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Abstract

We present the design and implementation of a new lifetime-aware tensor offloading
framework for GPU memory expansion using low-cost PCIe-based solid-state
drives (SSDs). Our framework, TERAIO, is developed explicitly for large language
model (LLM) training with multiple GPUs and multiple SSDs. Its design is driven
by our observation that the active tensors take only a small fraction (1.7% on
average) of allocated GPU memory in each LLM training iteration, the inactive
tensors are usually large and will not be used for a long period of time, creating
ample opportunities for offloading/prefetching tensors to/from slow SSDs without
stalling the GPU training process. TERAIO accurately estimates the lifetime (active
period of time in GPU memory) of each tensor with the profiling of the first few
iterations in the training process. With the tensor lifetime analysis, TERAIO will
generate an optimized tensor offloading/prefetching plan and integrate it into the
compiled LLM program via PyTorch. TERAIO has a runtime tensor migration
engine to execute the offloading/prefetching plan via GPUDirect storage, which
allows direct tensor migration between GPUs and SSDs for alleviating the CPU
bottleneck and maximizing the SSD bandwidth utilization. In comparison with
state-of-the-art studies such as ZeRO-Offload and ZeRO-Infinity, we show that
TERAIO improves the training performance of various LLMs by 1.47× on average,
and achieves 80.7% of the ideal performance assuming unlimited GPU memory.

1 Introduction
Large language models (LLMs) have been widely employed in various application domains [31, 46,
42]. However, training LLMs is still a well-known challenging problem, as its memory demand
is increasing at a much faster speed than the scaling speed of GPU memory [18, 25]. Scaling the
GPU memory capacity is both technically challenging and prohibitively expensive. Due to space
constraints and DRAM scaling issues [19, 15], it is hard to scale up the GPU memory capacity
on each server machine. Scaling out LLM training with a cluster of GPU servers can increase the
aggregated memory capacity, however, it inevitably increases operational cost, placing a major barrier
for researchers and developers to entry into cutting-edge LLM development.

To overcome the GPU memory wall, prior studies proposed expanding GPU memory with external
memory devices. One common approach is to allow tensor offloading from GPU memory to host
memory [17, 39, 11, 44, 32, 41, 43, 20]. However, due to the fundamental DRAM scalability
challenge, such an approach is still limited by the host memory. Recent studies have extended tensor
offloading to PCIe-based SSDs that offer larger capacity at a much lower cost [1, 37, 16, 23, 47,
51, 29, 50]. But due to the incapability of efficiently utilizing the SSD bandwidth and hiding the
slow SSD accesses, these offloading solutions still deliver suboptimal performance. For instance,
ZeRO-infinity [37] enabled the offloading of tensors to SSDs at the granularity of deep neural network
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(DNN) layers, its coarse-grained offloading/prefetching scheme wastes not only the limited SSD
bandwidth but also the precious GPU memory space, leaving the solution less attractive in practice.

Ideally, we wish to expand GPU memory with low-cost SSDs while achieving similar training
performance as the ideal case assuming GPUs have unlimited on-board memory. To this end, we
present a new tensor offloading framework – TERAIO, which enables fine-grained offloading of
tensors in an accurate fashion based on their activity patterns in GPUs, for best utilizing both SSD
bandwidth and GPU memory. Our study of tensor activity patterns (§2) in LLM training shows (1)
the active tensors, which are used in the current kernel during LLM training, consume only a small
portion (1.7% on average) of requested GPU memory in total; (2) many inactive tensors are large and
occupy a substantial GPU memory space in each training iteration; but (3) these inactive tensors are
not used in the training for a long period of time, depending on the computation intensity of LLMs.

With these insights, TERAIO develops a lifetime-aware tensor offloading mechanism following three
design principles: (1) offloading large inactive tensors to SSDs can save precious GPU memory and
maximize SSD bandwidth utilization during the training process; (2) the distribution of their inactive
periods of time will help TERAIO decide which inactive tensor should be offloaded at what time, and
similarly, which tensor should be prefetched at what time; (3) precisely scheduling tensor offloading
and prefetching in consideration of the available SSD bandwidth will help TERAIO effectively overlap
the tensor movement with GPU computation. Our roofline model analysis (§2.2) shows that, given
each GPU connected to multiple commodity SSDs today, the aggregated storage I/O bandwidth is
sufficient to meet the tensor migration requirement without hurting the GPU training process.

To fulfill the design principles discussed above, we develop TERAIO with three major components:
(1) a tensor lifetime profiler that can extract tensor activity patterns (e.g., tensor size and lifetime)
in advance with the assistance of deep learning compilers such as PyTorch, (2) a lifetime-aware
tensor migration algorithm that can generate optimal tensor offloading/prefetching plans based on
the learned tensor activity patterns, and (3) a tensor migration engine that will execute the generated
offloading/prefetching plans with efficient direct data transfer between GPUs, host memory, and
SSDs. We present each of these components as follows.

An open-source tensor lifetime profiler. TERAIO conducts the profiling of the tensor size and
lifetime distributions by running the first few iterations of LLM training on the target GPU setting. As
the computation and dataflow patterns of each iteration are almost the same, the profiling results can
accurately represent the generic patterns of the entire LLM training process. To track the metadata
information of each tensor, we instrument the automatic operator generator in PyTorch rather than
intrusively instrument the source code of each generated operator. Therefore, the proifler requires
minimal code modifications to PyTorch. As the execution of LLM on GPUs has highly predictable
dataflow patterns, TERAIO uses the execution time of GPU kernels to accurately estimate the tensor
lifetime (i.e., the length of the active and inactive period of time). With the knowledge of tensor
activity patterns, TERAIO will create the tensor offloading/prefetching plans in advance.

Lifetime-aware tensor migration algorithm. TERAIO prioritizes offloading large tensors with long
inactive period of time to SSDs, for fully utilizing the available storage I/O bandwidth. For tensors
that have short inactive periods of time, TERAIO will make the best effort to retain them in GPU
memory, for avoiding unnecessary migration overhead. As host memory and SSD offer different
capacities, bandwidths, and costs, TERAIO prefers to offload tensors to SSDs for taking advantage
of their large capacity and low cost. However, when the SSD bandwidth is saturated at runtime,
TERAIO will use the host memory as the offloading destination. Given an execution plan for each
LLM training iteration, TERAIO will iteratively search for the best offloading candidate based on
the tensor size and lifetime, until the required GPU memory is below the capacity limit. After that,
TERAIO will generate an optimized tensor migration plan by adding corresponding offloading and
prefetching instructions in the compiled LLM training program.

Tensor migration engine using GPUDirect storage. Following the tensor migration plan integrated
into the compiled LLM training program, the tenor migration engine of TERAIO will offload/prefetch
tensors to/from SSDs or host memory at runtime. For the tensor migration between GPU memory
and SSD, TERAIO uses GPUDirect storage to enable direct data transfer between GPUs and SSDs,
therefore, it can bypass the host CPU to alleviate the scalability bottleneck and maximize SSD
bandwidth utilization. When the available SSD bandwidth is insufficient to support tensor offloading
and prefetching, TERAIO will migrate tensors to the host memory. To track the latest locations of
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tensors (GPU memory, host memory, or SSDs), TERAIO indexes tensors with their identification
numbers using hash maps.

