at reconstructing crucial
045 semantic elements in the original image;
046 e.g., a teddy bear may turn into a cat during the
047 reconstruction process. (See Fig. 1)

048 As this example suggests, we observed that cur-
049 rent evaluation metrics tend to assign relatively
050 high scores to such flawed reconstructions, po-
051 tentially misleading researchers and obscuring
052 the true limitations of these models. This leads
053 to the following question: *Is the current framework to evaluate visual decoding models aligned with
human intuition?* To answer that, we first inspected current evaluation metrics and identified a few
limitations: the dependency on the comparison image pool, insufficient difficulty, and the lack of

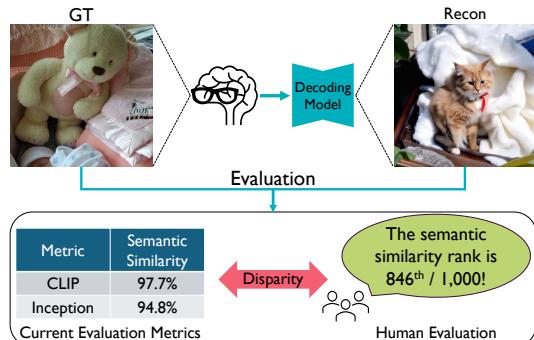


Figure 1: Current evaluation metrics assess the semantic similarity between ground-truth and reconstructions in a way that significantly differs from human evaluation, often giving relatively high scores to reconstructions that are semantically misaligned.

054 human-likeness. In addition, existing related metrics, *e.g.*, FID or SSIM (Wang et al., 2004), are un-
 055 suitable since the evaluation of decoding models requires the comparison between two images that
 056 could be highly dissimilar. Furthermore, we collected human ratings on the semantic similarities of
 057 1,000 ground-truth (GT) and reconstruction image pairs from 22 evaluators. Using these ratings, we
 058 revealed that most existing metrics show a low correlation with human evaluation about the semantic
 059 similarity of GT and its brain-decoded reconstruction, with the exception of the EffNet (Tan & Le,
 060 2019) metric. Our finding underscores the urgent need for improved evaluation criteria.

061 To that end, inspired by the human visual perception process, we propose a new evaluation met-
 062 ric that primarily focuses on the semantic likeness of two images, SEED (**Semantic Evaluation for**
 063 **Visual Brain Decoding**). SEED is a combinatorial metric that integrates **two newly proposed** met-
 064 **rics**, *Object F1* and *Cap-Sim*, alongside EffNet, a well-established metric, each resembling different
 065 stages of the human visual perception pipeline.

066 More specifically, Object F1 is a metric that aims to identify and capture important elements of
 067 the image by automatically detecting and comparing the presence of key objects of the scene using
 068 open-vocabulary image grounding models. Cap-Sim is a metric that compares the similarity of the
 069 generated captions of two images. This metric captures additional semantic factors that might be
 070 overlooked by Object F1, such as *backgrounds*, *pose*, and *color*, offering a complementary evalua-
 071 tion of the high-level image semantics. EffNet is a widely adopted metric leveraging an ImageNet
 072 (Deng et al., 2009) pre-trained EfficientNet (Tan & Le, 2019) model. The metric is known to be
 073 particularly well suited to capture the more global and structural aspects of the scene, thus comple-
 074 menting Object F1 and Cap-Sim.

075 By carefully comparing our proposed and existing metrics with the collected human evaluation re-
 076 sults, we show that the two new metrics, Object F1 and Cap-Sim, indeed exhibit strong agreement
 077 with human evaluation, and our SEED achieves the highest alignment with human evaluation, com-
 078 compared to all existing metrics. In order to facilitate future research on developing new metrics, we
 079 plan to release the human evaluation results.

080 Furthermore, our evaluation of recent visual brain decoding models with SEED revealed that even
 081 the most advanced models frequently fail to accurately reconstruct key objects of interest, often
 082 confusing them with similar ones. Even when key objects are correctly identified, the models often
 083 struggle to capture semantic details. We believe these findings can provide valuable guidance for
 084 advancing research in visual brain decoding.

085 2 BACKGROUND

086 2.1 VISUAL BRAIN DECODING MODELS

087 Visual brain decoding refers to the task of reconstructing visual stimuli, such as an image, given
 088 the brain signals of a human subject that is viewing the said visual stimuli. In the early stages
 089 of development of visual decoding models, linear regression-based approaches demonstrated that
 090 visual information can be decoded from brain signals (Kamitani & Tong, 2005; Haynes & Rees,
 091 2005). With the development of deep learning techniques, more sophisticated decoding becomes
 092 promising, such as GAN (Goodfellow et al., 2020) based visual brain decoding (Seeliger et al.,
 093 2018; Ozcelik et al., 2022). Recent decoding models adopt latent diffusion models (Rombach et al.,
 094 2022) to produce high-quality decoded images conditioned by brain embeddings or predicted CLIP
 095 (Radford et al., 2021) image embeddings from fMRI signals (Scotti et al., 2023; 2024; Wang et al.,
 096 2024b;a; Tian et al., 2025; Gong et al., 2025). Instead of freezing the pre-trained diffusion
 097 models, NeuroPictor (Huo et al., 2024) fine-tunes the diffusion model to directly condition the image
 098 generation process with brain embeddings.

099 Beyond the single modality decoding, recent works aim to simultaneously reconstruct the multiple
 100 modalities, mainly text and images from a fMRI signals (Mai & Zhang, 2023; Xia et al., 2024b;
 101 Shen et al., 2024a).

102 Furthermore, we note that there is a line of work that mainly focuses on the reconstructing textual
 103 information from the fMRI signals (Chen et al., 2025a;b), though they are not main focus of our
 104 work.

108 Instead of freezing the pre-trained diffusion models, NeuroPictor (Huo et al., 2024) fine-tunes the
 109 diffusion model to directly condition the image generation process with brain embeddings.
 110

111 **2.2 CURRENT EVALUATION SCHEMES**
 112

113 Most of the recent decoding literature (Ozcelik & VanRullen, 2023; Scotti et al., 2023; Liu et al.,
 114 2025; Scotti et al., 2024; Wang et al., 2024a; Shen et al., 2024b; Huo et al., 2024; Wang et al.,
 115 2024b; Xia et al., 2024a) mainly focus on the following eight evaluation metrics: PixCorr, SSIM
 116 (Wang et al., 2004), AlexNet(2), AlexNet(5) (Krizhevsky et al., 2012), Inception (Szegedy et al.,
 117 2015), CLIP (Radford et al., 2021), EffNet (Tan & Le, 2019), and SwAV (Caron et al., 2020).

118 PixCorr refers to the Pearson correlation between the pixel values of the GT and the reconstruction.
 119 SSIM refers to the structural similarity index measure between the GT and the reconstruction.
 120

121 AlexNet(2), AlexNet(5), Inception, and CLIP refer to the accuracy of two-way identification tasks
 122 that use the corresponding feature extractor. Specifically, for every GT embedding, the Pearson
 123 correlation with its corresponding reconstruction embedding is compared against its correlation with
 124 each other reconstruction embedding in the test set. The percentage of cases in which the GT
 125 embedding is closer to its correct reconstruction is reported.

126 The n -way extension of the task utilizing the brain-generated intermediate CLIP embeddings and the
 127 GT CLIP image embeddings, known as image/brain retrieval, is also reported in some works (Scotti
 128 et al., 2023; 2024; Lin et al., 2022). However, the retrieval tasks are not applicable to models such
 129 as NeuroPictor (Huo et al., 2024) as they require the model to generate brain-derived intermediate
 130 CLIP image embeddings during the decoding process.

131 EffNet and SwAV refer to the correlation distance between the GT embedding and the reconstruction
 132 embedding, utilizing the corresponding feature extractor.
 133

134 **3 ISSUES WITH EXISTING EVALUATION METHODS**
 135

136 **3.1 EMPLOYMENT OF EXISTING RELATED METRICS**
 137

138 When evaluating visual brain decoding models, it is crucial to measure how closely the reconstruction
 139 aligns with the GT, acknowledging potential perceptual and semantic deviations. Unlike typical
 140 image generation tasks, which lack a fixed GT, decoding tasks involve a predetermined target. Con-
 141 sequently, standard metrics for image generation, such as FID, are unsuitable, and a measure that
 142 directly compares the reconstruction to the known image is required.

143 In this sense, due to the nature of comparing the similarity of two images, the evaluation of the
 144 decoding task more closely resembles traditional image quality assessment, where images are de-
 145 graded by compression, transmission, or other processes. This is precisely the context for which
 146 metrics like SSIM were originally designed, which likely explains why those metrics are widely
 147 used for the evaluation of visual brain decoding models.

148 However, a key distinction lies in the inherent noisiness of decoding, where reconstructions can
 149 be perceptually different from the GT while retaining a similar semantic theme. This can result in
 150 metrics like SSIM assigning unusually low scores as they are prone to even small distortions, such
 151 as translations and rotations (Nilsson & Akenine-Möller, 2020), let alone the larger distortions often
 152 found in reconstructions.

