
Asynchronous Algorithmic Alignment with Cocycles

Andrew Dudzik 1 Tamara von Glehn 1 Razvan Pascanu 1 Petar Veličković 1

Abstract

State-of-the-art neural algorithmic reasoners
make use of message passing in graph neural
networks (GNNs). But typical GNNs blur the
distinction between the definition and invocation
of the message function, forcing a node to send
messages to its neighbours at every layer, syn-
chronously. When applying GNNs to learn to
execute dynamic programming algorithms, how-
ever, on most steps only a handful of the nodes
would have meaningful updates to send. One,
hence, runs the risk of inefficiencies by sending
too much irrelevant data across the graph—with
many intermediate GNN steps having to learn
identity functions. In this work, we explicitly sep-
arate the concepts of node state update and mes-
sage function invocation. With this separation,
we obtain a mathematical formulation that allows
us to reason about asynchronous computation in
both algorithms and neural networks.

1. Introduction
The message passing primitive—performing computation
by aggregating information sent between neighbouring en-
tities (Gilmer et al., 2017)—is known to be remarkably
powerful. All the neural network architectures discussed
within geometric deep learning (Bronstein et al., 2021), and
especially graph neural networks (GNNs), can be elegantly
expressed with message passing.

An active area of message passing research is neural al-
gorithmic reasoning (Veličković & Blundell, 2021, NAR).
NAR seeks to capture classical computation in neural nets,
largely by learning to execute (Veličković et al., 2022). The
use of GNNs in NAR is largely due to the theory of algorith-
mic alignment (Xu et al., 2019): as we increase the structural

1Google DeepMind. Correspondence to: Andrew
Dudzik <adudzik@deepmind.com>, Petar Veličković
<petarv@deepmind.com>.

Presented at the 2nd Annual Workshop on Topology, Algebra, and
Geometry in Machine Learning (TAG-ML) at the 40 th Interna-
tional Conference on Machine Learning, Honolulu, Hawaii, USA.
2023. Copyright 2023 by the author(s).

similarity between a neural network and an algorithm, it
will be able to learn to execute this algorithm with improved
sample complexity. Recently, multiple theoretical works
(Xu et al., 2020; Dudzik & Veličković, 2022) demonstrated
that message passing aligns with dynamic programming
(Bellman, 1966, DP). This makes GNNs attractive in NAR,
as DP offers a generic framework for problem-solving.

In this work, we make novel contributions to algorithmic
alignment theory. We “zoom in” on the analysis of Dudzik &
Veličković (2022), assuming a node-centric view: analysing
the computations happening around individual nodes in the
graph, in isolation. This perspective allows us to make an
important observation: in all previously studied GNN archi-
tectures, it was implicitly assumed that all the messages in a
given GNN layer were passed all-at-once and synchronously
aggregated in each receiver node. This significantly influ-
enced previous efforts to align GNNs and algorithms: most
popular NAR benchmarks (Veličković et al., 2022) forcibly
express target algorithms in a synchronous format.

But, while some algorithms may neatly fit within this
paradigm, it is well-known that many algorithms tend to
modify only a small fraction of the nodes at each atomic
step. Clearly, for most forms of classical computation, it is
unrealistic to expect us to be able to meaningfully update all
of the nodes at once—in many cases, synchronised updates
to individual nodes will mostly amount to identity functions.

Accordingly, in this work, we explore the theoretical im-
plications of making GNNs asynchronous (Figure 1). We
demonstrate how studying message passing under various
synchronisation regimes can help us identify choices of mes-
sage functions that better align with target algorithms, in
a manner that was not possible previously. For example,
our theory justifies the effectiveness of architectures such as
PathGNNs (Tang et al., 2020) at executing the Bellman-Ford
algorithm (Bellman, 1958). We refer to our framework as
asynchronous algorithmic alignment, and formalise it using
category theory, monoid actions, and cocycles.

