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ABSTRACT

Artificial agents operating in dynamic environments require the ability to recall
and contextualize past experiences to inform future behavior. Drawing inspiration
from human episodic memory, we propose a cognitively grounded recommenda-
tion framework that models time-evolving personal experiences using a dynamic,
multimodal memory architecture. Our system encodes temporally structured ac-
tions, places, and interactions into a hierarchical temporal graph network (TGN),
enabling agents to disambiguate overlapping behavior patterns and anticipate fu-
ture actions based on long-term experience. Unlike traditional recommendation or
forecasting models that rely on static, task-specific patterns, our approach supports
continual memory updates without retraining, and generalizes across varied activ-
ity sequences. Evaluated on a structured dataset derived from three years of ego-
centric recordings, our model significantly outperforms state-of-the-art baselines
(e.g., AntGPT, DyRep, Palm) on next-activity prediction and sequence alignment
metrics. This work introduces a scalable, cognitively inspired memory architec-
ture with broad applications in lifelong learning, assistive robotics, and human-Al
collaboration.

1 INTRODUCTION

Episodic memory underpins human cognition, enabling recall of personal experiences contextual-
ized by time and place [Tulving| (2002). This capacity not only supports remembering the past but
also underlies planning and anticipation of future actions—a capability artificial agents must emulate
to operate effectively in dynamic environments. Applications such as personalized assistants, au-
tonomous systems, and lifelong learning agents increasingly demand models that capture long-term
behavior, adapt to evolving contexts, and make time-sensitive predictions. However, current large-
scale models such as Palm (Chowdhery, Narang, and Devlin, 2022) and AntGPT (Zhao, Wang,
Zhang, Fu, Do, Agarwal, Lee, and Sun, [2024) remain limited: they require extensive retraining
for new contexts, lack continuity of experience, and struggle with temporal-semantic dependencies
across multiple timescales.

We propose a cognitively inspired, memory-augmented framework that leverages Temporal Graph
Networks (TGNs) (Rossi, Chamberlain, Frasca, Eynard, Monti, and Bronstein, 2020) to encode
episodic experiences over extended horizons. Our architecture integrates multimodal observations
(audio, visual, and linguistic cues) into a dynamic memory graph that evolves over time. Time-
aware embeddings and day-wise memory organization enable recognition of recurring patterns, dis-
ambiguation of overlapping behaviors, and long-horizon prediction without retraining.

Key Challenges Addressed. Our framework addresses limitations in prior systems by: (i) support-
ing dynamic, lifelong adaptation to behavioral context shifts; (ii) integrating multimodal signals for
richer, grounded representations; (iii) enabling temporal disambiguation through structured memory
recall; (iv) generalizing across both short- and long-horizon activity prediction tasks.

Contributions. We introduce an episodic memory-based framework for temporal reasoning and
adaptive behavior modeling that: (i) encodes and organizes multimodal memory using TGNs with
time-aware abstraction; (ii) achieves state-of-the-art performance on structured activity datasets
(e.g., Ego4D (Grauman, Westbury, Byrne, and Chavis} 2022; |Zhou, Cao, Zheng, Zheng, and Liu,
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Figure 1: The agent observes the user performing an activity and records action, time, and place.

2025)); (iii) provides novel evaluations of temporal encoding and sampling strategies; (iv) supports
practical applications in assistive memory, planning, and cognitive agent design.

Note. Throughout the paper, the term user refers to the human whose behaviors and contexts the
agent learns and supports over time.

