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Abstract

Neural network-based Combinatorial Optimization (CO) methods have shown
promising results in solving various NP-complete (NPC) problems without relying
on hand-crafted domain knowledge. This paper broadens the current scope of
neural solvers for NPC problems by introducing a new graph-based diffusion
framework, namely DIFUSCO. Our framework casts NPC problems as discrete
{0, 1}-vector optimization problems and leverages graph-based denoising diffusion
models to generate high-quality solutions. We investigate two types of diffusion
models with Gaussian and Bernoulli noise, respectively, and devise an effective
inference schedule to enhance the solution quality. We evaluate our methods on
two well-studied NPC combinatorial optimization problems: Traveling Salesman
Problem (TSP) and Maximal Independent Set (MIS). Experimental results show
that DIFUSCO strongly outperforms the previous state-of-the-art neural solvers,
improving the performance gap between ground-truth and neural solvers from
1.76% to 0.46% on TSP-500, from 2.46% to 1.17% on TSP-1000, and from
3.19% to 2.58% on TSP-10000. For the MIS problem, DIFUSCO outperforms the
previous state-of-the-art neural solver on the challenging SATLIB benchmark.

1 Introduction

Combinatorial Optimization (CO) problems are mathematical problems that involve finding the
optimal solution in a discrete space. They are fundamental challenges in computer science, especially
the NP-Complete (NPC) class of problems, which are believed to be intractable in polynomial time.
Traditionally, NPC solvers rely on integer programming (IP) or hand-crafted heuristics, which demand
significant expert efforts to approximate near-optimal solutions [4, 31].

Recent development in deep learning has shown new promise in solving NPC problems. Existing
neural CO solvers for NPC problems can be roughly classified into three categories based on how
the solutions are generated, i.e., the autoregressive constructive solvers, the non-autoregressive
constructive solvers, and the improvement heuristics solvers. Methods in the first category use
autoregressive factorization to sequentially grow a valid partial solution [6, 64]. Those methods
typically suffer from the costly computation in their sequential decoding parts and hence are difficult
to scale up to large problems [27]. Methods in the second category rely on non-autoregressive
modeling for scaling up, with a conditional independence assumption among variables as typical
[53, 55, 92]. Such an assumption, however, unavoidably limits the capability of those methods
to capture the multimodal nature of the problems [57, 33], for example, when multiple optimal
solutions exists for the same graph. Methods in the third category (improvement heuristics solvers)
use a Markov decision process (MDP) to iteratively refines an existing feasible solution with neural
network-guided local operations such as 2-opt [71, 2] and node swap [17, 113]. These methods

*Our code is available at https://github. com/Edward-Sun/DIFUSCO.

37th Conference on Neural Information Processing Systems (NeurIPS 2023).


https://github.com/Edward-Sun/DIFUSCO

have also suffered from the difficulty in scaling up and the latency in inference, partly due to the
sparse rewards and sample efficiency issues when learning improvement heuristics in a reinforcement
learning (RL) framework [113, 79].

Motivated by the recent remarkable success of diffusion models in probabilistic generation [102, 40,
94, 120, 96], we introduce a novel approach named DIFUSCO, which stands for the graph-based
DIFfUsion Solvers for Combinatorial Optimization. To apply the iterative denoising process of
diffusion models to graph-based settings, we formulate each NPC problem as to find a {0, 1}-valued
vector that indicates the optimal selection of nodes or edges in a candidate solution for the task. Then
we use a message passing-based graph neural network [61, 36, 29, 107] to encode each instance
graph and to denoise the corrupted variables. Such a graph-based diffusion model overcomes the
limitations of previous neural NPC solvers from a new perspective. Firstly, DIFUSCO can perform
inference on all variables in parallel with a few (< N) denoising steps (Sec. 3.3), avoiding the
sequential generation problem of autoregressive constructive solvers. Secondly, DIFUSCO can model
a multimodal distribution via iterative refinements, which alleviates the expressiveness limitation
of previous non-autoregressive constructive models. Last but not least, DIFUSCO is trained in an
efficient and stable manner with supervised denoising (Sec. 3.2), which solves the training scalability
issue of RL-based improvement heuristics methods.