2. Message passing
We define GNNs as in Bronstein et al. (2021). Let a graph
be a tuple of nodes and edges, G = (V,E), with one-hop
neighbourhoods defined as Nu = {v ∈ V | (v, u) ∈ E}. A

1

Asynchronous Algorithmic Alignment with Cocycles

u

a

b

c

d

e ψ(xa,xu)

ϕ(xd,me)

ϕ(xu,mb)
u

a

b

c

d

e ψ(xa,xu)

ϕ(xd,me)

ψ(xu,xe)

ψ(xu,xd)

ψ(xu,xb)

u

a

b

c

d

e ψ(xa,xu)

ϕ(xd,me)

ψ(xu,xe)

ψ(xu,xb)

ϕ(xd,mu)

Figure 1. While traditional GNNs send and receive all messages synchronously at every step, under our model, at any step the GNN may
choose to execute any number of possible operations (here these are depicted as organised in a collection, to the right of the graph). Here
we demonstrate a specific asynchronous GNN execution trace. Left-to-right: We first choose to update the features of node u using the
message sent from node b. This triggers a request for messages to be generated to all of u’s neighbours (b, d, e). In the next step, we
choose to compute the message sent from u to d. As a result, a new update for d can be performed, using the just-computed message.

node feature matrix X ∈ R|V |×k gives the features of node
u as xu; we omit edge- and graph-level features for clarity.
A (message passing) GNN over this graph is executed as:

x′
u = ϕ

(
xu,

⊕
v∈Nu

ψ(xu,xv)

)
(1)

To put this equation in more abstract terms, we start by
briefly reviewing the diagram of the message-passing frame-
work of Dudzik & Veličković (2022), with the addition of
the message function ψ to emphasise the symmetry:

args edge msgs

senders receivers

⊗

⊕
scattergathercopy

ψ

First, sender features (senders) are duplicated along out-
going edges to form the arguments (args) to a message
function ψ. These arguments are collected into a list us-
ing the

⊗
operator—which is traditionally a concatenation,

though it can be any operator with a monoidal structure.
This list of arguments now lives on a new, transient, edge
datatype. These two steps constitute a gather operation. In
Equation 1, this corresponds to copying the node features in
X, considered as a V -indexed tensor, to obtain feature pairs
(xu,xv), considered as an E-indexed tensor.

Next, we perform a similar operation, a scatter, by first
applying the message function ψ to the arguments, which
computes the messages to be sent (msgs). Then, messages
are copied to suitable receivers, which aggregate along their
incoming edges to form the final set of receiver node features
(receivers). In Equation 1, this refers to the application
of the message function ψ, and the aggregation

⊕
.

The gather-scatter paradigm is very common in message
passing implementations. However, we still need to clarify
the role of the update function, ϕ, which uses the aggre-
gated receiver features

⊕
v∈Nu

ψ(xu,xv) to produce the
next step’s senders. Hence, our main interest is now: How
can a node convert received messages back into sendable
arguments, so the overall computation steps can be chained?

As we make assume edge messages are transient, we do not
need to store them across several iterations of Equation 1.
Conversely, nodes make use of a persistent state which gets
updated at each layer. It is the interaction with this state that
allows nodes to perform nontrivial functions in interesting
message passing schemes. We capture the stateful nature of
this computation in the following complementary diagram:

edge

senders persistent receivers

ϕ,δ

gather scatter

We make two assumptions: (1) the sender features should
have the structure of a commutative monoid. This implies
that we can think of the message function arguments being
sent in chunks, which may be assembled in any order; (2)
the receiver features should have the structure of a monoid,
not necessarily commutative. We can think of these received
messages as being instructions which transform the state.
The monoid operation composes these transformations.

3. Node-centric view on algorithmic alignment
We now focus our attention on a single node, and explore
the relationship between the message monoid, (M, ·, 1), and
the argument commutative monoid, (A,+, 0).

Suppose that the internal state takes values in a set S. The

2

Asynchronous Algorithmic Alignment with Cocycles

process by which a received message updates the state and
produces an argument is described by a function M × S →
S × A. This is equivalent, by currying, to a Kleisli arrow
M → [S, S ×A] = stateS(A) for the state monad.

Given a pair (m, s), we denote the image under this function
by (m • s, δm(s)), where • : M × S → S is written as a
binary operation and δ : M × S → A is given by some
argument function. First, we look into the properties of •.

Each incoming message (an element of M) transforms the
state (an element of S) in some way. We assume that the
multiplication of M corresponds to a composition of these
transformations. Specifically, we ask that • satisfies the unit
and associativity axioms:

1 • s = s (n ·m) • s = n • (m • s) (2)

Next, we interpret Equation 2 in terms of the argument
function δ. In the first equation, the action 1 • s generates
an argument δ1(s). But on the right-hand side there is no
action, so no argument is produced. In order to process both
sides consistently, δ1(s) must be the zero argument.