2 RELATED WORK

Graphs for Episodic Memory Recommendation. Static graphs fail to capture temporal dynamics,
evolving relationships, and incremental node additions, limiting their utility for episodic memory
recommendation. Graph Neural Networks (GNNs) (Jin, Song, and Shil 2019; [Wang, Jiang, Syed,|
[Conway, Juneja, Subramanian, and Chawlal, [2020; [Song, Li, Chang, Xie, Hao, and Qin, 2024) per-
form well in node classification but struggle in sequential, evolving contexts such as life-logging.
Dynamic graph learning addresses this by modeling temporal interactions, with applications in so-
cial networks, transportation, and biology (Barros, Mendonga, Vieira, and Ziviani, 2021} [Skard-
ing, Gabrys, and Musial, 2021}, [Xue, Zhong, Li, Chen, Zhai, and Kong}, 2022} |Kazemi, Goel, Jain,
Kobyzev, Sethi, Forsyth, and Poupart, 2020} [Kumar, Zhang, and Leskovec, 2019). Benchmarks
such as DGB, TGB, and TransactionTempGraph (Poursafaei and Huang, 2022} Huang and Pour-
safaei, [2024}; [Zhang, Luo, Lu, and He, 2024) and toolkits like DyGLib (Trivedi, Farajtabar, Biswal,
and Zhal [2019;|Yu, Sun, Du, and Lv, [2023b)) provide temporal data resources, but often rely on lim-
ited features (e.g., bag-of-words, word2vec (Katz,[1985;[Mikolov, Chen, Corrado, and Deanl, 2013)))
and lack support for ordered sequences or contextual reasoning. We extend temporal graph learning
by incorporating spatial, temporal, and sequential cues for personalized recommendations, and by
leveraging Text-Attributed Graphs (TAGs) (Sen, Namata, Bilgic, and Getoor} 2008, [Wang and Shen),
2020; [Yang, Liu, Xiao, Li, Lian, and Agrawall, 2021}, [Yan, Li, Long, Yan, and Zhao, 2023) enriched
with large language models (Yu, Ren, Gong, Tan, Li, and Zhang, 2023a}; He, Bresson, Laurent, Per-
old, LeCun, and Hooil, 2023} [Pan, Zhang, Zhang, Hu, and Zhao} [2024} |Tang, Yang, Wei, Shi, and
Sul,2024; [Ye, Zhang, Wang, Xu, and Zhang|, 2024} [Zhao, Zhuo, Shen, Qu, and Liul 2023)), bridging
temporal, contextual, and visual modalities.

Action Anticipation. Classical models (Kingma, Salimans, Jozefowicz, Chen, Sutskever, and|
Welling}, 2016} [Kingma and Dhariwal, 2018}, Rezende and Mohamed, 2015) predict actions from se-
quence patterns but lack long-term memory and personalization. Marked Temporal Point Processes
(MTPPs) (Hawkes}, [1971} [Du, Dai, Trivedi, Upadhyay, Gomez-Rodriguez, and Song}, 2016}
land Eisner, [2017; Zhang, Lipani, Kirnap, and Yilmaz, 2020} [Zuo, Jiang, Li, Zhao, and Zhal 2020)
model continuous-time events, while recent flow-based methods (Shchur, Bilos, and Giinnemann),
[2020; Mehrasa, Deng, Ahmed, and Chang}, [2019) improve sampling efficiency but remain limited
in multi-context generalization. Normalizing flows (Rezende and Mohamed} 2015} [Mehrasa, Deng,
[Ahmed, and Chang} 2019) provide tractable sampling yet fail to adapt to evolving, personalized
behaviors. Recent state-of-the-art approaches—Palm, AntGPT (Zhao, Wang, Zhang, Fu, Do, Agar-
|wal, Lee, and Sun, 2024), iCVAE (Mascaro, Ahn, and Lee} 2024), ObjectPrompt (Zhang, Fu, Wang,
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Figure 2: Episodic Memory Recommender: Visual representation of the Episodic Memory Recom-
mender system. Nodes in a dynamic temporal graph store memories of actions, times, and places.
The system updates node embeddings through a sequence of time-stamped events, utilizing aggre-
gation functions to process daily experiences. Memory is continuously adapted using learnable
functions to incorporate new interactions, facilitating context-aware action recommendations based
on both historical and real-time data. D(agg) represents daily life activity aggregation and CD(agg)
represents cross-activity aggregation. Curved arrows show that next activity information is saved in
previous activity memory. Red arrows denote the same activity occurring at different times on other
days.

Agarwal, Lee, Choi, and Sun, [2023), and Replai |Mittal et al.[(2022b)—Ileverage large-scale datasets
such as Ego4D (Grauman, Westbury, Byrne, and Chavis| [2022) and EPIC-Kitchens |Damen et al.
(2018) but require retraining for new tasks and cannot model episodic memory or personalized an-
ticipation. Our approach addresses these gaps by unifying temporal graphs, dynamic memory rep-
resentations, and log-normal flows to enable multi-activity, long-term anticipation and personalized
recommendations in evolving environments.