153 Consequently, although it might appear that conventional image quality assessment metrics are ide-
 154 ally suited to evaluate decoding models, in practice, they are substantially misaligned from human
 155 evaluation, as demonstrated in Sec. 5.1. Therefore, the focus of evaluation should be geared towards
 156 assessing the semantic qualities of the reconstructions, due to the noisiness of the decoding process.
 157

158 **3.2 TWO-WAY IDENTIFICATION**
 159

160 Two-way identification metrics (AlexNet(2), AlexNet(5), Inception, CLIP) serve a crucial role in
 161 the evaluation of decoding models, as they occupy half of the eight-metric evaluation scheme. How-
 ever, due to their comparative nature, two-way identification metrics contain some inherent flaws.

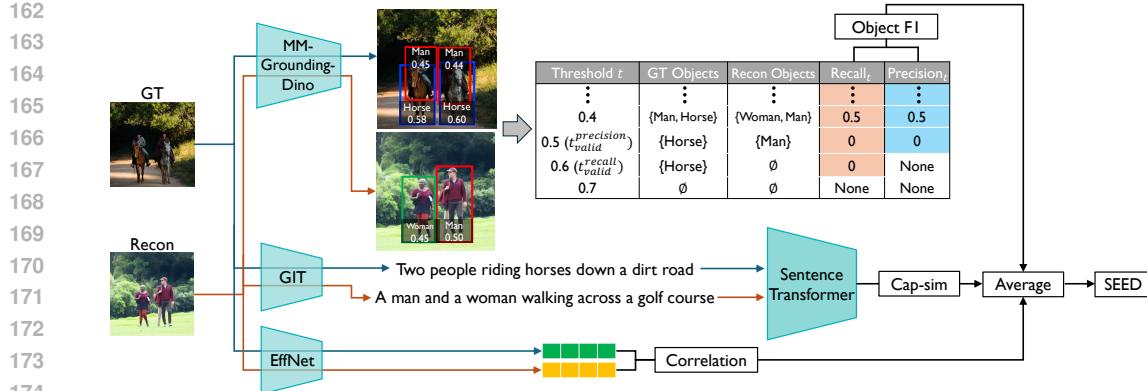


Figure 2: The overall process for calculating SEED.

First and foremost, comparing two-way identification scores between models is inappropriate. As each reconstruction is compared against other reconstructions generated by the decoding model, the pool of images each reconstruction is compared against differs for each decoding model. This fact renders the direct comparison of two-way identification scores inappropriate, as each model would be evaluated under different criteria.

Another issue arises from the difficulty, or lack thereof, of the two-way identification task. Since the reconstruction only needs to be closer to the GT than another random example, a reasonable reconstruction easily “wins” the comparison. Due to this, recent decoding models already show near-perfect performance for most two-way identification metrics. This makes it difficult to differentiate the performance between different decoding models and thus calls for a more challenging evaluation task.

3.3 LACK OF HUMAN-LIKENESS

Excluding PixCorr and SSIM, all other evaluation metrics rely on abstract features extracted from pre-trained vision models. Consequently, it is difficult to interpret the rationale behind each evaluation from a human perspective, casting doubt on whether they truly align with human perception—especially while under scrutiny. Our human survey findings indeed reveal that most commonly used metrics gauge semantic similarity in ways that deviate notably from human evaluation. Further details are in Sec. 5.1.

4 NEW SEMANTIC EVALUATION METHODS

Given the issues outlined in Sec. 3, there is a clear need for evaluation methods that deliver more accurate and generalizable assessments for visual brain decoding. To that end, we borrow inspiration from the human visual attention system to develop new decoding evaluation protocols. Among neuroscientific literature (Jonides, 1983; Treisman, 1998; Zhang, 2019), the common consensus is that visual perception and attention are a two-stage process.

During the first stage, the visual system analyzes basic features of the environment such as color, orientation, and brightness. This process occurs in parallel, simultaneously dividing attention across the entire visual field.

Although the specifics may vary from theory to theory, the second stage of visual attention involves focused attention, which is crucial for binding the separately processed features into coherent, recognizable objects. In this stage, attention is selectively concentrated on specific locations within the visual field. When attention is directed to a particular area, the brain integrates the features present at that location into a unified percept.

We noticed that most existing metrics, especially the ones involving a convolution model, use models that follow a similar process to the first stage, but not the second stage. This observation motivated

216 us to develop two different metrics that each resemble different parts of the second stage, as well as
 217 a metric to unify the two stages, namely: Object F1, Cap-Sim, and SEED.
 218

219 **4.1 OBJECT F1**
 220

221 We first introduce a metric that focuses on key objects, in order to roughly follow the object-oriented
 222 attention mechanism of the second stage of visual attention. Object F1 is a metric that measures the
 223 similarity of two images based on object presence; that is, objects present in the GT should also be
 224 present in the reconstruction, and objects not present in the GT should also not be present in the
 225 reconstruction. Using image grounding models, it is possible to automatically detect the objects
 226 present in both images and quantify the aforementioned criterion into two proposed metrics: Object
 227 Recall and Object Precision.
 228

229 We first run all GT and reconstructed images through an image grounding model and obtain the
 230 detection results. The results should contain the list of detected objects with information such as
 231 the category and the confidence value for each object. Given a confidence threshold t , which is the
 232 threshold used to determine whether an object is “detected,” we define two preliminary metrics for
 233 each image: Object Recall $_t$ and Object Precision $_t$.

234 Object Recall $_t$ measures the proportion of the object categories from the GT that are also present in
 235 the reconstruction. This measures the proportion of objects that are successfully “recalled” in the
 236 reconstruction, formulated as:

$$\text{Object Recall}_t := \frac{\text{\# of categories in both GT and recon}}{\text{\# of categories in GT}} \quad (1)$$

237 Similarly, Object Precision $_t$ measures the proportion of the object categories from the reconstruction
 238 that are also present in the GT. This essentially measures the “precision” of the objects in the
 239 reconstruction, formulated as:

$$\text{Object Precision}_t := \frac{\text{\# of categories in both GT and recon}}{\text{\# of categories in recon}} \quad (2)$$

240 During the process, we apply the same threshold value to the GT and reconstruction to ensure the
 241 ideal reconstruction (i.e., reconstruction identical to the GT) obtains the best possible score. For
 242 simplicity, if multiple objects of the same category are present in an image, we only consider the
 243 object with the highest score, as we only check for the existence of each object category.
 244

245 To remove the reliance on a threshold hyperparameter, we calculate Object Recall $_t$ and
 246 Object Precision $_t$ while moving the threshold, t , between 0 and 1 and obtain the averaged values:
 247

$$\begin{aligned} \text{Object Recall} &:= \frac{1}{t_{\text{valid}}^{\text{recall}}} \int_0^{t_{\text{valid}}^{\text{recall}}} \text{Object Recall}_t dt \\ \text{Object Precision} &:= \frac{1}{t_{\text{valid}}^{\text{precision}}} \int_0^{t_{\text{valid}}^{\text{precision}}} \text{Object Precision}_t dt \end{aligned} \quad (3)$$

248 where $t_{\text{valid}}^{\text{recall}}$, $t_{\text{valid}}^{\text{precision}}$ are cutoff thresholds, corresponding to the highest confidence value present in
 249 the GT and reconstruction, respectively. The threshold is cut off in such a way since there would be
 250 no detected objects for higher threshold values.

251 The final evaluation metric, Object F1, is the harmonic mean of the averaged Object Recall and
 252 Object Precision:

$$\text{Object F1} := \frac{2}{\text{Object Recall}^{-1} + \text{Object Precision}^{-1}} \quad (4)$$

253 The threshold-averaging scheme has the added benefit of penalizing reconstructions with objects far
 254 apart from the GT in terms of confidence, as those objects would be marked as incorrect during the
 255 intermediate threshold values. This trait is beneficial for evaluating decoding models, as they often
 256 generate distorted objects (Scotti et al., 2024) that tend to show lower confidence values than their
 257 GT counterparts.

270 We note that the proposed Object F1 fundamentally differs from the Average Precision (AP) in
 271 object detection. AP evaluates *detection models* by comparing bounding boxes based on IoU for
 272 a *single image*, whereas Object F1 measures similarity of *two images* based on object existence,
 273 *independent from IoU*.

274 To calculate Object F1, we employ MM-Grounding-DINO (Zhao et al., 2024) to detect 82 object
 275 categories; the full list of categories is available in Sec. B.1. For Object Recall and Object Precision,
 276 to approximate Eq. 3, we move the threshold t from 0 by increments of 0.01, up to the cutoff
 277 thresholds, and average the values.