Similarly, in the second equation, the left-hand side pro-
duces one argument δn·m(s), while the right-hand side pro-
duces two, δm(s) and δn(m • s). Setting these equal, we
have the following two argument axioms:

δ1(s) = 0 δn·m(s) = δm(s) + δn(m • s) (3)

Equation 3 can be related to a rich mathematical concept:
derivations, also known as 1-cocycles. Please see Appendix
B for details.

4. (A)synchrony in GNNs
With the preliminaries ironed out, we can now leverage the
“cocycle conditions” of Equation 3 to more rigorously dis-
cuss the synchronisation of GNN operations (such as gathers
and scatters). First, we can explicitly formalise the residual
map ϕ in Equation 1: it is just another description of what
we have called an “action”. That is, we have ϕ(s,m) = m•s
for all node features s and (aggregated) non-null messages
m.

Message aggregation asynchrony.
⊕

is usually taken,
axiomatically, to be the operation of a commutative monoid
(Ong & Veličković, 2022). This already allows us to support
a certain form of asynchrony: we can aggregate messages
online as we receive them, rather than waiting for all of
them before triggering

⊕
, due to permutation invariance.

Node update asynchrony. Similarly, the axiom that ϕ de-
fines an associative operation, as in Equation 2, corresponds
to another type of asynchrony. When ϕ satisfies:

ϕ(s,m
⊕

n) = ϕ(ϕ(s,m), n) (4)

this tells us that ϕ itself can be applied asynchronously. Put
differently, after each message arrives into the receiver node,
we can use it to update the node features by triggering ϕ,
without waiting for the messages to be fully aggregated.
One common way to enforce associativity is to take ϕ =

⊕
,

in which case ϕ inherits the associativity properties of
⊕

.

Argument generation asynchrony. Now we focus on the
1-cocycle condition (Equations 3). This concerns the argu-
ment function δ, which determines which arguments are
produced after a node update. Specifically, the cocycle
condition allows us to express the arguments produced by
receiving two messages together (δn·m) as a combination of
the arguments produced by receiving them in isolation (δn
and δm). Therefore, it gives us a mechanism that allows for
each sender node to prepare their arguments to the message
function, ψ, asynchronously, rather than waiting for all the
relevant node updates to complete first.

Note that Equation 1 does not distinguish between node
features and sent arguments. In other words, it implicitly
defines the argument function δm(s) = m • s = ϕ(s,m).
Accordingly, we explore some conditions under which the
update function ϕ will satisfy the cocycle condition. For
this, we prove the following useful statement:

We say that A is idempotent if a+ a = a for all a ∈ A.

Proposition 4.1. Suppose that S = A. Define δm(s) = m•s
if m ̸= 1, and 0 otherwise. If δ is a 1-cocycle, then A is
idempotent. If M = S = A and · = +, the converse holds.

Proof. In this case, the second equation of Equation 3 be-
comes (n ·m) • s = m · s+ n • (m • s). Setting n = m = 1
gives s = s + s. If · = + and A is idempotent, then the
equation is n+m+s = m+s+n+m+s, which holds since
m+s+n+m+s = (m+s)+n+(m+s) = m+s+n.

As we already set ϕ =
⊕

previously, we can use Proposi-
tion 4.1 to conclude it is sufficient to show

⊕
is idempo-

tent, to satisfy the cocycle condition. Not all commutative
monoids are idempotent;

⊕
= max is idempotent, while

other aggregators, like sum, are not. Note that this aligns
with the utility of the max aggregation in algorithmic tasks,
as observed by prior works (Xu et al., 2020).

We can observe that Equation 1 now looks as follows:

x′
u = max

(
xu, max

v∈Nu

ψ(xu,xv)

)
(5)

Such a max-max GNN variant allows for a high level of
asynchrony: messages can be sent, received and processed
in an arbitrary order, arguments can be prepared in an on-
line fashion, and it is mathematically guaranteed that the
outcome will be identical as if we fully synchronise all of
these steps, as is the case in typical GNN implementations.

3

Asynchronous Algorithmic Alignment with Cocycles

The only remaining point of synchronisation is the invo-
cation of the message function, ψ; messages can only be
generated once all of the arguments for the message func-
tion are fully prepared (i.e., no invocations of ϕ are left to
perform for the sender nodes). Under additional constraints
on ψ, even this can be made asynchronous, as we now show.