3 APPROACH

Our episodic memory-based recommendation system encodes experiences as combinations of char-
acter, action, time, and place, with a primary focus on action recommendation. The master is treated
as the central character, with time represented in a detailed format (hours, days, months, and years).
The agent operates in a dynamic environment, gathering audio and visual data, associating actions
with specific locations and timestamps. These experiences are stored in episodic memory, enabling
pattern analysis and the organization of data into structured memory modules. We define actions as
fine-grained, low-level operations (e.g., cutting, stirring), while activities refer to higher-level com-
binations of actions (e.g., cooking composed of {cut, stir, boil}). In addition to visual cues, actions
are extracted from dialogue using speech transcripts via Whisper (Radford, Kim, Xu, Brockman,
McLeavey, and Sutskever, 2022)). Spoken commands (e.g., “stir the soup”) are parsed and concate-
nated with visual activity embeddings, improving recall for unobserved or occluded tasks.

3.1 EPISoODIC MEMORY RECOMMENDER

We propose an episodic memory recommender leveraging temporal graph networks constructed
using an encoder-decoder architecture. The encoder processes a continuous-time dynamic graph,
represented as a sequence of time-stamped events, to generate node embeddings:

Z(t) = (z1(t), ..., 2o (1)) (1)

where z;(t) denotes the embedding of node 7 at time ¢.
Node Embeddings. The embedding of each node is defined as:

Z; (t) = f(etime; €activity » eplace)a )

where €gme, €aciivity, and €pace are feature embeddings for time, activity, and place, respectively.
These embeddings incorporate semantic context extracted from transcripts (via Whisper)(Radford,
Kim, Xu, Brockman, McLeavey, and Sutskever, [2022) and video segmentation, combining image
and text features as in VideoRecap (Islam, Ho, Yang, Nagarajan, Torresani, and Bertasius, |2024)).
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In cases where only a single modality is used, such as textual or visual features, the model can
adapt by using pre-trained models like BERT (Devlin, Chang, Lee, and Toutanova, 2019) for text-
based inputs or other vision-based models for image/video-based inputs. The architecture remains
flexible, allowing the concatenation of embeddings from these individual modalities to form the
node representation.

Daywise Memory Representation. The episodic memory at time ¢ is denoted as z;(t), encap-
sulating historical experiences. When a new activity occurs at time 7}, its timestamp determines
whether it aligns with existing nodes for the same day:

Naay = {7 | T;.date = T}.date A T;.time < T .time}, 3)

where T;.date represents the calendar date (day, month, year) of event ¢, and T;.time is its occurrence
time within that date.

If Ngay # 0, the memory of each node i € Ng,y is updated:

zZ; (t + 1) - fupdate(zi (t)7 eactivityj ) elimej ) eplacej )7 (4)
where fupdate is a learnable function. If Ng,y = 0, a new node is initialized:
Zj (t + 1) = f(etimej » Cactivity; » Cplace; ) )

Final Memory Representation. Each day’s memory aggregates activities, times, and places using
a function f,g,, Which concatenates features, sequences actions, or computes statistical summaries:

Zi(t) = fﬂgg({etimekaeaCtivitykaeplacek | ke J\/day}). (6)

Activity-Based Message Function. For each activity the agent/master performs on the next day
involving a node ¢, a message is computed to update the memory of ¢. For an interaction activity
€;;(t) between nodes ¢ and j at time ¢, the system computes:

m;(t) = msg; (si(t*),sj(t*), At,eacﬁom) , @)
m;(t) = msgq (sj (t7),si(t7), At, eacnon].) . (8)

For node-wise events involving only a single node i:
m;(t) = msg, (si (t7),t, eacnoni) . 9)

Here, s;(t™) is the memory of node 7 just before time ¢. The functions msgs, msgq, and msg,, are
learnable message functions capturing temporal dynamics.

Message Aggregator. When multiple activities or place involve the same node 7 in a batch, an
aggregation function combines the messages:

m;(t) = agg (m;(t1),...,my(tp)), (10)

where agg incorporates frequency-aware weighting and temporal decay. It ensures that frequent and
recent patterns are prioritized, while obsolete ones are removed.

Memory Updater. The memory of a node is updated upon each event:
s;(t) = mem (ﬁli(t), si(t*)) , (11

where mem is a learnable memory update function (e.g., LSTM (Staudemeyer and Morris, [2019)) or
GRU (Chung, Gulcehre, Cho, and Bengio, 2014)). Since our dataset captures activities on a daily
basis over a span of three years, we employ LSTMs (Staudemeyer and Morris, [2019) to maintain
day-wise temporal dependencies. This choice enables the model to effectively capture long-term
patterns and trends across daily sequences while retaining critical contextual information from his-
torical activity data. The dynamic evolution of node memories ensures that both recent and long-
term interactions are reflected, supporting robust action anticipation and recommendation.