We implement the core components of TERAIO based on PyTorch. Therefore, TERAIO does not
require any code modifications to LLM training programs. To evaluate the efficiency of TERAIO,
we train a set of Llama and Granite models with different batch sizes and sequence lengths using
TorchTitan [22] on a GPU server that has two NVIDIA H100 GPUs and eight PCIe-based SSDs. In
comparison with state-of-the-art offloading solutions ZeRO-Offload [40] and ZeRO-Infinity [37],
TERAIO improves the training performance by 1.47× on average, achieves 80.7% of the ideal
performance assuming unlimited GPU on-board memory, and delivers 1.45× improvement on cost
efficiency for LLM training. In summary, we make the following contributions.

• We conduct a quantitative characterization study of tensor memory usage when training
different LLMs on multiple GPUs, and show that the high compute intensity of modern
LLMs provide rich opportunities for tensor offloading.

• We develop a lightweight tensor lifetime profiler based on PyTorch, which can learn tensor
activity patterns for multi-GPU LLM training.

• We design a lifetime-aware tensor migration planning algorithm that optimizes offload-
ing/prefetching decisions based on tensor activity patterns, GPU memory capacity, and the
available migration bandwidth.

• We implement a transparent tensor migration engine that enables direct data transfer between
GPU and SSDs, alleviating the scalability bottleneck on the host.

• We conduct a thorough evaluation of TERAIO with the training of various LLMs, demon-
strating significant improvement on training performance and cost efficiency, compared to
state-of-the-art offloading solutions.

2 Characterization Study of Tensor Activity Patterns in LLM Training

In this section, we present our characterization study of tensor activity patterns in LLM training. To
facilitate our study, we utilize our tensor lifetime profiler, which will be discussed in §3.1, to analyze
the distributions of tensor sizes and lifetimes during the LLM training. We use two NVIDIA H100
GPUs and 2-stage 1f1b pipeline parallelism [28] in our experiments. Our study covers a variety of
LLMs with different architectures, including decoder-only models such as Llama3-8B (batch size of
128, sequence length of 4096), Llama3-70B (batch size of 256, sequence length of 2048) [4], and
GPT2-40B (batch size of 16, sequence length of 1024) [35], as well as encoder-decoder models like
T5-11B (batch size of 64, sequence length of 512) [7]. For models that require more memory than
GPU memory capacity, we offload tensors not needed by the current kernel to SSDs. We summarize
our study results as follows.
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(a) Memory consumption of different LLMs on each GPU.
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(b) Memory consumption of different stages in the pipeline parallelism.
Figure 1: Memory consumption of all and active tensors (w.r.t. the GPU memory capacity) in one
iteration of the parallel training program. Logarithmic scale is used in the presentation.
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Figure 2: The distribution of inactive periods of tensors.

2.1 Rich Opportunities for Tensor Migration

Small memory requirement of active tensors. We first study the memory demand and usage of
tensors in each training iteration. We define the tensors that are currently used by a running GPU
kernel as active tensors. We present the memory consumption of active tensors used by each GPU
kernel in Figure 1. Figure 1 (a) shows the memory consumption of tensors in different models,
Figure 1 (b) shows the memory consumption of tensors across different pipeline stages. For all LLMs
examined in our study, the active tensors account for only less than 14% (1.7% on average) of the
total GPU memory capacity, although their total memory usage greatly exceeds the GPU memory
capacity. Most tensors in GPU memory are inactive and can be offloaded to low-cost SSDs, thus, we
can best utilize the GPU memory for tensors that will be used by kernels in the near future.
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Figure 3: Roofline analysis with
different migration bandwidths.
The training performance is nor-
malized to the ideal case assum-
ing GPU memory is infinite.

Long inactive periods of inactive tensors. To understand how
long the inactive tensors remain inactive and how much GPU
memory they consume, we study the distribution of their inactive
periods, as shown in Figure 2. For all the models we study, most
tensors have sizes that range from 10MB to 1GB. We observe
that more than 40% of these tensors remain inactive for more
than 104 microseconds. These inactive periods are longer than
the time needed to migrate these tensors to SSDs at a bandwidth
of 6.5 GB/s. With this insight, we can ensure that these tensors
can be migrated efficiently without introducing negative impact
on the training performance.

The long inactive periods are the cause of the sparse tensor access
pattern and high compute intensity of LLMs. From a spatial
perspective, although LLMs have tens or hundreds of layers,
many tensors are used within only a single layer. From a temporal perspective, the compute-intensive
kernels (e.g., attention) in each layer take a considerable amount of time, providing rich opportunities
for TERAIO to overlap the computation with the migration of inactive tensors.

We also observe that, compared with traditional DNN models, the higher compute intensity and larger
model sizes of LLMs lead to substantially longer inactive periods. For example, in BERT-Large [3],
48% of tensors are larger than 100MB, and the inactive periods of more than 60% of these large
tensors are two orders of magnitude shorter than those in LLMs.

2.2 Bandwidth Requirement for Tensor Migration

We now study how much migration bandwidth is needed for offloading to achieve near-ideal training
performance. We quantify the roofline performance of different LLM models under different migra-
tion bandwidths available to each GPU. To facilitate this study, we build a performance model to
estimate the training time. In the model, we assume that each kernel’s execution time is the same
as the value collected in our characterization study. We simulate tensor migration at the designated
bandwidth, and check whether the tensors needed by the kernel are already in GPU memory or not.
If they are still being migrated due to limited SSD bandwidth, the waiting time for the migration is
added to the total training time. Figure 3 shows the normalized roofline training throughput of LLMs
under different migration bandwidths. We observe that a bandwidth of 32 to 48 GB/s is sufficient to
achieve near-ideal performance for LLMs. Such a bandwidth requirement can be easily achieved by
aggregating multiple commodity SSDs (e.g., an SSD array), demonstrating the feasibility of TERAIO.
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Figure 4: System overview of TERAIO.

3 TERAIO Design and Implementation

We show the system overview of TERAIO in Figure 4. Given an LLM, TERAIO’s tensor lifetime
profiler works with PyTorch to track tensor sizes and lifetimes (§3.1). In the first few training
iterations, TERAIO traces the execution graph and collects the execution time of each kernel. Since
the training follows the same execution graph in subsequent iterations, the tensor activity patterns
remain the same. The tensor migration algorithm (§3.2) creates a tensor migration plan that (1)
maximally overlaps computation and migration, and (2) minimizes migration traffic. The algorithm
iteratively selects the best offloading candidates until the required GPU memory fits within the actual
GPU memory capacity. For the migration destination, it prefers to migrate tensors to SSDs. Once the
SSD bandwidth is saturated, it also uses available CPU memory. During LLM training, TERAIO’s
tensor migration engine transparently executes the migration plan (§3.3).

3.1 Tensor Lifetime Profiler

Tracking tensors. TERAIO instruments PyTorch framework to track tensors and measure kernel
execution time at runtime. A tensor is considered active in one of the following three scenarios.

First, a tensor is active when it is the input or output of a PyTorch CUDA operator. However,
instrumenting PyTorch to track every operator is challenging, as there are thousands of operators.
Instead, we leverage PyTorch’s automatic operator generator, which produces source code for each
operator, to insert profiling code that will mark all input and output tensors as active when the operator
is executed at runtime. Second, for tensors that are involved in inter-GPU communication, they
should be active in GPU memory. Third, a tensor is considered active when PyTorch explicitly checks
whether it resides in GPU memory. This happens when updating optimizer states. For the second and
third scenarios, since there are only a few communication operators and PyTorch checks in total, we
directly set the corresponding tensors as active in the source code.