279 4.2 CAP-SIM

281 Similar to how Object F1 emulates the object-oriented attention mechanism of the second stage of
 282 visual attention, we introduce a metric inspired by the subsequent process within the same stage
 283 that identifies and binds relevant features. Cap-Sim is a metric that measures the similarity between
 284 captions generated by image captioning models for each GT and reconstruction pair. Instead of
 285 relying on abstract features generated by vision models, this approach emphasizes semantic qualities
 286 expressible by natural language since the images are essentially “compressed” into text before being
 287 compared. This method allows us to evaluate semantic factors that are hard to identify through the
 288 existence of objects, such as the background information or attributes of the detected object (pose,
 289 color, etc.). Furthermore, caption-based evaluation provides an interpretable assessment, as captions
 290 are human-readable and closely align with how people describe visual content (He et al., 2019).

291 Formally, Cap-Sim is formulated as:

$$292 \text{Cap-Sim} := \cos(e_{\text{text}}(c(I_{GT})), e_{\text{text}}(c(I_{recon}))) \quad (5)$$

293 where I_{GT} and I_{recon} are GT and reconstructions, respectively. The functions $e_{\text{text}}(\cdot)$ and $c(\cdot)$ denote
 294 text encoder and caption generator, respectively, for which we use Sentence Transformer (Reimers
 295 & Gurevych, 2019) and GIT (Wang et al., 2022). To the best of our knowledge, we note that caption-
 296 based evaluation of image similarity has not been previously proposed, despite its simplicity.

297 4.3 SEED

300 Building on these metrics, we aim to construct a unified evaluation framework that captures the
 301 complementary aspects of human visual attention, each modeled by the individual metrics, and
 302 serves as a reliable standard for assessing decoding models. To this end, we introduce **Semantic**
 303 **Evaluation for Visual Brain Decoding** (SEED), a composite metric that integrates Object F1, Cap-
 304 Sim, and $\overline{\text{EffNet}}$.

305 Note that $\overline{\text{EffNet}}$ is a slightly modified metric by calculating **correlation**, not **correlation distance**,
 306 converting it into a higher-is-better metric like the other two;

$$307 \overline{\text{EffNet}} := \text{corr}(e_{\text{img}}(I_{GT}), e_{\text{img}}(I_{recon})) \quad (6)$$

308 where the function $e_{\text{img}}(\cdot)$ is the image encoder, $\overline{\text{EffNet}}$.

309 The overall procedure to compute SEED and its components for a given image pair is depicted in
 310 Fig. 2. We simply take the average of the three metrics to calculate SEED:

$$312 \text{SEED} := (\text{Object F1} + \text{Cap-Sim} + \overline{\text{EffNet}}) / 3 \quad (7)$$

313 4.4 HUMAN EVALUATION OF IMAGE SIMILARITY

315 We collected 5-point Likert scale ratings from 22 human evaluators to assess the alignment of current
 316 evaluation metrics with human evaluation. They assessed both the semantic and perceptual similarity
 317 between GT and their reconstructions for 1,000 test set images in Natural Scenes Dataset (NSD)
 318 (Allen et al., 2022) used by Scotti et al. (2024), where the reconstructions were generated by the
 319 MindEye2 model released by the original author, with 250 reconstructions sequentially sampled
 320 from each of the four subjects (subject 1, 2, 5, and 7), following the order: the first 250 from
 321 subject 1, the next 250 from subject 2, and so on. The intraclass correlation (ICC(2, n)) (Koch,
 322 2004) between the human evaluation results is 0.84 ($p = 0$), indicating a sufficiently high inter-rater
 323 agreement. Further detailed information on the collection of human ratings is provided in Sec. A,
 and we will release the survey results to facilitate future research on similar topics.

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
Table 1: The meta-evaluation results on NSD with MindEye2. The best results are **bolded**. SwAV was calculated similarly to Eq. 6.

Metric	Pairwise Acc.	Kendall	Pearson
PixCorr	53.8%	.075	.117
SSIM	54.5%	.090	.112
AlexNet(2)	55.0%	.185	.187
AlexNet(5)	49.5%	.236	.258
Inception	63.8%	.330	.475
CLIP	66.4%	.368	.436
EffNet	78.0%	.559	.748
SwAV	69.7%	.394	.576
Object F1	75.8%	.516	.708
Cap-Sim	73.8%	.477	.666
SEED	81.0%	.621	.813

5 EXPERIMENTAL RESULTS

5.1 ALIGNMENT WITH HUMAN EVALUATION

Following Lin et al. (2024), we adopt pairwise accuracy (Deutsch et al., 2023), Kendall’s Tau-b, and Pearson correlation to meta-evaluate each metric based on the human ratings of the semantic similarity between images. We meta-evaluated eight metrics widely used in prior works (Scotti et al., 2023; 2024; Wang et al., 2024a;b; Tian et al., 2025). Additionally, we explored alternative approaches for measuring the semantic similarity between images based on visual question answering models, detailed in Sec. C.2.

The meta-evaluation results, presented in Tab. 1, indicate that most existing metrics exhibit low correlation with human evaluation, except for EffNet. Furthermore, the alternative approaches do not perform as effectively as Object F1 or Cap-Sim. Notably, SEED achieves the highest agreement with human evaluation with statistical significance. To assess the statistical significance of the improvement of SEED over EffNet, which shows strong alignment among existing metrics, We performed bootstrapping along the evaluator axis (sample size = 22) for 1,000 iterations and computed the confidence intervals of the differences in each meta-evaluation metric between SEED and EffNet. The 95% confidence intervals for pairwise accuracy, Kendall’s Tau-b, and Pearson correlation were [0.03, 0.07], [0.02, 0.04], and [0.04, 0.08], respectively, all of which do not include zero. These results indicate that the performance improvement of SEED over EffNet is statistically significant.

We note that the combination of the three metrics is essential to achieve the highest alignment with human evaluations. A detailed analysis is provided in Sec. C.3.

5.2 ROBUSTNESS OF SEED

Because several factors in SEED may influence the evaluation process, we conduct experiments to examine its robustness under different scenarios.

Robustness to dataset and decoding model. One major factor affecting meta-evaluation would be the choice of dataset and decoding model that serves as the evaluation target. To perform meta-evaluation on a different setting, we collected human evaluations from 10 student volunteers for 50 reconstructions generated by Mind-Vis (Chen et al., 2023) on the General Object Decoding (GOD) dataset (Horikawa & Kamitani, 2017). The ICC values for semantic similarity was 0.93 ($p = 0$), indicating high agreement among raters. We used the full list of 50 test

Table 2: The meta-evaluation results of reconstructions of the GOD dataset with Mind-Vis. The best results are **bolded**.

Metric	Pairwise Acc.	Kendall	Pearson
PixCorr	51.3%	.029	.078
SSIM	49.2%	-.013	-.103
AlexNet(2)	66.0%	.377	.492
AlexNet(5)	65.8%	.423	.445
Inception	62.6%	.324	.356
CLIP	63.2%	.338	.309
EffNet	72.5%	.453	.661
SwAV	68.6%	.376	.498
Object F1	66.0%	.322	.431
Cap-Sim	68.7%	.376	.577
SEED	73.7%	.477	.706

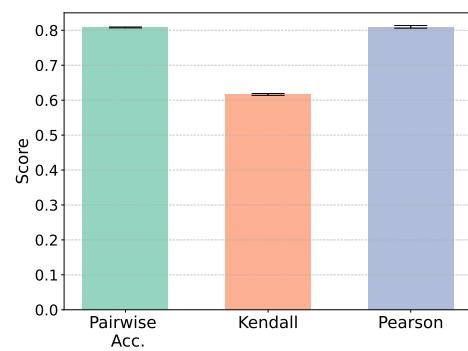


Figure 3: Meta-evaluation results with different choices of off-the-shelf models.

set class names to compute Object F1. As shown in Tab. 2, SEED again achieved the highest alignment with human evaluation, demonstrating that it generalizes well across datasets and decoding models.

Robustness to the choice of off-the-shelf models. We next evaluated whether SEED’s performance depends on the specific choice of image grounding model, caption generator $c(\cdot)$, or text encoder $e_{\text{text}}(\cdot)$. We substituted the original components with Yolo-World (Cheng et al., 2024) for image grounding, BLIP-2 (Li et al., 2023) for caption generation, and Qwen3-Embedding-0.6B (Zhang et al., 2025) for text encoding. Meta-evaluation results across all eight model combinations are summarized in Fig. 3. The barplots indicate that performance differences across all choices are minimal, confirming that SEED is robust to the selection of these off-the-shelf models.

5.3 ANALYSIS OF WORST-CASE JUDGMENTS

To understand why SEED improves upon its components, we present case studies of the “worst-case judgments” for each component of SEED, despite their high agreement with human evaluation. In this context, “worst-case judgments” refer to images whose metric-based ranking differs significantly from the human evaluation ranking. Rankings were computed from each metric’s numeric scores and from human ratings, where human ratings were normalized per evaluator and then averaged per image. The examples shown in Fig. 4 are chosen among the worst-case judgments for each metric, where the other two metrics made a human-aligned decision, which somewhat mitigates the discrepancy. Additional examples are available in Sec. D.3.