Embedding: In the episodic memory framework, each node z;(t) is a concatenation of place,
action, and time embeddings €pjace, €activitys €ime> Capturing the context of each event. The aggre-
gation process uses frequency-aware weighting to prioritize frequent patterns and temporal decay
to reduce the relevance of older patterns. The relevance score ¢;(t) is updated based on elapsed
time, and nodes with a score below the threshold ¢, are deleted. The final episodic memory Z(t)
consists of all valid (non-deleted) nodes:

Z(t) = {2i(t) | 6i(t) = Pmin, i € N(1)}- (12)
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The time encoding mechanism utilizes the Wavelet time Encoding (WT) (Sasal, Chakraborty, and
Hadid, 2022) to map timestamps into a meaningful feature representation. Given a sequence of
timestamps ¢1, to, . . . , t,, the wavelet coefficients for each timestamp are extracted via WT, yielding
a fixed-length vector z;(t):

z;(t) = WT(t;, wavelet), i=1,2,...,n (13)

Where: - z;(t) € RUme-4m represents the wavelet-transformed feature vector for timestamp ¢;. - WT
denotes the Wavelet time Encoding applied to t;, producing wavelet coefficients.

To handle calendar encoding, additional periodic encodings, such as day (d;), month (u;), year (v;),
and hour (7;), are incorporated. The final time encoding for each node is the concatenation of these
features:

zi(t) = [ti || 0 || pa || vi || 7] (14)

Where §; is the day encoding for timestamp ¢;, p; is the month encoding for timestamp ¢;, v; is the
year encoding for timestamp ¢;, and 7; is the hour encoding for timestamp ¢;.

The edge features include the event place of both nodes connected by an interaction, as well as the
time difference between them. Additionally, a temporal parameter ¢;;(t) is defined to capture this
difference:

6i(t) = @t —t;) | epace (7, 5), (15)

where ¢(t — t;) represents the time difference between nodes ¢ and j at time ¢, and epjace (%, j)
encodes the spatial relationship between the connected nodes.

The input to the [-th layer of the episodic memory recommender consists of node i’s multimodal
(I-1) (1-1)

) i

representation h
(1-1)
{hglil)(t), e hg\lfl)(t)}. Each neighbor’s representation is paired with temporal offsets {t —
t1,...,t — ty} and interaction-specific multimodal features {e;; (¢1),...,e;n(tn)}-

(t) (a concatenation of its visual embedding v (t) and textual embedding

u (t)), the current timestamp ¢, and the multimodal representations of i’s temporal neighborhood

The layer aggregates these inputs using multi-head attention:
flz(-l)(t) = MultiHead Attention (qV (¢), K (¢), VW (1)), (16)

where the query q(*)(t) is i’s current multimodal state, while keys K()(¢) and values V(") (t) are
derived from the multimodal neighborhood context:

COt) = B0 (1) [ en(t) [ ¢t —t), bV (0) || ewalta) | @t —1t2), -
by~ (1) | ea (i) [| $(t — tx) | (7)
The final node representation is:
b (1) = MLPO (0™ () || B (1), (18)
where ¢(-) encodes temporal offsets. This framework integrates episodic memory by combining

multimodal node features and temporal dynamics to enhance recommendation accuracy.

Sequence-Level Prediction with CTC Loss. To anticipate the future sequence of actions or activ-
ities, we employ Connectionist Temporal Classification (CTC) loss, which aligns predicted outputs
with target sequences without requiring exact frame-level alignment:

Lere=—log Y P(r|Z), (19)
meB~(y)

where B~1(y) denotes all valid alignments for a target label sequence , and Z are model outputs
over time. Example: If the ground truth activity is cooking, composed of action sequence {cut,
stir, boil}, the model may observe events at irregular time intervals and predict {cut, cut,
stir, boil}. CTC allows matching such predictions to the true activity label, accommodating
temporal variation in action lengths and ordering.
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3.1.1 ILLUSTRATIVE SCENARIO

We demonstrate our system through a simplified three-day example in which the agent observes and
supports the user (“master’”’) throughout daily activities:

Day 1: At 8:00 AM, the master enters the kitchen. The agent tracks fine-grained actions: opening
the fridge, pouring milk, stirring cereal, drinking coffee. By 8:30 AM, the master leaves for the
office. The agent passively notes key events like lunch at 1:00 PM and playing guitar in the evening.