‘We should point out that the idea of utilizing a diffusion-based generative model for NPC problems
has been explored recently in the literature. In particular, Graikos et al. [32] proposed an image-based
diffusion model to solve Euclidean Traveling Salesman problems by projecting each TSP instance
onto a 64 x 64 greyscale image space and then using a Convolutional Neural Network (CNN) to
generate the predicted solution image. The main difference between such image-based diffusion
solver and our graph-based diffusion solver is that the latter can explicitly model the node/edge
selection process via the corresponding random variables, which is a natural design choice for
formulating NPC problems (since most of them are defined over a graph), while the former does not
support such a desirable formalism. Although graph-based modeling has been employed with both
constructive [64] and improvement heuristics [20] solvers, how to use graph-based diffusion models
for solving NPC problems has not been studied before, to the best of our knowledge.

We investigate two types of probabilistic diffusion modeling within the DIFUSCO framework:
continuous diffusion with Gaussian noise [16] and discrete diffusion with Bernoulli noise [5, 44].
These two types of diffusion models have been applied to image processing but not to NPC problems
so far. We systematically compare the two types of modeling and find that discrete diffusion performs
better than continuous diffusion by a significant margin (Section 4). We also design an effective
inference strategy to enhance the generation quality of the discrete diffusion solvers.

Finally, we demonstrate that a single graph neural network architecture, namely the Anisotropic
Graph Neural Network [9, 54], can be used as the backbone network for two different NP-complete
combinatorial optimization problems: Traveling Salesman Problem (TSP) and Maximal Independent
Set (MIS). Our experimental results show that DIFUSCO outperforms previous probabilistic NPC
solvers on benchmark datasets of TSP and MIS problems with various sizes.

2 Related Work

2.1 Autoregressive Construction Heuristics Solvers

Autoregressive models have achieved state-of-the-art results as constructive heuristic solvers for
combinatorial optimization (CO) problems, following the recent success of language modeling in the
text generation domain [106, 11]. The first approach proposed by Bello et al. [6] uses a neural network
with reinforcement learning to append one new variable to the partial solution at each decoding step
until a complete solution is generated. However, autoregressive models [64] face high time and space
complexity challenges for large-scale NPC problems due to their sequential generation scheme and
quadratic complexity in the self-attention mechanism [106].

2.2 Non-autoregressive Construction Heuristics Solvers

Non-autoregressive (or heatmap) constructive heuristics solvers [53, 27, 28, 92] are recently proposed
to address this scalability issue by assuming conditional independence among variables in NPC
problems, but this assumption limits the ability to capture the multimodal nature [57, 33] of high-



quality solution distributions. Therefore, additional active search [0, 92] or Monte-Carlo Tree Search
(MCTS) [27, 98] are needed to further improve the expressive power of the non-autoregressive
scheme.

DIFUSCO can be regarded as a member in the non-autoregressive constructive heuristics category
and thus can be benefited from heatmap search techniques such as MCTS. But DIFUSCO uses an
iterative denoising scheme to generate the final heatmap, which significantly enhances its expressive
power compared to previous non-autoregressive methods.

2.3 Diffusion Models for Discrete Data

Typical diffusion models [100, 102, 40, 103, 85, 56] operate in the continuous domain, progressively
adding Gaussian noise to the clean data in the forward process, and learning to remove noises in the
reverse process in a discrete-time framework.

Discrete diffusion models have been proposed for the generation of discrete image bits or texts using
binomial noises [100] and multinomial/categorical noises [5, 44]. Recent research has also shown the
potential of discrete diffusion models in sound generation [ | 8], protein structure generation [77],
molecule generation [108], and better text generation [52, 38].

Another line of work studies diffusion models for discrete data by applying continuous diffusion
models with Gaussian noise on the embedding space of discrete data [30, 69, 24], the {—1.0, 1.0}
real-number vector space [16], and the simplex space [37]. The most relevant work might be Niu
et al. [86], which proposed a continuous score-based generative framework for graphs, but they only
evaluated simple non-NP-hard CO tasks such as Shortest Path and Maximum Spanning Tree.