Fig. 4 (a) shows a case where Object F1 significantly deviates from human evaluation and other metrics by assigning a score of 0. This disparity arises because Object F1 fails to capture global scene information, relying solely on detected animals (*sheep* in the GT and *cow* in the

Fig. 4 (b) shows a case where Cap-Sim significantly deviates from the others, where the caption generated by GIT is *[A man on skis standing on a snowy hill.]* and *[A woman on skis is waving while skiing.]* for the GT and the reconstruction, respectively. The low similarity likely results from the change of gender or the described action, despite other metrics as well as humans assigning a high similarity.

Fig. 4 (c) shows a case where EffNet significantly deviates from the others. Although it is difficult to pin down the exact reason, one possible explanation is the fact that the two images have different ImageNet Top-1 predictions from the EffNet model: *American egret* for the GT and *Coucal* for the reconstruction. We hypothesize that the EffNet tends to over/underestimate the correlation between two images with the same/different class predictions.

To validate this suspicion, we compared the average z-normalized EffNet and the human semantic evaluation scores of the image pairs with the same/different EffNet ImageNet Top-1 predictions. For images from the same class, EffNet yields an average score of 0.755, whereas human evaluators score 0.313 on average. For images of different classes, the average scores are -0.333 for EffNet and -0.138 for humans. This indicates that EffNet produces overestimated assessments, depending on the ImageNet classes, and we believe this explains EffNet's low correlation for cases like Fig. 4 (c).

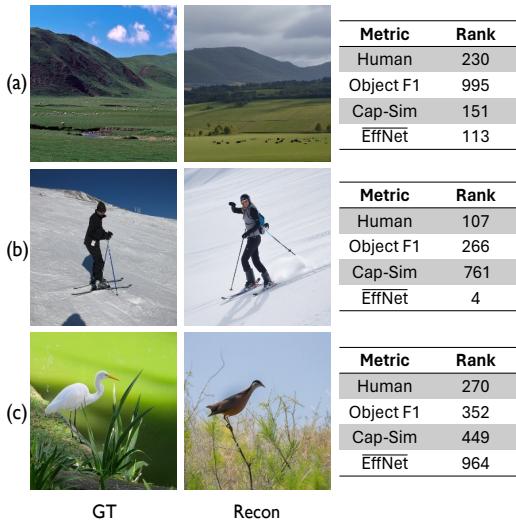


Figure 4: Visualizations (out of 1000 pairs) of worst-case judgments for (a) Object F1, (b) Cap-Sim, and (c) EffNet.

Figure 5: Examples of the semantic near-miss phenomenon.

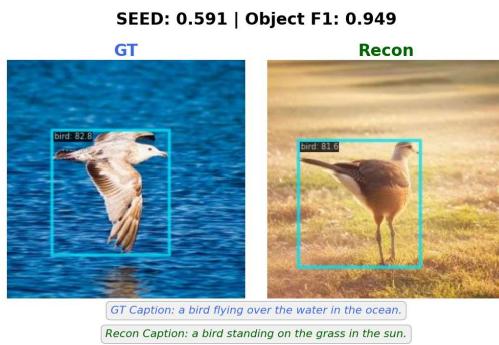


Figure 6: An example of reconstruction which captures objects correctly but misses semantic details.

5.4 FAILURE MODE DISCOVERY

Semantic near-miss phenomenon. One common failure mode of current decoding models is the *semantic near-miss* phenomenon, in which the reconstruction misrepresents the specific object category from the GT, yet still captures the broader supercategory. For example, if the GT contains a *dog*, the reconstruction might include a *cat* or other animals (See Fig. 5.). While this *cat* is in the wrong category, it remains within the correct supercategory, *animal*.

We quantify this by re-using the object detection pipeline used in Object F1. We calculate the Object Recall (Eq. 1) and the *Relaxed* Object Recall, which measures the proportion of the object categories from the GT where its supercategory (instead of the specific category) is present in the reconstruction. The gap between those two represents the rate of the semantic near-miss phenomenon.

We computed the semantic near-miss rate of salient object categories (Xia et al., 2024b) at a confidence threshold of 0.3 for five existing decoding models in Sec. E, and observed rates ranging from 17.5% to 20.6%. Such a high incidence indicates that current decoding models often struggle with fine-grained object differentiation, capturing only coarse semantic details.

Captured objects while missing semantic details. We identify another failure mode in which the model reconstructs the main objects but overlooks crucial semantic details. To analyze this, we focus on reconstructions with high Object F1 but low overall SEED, specifically those satisfying Object F1 > 0.7 and Object F1 – SEED > 0.2 . While the exact thresholds are somewhat arbitrary and can be varied, our goal here is *not to fixate on specific cutoff values but to demonstrate how such criteria enable systematic identification of failure modes*. This criterion isolates cases where low Cap-Sim and EffNet scores reduce the SEED average. Such cases indicate that while the model successfully reconstructs objects, it often fails to capture other details such as backgrounds, pose, or color. Fig. 6 illustrates one such example, where the reconstruction correctly captures a *bird* but fails to reconstruct the background as well as its pose.

Using this criterion, we measured the proportion of reconstructions. The ratio ranges from 8.3% to 10.7% across the five decoding models evaluated in Sec. E, suggesting that a sizable fraction of reconstructions, while correctly identifying the main objects, still fail to recover fine-grained semantic details.

Potential remedies. While we do not propose solutions for these failure modes, we believe that our findings suggest several promising research directions. First, more systematic error analysis with SEED could provide actionable guidance for data collection. For example, if a model reliably reconstructs objects but frequently mismatches backgrounds, this would suggest collecting images with greater background diversity. Similarly, to address the semantic near miss phenomenon, one could gather datasets containing images with subtle differences between them. Second, training strategies could aim to disentangle object reconstruction from semantic detail reconstruction. Most current decoding models use CLIP image embeddings as regression targets, which may conflate

486 these two aspects and contribute to the failures. Future methods may therefore benefit from decou-
 487 pling object-level supervision from supervision for other details.
 488

489 490 6 CONCLUSION & LIMITATIONS

491
 492 In this work, we introduce **SEED**, a novel framework designed to assess the semantic decoding
 493 performance of decoding models. Through comprehensive experiments, we show that existing eval-
 494 uation metrics often diverge from human judgments, whereas our proposed metric exhibits stronger
 495 alignment and improved reliability.

496 Our results reveal a growing mismatch between the goals of modern visual brain decoding and the
 497 metrics currently used to evaluate it. Although recent diffusion-based models can achieve near-
 498 perfect scores on traditional identification metrics and display high similarity scores, our human-
 499 aligned analyses show that these models often overlook substantial semantic errors, including miss-
 500 ing objects, incorrect categories, and failures to capture contextual details, which are overlooked by
 501 traditional metrics. This indicates that the field may be overestimating progress due to evaluation
 502 tools that no longer reflect the true complexity of the task.

503 SEED addresses this gap by providing a more human-consistent measure of semantic fidelity, in-
 504 tegrating object-level, caption-level, and other fine-grained semantic cues. Beyond offering a more
 505 reliable evaluation metric, SEED reveals distinct failure modes, such as semantic near-misses and
 506 losses of fine detail, thereby enabling more targeted model development.

507 More broadly, our findings highlight that as decoding models mature, so too must our evaluation
 508 practices. We hope that SEED encourages the community to adopt richer, human-aligned evaluation
 509 frameworks and to develop models that capture objects, attributes, and other semantic details in a
 510 more faithful and robust manner.

511
 512 **Limitations and future work.** Nonetheless, our approach has its limitations. As SEED depends
 513 on the off-the-shelf models, SEED may inherit systematic errors from the existing models. One
 514 such example is provided in Sec. D.2, where all metrics of SEED fail to make a human-aligned
 515 judgment when an unusual or malformed image is given as the reconstruction, which in turn leads
 516 to the failure of SEED. Training evaluation models or devising metrics that are more robust to these
 517 scenarios could be a promising future direction.

518 In addition, because SEED was designed with a stronger emphasis on evaluating image semantics,
 519 it may become less effective once precise assessment of perceptual details is required as brain de-
 520 coding technology matures. While we currently regard accurate semantic decoding as the higher
 521 priority, we expect that, as models improve and reliably capture high-level semantics, the focus
 522 will naturally shift toward perceptual fidelity. At that stage, an evaluation method better suited to
 523 detecting fine-grained perceptual aspects should be introduced.

524 525 REPRODUCIBILITY STATEMENT

526 For the reproducibility of our study, we detailed the model used for computation of SEED in Sec. 4
 527 and how to compute SEED. In addition, we will disclose the human evaluation results upon accep-
 528 tance for the reproduction of the meta-evaluation results.