Day 2: The routine repeats with slight variations (e.g., pouring milk at 8:01 AM or playing guitar
later), helping the agent learn consistent patterns while accommodating natural variability.

Day 3: The morning is similar, but instead of leaving, the master begins remote work on a laptop.
The agent observes new patterns: an evening walk at 5:00 PM and an earlier dinner.

The agent encodes these episodes as temporal graphs using multimodal inputs (audio, visual,
speech), with fine-grained actions as nodes (e.g., pour - milk@8:01AM) and timestamped edges
capturing sequential dependencies. These graphs evolve via message-passing to retain temporal and
contextual structure.

Such representations enable:

Next-Action Anticipation: Predicting likely next steps (e.g., start work, take a break) based on past
routines.

Memory Support: Offering gentle prompts when the user hesitates or seems confused (e.g., “You
usually stir the cereal next—would you like to do that now?”).

Procedure Recovery: Answering queries like “How do I make tea?” by retrieving observed se-
quences (e.g., boil water — steep tea — pour — drink).

Context-Aware Suggestions: Identifying patterns to suggest timely actions (e.g., “Time for your
walk?” or “Want to play guitar now?”).

4 EXPERIMENTAL SETUP

Dataset. We build a structured dataset from Ego4D (Grauman, Westbury, Byrne, and Chavis,
2022; |Zhou, Cao, Zheng, Zheng, and Liu, [2025)), which is originally unorganized with respect to
activity timelines. We reorganize the videos chronologically to yield three years of daily multi-
modal records covering gardening, exercising, work, social interactions, shopping, and hobbies.
The dataset is derived entirely from existing Ego4D annotations—scenario-level annotations are
grouped as activities, and fine-grained annotations as actions—without introducing new labels. To
construct the 3-year timeline, we repeat certain sequences while maintaining temporal consistency.
Balanced activity representation mitigates bias and enables modeling of continuity, variation, and
long-term behavioral evolution.Details of dataset construction are as in Appendix [A]

Implementation Details. The model applies a time-scaling factor (1 x 107%) to weight sam-
pling by temporal intervals, where larger values prioritize recent events and 0.0 yields uniform sam-
pling. The walk encoder employs 10 attention heads with 5-step random walks to capture temporal-
structural dependencies, optimized for two NVIDIA RTX 6000 GPUs (24GB each). Temporal evo-
lution is modeled with a fixed gap of 10 units, and embedding dimensions are set to 100 (time)
and 172 (position). EdgeBank memory provides unbounded storage with optional time-window and
repeat-threshold modes. Training uses Adam (Ir = 0.0001), dropout = 0.1, and early stopping with
patience = 5. Data is split 70%/15%/15% for train/validation/test. Multimodal features (text and
image embeddings from videorecap (Islam, Ho, Yang, Nagarajan, Torresani, and Bertasius, 2024))
enrich node representations. We compare against DyRep with time-interval-aware neighbor sam-
pling, and note that hyperparameters are tunable for other datasets.

5 EXPERIMENTS AND RESULTS

Comparison with long term anticipation models In this experiment, we perform a comparison
with state-of-the-art long-term anticipation models, evaluated based on their ability to predict future
activities. Table [T] presents a comparison of different methods based on the Action metric, where
lower values indicate better performance. The models used for comparison include RUSTLM (Mit-
tal, Morgado, Jain, and Gupta, [2022a)), ICVAE, (Mascaro, Ahn, and Lee, [2024)) CLIP+Transformer
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(Radford, Kim, Hallacy, and Ramesh| 2021} [Vaswani, Shazeer, Parmar, and Uszkoreit, |2023),
Object Prompt, (Zhang, Fu, Wang, Agarwal, Lee, Choi, and Sunl 2023) Palm, and AntGPT (Zhao,
Wang, Zhang, Fu, Do, Agarwal, Lee, and Sun, [2024). These models have achieved state-of-the-art
results in action anticipation benchmarks, which is why we selected them for evaluating our model’s
performance.