We can remark that Equation 5 is almost exactly equal to
the hard PathGNN model from Tang et al. (2020). The only
missing aspect is to remove the dependence of ψ on the
receiver node (i.e., to remove u from senders), as follows1:

x′
u = max

(
xu, max

v∈Nu

ψ(xv)

)
(6)

This modelling choice is very useful—in fact, it will allow
us to rigorously discuss when can such a model reach full
asynchrony; that is, where we do not even need to wait on
the argument to ψ to be fully prepared by previous steps.

Message generation asynchrony. PathGNNs are an ex-
ample of isotropic message passing, where the message
function, ψ : A→M , is a function of a single variable, the
sender argument, and produces a single receiver message.

We say that an isotropic ψ is a monoid homomorphism if it
satisfies the following two properties:

ψ(0) = 1 ψ(a+ b) = ψ(a) · ψ(b) (7)

The first property of Equations 7 merely states that no mes-
sage is produced (the “null message”, 1) if no argument is
prepared (the “null argument”, 0). The second says exactly
that, given two arguments, aggregating them and then apply-
ing ψ is the same as applying ψ on each of them first, then
aggregating the corresponding produced messages.

This is exactly the condition needed for argument asyn-
chrony and message asynchrony to be compatible. It means
that ψ can be called—and messages generated—even before
its arguments are fully ready, so long as it is called again
each time the arguments are updated.

Note that PathGNNs, in their default formulation, do not
always satisfy this constraint. We have, therefore, used
our analysis to find a way to extend PathGNNs to a fully
asynchronous model. One way to obtain such a GNN is
to make ψ be a tropical linear transformation. That is, ψ
would be parametrised by a k×k matrix, which is multiplied
with xv , but replacing “+” with max and “·” with +.

Originally, PathGNN was designed to align with the
Bellman-Ford algorithm (Bellman, 1958), due to its claimed
structural similarity to the algorithm’s operation—though
this claim was not rigorously established. Now, using our
mathematical framework, we can rigorously conclude where

1PathGNNs may have access to edge features. They are as-
sumed fixed, so we can consider them “embedded” within ψ.

this alignment comes from: the choice of aggregator (max)
and making ψ only dependent on one sender node is fully
aligned with the Bellman-Ford algorithm (as in Xu et al.
(2020)), and both PathGNNs and Bellman-Ford can be im-
plemented fully asynchronously without any errors in the
final output. We have already showed that PathGNNs satisfy
the cocycle condition; in Appendix A, we prove the same
statement about Bellman-Ford, completing our argument.

References
Bellman, R. On a routing problem. Quarterly of applied

mathematics, 16(1):87–90, 1958.

Bellman, R. Dynamic programming. Science, 153(3731):
34–37, 1966.

Bronstein, M. M., Bruna, J., Cohen, T., and Veličković,
P. Geometric deep learning: Grids, groups, graphs,
geodesics, and gauges, 2021.

Cohen, T. and Welling, M. Group equivariant convolutional
networks. In International conference on machine learn-
ing, pp. 2990–2999. PMLR, 2016.

Dudzik, A. and Veličković, P. Graph neural networks are
dynamic programmers, 2022.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., and
Dahl, G. E. Neural message passing for quantum chem-
istry. In International conference on machine learning,
pp. 1263–1272. PMLR, 2017.

Ong, E. and Veličković, P. Learnable commutative
monoids for graph neural networks. arXiv preprint
arXiv:2212.08541, 2022.

Tang, H., Huang, Z., Gu, J., Lu, B.-L., and Su, H. Towards
scale-invariant graph-related problem solving by iterative
homogeneous gnns. Advances in Neural Information
Processing Systems, 33:15811–15822, 2020.

Veličković, P. and Blundell, C. Neural algorithmic reasoning.
Patterns, 2(7):100273, 2021.

Veličković, P., Badia, A. P., Budden, D., Pascanu, R., Ban-
ino, A., Dashevskiy, M., Hadsell, R., and Blundell, C.
The clrs algorithmic reasoning benchmark. In Inter-
national Conference on Machine Learning, pp. 22084–
22102. PMLR, 2022.

Xu, K., Li, J., Zhang, M., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. What can neural networks reason about?
arXiv preprint arXiv:1905.13211, 2019.

Xu, K., Zhang, M., Li, J., Du, S. S., Kawarabayashi, K.-i.,
and Jegelka, S. How neural networks extrapolate: From
feedforward to graph neural networks. arXiv preprint
arXiv:2009.11848, 2020.

4