Tensor 0
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Tensor 2

Operator 0 Operator 1 Operator 2Comm 0 Check 0

Operator Inter-GPU
Communication

PyTorch
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Active
Period

Inactive
Period Deallocated

Execution
Flow Tensor 1 Tensor 1 Tensor 0,1,2
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UpdateTensor 0Tensor 2

Figure 5: TERAIO tracks and analyzes tensor activity patterns for the tensor migration algorithm.

Analyzing tensor activity patterns. Figure 5 shows how tensor information is collected at runtime.
To understand when a tensor consumes GPU memory and when it must reside in GPU memory, we
need to collect its tensor size and active time. When an operator is executed, the instrumented code
records the tensor size and active time for the corresponding tensor. The profiler will calculate the
inactive time period based on the duration between its active states. Specifically, for intermediate
tensors such as gradients and activations (Tensor 0 and Tensor 1 in Figure 5) that will be deallocated
immediately after its computation completes, we quantify its inactive time period as the time interval
between the two active periods. For global tensors such as model weights and optimizer states (Tensor
2 in Figure 5) that are used across multiple training iterations, they are allocated before training starts
and never deallocated during training. Therefore, for some cases, the profiler may need to calculate
its inactive period based on the active states across two iterations.
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Figure 6: Illustration examples to explain the key insights of lifetime-aware migration algorithm.

3.2 Lifetime-aware Tensor Migration Algorithm

The lifetime-aware tensor migration algorithm iteratively finds the best offloading candidates in each
LLM training iteration, until the required GPU memory is below the capacity limit. By tracking the
amount of required GPU memory and the storage I/O bandwidth utilization, the algorithm is able to
evaluate the potential benefits of tensor offloading. We discuss our key ideas as follows.

Storage I/O bandwidth-aware planning. To offload an inactive tensor, we wish to keep it out of
GPU memory as long as possible. Therefore, ideally, we would offload it as soon as it becomes
inactive and prefetch it instantly before it is needed by the subsequent kernel. However, in reality, the
time when we can offload and prefetch the inactive tensor is greatly affected by the storage bandwidth
usage. For example, in Figure 6(a), the inactive period I of the tensor is from tstart to tend. However,
since the I/O bandwidth is occupied by previously planned migrations, we have to delay the actual
offloading until toffload and start the actual prefetching by tprefetch. This means that we can only
reduce the memory consumption from toffloaded to tprefetch. When planning tensor migrations, our
algorithm tracks the estimated storage I/O bandwidth usage and calculates the reduction in memory
consumption in an I/O-aware manner (Line 4-5 and 16-17 in Algorithm 1).

Algorithm 1 Lifetime-Aware Tensor Migration Planning
Require: Set of tensor inactive periods I = {(ti, si, starti, endi)} where ti is tensor ID, si is size, and [starti, endi] defines the kernel

range of inactivity; GPU memory capacity MGPU ; Estimation of total amount of required GPU memory M = [m0,m1, ...,mN−1]
across N kernels; Kernel execution times T = [τ0, τ1, ..., τN−1]; I/O bandwidth usage states

Ensure: Migration plan list P = {(ti, trigger_time, deadline, target)}
1: Initialize migration plan list P = {} and estimation of required GPU memory M ′ = M
2: while peak memory consumption max(M ′) > MGPU do
3: for each inactive period (t, s, start, end) ∈ I do
4: Determine earliest feasible offload completion time toffloaded by analyzing available offloading bandwidth
5: Determine latest required prefetch start time tprefetch by analyzing available prefetching bandwidth
6: if toffloaded < tprefetch then
7: Identify critical memory pressure regions C = {k|M ′[k] > MGPU , k ∈ [toffloaded, tprefetch]}
8: Calculate the offloading benefit B = s ×

∑
k∈C τk

9: end if
10: end for
11: Select inactive period with best offloading cost-benefit (B/s)max

12: if no viable offloading candidate exists then
13: break
14: end if
15: Add migration plans (t, start, toffloaded, SSD/CPU) and (t, tprefetch, tprefetched, GPU) to P

16: Update M ′ by subtracting tensor size s from affected kernels
17: Update I/O bandwidth usage states
18: Remove selected inactive period from consideration
19: end while
20: return P

Quantify the benefit and cost of tensor offloading. To fully utilize the available I/O bandwidth, we
want to prioritize offloading large tensors with long inactive periods. Following this principle, our
algorithm searches for the best offloading candidate by estimating its benefit and cost. To quantify the
benefit, at a given time T, we define critical memory pressure as the part of GPU memory consumption
that exceeds the capacity. The benefit of a tensor migration is defined as the integral of the reduction
in critical memory pressure over time, as illustrated by the shaded area in Figure 6(b). We quantify
the cost as the sum of offloading and prefetching time of tensors. TERAIO’s migration algorithm
sorts all candidates by their benefit-to-cost ratio. It then selects the tensor with the highest ratio for
migration in the current iteration. This procedure is shown in Line 6-11 in Algorithm 1.
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Decide offloading destination. TERAIO prioritizes SSDs because of their large capacity and low
cost. When the estimated SSD bandwidth is saturated, TERAIO will make the best effort to migrate
tensors to the host memory. TERAIO allows users to define the maximum amount of host memory
that can be used for tensor migration. Internally, the migration algorithm tracks the estimated host
memory consumption. If it has already reached the user-defined limit, even if SSD bandwidth is
saturated, TERAIO will not offload tensors to the host memory.

Minimize kernel stalls. If the required GPU memory exceeds the available GPU memory capacity,
and TERAIO cannot offload tensors to SSDs or host memory, TERAIO will stall kernel execution to
wait for more inactive tensors to be offloaded. It will also wait for the tensors needed by the kernel to
be migrated back into GPU memory. This would cause storage I/O bandwidth contention. Since the
next kernel will stall until the needed tensors are migrated to GPU memory, these migrations should
complete as early as possible to avoid stalling the GPU training process. Therefore, TERAIO marks
these migrations that must finish before the next kernel as ‘urgent’. At runtime, the tensor migration
engine (§3.3) always prioritizes these urgent migrations over other pending migrations.

Table 1: Compilation
time for different models.

Model Time(s)
Llama3-8B 31.2
Granite-code-base-8B 37.9
Llama3-70B 396.6

Compilation cost. The overhead of generating tensor migration plans
based on the lifetime analysis is shown in Table 1. Although this com-
pilation step introduces additional latency, its cost is less significant in
practice because it enables efficient tensor offloading, which reduces
overall model training time. After the plan generation, we do not need to
recompile ML models, as the corresponding offloading and prefetching
instructions have been integrated into the execution graph. The details are described in Section 3.3.

3.3 Tensor Migration Engine Using GPUDirect Storage

To execute the migration plan, we need to locate the addresses of the tensors to be migrated, based on
the tensor identifier. TERAIO maintains a hashmap-based tensor location table in PyTorch to map
tensor identifiers to their current devices and addresses.