Evaluation Matrix: Following the evaluation protocols in the Ego4D LTA benchmark (Ishibashi,
Ono, Kugo, and Satol 2023)), we report the Edit Distance (ED) (Przybocki, Sanders, and Le, [2006)
metric, calculated as the distance over predicted sequences of actions. This metric captures the
similarity between predicted and ground truth action sequences, accounting for minor variations.
Lower ED values signify higher alignment between predictions and actual sequences, emphasizing
the model’s ability to anticipate actions accurately over extended time horizons.

Results:

Table [T] proves that episodic memory recommender
can recommend sequences of activities better than

. e Method Action |
other baselines, showing it can perform long-term
anticipation and record environmental state as it RUSTLM 0.9432
evolves in relation to its master. For applications like ICVAE 0.9304
social companions for individuals with memory dis- CLIP+Transformer  0.9290
orders, it’s crucial that predictions account for the Object Prompt 0.9276
person’s lifestyle and activity evolution over time. Palm 0.9120
Our model excels by integrating daily and yearly AntGPT 0.8853
patterns, ensuring context is maintained; unlike oth- Ours 0.7220

ers, it considers temporal dependencies and personal
routines, making it better suited for long-term antici- Table 1: Comparison of methods based on
pation tasks and real-life applications in social com-  the Action metric (lower is better).
panionship for people with memory disorders.

5.1 COMPARISON WITH OTHER GRAPH MODELS

We evaluate state-of-the-art graph-based models—widely applied in temporal domains such as so-
cial networks, transportation, and biology—on lifelog data. The task involves predicting the next
activity (Test Score) and integrating unseen activities into an episodic memory recommender (New
Node Score), thereby testing models’ ability to support long-term anticipation and personalized ac-
tivity prediction.

Evaluation Metrics. Following prior work (Bradley,|1997), we adopt Average Precision (AP) and
AUC-ROC as metrics for activity recommendation.

Test ROC Test New Node ROC  New Node
Graph Model A . ..
ccuracy Precision Accuracy Precision
JODIE 0.7088 0.6938 0.6302 0.5936
DyRep 0.7792 0.7575 0.7297 0.7308
TGAT 0.6670 0.6436 0.5430 0.5660
TGN 0.6820 0.7398 0.6298 0.5840
CAWN 0.6776 0.7024 0.6008 0.5602
TCL 0.6260 0.6623 0.5505 0.5985
GraphMixer 0.6153 0.6550 0.5610 0.5471
DyGFormer 0.6791 0.6626 0.5860 0.6290
Ours 0.8664 0.8185 0.7962 0.8020

Table 2: Comparison of graph models on link prediction for lifelog data.

As shown in Table 2} our model outperforms all baselines across both test and new-node settings.
This indicates that capturing only recent activity patterns is insufficient for lifelog recommendation.
Instead, maintaining structured sequential memory at daily resolution is essential for personalized,
context-aware predictions, going beyond local neighborhood or similarity-based reasoning.

5.2 ABLATION STUDIES

In the ablation studies, we aim to validate our approach by changing hyperparameters and evaluating
specific parameters of the model. To achieve this, we measure the Test ROC AUC score, which
assesses how effectively the agent can recommend the next activity. Additionally, we analyze the
New Node score to evaluate how accurately the model can incorporate new nodes into its memory.
These metrics provide insights into the model’s recommendation capability and its ability to adapt
and expand its episodic memory effectively.
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Time Encoding. Table[3|reports the performance of different temporal encoding methods, includ-
ing Sinusoidal (Sun, Yuan, Xu, Mai, Siddharth, Chen, and Marina, 2024), Cosine (Vaswani, Shazeer,
Parmar, and Uszkoreit, [2023)), Wavelet (Sasal, Chakraborty, and Hadid, [2022)), Fourier, Gaussian
(Ren, Wang, Jia, Laili, and Zhang|, [2023), and learnable matrices. Among these, Wavelet encoding
achieves the best results across all metrics, highlighting its effectiveness in activity recommendation
tasks.

. . Test ROC Test New Node ROC  New Node
Time Encoding A L. ..

ccuracy Precision Accuracy Precision
Sinusoidal 0.779 0.705 0.611 0.591
Cosine 0.758 0.716 0.593 0.550
Wavelet 0.807 0.819 0.796 0.805
Fourier 0.659 0.547 0.616 0.661
Gaussian 0.617 0.537 0.581 0.555
Learnable 0.736 0.733 0.485 0.506

Table 3: Comparison of time encoding methods for link prediction tasks, measured by Test ROC
Accuracy, Test Precision, New Node ROC Accuracy, and New Node Precision.