3 DIFUSCO: Proposed Approach

3.1 Problem Definition

Following a conventional notation [88], we define X; = {0, 1}N as the space of candidate solutions
{x} for a CO problem instance s, and ¢, : X5 — R as the objective function for solution x € Xj:

¢s(x) = cost(x, s) + valid(x, s). e
Here cost(-) is the task-specific cost of a candidate solution (e.g., the tour length in TSP), which is
often a simple linear function of x in most NP-complete problems, and valid(-) is the validation term
that returns O for a feasible solution and +oo for an invalid one. The optimization objective is to find
the optimal solution x** for a given instance s as:

x** = argrfvlin cs(x). )
XEX;

This framework is generically applicable to different NPC problems. For example, for the Traveling
Salesman Problem (TSP), x € {0, l}N is the indicator vector for selecting a subset from N edges;

the cost of this subset is calculated as: costrsp(x,s) =D, x; - dES), where dES) denotes the weight
of the i-th edge in problem instance s, and the valid(-) part of Formula (1) ensures that x is a tour that
visits each node exactly once and returns to the starting node at the end. For the Maximal Independent
Set (MIS) problem, x € {0, 1}N is the indicator vector for selecting a subset from /N nodes; the cost
of the subset is calculated as: costans(x,s) = Y, (1 — x;),, and the corresponding valid(-) validates
x is an independent set where each node in the set has no connection to any other node in the set.

Probabilistic neural NPC solvers [6] tackle instance problem s by defining a parameterized condi-
tional distribution pg(x|s), such that the expected cost ) | . ¢s(x) - p(x/s) is minimized. Such
probabilistic generative models are usually optimized by reinforcement learning algorithms [111, 63].
In this paper, assuming the optimal (or high-quality) solution x} is available for each training in-
stance s, we optimize the model through supervised learning. Let S = {s;}2 be independently and
identically distributed (IID) training samples for a type of NPC problem, we aim to maximize the
likelihood of optimal (or high-quality) solutions, where the loss function L is defined as:

L(0) = Eses [~ log pe(x™|s)] 3
Next, we describe how to use diffusion models to parameterize the generative distribution pg. For

brevity, we omit the conditional notations of s and denote x** as x( as a convention in diffusion
models for all formulas in the the rest of the paper.



3.2 Diffusion Models in DIFUSCO

From the variational inference perspective [60], diffusion models [100, 40, 102] are latent variable
models of the form pg(xg) = f pe(Xo.7)dx1.7, Where x1, ..., xr are latents of the same dimen-
sionality as the data xo ~ ¢(x¢). The joint distribution pg(x0.77) = p(xr) Hthl po(xi—1|x¢) is
the learned reverse (denoising) process that gradually denoises the latent variables toward the data

distribution, while the forward process q(x1.7|x0) = H,:T:1 q(x¢|x¢—1) gradually corrupts the data
into noised latent variables. Training is performed by optimizing the usual variational bound on
negative log-likelihood:

E [~ log pe(xo)] < Eq {— log pe(XOT):|

QH(X1;T|X0) @
~ &, [ Drcfoccs oo )]~ log pa(olx)| + €

t>1

where C' is a constant.

Discrete Diffusion In discrete diffusion models with multinomial noises [5, 44], the forward

process is defined as: g(x;|x;—1) = Cat (x¢;p = X:-1Q:) , where Q; = [(1 gfﬁt) i Btﬁf)] is

the transition probability matrix; x € {0, 1}?V*2 is converted from the original vector x € {0, 1}V
with a one-hot vector per row; and XxQ computes a row-wise vector-matrix product.
Here, (; denotes the corruption ratio. Also, we want H,5T:1(1 — f3¢) =~ 0 such that x7 ~ Uniform(-).

The t-step marginal can thus be written as: g(x;|xo) = Cat (x4;p =%0Q,), where Q, =
Q1Q:2 ... Q;. And the posterior at time ¢ — 1 can be obtained by Bayes’ theorem:

~ T ~ T~

_ _ O] _

q(x¢|x¢—1,%0)q(x¢—1]%0) — Cat [ x1:p = Xth 7X~09t L) s
q(x¢[x0) X0 QX

(I(Xt—1|Xt7X0) =

where ©® denotes the element-wise multiplication.