531 532 REFERENCES

533
 534 Emily J Allen, Ghislain St-Yves, Yihan Wu, Jesse L Breedlove, Jacob S Prince, Logan T Dowdle,
 535 Matthias Nau, Brad Caron, Franco Pestilli, Ian Charest, et al. A massive 7t fmri dataset to bridge
 536 cognitive neuroscience and artificial intelligence. *Nature neuroscience*, 25(1):116–126, 2022.

537
 538 Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
 539 Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. *arXiv preprint arXiv:2502.13923*,
 2025.

540 Mathilde Caron, Ishan Misra, Julien Mairal, Priya Goyal, Piotr Bojanowski, and Armand Joulin.
 541 Unsupervised learning of visual features by contrasting cluster assignments. *Advances in neural*
 542 *information processing systems*, 33:9912–9924, 2020.

543

544 Jiaxuan Chen, Yu Qi, Yueming Wang, and Gang Pan. Bridging the gap between brain and machine
 545 in interpreting visual semantics: Towards self-adaptive brain-to-text decoding. In *Proceedings of*
 546 *the IEEE/CVF International Conference on Computer Vision*, pp. 21938–21948, 2025a.

547 Jiaxuan Chen, Yu Qi, Yueming Wang, and Gang Pan. Mindgpt: Interpreting what you see with
 548 non-invasive brain recordings. *IEEE Transactions on Image Processing*, 2025b.

549

550 Zijiao Chen, Jiaxin Qing, Tiange Xiang, Wan Lin Yue, and Juan Helen Zhou. Seeing beyond the
 551 brain: Conditional diffusion model with sparse masked modeling for vision decoding. In *Pro-*
 552 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 22710–
 553 22720, 2023.

554 Tianheng Cheng, Lin Song, Yixiao Ge, Wenyu Liu, Xinggang Wang, and Ying Shan. Yolo-world:
 555 Real-time open-vocabulary object detection. In *Proceedings of the IEEE/CVF conference on*
 556 *computer vision and pattern recognition*, pp. 16901–16911, 2024.

557

558 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
 559 ierarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
 560 pp. 248–255. Ieee, 2009.

561 Daniel Deutsch, George Foster, and Markus Freitag. Ties matter: Meta-evaluating modern metrics
 562 with pairwise accuracy and tie calibration. In *The 2023 Conference on Empirical Methods in*
 563 *Natural Language Processing*, 2023.

564

565 Bing Du, Xiaomu Cheng, Yiping Duan, and Huansheng Ning. fmri brain decoding and its applica-
 566 tions in brain–computer interface: A survey. *Brain Sciences*, 12(2):228, 2022.

567

568 Zixuan Gong, Qi Zhang, Guangyin Bao, Lei Zhu, Rongtao Xu, Ke Liu, Liang Hu, and Duoqian
 569 Miao. Mindtuner: Cross-subject visual decoding with visual fingerprint and semantic correction.
 570 In *Proceedings of the AAAI Conference on Artificial Intelligence*, pp. 14247–14255, 2025.

571

572 Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozair,
 573 Aaron Courville, and Yoshua Bengio. Generative adversarial networks. *Communications of the*
 574 *ACM*, 63(11):139–144, 2020.

575

576 John-Dylan Haynes and Geraint Rees. Predicting the orientation of invisible stimuli from activity in
 577 human primary visual cortex. *Nature neuroscience*, 8(5):686–691, 2005.

578

579 Sen He, Hamed R Tavakoli, Ali Borji, and Nicolas Pugeault. Human attention in image captioning:
 580 Dataset and analysis. In *Proceedings of the IEEE/CVF International Conference on Computer*
 581 *Vision*, 2019.

582

583 Tomoyasu Horikawa and Yukiyasu Kamitani. Generic decoding of seen and imagined objects using
 584 hierarchical visual features. *Nature communications*, 8(1):15037, 2017.

585

586 Jingyang Huo, Yikai Wang, Yun Wang, Xuelin Qian, Chong Li, Yanwei Fu, and Jianfeng Feng.
 587 Neuropictor: Refining fmri-to-image reconstruction via multi-individual pretraining and multi-
 588 level modulation. In *European Conference on Computer Vision*, pp. 56–73. Springer, 2024.

589

590 John Jonides. Further toward a model of the mind’s eye’s movement. *Bulletin of the Psychonomic*
 591 *Society*, 21(4):247–250, 1983.

592

593 Yukiyasu Kamitani and Frank Tong. Decoding the visual and subjective contents of the human
 594 brain. *Nature neuroscience*, 8(5):679–685, 2005.

595

596 Gary G Koch. Intraclass correlation coefficient. *Encyclopedia of statistical sciences*, 2004.

597

598 Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep convo-
 599 lutional neural networks. *Advances in neural information processing systems*, 25, 2012.

594 Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
 595 pre-training with frozen image encoders and large language models. In *International conference*
 596 *on machine learning*, pp. 19730–19742. PMLR, 2023.

597

598 Sikun Lin, Thomas Sprague, and Ambuj K Singh. Mind reader: Reconstructing complex images
 599 from brain activities. *Advances in Neural Information Processing Systems*, 35:29624–29636,
 600 2022.

601 Zhiqiu Lin, Deepak Pathak, Baiqi Li, Jiayao Li, Xide Xia, Graham Neubig, Pengchuan Zhang, and
 602 Deva Ramanan. Evaluating text-to-visual generation with image-to-text generation. In *European*
 603 *Conference on Computer Vision*, pp. 366–384. Springer, 2024.

604

605 Yulong Liu, Yongqiang Ma, Guibo Zhu, Haodong Jing, and Nanning Zheng. See through their
 606 minds: Learning transferable brain decoding models from cross-subject fmri. In *Proceedings of*
 607 *the AAAI Conference on Artificial Intelligence*, pp. 5730–5738, 2025.

608 Weijian Mai and Zhijun Zhang. Unibrain: Unify image reconstruction and captioning all in one
 609 diffusion model from human brain activity. *arXiv preprint arXiv:2308.07428*, 2023.

610 Weijian Mai, Jian Zhang, Pengfei Fang, and Zhijun Zhang. Brain-conditional multimodal synthesis:
 611 A survey and taxonomy. *IEEE Transactions on Artificial Intelligence*, 2024.

612

613 Jim Nilsson and Tomas Akenine-Möller. Understanding SSIM, June 2020.

614

615 Mayu Otani, Riku Togashi, Yu Sawai, Ryosuke Ishigami, Yuta Nakashima, Esa Rahtu, Janne
 616 Heikkilä, and Shin’ichi Satoh. Toward verifiable and reproducible human evaluation for text-to-
 617 image generation. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern*
 618 *Recognition*, pp. 14277–14286, 2023.

619 Furkan Ozcelik and Rufin VanRullen. Natural scene reconstruction from fmri signals using genera-
 620 tive latent diffusion. *Scientific Reports*, 13(1):15666, 2023.

621

622 Furkan Ozcelik, Bhavin Choksi, Milad Mozafari, Leila Reddy, and Rufin VanRullen. Reconstruction
 623 of perceived images from fmri patterns and semantic brain exploration using instance-conditioned
 624 gans. In *2022 International Joint Conference on Neural Networks (IJCNN)*, pp. 1–8. IEEE, 2022.

625 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 626 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 627 models from natural language supervision. In *International conference on machine learning*, pp.
 628 8748–8763. PMLR, 2021.

629

630 Nils Reimers and Iryna Gurevych. Sentence-bert: Sentence embeddings using siamese bert-
 631 networks. In *Proceedings of the 2019 Conference on Empirical Methods in Natural Language*
 632 *Processing*. Association for Computational Linguistics, 11 2019. URL <https://arxiv.org/abs/1908.10084>.

633

634 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 635 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 636 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

637

638 Simanto Saha, Khondaker A Mamun, Khawza Ahmed, Raqibul Mostafa, Ganesh R Naik, Sam
 639 Darvishi, Ahsan H Khandoker, and Mathias Baumert. Progress in brain computer interface: Chal-
 640 lenges and opportunities. *Frontiers in systems neuroscience*, 15:578875, 2021.

641

642 Paul Scotti, Atmadeep Banerjee, Jimmie Goode, Stepan Shabalin, Alex Nguyen, Aidan Dempster,
 643 Nathalie Verlinde, Elad Yundler, David Weisberg, Kenneth Norman, et al. Reconstructing the
 644 mind’s eye: fmri-to-image with contrastive learning and diffusion priors. In *Advances in Neural*
 645 *Information Processing Systems*, pp. 24705–24728, 2023.

646

647 Paul Steven Scotti, Mihir Tripathy, Cesar Torrico, Reese Kneeland, Tong Chen, Ashutosh Narang,
 648 Charan Santhirasegaran, Jonathan Xu, Thomas Naselaris, Kenneth A Norman, et al. Mindeye2:
 649 Shared-subject models enable fmri-to-image with 1 hour of data. In *International Conference on*
 650 *Machine Learning*, pp. 44038–44059. PMLR, 2024.