The migration engine migrates tensors between GPU memory and external memory. For tensor
migrations between GPU memory and SSDs, we use GPUDirect storage to achieve direct data
transfer between them. Our choice of GPUDirect storage is motivated by the potential scalability
limitations of host CPU in multi-GPU systems. For example, on an 8-GPU system, to achieve
near-ideal performance, each GPU requires 32 to 48 GB/s bidirectional bandwidth (see §2). With
GPUDirect storage, we can directly connect 8 SSDs to each GPU via PCIe Gen5 switches to meet
the bandwidth demand. For the conventional approach that uses the host CPU to first read data from
SSDs to the host memory, and then uses cudaMemcpy to move data to the GPU, the redundant data
copy not only causes performance overhead but also wastes precious CPU cycles [8, 33]. But as
discussed, TERAIO still supports migration between GPUs and CPU memory.

4 Experiments

We show that (1) TERAIO outperforms state-of-the-art offloading frameworks by 1.47× on average
when training LLMs that greatly exceed GPU memory capacity (§4.2); (2) Compared to the case
of training LLMs using only GPU memory, TERAIO reduces the cost by up to 5.41× (§4.3); (3)
Compared to existing offloading frameworks, TERAIO improves the cost efficiency by 1.45× on
average (§4.3); (4) TERAIO achieves better throughput than ZeRO-Infinity even with less CPU
memory and fewer SSDs (§4.4).

4.1 Experimental Setup

Models. We evaluate TERAIO with Llama3-8B, Llama3-70B [4], and Granite-code-base-8B [13]. We
use C4 [36] as our training dataset. To study how different memory demands impact the performance
of TERAIO, we use batch sizes ranging from 16 to 128 and sequence lengths from 1,024 to 8,192.

Hardware configuration and ML framework. Table 2 shows the hardware configuration used
in our experiments. Due to the limited PCIe slots on our machine, we can only install at most 8
PCIe SSDs. When evaluating TERAIO, we use 2 H100 GPUs and 2 RAID-0 arrays with 4 SSDs in
each array. Each RAID-0 array is logically assigned to one GPU, providing approximately 16 GB/s
bandwidth for tensor migrations. We use PyTorch 2.5.0 [30] and TorchTitan [22] to train LLMs.
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Table 2: Our GPU server configuration.
GPU 2× NVIDIA H100 NVL
GPU Memory 94GB HBM per GPU
CPU 2× AMD EPYC 9334
CPU Memory 1.5TB DDR5 (64GB ×24)
Interconnect PCIe Gen5
SSDs 8× Samsung 990 PRO 2TB
SSD Read/Write Bandwidth 6.7/6.5 GB/s per SSD

Baselines. We compare TERAIO with the Ideal case,
ZeRO-Offload, and ZeRO-Infinity. The Ideal case assumes
that all GPUs in the system have infinite on-board mem-
ory, which gives the theoretical best training performance.
ZeRO-Offload [39] and ZeRO-Infinity [37] are popular
offloading-based training systems. ZeRO-Offload offloads
tensors from GPU memory only to CPU memory, while
ZeRO-Infinity leverages both SSDs and CPU memory to expand GPU memory. TERAIO-SSD and
TERAIO-Mixed are two variations of TERAIO. TERAIO-SSD only migrates tensors to low-cost
SSDs, while TERAIO-Mixed uses both SSDs and CPU memory. To make a fair comparison, we let
TERAIO-Mixed use the same amount of CPU memory for tensor migration as ZeRO-Infinity. For
ZeRO, we preserve most of its default parameters and fine-tune several parameters to maximize its
throughput. We list its detailed configurations in Table 4 (Appendix B).

In our evaluation, we aim to compare TERAIO with the best performance achievable by ZeRO.
Therefore, for the parallelization strategy, we use tensor parallelism for ZeRO series, as it delivers
optimal multi-GPU training performance. Moreover, we split each batch into multiple micro-batches
in order to amortize the well-known performance bottleneck [16] of ZeRO’s CPU-based optimizers.
In addition, although activation checkpointing can reduce memory consumption, we disable it because
it degrades ZeRO’s training throughput.

In terms of training precision, we use full-precision training in all experiments. Though mixed-
precision training [26] is popular, the different memory requirements of the mixed-precision training
strategies used by TorchTitan and ZeRO will lead to an unfair comparison. Specifically, when we
enable mixed-precision training, in the ZeRO series, all tensors in the GPU are represented by 16-bit
floating points, while in TorchTitan, most tensors, including model weights, gradients, and optimizer
states still remain in 32-bit floating point format. Such differences in numerical formats of tensors
can lead to significant differences in GPU memory requirements for the same model, resulting in an
unfair scenario where TERAIO has to migrate larger tensors than ZeRO.

4.2 End-to-end Performance

We show the end-to-end average training throughput of Llama3-8B, Granite-code-base-8B and
Llama3-70B with different batch sizes and sequence lengths in Figure 7. On average, TERAIO
outperforms ZeRO-Offload and ZeRO-Infinity by 1.47×. Compared to the ideal system assuming
unlimited GPU memory, TERAIO achieves 80.7% of the ideal performance.
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(1). Average training throughput with different batch sizes.
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(2). Average training throughput with different sequence lengths.
Figure 7: Average training throughput of Llama3-8B, Granite-code-base-8B and Llama3-70B with
different batch sizes and sequence lengths. bs is the batch size. seq is the sequence length. M is the
overall peak memory consumption of the LLM training on one GPU w.r.t. the GPU memory capacity.
"×" means the framework failed to train this model due to out-of-memory errors.

Training throughput. As shown in Figure 7, when training Llama3-8B and Granite-8B, ZeRO-
Offload achieves 65.9% and 65.5% of the ideal performance, respectively. Though ZeRO-Infinity
takes extra time to migrate tensors further from CPU memory to SSDs, its training throughput
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is slightly lower than ZeRO-Offload. Such a subtle performance difference comes from the high
aggregate bandwidth of 8 SSDs and the relatively small sizes of optimizers and parameters offloaded
to SSDs. For Llama-70B, ZeRO-Offload fails because the host memory capacity is too small to store
offloaded tensors of such a large model. Since SSDs offer larger capacity, ZeRO-Infinity can still train
Llama3-70B. However, it only achieves 43.0% of the ideal performance, because its coarse-grained
offloading scheme cannot efficiently utilize the limited SSD bandwidth to migrate larger tensors.

TERAIO outperforms the ZeRO series by up to 1.59×. For Llama3-8B, both TERAIO-Mixed and
TERAIO-SSD can achieve near-ideal performance, demonstrating the effectiveness of our lifetime-
aware tensor migration algorithm in choosing the most beneficial tensor to migrate. Moreover,
we find that even though 2 H100 GPUs can provide sufficient GPU memory to train Llama3-8B
without memory expansion, TERAIO allows us to increase the (micro-)batch size, improving the
throughput by 9%. For Granite, TERAIO-SSD achieves similar performance to the ZeRO series,
while TERAIO-Mixed can still deliver near-ideal performance by utilizing CPU memory. The result
shows that as the model size increases, achieving near-ideal performance requires not only our
lifetime-aware tensor migration algorithm, but also migration bandwidth higher than what 4 SSDs
can provide. For Llama-70B, since its memory requirement significantly exceeds GPU memory
capacity, higher migration bandwidth is needed. Even TERAIO-Mixed can only achieve 59.7% of the
ideal performance. Nonetheless, it still outperforms ZeRO-Infinity by 1.33×.