According to Austin et al. [5], the denoising neural network is trained to predict the clean data
pe(Xo|x:), and the reverse process is obtained by substituting the predicted X, as x in Eq. 5:

po(xi-1[x:) = > q(xi—1|%1,%0)po(Rolx1) 6)

X

Continuous Diffusion for Discrete Data The continuous diffusion models [102, 40] can also be
directly applied to discrete data by lifting the discrete input into a continuous space [16]. Since
the continuous diffusion models usually start from a standard Gaussian distribution € ~ N (0, 1),
Chen et al. [16] proposed to first rescale the {0, 1}-valued variables xg to the {—1, 1} domain as
X0, and then treat them as real values. The forward process in continuous diffusion is defined as:
q(Xe|Xi—1) = N(fit; V1= Bixi1, Bid).

Again, 3; denotes the corruption ratio, and we want Hthl (1 — B¢) ~ 0 such that xp ~ N (). The
t-step marginal can thus be written as: q(%X¢|Xo) == N (X¢; /X0, (1 — @)I) where oy = 1 — 34
and oy = Hizl a.. Similar to Eq. 5, the posterior at time ¢ — 1 can be obtained by Bayes’ theorem:

q(Xe|Xe—1, fio)CI(f{tfﬂf(o)
Q(fit|f<0)
which is a closed-form Gaussian distribution [40]. In continuous diffusion, the denoising neural

network is trained to predict the unscaled Gaussian noise €; = (X; — v/auXo)/v1 — a; = fo(Xs, ).
The reverse process [40] can use a point estimation of X, in the posterior:

polici[) = g (%o, XYL Sefolin )
Vau

; N

q(Xe—1]%Xe,%0) =

®

For generating discrete data, after the continuous data X is generated, a thresholding/quantization
operation is applied to convert them back to {0, 1}-valued variables x¢ as the model’s prediction.



3.3 Denoising Schedule for Fast Inference

One way to speed up the inference of denoising diffusion models is to reduce the number of steps
in the reverse diffusion process, which also reduces the number of neural network evaluations. The
denoising diffusion implicit models (DDIMs) [101] are a class of models that apply this strategy in
the continuous domain, and a similar approach can be used for discrete diffusion models [5].

Formally, when the forward process is defined not on all the latent variables x;.7, but on a subset
{Xr,,...,Xr,, }» where 7 is an increasing sub-sequence of [1, ..., 7| with length M, x,, = 1 and
X, = T, the fast sampling algorithms directly models g¢(x,_, |x,,X0). Due to the space limit, the
detailed algorithms are described in the appendix.

We consider two types of denoising scheduled for 7 given the desired card(7) < T: linear and
cosine. The former uses timesteps such that 7; = | ci| for some ¢, and the latter uses timesteps such
that 7, = Lcos(%) - T'| for some c. The intuition for the cosine schedule is that diffusion models

can achieve better generation quality when iterating more steps in the low-noise regime [85, 121, 13].

3.4 Graph-based Denoising Network

The denoising network takes as input a set of noisy variables x; and the problem instance s and
predicts the clean data Xy. To balance both scalability and performance considerations, we adopt
an anisotropic graph neural network with edge gating mechanisms [9, 54] as the backbone network
for both discrete and continuous diffusion models, and the variables in the network output can be
the states of either nodes, as in the case of Maximum Independent Set (MIS) problems, or edges, as
in the case of Traveling Salesman Problems (TSP). Our choice of network mainly follows previous
work [54, 92], as AGNN can produce the embeddings for both nodes and edges, unlike typical GNNs
such as GCN [62] or GAT [107], which are designed for node embedding only. This design choice is
particularly beneficial for tasks that require the prediction of edge variables.