648 Katja Seeliger, Umut Güçlü, Luca Ambrogioni, Yagmur Güçlütürk, and Marcel AJ Van Gerven.
 649 Generative adversarial networks for reconstructing natural images from brain activity. *NeuroImage*,
 650 181:775–785, 2018.

651

652 Guobin Shen, Dongcheng Zhao, Xiang He, Linghao Feng, Yiting Dong, Jihang Wang, Qian Zhang,
 653 and Yi Zeng. Neuro-vision to language: Enhancing brain recording-based visual reconstruction
 654 and language interaction. *Advances in Neural Information Processing Systems*, 37:98083–98110,
 655 2024a.

656 Guobin Shen, Dongcheng Zhao, Xiang He, Linghao Feng, Yiting Dong, Jihang Wang, Qian Zhang,
 657 and Yi Zeng. Neuro-vision to language: Image reconstruction and language enabled interaction
 658 via brain recordings. *CoRR*, 2024b.

659 Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov, Du-
 660 mitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper with convolutions. In
 661 *Proceedings of the IEEE conference on computer vision and pattern recognition*, pp. 1–9, 2015.

662

663 Mingxing Tan and Quoc Le. Efficientnet: Rethinking model scaling for convolutional neural net-
 664 works. In *International conference on machine learning*, pp. 6105–6114. PMLR, 2019.

665 Zhibo Tian, Ruijie Quan, Fan Ma, Kun Zhan, and Yi Yang. Brainguard: Privacy-preserving mul-
 666 tisubject image reconstructions from brain activities. In *Proceedings of the AAAI Conference on*
 667 *Artificial Intelligence*, pp. 14414–14422, 2025.

668

669 Anne Treisman. Feature binding, attention and object perception. *Philosophical Transactions of the*
 670 *Royal Society of London. Series B: Biological Sciences*, 353(1373):1295–1306, 1998.

671 Jianfeng Wang, Zhengyuan Yang, Xiaowei Hu, Linjie Li, Kevin Lin, Zhe Gan, Zicheng Liu, Ce Liu,
 672 and Lijuan Wang. Git: A generative image-to-text transformer for vision and language. *Transac-
 673 tions on Machine Learning Research*, 2022.

674

675 Shizun Wang, Songhua Liu, Zhenxiong Tan, and Xinchao Wang. Mindbridge: A cross-subject
 676 brain decoding framework. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 677 *Pattern Recognition*, pp. 11333–11342, 2024a.

678 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 679 from error visibility to structural similarity. *IEEE transactions on image processing*, 13(4):600–
 680 612, 2004.

681

682 Zicheng Wang, Zhen Zhao, Luping Zhou, and Parashkev Nachev. Unibrain: A unified model for
 683 cross-subject brain decoding, 2024b.

684

685 Weihao Xia, Raoul de Charette, Cengiz Oztireli, and Jing-Hao Xue. Dream: Visual decoding from
 686 reversing human visual system. In *Proceedings of the IEEE/CVF Winter Conference on Applica-
 687 tions of Computer Vision*, pp. 8226–8235, 2024a.

688

689 Weihao Xia, Raoul de Charette, Cengiz Oztireli, and Jing-Hao Xue. Umbrae: Unified multimodal
 690 brain decoding. In *European Conference on Computer Vision*, pp. 242–259. Springer, 2024b.

691

692 Jiawei Zhang. Cognitive functions of the brain: perception, attention and memory, 2019.

693

694 Yanzhao Zhang, Mingxin Li, Dingkun Long, Xin Zhang, Huan Lin, Baosong Yang, Pengjun Xie,
 695 An Yang, Dayiheng Liu, Junyang Lin, et al. Qwen3 embedding: Advancing text embedding and
 696 reranking through foundation models. *arXiv preprint arXiv:2506.05176*, 2025.

697

698 Yingying Zhang, Zhenhao Huang, Yiqing Dai, Yiwen Chen, and Dewen Hu. fmri brain decoding
 699 and its applications in brain–computer interface. *Frontiers in Neuroscience*, 16:869056, 2022.

700

701 Xiangyu Zhao, Yicheng Chen, Shilin Xu, Xiangtai Li, Xinjiang Wang, Yining Li, and Haian Huang.
 An Open and Comprehensive Pipeline for Unified Object Grounding and Detection, January 2024.

702 SEED: Towards More Accurate Semantic Evaluation for Visual 703 Brain Decoding

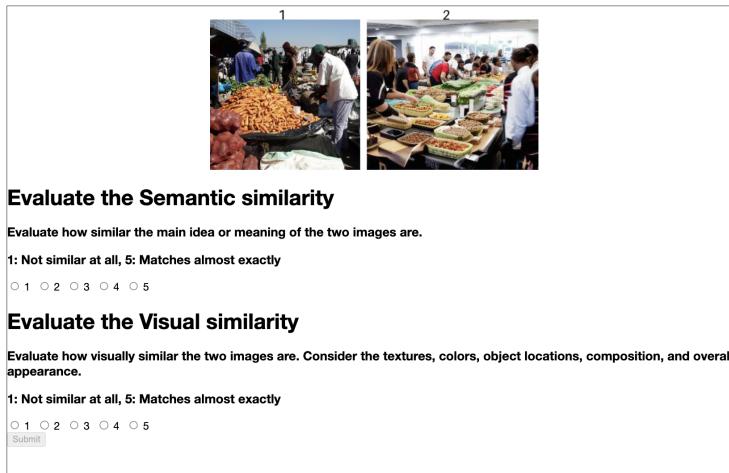
704 705 Appendix 706

707 708 THE USE OF LARGE LANGUAGE MODELS (LLMs)

709
 710 We utilized LLMs for the purpose of polishing our manuscript only.
 711

712 713 A COLLECTION OF HUMAN EVALUATIONS 714

715 We used the Amazon Mechanical Turk (MTurk) platform as well as additional student evaluators to
 716 collect human ratings on the semantic and perceptual similarity between GT and its reconstruction.
 717 A screenshot of the survey window is shown in Fig. 7.



718
 719 Figure 7: A screenshot of our Amazon MTurk survey window.
 720
 721
 722
 723

724 Referring to Otani et al. (2023), we applied the following filter for worker requirements when
 725 creating the MTurk project: 1) Master: Good-performing and granted AMT Masters. Each annotator
 726 was paid \$0.03 for evaluating the semantic and perceptual similarity of a single pair of GT and its
 727 reconstruction image. We gathered a total of 22 ratings for each of the 1,000 pairs.
 728

729 The intraclass correlation (ICC(2, n)) (Koch, 2004) for the perceptual similarity evaluation results
 730 was 0.79 with $p = 0$, which indicates high inter-rater agreement.
 731

732 733 B CHOOSING CANDIDATE OBJECT CATEGORIES FOR OBJECT DETECTION 734

735 B.1 FULL LIST OF OBJECT CATEGORIES 736

737 The list of object categories, which was used for object detection, is composed of 80 COCO cat-
 738 egories plus 2 additional human categories (*man* and *woman*). The resulting 82 categories can be
 739 further classified into 30 “Salient” and 52 “Inconspicuous” objects as per Xia et al. (2024b).
 740

741 The 30 salient objects are: [person, man, woman, bird, cat, dog, horse, sheep, cow, elephant, bear,
 742 zebra, giraffe, bicycle, car, motorcycle, airplane, bus, train, truck, boat, bench, chair, couch, bed,
 743 dining table, toilet, sink, refrigerator, clock]
 744

745 The 52 inconspicuous objects are: [traffic light, fire hydrant, stop sign, parking meter, backpack,
 746 umbrella, handbag, tie, suitcase, frisbee, skis, snowboard, sports ball, kite, baseball bat, baseball
 747 glove, skateboard, surfboard, tennis racket, bottle, wine glass, cup, fork, knife, spoon, bowl, banana,
 748

756 apple, sandwich, orange, broccoli, carrot, hot dog, pizza, donut, cake, potted plant, tv, laptop, mouse,
 757 remote, keyboard, cell phone, microwave, oven, toaster, book, vase, scissors, teddy bear, hair drier,
 758 toothbrush].

760 B.2 CHOOSING CATEGORIES WITH VLM

762 The rapid development of vision-language models (VLM) made us wonder if the process of choosing
 763 object categories could be delegated to VLMs instead of using a fixed set of objects. To answer
 764 this question, we use an open-sourced Qwen2.5-VL-7B-Instruct (Bai et al., 2025) model to extract
 765 the object categories instead of using the aforementioned 82. We gave the model each GT and
 766 reconstruction image separately; we experimented with different text prompts, but the following was
 767 the most effective: *Generate a list of objects and background features that are present in the image.*
 768 *Only answer in a comma-separated list of objects. Do not include any other text or explanation.*
 769 With the extracted object categories, we calculated the Object Recall with the categories of the GT
 770 and the Object Precision with the categories of the reconstruction image, separately for each image
 771 pair. Compared to the fixed list of 82 categories, which is the one used in the manuscript, this
 772 strategy performed slightly worse, although still significantly outperformed existing metrics.