Impact of varying batch size and sequence length. As batch size and sequence length vary,
the training throughput of TERAIO-Mixed is always the closest to the ideal throughput among all
offloading frameworks, while TERAIO-SSD delivers similar or better performance than the ZeRO
series. For the same model, increasing the batch size doesn’t raise memory requirements, since
each batch is split into micro-batches that contain the same number of training samples. However,
when the sequence length increases, the memory requirement also increases. Therefore, when the
sequence length is longer than 3,072, ZeRO-Infinity fails to train the model since the GPU memory
capacity is smaller than the activation tensors of the model. In contrast, TERAIO can train all model
configurations because it can offload any inactive tensor to save memory.

Breakdown of training time. To better understand the source of TERAIO’s performance gains, we
also show the breakdown of the end-to-end training time in Figure 8. It includes three components:
(a) the time when tensor migrations stall GPU computation, (b) the time when tensor migrations
overlap with GPU computation, and (c) the remaining GPU computation time.
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Figure 8: Latency breakdown of training iterations.

As shown in Figure 8, compared to ZeRO-Infinity, TERAIO-Mixed has less stall time, as it maximizes
the overlap of tensor migrations with computation. TERAIO-Mixed outperforms ZeRO-Infinity for
the design differences in offloading granularity and migration strategy. As for offloading granularity,
ZeRO-Infinity selects the offloading of tensors at the layer granularity of ML models. This introduces
burst I/O patterns and can underutilize migration bandwidth. In contrast, TERAIO selects tensor
offloading at the GPU kernel granularity based on our precise tensor lifetime analysis. This approach
ensures high and consistent migration bandwidth utilization, as shown in Figure 10 (Appendix C).
As for migration strategy, ZeRO-Infinity uses a heuristic-based policy to decide which tensors should
be offloaded and when the offloading should start, regardless of the storage bandwidth usage. It
lacks global optimization and produces unpredictable I/O patterns. In contrast, TeraIO quantifies the
benefit and cost of tensor offloading via I/O-aware planning (Section 3.2), which generates globally
optimized migration plans that maximize I/O bandwidth utilization.
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4.3 Training Cost

Table 3: Cost of each device used by TERAIO and other baselines for Llama3-
70B training. Prices are quoted from Exxact [5]. The PureGPUs setup contains
the minimum number of 8-GPU H100 servers capable for training Llama3-
70B without offloading tensors to host memory or SSDs.

Server (with 2 H100 GPUs)
with 128GB memory

Server (with 2 H100 GPUs)
with 1TB memory

2× Server (with 8 H100 GPUs)
with 128GB memory

8× Samsung 990PRO
SSD 2TB

Cost ($) 84,139.9 91,047.9 499,591.4 1,360
TeraIO-SSD ! !

TeraIO-Mixed ! !

ZeRO-Offload !

ZeRO-Infinity ! !

PureGPUs !

To evaluate the cost
of TERAIO, we sum-
marize the prices
of different devices
used in each base-
line setup in Ta-
ble 3. TERAIO-SSD
needs a server with
only 128GB of CPU
memory and 8 SSDs
since it migrates ten-
sors only to SSDs, while TERAIO-Mixed uses both SSDs and 1TB CPU memory for more efficient
tensor migration. Since ZeRO-Offload and ZeRO-Infinity consume a large amount of CPU memory
to train LLMs, they both need a server with 1TB of memory. ZeRO-Infinity additionally uses 8
SSDs in our evaluation. We also compare with the PureGPU setup, in which all tensors are kept
within GPU memory. To provide enough GPU memory to train Llama3-70B in this setup, we need to
pay $499,591.40 for two servers, each equipped with 8 H100 GPUs. In comparison, TERAIO-SSD
and TERAIO-Mixed save costs by 5.88× and 5.41×, respectively. Compared to ZeRO-Offload
and ZeRO-Infinity, since we have similar machine setups, TERAIO’s 1.47× training performance
improvement translates into 1.45× and 1.47× improved cost efficiency, respectively.

4.4 Impact of Varying Number of SSDs and CPU Memory Capacity
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Figure 9: Training throughput as we vary the CPU
memory capacity and the number of SSDs per GPU.

Figure 9 shows the training throughput
of TERAIO as we vary the available CPU
memory capacity and the number of SSDs
used for each GPU. The performance of
TERAIO scales favorably as we increase
the number of SSDs or the CPU memory
capacity. For Llama-8B, TERAIO achieves
near ideal performance with only 2 SSDs
and 64 GB of CPU memory. Even for
Llama-70B, we observe that using only 2
SSDs and 512GB of CPU memory can still achieve 73.1% of the training throughput obtained with 4
SSDs and 1,024GB of CPU memory. These results validate our LLM characterization study’s key
observation: with lifetime-aware tensor offloading, we can achieve good performance even with
limited hardware resources.

Compared to ZeRO-Infinity, TERAIO significantly reduces the CPU memory capacity requirement
while achieving better performance. ZeRO-Infinity requires 170GB and 770GB of CPU memory to
train Llama-8B and Llama-70B, respectively, as it has to offload gradients and optimizers into CPU.
In comparison, TERAIO achieves better performance even with more limited hardware resources, as
it efficiently utilizes both the large capacity of SSDs and extra bandwidth of CPU memory.

5 Conclusion

We present TERAIO, a lifetime-aware tensor offloading framework that can accurately plan and
execute fine-grained tensor offloading and prefetching instructions for LLM training. With predictable
tensor activity patterns, TERAIO best utilizes precious GPU memory for accelerating GPU training
process, while leveraging large-capacity SSDs for lowering training cost. Compared to existing tensor
offloading work, TERAIO provides a more practical and cost-efficient solution for LLM training.

Acknowledgment

We thank the anonymous reviewers for their insightful feedback. We thank the members in the
Systems Platform Research Group (Illinois PlatformX) at UIUC for constructive discussions. This
work was partially supported by the Hybrid Cloud and AI program at the IBM-Illinois Discovery
Accelerator Institute (IIDAI), and NSF under the grants CAREER CNS-2144796 and CCF-2107470.

10



References
[1] Jonghyun Bae, Jongsung Lee, Yunho Jin, Sam Son, Shine Kim, Hakbeom Jang, Tae Jun Ham,

and Jae W Lee. {FlashNeuron}:{SSD-Enabled}{Large-Batch} training of very deep neural
networks. In 19th USENIX Conference on File and Storage Technologies (FAST 21), pages
387–401, 2021.

[2] Olivier Beaumont, Lionel Eyraud-Dubois, and Alena Shilova. Efficient combination of remateri-
alization and offloading for training dnns. Advances in Neural Information Processing Systems,
34:23844–23857, 2021.

[3] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of
deep bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805,
2018.

[4] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,
Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd
of models. arXiv preprint arXiv:2407.21783, 2024.

[5] EXXACT. Exxact. https://www.exxactcorp.com/, 2025.