Wavelets are particularly effective as they decompose signals into both time and frequency com-
ponents, enabling detection of patterns across multiple scales. This is well suited for lifelog data,
where activities often follow periodic rhythms such as daily routines and seasonal variations. Un-
like sinusoidal or cosine encodings with fixed frequencies, wavelets provide adaptive representations
that better align with natural temporal evolution. This adaptability enhances modeling of both local
and global temporal dependencies, leading to consistent gains in ROC and precision metrics, and
confirming the suitability of wavelet encoding for personalized activity prediction.

Backbone Architecture Comparison. To evaluate the effect of backbone choice on pattern-
oriented link prediction, we substituted different architectures into our framework and measured
performance across four metrics. Results (Table ) show substantial variation: while models such
as TGN and TGAT perform competitively, DyRep consistently achieves the best results across Test
ROC Accuracy, Test Precision, New Node ROC Accuracy, and New Node Precision.

Test ROC Test New Node ROC New Node
Backbone A L. L.
ccuracy Precision Accuracy Precision
JODIE 0.6118 0.6226 0.5586 0.5682
DyFormer 0.6010 0.6187 0.6545 0.6656
TGAT 0.6618 0.7023 0.6125 0.6414
TGN 0.7071 0.7205 0.6102 0.5779
CAWN 0.5688 0.5339 0.4899 0.4689
TCL 0.6780 0.6584 0.5921 0.5956
GraphMixer 0.6249 0.6386 0.5236 0.4892
DyRep 0.8066 0.8185 0.7962 0.8050

Table 4: Backbone comparison on link prediction. DyRep outperforms all alternatives across test
and new-node settings.

DyRep’s advantage stems from its ability to capture both global and local temporal dependencies.
Its event-driven formulation models evolving relationships and irregular dynamics, enabling robust
performance in life-log data with mixed periodic and non-periodic behaviors. This adaptability
makes it particularly effective for long-horizon sequential prediction tasks.

Loss Function Evaluation. We examined the effect of different loss functions on link prediction,
with results shown in Table 5] Performance is reported across Test ROC Accuracy, Test Precision,
New Node ROC Accuracy, and New Node Precision. CTC Loss yields the best performance over-
all, highlighting its strength in sequence alignment for temporally ordered prediction tasks. Cross
Entropy performs competitively, especially in Test and New Node Precision, while Binary Cross
Entropy and L1 provide moderate results. Mean Squared Error underperforms, confirming its limi-
tations for categorical sequential data. Log Likelihood surpasses BCE but remains weaker than CE
and CTC.

Negative Sampling Strategies Comparison We evaluated the impact of different negative sam-
pling strategies on model performance for link prediction tasks. Negative sampling is crucial for
distinguishing true connections from false ones, improving the model’s ability to recommend future
activities and maintain sequential memory structures. Table[5.2]presents results for three strategies:
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. Test ROC Test New Node ROC  New Node
Loss Function L. -
Accuracy Precision Accuracy Precision
Binary Cross Entropy 0.6070 0.6947 0.6097 0.5722
Cross Entropy Loss 0.6163 0.7181 0.5808 0.6739
Mean Squared Error 0.7708 0.7575 0.4802 0.5282
L1 Loss 0.6173 0.6577 0.5660 0.6204
Log Likelihood 0.6561 0.6124 0.5909 0.5497
CTC Loss 0.8066 0.8185 0.7962 0.8040

Table 5: Comparison of loss functions on link prediction. CTC Loss achieves the strongest results
across all metrics.

Negative Sampling Techni Test ROC Test New Node ROC ~ New Node
egative Sampling lechniques Accuracy Precision Accuracy Precision
Random 0.7725 0.7576 0.7335 0.7295
Historical 0.7650 0.7788 0.6990 0.7042
Inductive 0.8066 0.8185 0.7962 0.8040

Table 6: Performance comparison of different negative sampling techniques for link prediction tasks.
Metrics include Test ROC Accuracy, Test Precision, New Node ROC Accuracy, and New Node
Precision.

Random, Historical, and Inductive sampling. Random Sampling selects negative samples uniformly,
achieving moderate results (Test ROC: 0.7725) but lacks contextual awareness. Historical Sampling
uses past data to improve precision (0.7788) but struggles with generalization. Inductive Sampling
outperforms both, aligning samples with temporal context and achieving the best metrics (Test ROC:
0.80664), making it ideal for episodic memory and activity recommendations.