773 Table 3: The meta-evaluation results while using a fixed set of 82 categories versus VLM-generated
 774 object categories.

Metric	Pairwise Acc.	Kendall	Pearson
Object F1	75.8%	.516	.708
Object F1 (VLM)	73.7%	.473	.658
SEED	81.0%	.621	.813
SEED (VLM)	80.4%	.607	.800

783 C ADDITIONAL ANALYSES

785 C.1 INCORPORATION OF LOCATION, SIZE, AND NUMBER INFORMATION

788 Table 4: The meta-evaluation results of Object F1 with incorporation of additional information.

Existence	Size	Location	Number	Options		
				Pairwise Acc.	Kendall	Pearson
✓				75.8%	.516	.708
✓	✓			75.8%	.517	.709
✓		✓		75.9%	.517	.710
✓			✓	74.7%	.493	.648

795 We incorporate location, size, and number information into Object F1 to determine whether each
 796 factor contributes to the improvement of alignment with human evaluations, as outlined below:

798 **Size weighting** We weight object categories based on their bounding box size, with larger sizes
 799 receiving higher weights. An object that fills the entire image would be weighted twice as much as
 800 an object with zero area, with scaling linearly.

801 **Location weighting** We weight object categories based on their proximity to the center of the image,
 802 with objects closer to the center receiving higher weights. An object at the center would be weighted
 803 twice as much as an object at the edge of the image, with scaling linearly.

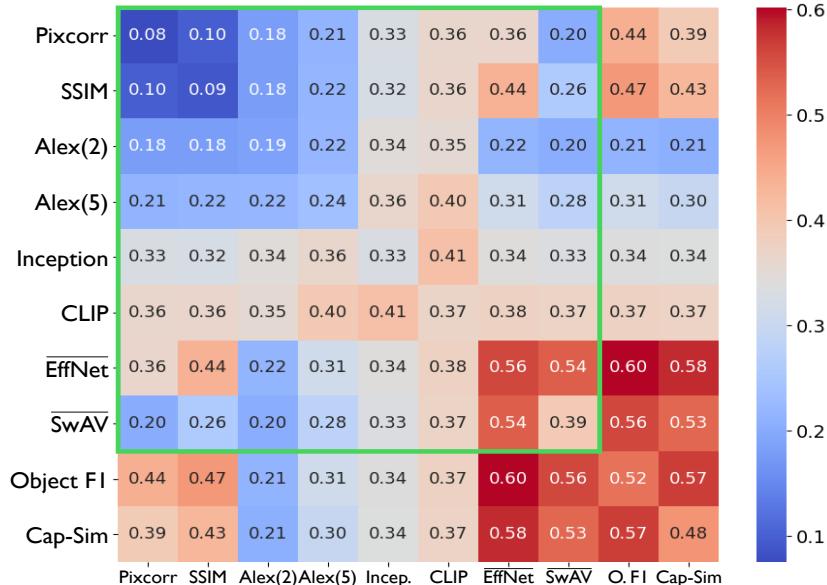
804 **Number count** During recall and precision calculation, each object category receives partial credit
 805 if the number of detected object categories is either underestimated or overestimated, depending on
 806 the error.

808 The results are summarized in Tab. 4. Since none of these weighting schemes seemed to improve
 809 the metric, they were not included in the final version in order to avoid needlessly complicating the
 metric.

810 C.2 ADDITIONAL RESULTS OF SEC. 5.1
811812 Table 5: The meta-evaluation results of each metric. The best results are **bolded**.
813

Metric	Pairwise Acc.	Kendall	Pearson
Object F1 Cap-Sim <u>EffNet</u>	75.8%	.516	.708
	73.8%	.477	.683
	78.0%	.559	.748
Object F1+ Cap-Sim Object F1+ <u>EffNet</u> Cap-Sim+ <u>EffNet</u>	78.3%	.566	.768
	80.1%	.602	.794
	79.2%	.583	.787
BLIP VQAScore GIT VQAScore	71.3%	.427	.566
	71.7%	.434	.574
SEED	81.0%	.621	.813

826 We present additional meta-evaluation results for all possible combinations of components of SEED
827 in Tab. 5. In addition, we explored alternative options for measuring the semantic similarity: CLIP-
828 FlanT5 VQA scores (Lin et al., 2024) with BLIP/GIT generated captions for GT images. Indeed, it
829 can be observed that SEED demonstrates the best agreement with human evaluations.

830 C.3 COMBINATION OF EVALUATION METRICS
831853 Figure 8: The heatmap of correlations between metric combinations and human evaluation, measured by Kendall’s Tau-b. The green outline indicates combinations within current metrics.
854

855 To investigate possible candidate metrics that could be included in SEED, we computed the correlation
856 with human evaluations for each possible metric combination, as shown in Fig. 8. The combi-
857 nation is calculated by simply averaging the two metrics. The highest-performing metrics come
858 from the combination of Object F1, Cap-Sim, and EffNet, with each combination outperforming
859 the individual components. This result naturally prompts the combination of those three to obtain
860 SEED.
861

862 One interesting observation is that it is impossible to create a superior evaluation metric by combin-
863 ing existing metrics; all possible combinations within existing metrics are not better than standalone
EffNet. A better metric emerges *only when combined with Object F1 or Cap-Sim*. We believe that

864		<table border="1"> <thead> <tr> <th>Metric</th> <th>Rank</th> </tr> </thead> <tbody> <tr><td>Human</td><td>990</td></tr> <tr><td>PixCorr</td><td>12</td></tr> <tr><td>SSIM</td><td>75</td></tr> <tr><td>Alex(2)</td><td>157</td></tr> <tr><td>Alex(5)</td><td>168</td></tr> <tr><td>SEED</td><td>964</td></tr> </tbody> </table>	Metric	Rank	Human	990	PixCorr	12	SSIM	75	Alex(2)	157	Alex(5)	168	SEED	964
Metric	Rank															
Human	990															
PixCorr	12															
SSIM	75															
Alex(2)	157															
Alex(5)	168															
SEED	964															
865	<table border="1"> <thead> <tr> <th>Metric</th> <th>Rank</th> </tr> </thead> <tbody> <tr><td>Human</td><td>755</td></tr> <tr><td>Inception</td><td>17</td></tr> <tr><td>CLIP</td><td>9</td></tr> <tr><td>SEED</td><td>546</td></tr> </tbody> </table>	Metric	Rank	Human	755	Inception	17	CLIP	9	SEED	546					
Metric	Rank															
Human	755															
Inception	17															
CLIP	9															
SEED	546															
866	<table border="1"> <thead> <tr> <th>Metric</th> <th>Rank</th> </tr> </thead> <tbody> <tr><td>Human</td><td>270</td></tr> <tr><td>EffNet</td><td>964</td></tr> <tr><td>SwAV</td><td>866</td></tr> <tr><td>SEED</td><td>568</td></tr> </tbody> </table>	Metric	Rank	Human	270	EffNet	964	SwAV	866	SEED	568					
Metric	Rank															
Human	270															
EffNet	964															
SwAV	866															
SEED	568															
867	<table border="1"> <thead> <tr> <th>Metric</th> <th>Rank</th> </tr> </thead> <tbody> <tr><td>Human</td><td>3</td></tr> <tr><td>PixCorr</td><td>746</td></tr> <tr><td>SSIM</td><td>331</td></tr> <tr><td>Alex(2)</td><td>828</td></tr> <tr><td>Alex(5)</td><td>726</td></tr> <tr><td>SEED</td><td>47</td></tr> </tbody> </table>	Metric	Rank	Human	3	PixCorr	746	SSIM	331	Alex(2)	828	Alex(5)	726	SEED	47	
Metric	Rank															
Human	3															
PixCorr	746															
SSIM	331															
Alex(2)	828															
Alex(5)	726															
SEED	47															
868																
869																
870	GT	Recon														
871	(a)	(c)														
872	(b)	(d)														
873																
874																
875																
876																

Figure 9: Examples of worst-case judgments for other metrics

this is one indirect evidence that our proposed metrics evaluate the reconstructions from a different angle from EffNet, making it possible for them to work as a complementary metric for each other.