[6] Talia Gershon, Seetharami Seelam, Brian Belgodere, Milton Bonilla, Lan Hoang, Danny Barnett,
I-Hsin Chung, Apoorve Mohan, Ming-Hung Chen, Lixiang Luo, Robert Walkup, Constantinos
Evangelinos, Shweta Salaria, Marc Dombrowa, Yoonho Park, Apo Kayi, Liran Schour, Alim
Alim, Ali Sydney, Pavlos Maniotis, Laurent Schares, Bernard Metzler, Bengi Karacali-Akyamac,
Sophia Wen, Tatsuhiro Chiba, Sunyanan Choochotkaew, Takeshi Yoshimura, Claudia Misale,
Tonia Elengikal, Kevin O Connor, Zhuoran Liu, Richard Molina, Lars Schneidenbach, James
Caden, Christopher Laibinis, Carlos Fonseca, Vasily Tarasov, Swaminathan Sundararaman,
Frank Schmuck, Scott Guthridge, Jeremy Cohn, Marc Eshel, Paul Muench, Runyu Liu, William
Pointer, Drew Wyskida, Bob Krull, Ray Rose, Brent Wolfe, William Cornejo, John Walter, Colm
Malone, Clifford Perucci, Frank Franco, Nigel Hinds, Bob Calio, Pavel Druyan, Robert Kilduff,
John Kienle, Connor McStay, Andrew Figueroa, Matthew Connolly, Edie Fost, Gina Roma, Jake
Fonseca, Ido Levy, Michele Payne, Ryan Schenkel, Amir Malki, Lion Schneider, Aniruddha
Narkhede, Shekeba Moshref, Alexandra Kisin, Olga Dodin, Bill Rippon, Henry Wrieth, John
Ganci, Johnny Colino, Donna Habeger-Rose, Rakesh Pandey, Aditya Gidh, Aditya Gaur, Dennis
Patterson, Samsuddin Salmani, Rambilas Varma, Rumana Rumana, Shubham Sharma, Aditya
Gaur, Mayank Mishra, Rameswar Panda, Aditya Prasad, Matt Stallone, Gaoyuan Zhang, Yikang
Shen, David Cox, Ruchir Puri, Dakshi Agrawal, Drew Thorstensen, Joel Belog, Brent Tang,
Saurabh Kumar Gupta, Amitabha Biswas, Anup Maheshwari, Eran Gampel, Jason Van Patten,
Matthew Runion, Sai Kaki, Yigal Bogin, Brian Reitz, Steve Pritko, Shahan Najam, Surya
Nambala, Radhika Chirra, Rick Welp, Frank DiMitri, Felipe Telles, Amilcar Arvelo, King
Chu, Ed Seminaro, Andrew Schram, Felix Eickhoff, William Hanson, Eric Mckeever, Michael
Light, Dinakaran Joseph, Piyush Chaudhary, Piyush Shivam, Puneet Chaudhary, Wesley Jones,
Robert Guthrie, Chris Bostic, Rezaul Islam, Steve Duersch, Wayne Sawdon, John Lewars,
Matthew Klos, Michael Spriggs, Bill McMillan, George Gao, Ashish Kamra, Gaurav Singh,
Marc Curry, Tushar Katarki, Joe Talerico, Zenghui Shi, Sai Sindhur Malleni, and Erwan Gallen.
The infrastructure powering ibm’s gen ai model development, 2025.

[7] Google. T5 11b. https://huggingface.co/google-t5/t5-11b, 2025.

[8] GPUDirect Storage: A Direct Path Between Storage and GPU Memory. https://developer.
nvidia.com/blog/gpudirect-storage/.

[9] Mark Hildebrand, Jawad Khan, Sanjeev Trika, Jason Lowe-Power, and Venkatesh Akella.
Autotm: Automatic tensor movement in heterogeneous memory systems using integer linear
programming. In Proceedings of the Twenty-Fifth International Conference on Architectural
Support for Programming Languages and Operating Systems, pages 875–890, 2020.

[10] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv
preprint arXiv:2106.09685, 2021.

11

https://www.exxactcorp.com/
https://huggingface.co/google-t5/t5-11b
https://developer.nvidia.com/blog/gpudirect-storage/
https://developer.nvidia.com/blog/gpudirect-storage/


[11] Chien-Chin Huang, Gu Jin, and Jinyang Li. Swapadvisor: Pushing deep learning beyond
the gpu memory limit via smart swapping. In Proceedings of the Twenty-Fifth International
Conference on Architectural Support for Programming Languages and Operating Systems,
pages 1341–1355, 2020.

[12] Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V Le, Yonghui Wu, et al. Gpipe: Efficient training of giant
neural networks using pipeline parallelism. Advances in neural information processing systems,
32, 2019.

[13] IBM. Ibm granite. https://huggingface.co/ibm-granite, 2025.

[14] Joseph Izraelevitz, Jian Yang, Lu Zhang, Juno Kim, Xiao Liu, Amirsaman Memaripour,
Yun Joon Soh, Zixuan Wang, Yi Xu, Subramanya R Dulloor, et al. Basic performance mea-
surements of the intel optane dc persistent memory module. arXiv preprint arXiv:1903.05714,
2019.

[15] Paras Jain, Ajay Jain, Aniruddha Nrusimha, Amir Gholami, Pieter Abbeel, Joseph Gonzalez,
Kurt Keutzer, and Ion Stoica. Checkmate: Breaking the memory wall with optimal tensor
rematerialization. Proceedings of Machine Learning and Systems, 2:497–511, 2020.

[16] Hongsun Jang, Jaeyong Song, Jaewon Jung, Jaeyoung Park, Youngsok Kim, and Jinho Lee.
Smart-infinity: Fast large language model training using near-storage processing on a real
system. In 2024 IEEE International Symposium on High-Performance Computer Architecture
(HPCA), pages 345–360. IEEE, 2024.

[17] Jaehoon Jung, Jinpyo Kim, and Jaejin Lee. Deepum: Tensor migration and prefetching in
unified memory. In Proceedings of the 28th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems, Volume 2, pages 207–221, 2023.

[18] Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B Brown, Benjamin Chess, Rewon Child,
Scott Gray, Alec Radford, Jeffrey Wu, and Dario Amodei. Scaling laws for neural language
models. arXiv preprint arXiv:2001.08361, 2020.

[19] Youngeun Kwon and Minsoo Rhu. Beyond the memory wall: A case for memory-centric
hpc system for deep learning. In Proceedings of the 51st Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO’18), Fukuoka, Japan, 2018.

[20] Tung D Le, Haruki Imai, Yasushi Negishi, and Kiyokuni Kawachiya. Tflms: Large model
support in tensorflow by graph rewriting. arXiv preprint arXiv:1807.02037, 2018.

[21] Shaobo Li, Yirui Eric Zhou, Yuqi Xue, Yuan Xu, and Jian Huang. Managing scalable direct
storage accesses for gpus with gofs. In Proceedings of the ACM SIGOPS 31st Symposium
on Operating Systems Principles, SOSP ’25, page 979–995, New York, NY, USA, 2025.
Association for Computing Machinery.

[22] Wanchao Liang, Tianyu Liu, Less Wright, Will Constable, Andrew Gu, Chien-Chin Huang,
Iris Zhang, Wei Feng, Howard Huang, Junjie Wang, et al. Torchtitan: One-stop pytorch native
solution for production ready llm pre-training. arXiv preprint arXiv:2410.06511, 2024.

[23] Changyue Liao, Mo Sun, Zihan Yang, Kaiqi Chen, Binhang Yuan, Fei Wu, and Zeke Wang.
Adding nvme ssds to enable and accelerate 100b model fine-tuning on a single gpu. arXiv
preprint arXiv:2403.06504, 2024.

[24] Jonas Markussen, Lars Bjørlykke Kristiansen, Pål Halvorsen, Halvor Kielland-Gyrud,
Håkon Kvale Stensland, and Carsten Griwodz. Smartio: Zero-overhead device sharing through
pcie networking. ACM Transactions on Computer Systems, 38(1–2), jul 2021.

[25] Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAI Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

[26] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich Elsen, David Garcia,
Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh Venkatesh, et al. Mixed precision
training. arXiv preprint arXiv:1710.03740, 2017.