Sampling Strategies We analyzed the performance of different sampling techniques for link pre-
diction tasks, including Uniform, Recent, and Time Interval Aware approaches (Table . Uni-
form sampling, which selects nodes uniformly, achieved moderate results (Test ROC: 0.7659) but
failed to prioritize relevant temporal dynamics. Recent sampling, focusing on the latest interac-

Sampling Techniques Test ROC Test New Node ROC  New Node
pling q Accuracy Precision Accuracy Precision
Uniform 0.7659 0.7583 0.7739 0.7181
Recent 0.6750 0.7181 0.5808 0.6739
Time Interval aware 0.8066 0.8185 0.7962 0.8040

Table 7: Comparison of sampling techniques for link prediction tasks, showing Test ROC Accuracy,
Test Precision, New Node ROC Accuracy, and New Node Precision.

tions, struggled with generalization, particularly for unseen nodes (New Node ROC: 0.5808). The
Time Interval Aware method outperformed others across all metrics (Test ROC: 0.80664, New Node
ROC: 0.7962), as it effectively captured temporal patterns and contextual relevance, demonstrating
its utility for sequential and time-sensitive tasks like activity anticipation and memory modeling.

6 CONCLUSION LIMITATIONS AND FUTURE WORK

This paper presents a novel episodic memory-based framework that integrates temporal graph net-
works with multimodal data for long-term action anticipation and activity recommendations. By
leveraging daily and yearly activity patterns, the model achieves state-of-the-art performance in pre-
dicting complex future action sequences. Key innovations include adaptive memory representations,
advanced time encoding, and robust sampling strategies, enabling the system to dynamically utilize
past experiences. These capabilities make the model applicable in real-world scenarios, such as as-
sistive technologies, adaptive robotics, and personalized recommendations. The framework offers
societal benefits by aiding individuals with memory impairments through reminders and naviga-
tion guidance, while improving human-robot collaboration and task efficiency. Limitations include
dependency on recurring patterns and large datasets, which may hinder performance in sparse envi-
ronments. Additionally, the computational complexity of multimodal data processing and dynamic
memory updates poses challenges in resource-constrained settings. Future work will focus on op-
timizing for such scenarios, integrating reinforcement learning for context-aware decisions, and
expanding the framework to incorporate additional modalities, such as physiological and environ-
mental data.
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A DETAILED DATASET CONSTRUCTION FROM EG04D

Our structured timeline dataset is derived entirely from existing Ego4D (Grauman, Westbury, Byrne,
and Chavis|, 2022} |Zhou, Cao, Zheng, Zheng, and Liu} 2025)) annotations. To clarify the construction
process for reviewers, we detail how metadata, scenarios, moments, and fine-grained actions are
utilized:

1. Video selection. We use all Ego4D videos containing scenario-level and moment-level annota-
tions, as specified in the official JSON metadata (e.g., ego4d. json). Each video entry includes a
unique video_uid, duration, frame rate, resolution, and device information.

2. Scenario-level grouping. Each video contains one or more scenarios describing high-level ac-
tivities (e.g., “jobs related to construction/renovation company: Director of work, tiler, plumber,
electrician, handyman”). These scenarios are grouped as activities in our dataset.

3. Moment-level fine-grained actions. Ego4D provides moment-level annotations capturing de-
tailed actions performed by people within a scenario (e.g., hammering, pouring, typing, lifting).
These are mapped as actions under the corresponding activity, preserving temporal order within the
video.

4. Chronological organization. Videos are reordered into a daily timeline to simulate continuous
multi-year activity logs. For each day, we concatenate scenarios and associated actions, maintaining
intra-video temporal consistency.

5. Timeline extension and balancing. To cover a 3-year period, sequences are repeated where
necessary while preserving order. Activities are approximately balanced across categories such as
work, social interactions, hobbies, and shopping to reduce bias and enable long-term modeling.

6. Data storage. Each day is stored as a folder containing the reordered videos, scenario-level
activities, and fine-grained action annotations. This structure allows downstream models to access
both high-level and detailed behavioral cues.

This approach ensures full reproducibility using only existing Ego4D metadata, while providing
detailed temporal and behavioral context for long-term multimodal modeling.
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