D ADDITIONAL EXAMPLES AND ANALYSIS OF WORST-CASE JUDGMENTS

D.1 WORST-CASE JUDGMENTS FOR OTHER METRICS

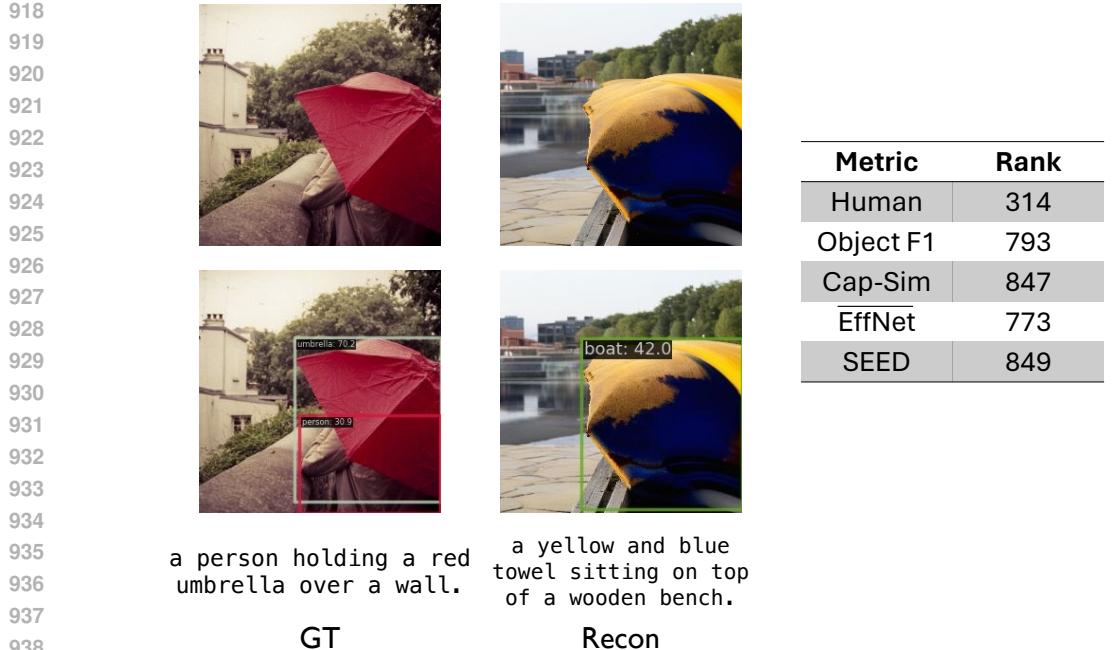
Discussions of worst-case judgments in Sec. 5.3 were focused on individual metrics of SEED in order to provide insight as to why SEED performed better than its components. In Fig. 9, we provide some worst-case judgments for the existing metrics (PixCorr, SSIM, AlexNet, Inception, and CLIP) to analyze cases where those metrics make mistakes and how SEED might improve upon them.

Fig. 9 (a) and (b) represent cases where the four low-level metrics, PixCorr, SSIM, Alex(2), and Alex(5), either overestimates or underestimates the similarity of the two images. It is fairly straightforward to see why those misjudgments came to be for these low-level metrics: for (a), we can see the reconstruction put a malformed airplane in place of the traffic light while the general shape and the background matches the GT. This semantic mismatch made humans as well as SEED to rank this pair very low, while the metrics ranked this pair relatively high since the general shape and color of these match pretty well. For (b), we can see both pictures depict a surfing man, while the specific shape of the waves and the general color tone of the two quite differ. This probably led to humans and SEED to highly rank this pair while the low-level metrics to generally rank this pair low.

For the high-level metrics, it was more difficult to pinpoint the causes for any mistakes or find a reliable pattern between the mistakes, compared to the low-level metrics, due to their abstract nature. Nevertheless, in Fig. 9 (c) and (d), we show the worst-case judgments for the four high-level metrics, further grouped based on their evaluation method. (c) shows a worst-case judgment for the 2-way identification methods, Inception and CLIP. We can see that the reconstruction depicts a slightly disfigured hand, while the object held by the hand was changed from a remote control to a smartphone. This difference likely led to humans and SEED to not favor the reconstruction, while Inception and CLIP might have overvalued the reconstruction since it still features a hand. (d) shows a worst-case judgment for the two correlation distance metrics, $\overline{\text{EffNet}}$ and $\overline{\text{SwAV}}$, which is an example brought from Fig. 4 (c). We can see that $\overline{\text{SwAV}}$ made a misjudgment similar to $\overline{\text{EffNet}}$. We suspect the cause for this mistake is similar, since SwAV was also trained using ImageNet.

D.2 WORST-CASE JUDGMENTS FOR SEED

Of course, SEED is not a flawless evaluation metric. SEED has the potential to make a misjudgment when its three elements all make a misjudgment for one reason or another, which is displayed in Fig. 10. Here we can see the GT is an image with a person holding a red umbrella, while the reconstruction is a slightly ambiguous image with a yellow/blue umbrella-like object on top of a wooden object, with a lake on the background. Humans slightly favored this reconstruction since the general pose of the image is similar and the umbrella was somewhat reconstructed. However, all elements



943 of SEED undervalued this reconstruction, which consequently led to SEED to also undervalue the
944 reconstruction. If we look into the reason, Object F1 gave a poor score since the person from the
945 GT is missing while the yellow/blue umbrella was detected as a boat instead, probably due to the
946 wooden protrusion and the watery background. Cap-Sim gave a poor score for a similar reason; the
947 person was missing from the reconstruction caption, the yellow/blue umbrella was identified as a
948 towel, and the wooden bench was added to the caption. While it is difficult to know the rationale,
949 EffNet gave a poor score, presumably due to the background and the color of the umbrella of the
950 reconstruction being different.

951 As illustrated by this example, SEED has a chance to fail when the reconstruction is distorted or
952 has some unusual features. This essentially puts the models in an out-of-distribution setting, and
953 they may make a decision that is not aligned with a typical human judgment. Improving the object
954 grounding model or the image captioning model of SEED to better generalize to these distorted
955 images, or advancing the brain decoding models to not produce distorted images in the first place
956 would help in these scenarios.

957 D.3 ADDITIONAL WORST-CASE JUDGMENTS FOR SEED ELEMENTS

958 Here, we present additional examples of the worst-case judgments discussed in Sec. 5.3.

959
960
961 Table 6: Evaluation results with pre-trained models provided by authors. SNM represents the
962 proportion of “semantic near-miss.” SDM quantifies the proportion of “semantic detail misses”,
963 defined as the fraction of cases with $\text{Object F1} > 0.7$ and $\text{Object F1} - \text{SEED} > 0.2$. *MindEye2
964 was evaluated with 18 additional images, following the original work.

965

Method	High-Level				Object F1 \uparrow	Cap-Sim \uparrow	SEED \uparrow	SNM	SDM
	Incep \uparrow	CLIP \uparrow	EffNet \downarrow	SwAV \downarrow					
MindEye2* (Scotti et al., 2024)	95.1%	93.2%	.617	.340	.517	.542	.481	.175	.107
NeuroPictor (Huo et al., 2024)	94.6%	93.5%	.637	.350	.481	.512	.452	.191	.097
MindBridge (Wang et al., 2024a)	92.6%	94.7%	.702	.411	.440	.470	.403	.203	.083
UniBrain (Wang et al., 2024b)	92.3%	93.7%	.695	.406	.453	.488	.415	.206	.093
BrainGuard (Tian et al., 2025)	94.8%	94.8%	.645	.374	.489	.525	.456	.192	.092



Figure 11: Additional examples of worst-case judgments

Fig. 11 (a) illustrates a case where Object F1 significantly deviates from human evaluation, assigning a score of 0. This discrepancy arises because the detected category from the GT is *Sink*, while the detected category from the reconstruction is *Toilet*. Since Object F1 evaluates similarity based solely on the presence of the detected category, it assigns a zero score, despite the reconstruction successfully generating an image that represents the concept of a restroom.

Fig. 11 (b) illustrates a case where Cap-Sim assigns a low similarity score between two images. The captions generated by GIT for the GT and the reconstruction are [*A group of people walking across a snow covered field.*] and [*A person riding skis on a snowy surface.*], respectively. This low similarity is likely due to the different actions that people in the image are taking, despite human and other evaluation metrics considering them similar.

Fig. 11 (c) presents a case where the EffNet metric produces an extremely low correlation between two images. The ImageNet Top-1 predictions for the GT and the reconstruction are *Container ship* and *Traffic light*, respectively. This example highlights how EffNet can yield an *incorrect* evaluation due to *misclassification*.

Although the main objects in both images resemble a yacht-like boat, EffNet assigns them to different classes. We believe this occurs because the class *yacht* is not included in the 1,000 ImageNet categories. Consequently, EffNet predicts the GT as a *Container ship*, likely focusing on the ship behind the yacht, while misclassifying the reconstruction as *Traffic light*, a completely irrelevant class.

E RE-EVALUATION OF EXISTING DECODING MODELS

We report the performance of existing visual decoding models evaluated with SEED in Tab. 6. We report the evaluation results of five recent decoding models: MindEye2, NeuroPictor, MindBridge, UniBrain, and BrainGuard. We directly evaluated the pre-trained models provided by the authors of each work. The evaluation metrics consist of four existing evaluation metrics alongside our proposed Object F1, Cap-Sim, SEED, and the semantic near-miss rate. Note that MindEye2 was evaluated with 18 additional test image pairs as per the original work due to the sequential disclosure of the NSD dataset.