12

https://huggingface.co/ibm-granite


[27] Apoorve Mohan, Robert Walkup, Bengi Karacali, Ming-hung Chen, Abdullah Kayi, Liran
Schour, Shweta Salaria, Sophia Wen, I-hsin Chung, Abdul Alim, Constantinos Evangelinos,
Lixiang Luo, Marc Dombrowa, Laurent Schares, Ali Sydney, Pavlos Maniotis, Sandhya Kotesh-
wara, Brent Tang, Joel Belog, Rei Odaira, Vasily Tarasov, Eran Gampel, Drew Thorstensen,
Talia Gershon, and Seetharami Seelam. Vela: A Virtualized LLM Training System with GPU
Direct RoCE, page 1348–1364. Association for Computing Machinery, New York, NY, USA,
2025.

[28] Deepak Narayanan, Aaron Harlap, Amar Phanishayee, Vivek Seshadri, Nikhil R Devanur,
Gregory R Ganger, Phillip B Gibbons, and Matei Zaharia. Pipedream: Generalized pipeline
parallelism for dnn training. In Proceedings of the 27th ACM symposium on operating systems
principles, pages 1–15, 2019.

[29] Xiaonan Nie, Yi Liu, Fangcheng Fu, Jinbao Xue, Dian Jiao, Xupeng Miao, Yangyu Tao, and
Bin Cui. Angel-ptm: A scalable and economical large-scale pre-training system in tencent.
arXiv preprint arXiv:2303.02868, 2023.

[30] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward Yang, Zachary DeVito,
Zeming Lin, Alban Desmaison, Luca Antiga, and Adam Lerer. Automatic differentiation in
pytorch. In NIPS-W, 2017.

[31] William Peebles and Saining Xie. Scalable diffusion models with transformers. In Proceedings
of the IEEE/CVF International Conference on Computer Vision, pages 4195–4205, 2023.

[32] Bharadwaj Pudipeddi, Maral Mesmakhosroshahi, Jinwen Xi, and Sujeeth Bharadwaj. Training
large neural networks with constant memory using a new execution algorithm. arXiv preprint
arXiv:2002.05645, 2020.

[33] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Masood, Jeong-
min Park, Jinjun Xiong, C. J. Newburn, Dmitri Vainbrand, I-Hsin Chung, Michael Garland,
William Dally, and Wen-mei Hwu. Gpu-initiated on-demand high-throughput storage access
in the bam system architecture. In Proceedings of the 28th ACM International Conference on
Architectural Support for Programming Languages and Operating Systems, Volume 2, ASPLOS
2023, page 325–339, New York, NY, USA, 2023. Association for Computing Machinery.

[34] Zaid Qureshi, Vikram Sharma Mailthody, Isaac Gelado, Seungwon Min, Amna Masood, Jeong-
min Park, Jinjun Xiong, Chris J Newburn, Dmitri Vainbrand, I-Hsin Chung, et al. Gpu-initiated
on-demand high-throughput storage access in the bam system architecture. In Proceedings of
the 28th ACM International Conference on Architectural Support for Programming Languages
and Operating Systems, Volume 2, pages 325–339, 2023.

[35] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[36] Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena,
Yanqi Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified
text-to-text transformer. Journal of machine learning research, 21(140):1–67, 2020.

[37] Samyam Rajbhandari, Olatunji Ruwase, Jeff Rasley, Shaden Smith, and Yuxiong He. Zero-
infinity: Breaking the gpu memory wall for extreme scale deep learning. In Proceedings of the
International Conference for High Performance Computing, Networking, Storage and Analysis,
St. Louis, Missouri, 2021.

[38] Jie Ren, Jiaolin Luo, Kai Wu, Minjia Zhang, Hyeran Jeon, and Dong Li. Sentinel: Efficient
tensor migration and allocation on heterogeneous memory systems for deep learning. In 2021
IEEE International Symposium on High-Performance Computer Architecture (HPCA), pages
598–611. IEEE, 2021.

[39] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. {Zero-offload}: Democratizing {billion-scale} model
training. In 2021 USENIX Annual Technical Conference (USENIX ATC 21), pages 551–564,
2021.

13



[40] Jie Ren, Samyam Rajbhandari, Reza Yazdani Aminabadi, Olatunji Ruwase, Shuangyan Yang,
Minjia Zhang, Dong Li, and Yuxiong He. Zero-offload: Democratizing billion-scale model
training. CoRR, abs/2101.06840, 2021.

[41] Minsoo Rhu, Natalia Gimelshein, Jason Clemons, Arslan Zulfiqar, and Stephen W Keckler.
vdnn: Virtualized deep neural networks for scalable, memory-efficient neural network design.
In 2016 49th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 1–13. IEEE, 2016.

[42] Manish Shetty, Yinfang Chen, Gagan Somashekar, Minghua Ma, Yogesh Simmhan, Xuchao
Zhang, Jonathan Mace, Dax Vandevoorde, Pedro Las-Casas, Shachee Mishra Gupta, et al.
Building ai agents for autonomous clouds: Challenges and design principles. In Proceedings of
the 2024 ACM Symposium on Cloud Computing, pages 99–110, 2024.

[43] Xiaoyang Sun, Wei Wang, Shenghao Qiu, Renyu Yang, Songfang Huang, Jie Xu, and Zheng
Wang. Stronghold: fast and affordable billion-scale deep learning model training. In SC22:
International Conference for High Performance Computing, Networking, Storage and Analysis,
pages 1–17. IEEE, 2022.

[44] Linnan Wang, Jinmian Ye, Yiyang Zhao, Wei Wu, Ang Li, Shuaiwen Leon Song, Zenglin Xu,
and Tim Kraska. Superneurons: Dynamic gpu memory management for training deep neural
networks. In Proceedings of the 23rd ACM SIGPLAN symposium on principles and practice of
parallel programming, pages 41–53, 2018.

[45] Bingyang Wu, Ruidong Zhu, Zili Zhang, Peng Sun, Xuanzhe Liu, and Xin Jin. {dLoRA}:
Dynamically orchestrating requests and adapters for {LoRA}{LLM} serving. In 18th USENIX
Symposium on Operating Systems Design and Implementation (OSDI 24), pages 911–927, 2024.

[46] Duo Wu, Xianda Wang, Yaqi Qiao, Zhi Wang, Junchen Jiang, Shuguang Cui, and Fangxin
Wang. Netllm: Adapting large language models for networking. In Proceedings of the ACM
SIGCOMM 2024 Conference, pages 661–678, 2024.

[47] Kun Wu, Jeongmin Brian Park, Xiaofan Zhang, Mert Hidayetoğlu, Vikram Sharma Mailthody,
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We organize our appendix as follows:

1. Appendix A provides an extended discussion of related work.

2. Appendix B provides an detailed settings of the ZeRO baseline used in our evaluation.

3. Appendix C provides a set of additional results.

4. Appendix D discusses the limitation of our work.

5. Appendix E lists the licenses of code and datasets we used in our work.

A Related Work

A.1 Expanding GPU Memory

To overcome the GPU memory wall issue, researchers have expanded GPU memory with CPU
memory, persistent memory, and SSDs. Previously, when models were smaller, expanding GPU
memory solely with CPU memory [17, 39, 11, 44, 32, 41, 43, 20] is reasonable. However, expanding
GPU memory with host CPU memory only is expensive. As recent LLMs become increasingly large,
CPU memory cannot provide enough capacity. Therefore, researchers have proposed to use persistent
memory [14] to expand GPU memory [38, 9, 52]. Alternatively, to obtain even larger capacity, SSDs
[1, 49, 37, 16, 23, 47, 51, 29, 50] are also used to expand GPU memory.

Compared to existing studies, TERAIO utilizes both SSDs and CPU memory for tensor migration. It
allows users to flexibly define the maximum CPU memory used for LLM training, our lifetime-aware
tensor migration algorithm helps achieve better training performance by generating optimized tensor
migration plans.

A.2 Memory Efficient LLM Training

Besides tensor offloading discussed in this paper, many memory-efficient training techniques are
widely used in pre-training and fine-tuning, such as activation checkpointing [15, 12, 48, 2], Low-
Rank Adaptation (LoRA) [10, 45]. Activation checkpointing balances memory consumption and
computation time by partially recomputing the forward propagation during backward propagation,
which slows down training. In contrast, TERAIO enables LLM training without recomputation. LoRA
reduces the number of trainable parameters during LLM fine-tuning. TERAIO can be combined with
LoRA to further reduce memory consumption and is also suitable for pre-training.

A.3 LLM Training Infranstructure

Recent studies have developed large-scale training infrastructures for LLMs. For example, Vela [27]
introduces a virtualized training system that employs GPUDirect over RoCE networks to reduce
communication overhead and improve scalability across multi-node clusters. IBM’s Gen AI training
platform [6] provides a production-ready stack with distributed scheduling, optimized I/O pipelines,
and efficient resource management for foundation model training.

These systems focus primarily on distributed orchestration and communication efficiency. TERAIO
is orthogonal to these works and can be seamlessly integrated with such infrastructures to alleviate
GPU memory limitations. By enabling smart tensor migration, TERAIO enhances memory scalability
without requiring changes to communication layers or cluster management frameworks.

B ZeRO Settings

We show the performance-critical parameters in the table below. With these settings, we ensure
ZeRO-Infinity achieves reasonable performance with our hardware setup.

We enabled the pipeline_read/write parameters to optimize computation and data I/O over-
lap during optimizer state updates. We tuned parameters pin_memory, buffer_count, and
buffer_size to optimize tensor offloading throughput. For param_persistence_threshold
and model_persistence_threshold, we use their default values.
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Table 4: Detailed ZeRO settings used in evaluation.
Parameter Value Description
stage 3 Uses Zero-3

pipeline_read/write True Overlaps read/write of next/previous tile with
computation of current tile

pin_memory True Uses page-locked CPU memory for faster transfers
buffer_count 4 Number of async I/O buffers for optimizer states
buffer_count 18 Number of async I/O buffers for parameters
buffer_size 300/540M Size of each parameter buffer
param_persistence_threshold 100K Do not partition parameters smaller than this
model_persistence_threshold sys.maxsize Upper bound of unpartitioned parameters

C Additional Evaluation Results
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Figure 10: The memory usage breakdown and average migration bandwidth utilization when training
the Granite-code-base-8B model and the Llama3-70B model in TERAIO-Mixed.

Migration bandwidth utilization. Figure 10 shows that TERAIO maintains high utilization of
bidirectional migration bandwidth for most of the training time, thanks to our I/O-aware migration
algorithm. This is particularly true when we train large models that require more memory and higher
tensor migration traffic. Specifically, Granite and Llama3-70B utilize more than 16 GB/s migration
bandwidth for more than 64% and 82.3% of the training time, respectively.

Host resource utilization. GDS provides significant scalability advantages by eliminating host
resource contention. Without GDS, tensor offloading frameworks suffer from scalability bottlenecks.
We validate this by measuring host resource usage as we scale the number of GPUs and SSDs.
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Figure 11: Host resource utilization. The measured CPU usage is relative to a single core.

As shown in Figure 11, host CPU usage increases linearly with the increasing number of GPUs and
SSDs. With 2 GPUs and 4 SSDs per GPU, over 100 GB/s of host memory bandwidth is consumed,
and more than 3 cores are fully used. This is because host memory is used as a bounce buffer
for data transfers between GPUs and SSDs. When GDS is enabled, the host CPU consumption is
significantly reduced. The host CPU utilization is reduced by 12.3% and host memory bandwidth
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usage is decreased by 97.4% on average. As TERAIO aims to achieve low-cost LLM training, it is
critical to minimize the use of host CPU and memory resources.

D Limitations

Our current implementation of GDS uses NVIDIA’s cuFile library which still relies on the host
file system to manage SSDs (e.g., filesystem metadata operations). Recent GDS studies such as
GPU-initialized storage [24, 34] and GoFS [21] allow the GPU to fully bypass the host CPU by
moving both the control path and data path for interacting with SSDs to the GPU. We wish to employ
these studies to further reduce the overheads at the host side.

Although NVLink-C2C in NVIDIA Grace systems provides high GPU-CPU bandwidth, the memory
capacity is still hard to scale, due to the fundamental DRAM scaling walls (physical limitations,
power wall, and architecture constraints). As the memory capacity is insufficient for large models,
expanding the GPU/host memory with low-cost and scalable SSDs ($0.2/GB for SSDs vs. $4/GB
for DRAM on average) has become a practical and promising solution. Even if the cost is not a
concern, our lifetime-aware tensor offloading approach can be applied to new and emerging memory
technologies such as CXL memory. By expanding the GPU/host memory with external memory
devices via CXL, new performance tradeoffs need to be considered, as the bandwidth and latency
of accessing CXL memory vs. SSDs are different. We wish to extend TERAIO with new memory
technologies as future work.

E Code and Datasets License

Codebase. Our model implementation is based on the Huggingface transformer repo (Apache-2.0
License) and the Torchtitan repo (BSD 3-Clause License).

Our framework implementation is based on Pytorch (BSD 3-Clause License).

The ZeRO series baselines we evaluated are from Megatron-DeepSpeed repo (Apache 2.0 License).

Datasets. We train the models using the C4 dataset (ODC-BY License).
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The main claims in the abstract and introduction accurately summarize the
paper’s contributions and scope.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We discussed the limitations of our work in Appendix D.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
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• The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification: No theory is included in the paper.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We introduced detailed models, hardware configurations, ML frameworks, and
baselines in §4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
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• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: We submit the code in the supplemental materials.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
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Answer: [Yes]
Justification: We presented all the training hyperparameters in §4.1. The hardware configu-
ration for training all baselines are listed in Table 2. For each batch size and sequence length,
we select the best hyperparameter for each baseline. We use AdamW as the optimizer and
C4 as the dataset for all training tasks.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: Training LLMs incurs significant costs. Although we did not train for hundreds
of iterations, we conducted experiments across multiple LLMs, batch sizes, sequence lengths,
and memory and storage configurations. The consistent results across these settings serve as
a form of repeated evaluation and support the robustness of our findings.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: The paper provides information on the compute resources in §4.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
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• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: We checked that our paper conform with the NeurIPS Code of Ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: For organizations and companies with ample GPU resources, our work enables
training or fine-tuning LLMs with larger batch sizes, leading to better GPU utilization.
For smaller organizations and educational institutions that previously faced barriers due to
limited resources, our work lowers the cost of access to LLMs.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: No model or dataset is released in this paper.
Guidelines:
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• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We included the license for the used code and datasets in Appendix E.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper does not release new assets.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

23

paperswithcode.com/datasets


Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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