Anisotropic Graph Neural Networks Let hf and efj denote the node and edge features at layer

¢ associated with node 7 and edge ij, respectively. t is the sinusoidal features [106] of denoising
timestep t. The features at the next layer is propagated with an anisotropic message passing scheme:

e/ = P'ef; + Q'nl + R'R.,
( pN4
eltt = e!; + MLP.(BN(&/1)) + MLP, (t),

R = hi + a(BN(U'h{ + Ajen, (c(&5') © V'RY))),

where UZ7 Ve, PZ, Qé, R' € R gre the learnable parameters of layer ¢, a denotes the ReLU
[66] activation, BN denotes the Batch Normalization operator [51], A denotes the aggregation
function SUM pooling [116], o is the sigmoid function, ® is the Hadamard product, A; denotes the
neighborhoods of node 4, and MLP . denotes a 2-layer multi-layer perceptron.

For TSP, e?j are initialized as the corresponding values in x;, and h? are initialized as sinusoidal

features of the nodes. For MIS, e?j are initialized as zeros, and h? are initialized as the corresponding
values in x;. A 2-neuron and 1-neuron classification/regression head is applied to the final embeddings

of x; ({e;; } for edges and {h;} for nodes) for discrete and continuous diffusion models, respectively.

Hyper-parameters For all TSP and MIS benchmarks, we use a 12-layer Anisotropic GNN with a
width of 256 as described above.

3.5 Decoding Strategies for Diffusion-based Solvers

After the training of the parameterized denoising network according to Eq. 4, the solutions are
sampled from the diffusion models pg(x¢|s) for final evaluation. However, probabilistic generative
models such as DIFUSCO cannot guarantee that the sampled solutions are feasible according to the
definition of CO problems. Therefore, specialized decoding strategies are designed for the two CO
problems studied in this paper.



Heatmap Generation The diffusion models pg(-|s) produce discrete variables x as the final pre-
dictions by applying Bernoulli sampling (Eq. 6) for discrete diffusion or quantization for continuous
diffusion. However, this process discards the comparative information that reflects the confidence
of the predicted variables, which is crucial for resolving conflicts in the decoding process. To
preserve this information, we adapt the diffusion models to generate heatmaps [53, 92] by making
the following appropriate modifications: 1) For discrete diffusion, the final score of pg(xo = 1|s)
is preserved as the heatmap scores; 2) For continuous diffusion, we remove the final quantization
and use 0.5(%Xg + 1) as the heatmap scores. Note that different from previous heatmap approaches
[53, 92] that produce a single conditionally independent distribution for all variables, DIFUSCO can
produce diverse multimodal output distribution by using different random seeds.

TSP Decoding Let {A;;} be the heatmap scores generated by DIFUSCO denoting the confidence
of each edge. We evaluate two approaches as the decoding method following previous work [32, 92]:
1) Greedy decoding [32], where all the edges are ranked by (A;; + Aj;)/||c; — c;||, and are inserted
into the partial solution if there are no conflicts. 2-opt heuristics [71] are optionally applied. 2)
Monte Carlo Tree Search (MCTS) [27], where k-opt transformation actions are sampled guided by
the heatmap scores to improve the current solutions. Due to the space limit, a detailed description of
two decoding strategies can be found in the appendix.

MIS Decoding Let {a;} be the heatmap scores generated by DIFUSCO denoting the confidence
of each node. A greedy decoding strategy is used for the MIS problem, where the nodes are ranked
by a; and inserted into the partial solution if there are no conflicts. Recent research [8] pointed out
that the graph reduction and 2-opt search [2] can find near-optimal solutions even starting from a
randomly generated solution, so we do not use any post-processing for the greedy-decoded solutions.

Solution Sampling A common practice for probabilistic CO solvers [64] is to sample multiple
solutions and report the best one. For DIFUSCO, we follow this practice by sampling multiple
heatmaps from pg (x|s) with different random seeds and then applying the greedy decoding algorithm
described above to each heatmap.

4 Experiments with TSP

We use 2-D Euclidean TSP instances to test our models. We generate these instances by randomly
sampling nodes from a uniform distribution over the unit square. We use TSP-50 (with 50 nodes)
as the main benchmark to compare different model configurations. We also evaluate our method
on larger TSP instances with 100, 500, 1000, and 10000 nodes to demonstrate its scalability and
performance against other state-of-the-art methods.

4.1 Experimental Settings

Datasets We generate and label the training instances using the Concorde exact solver [3] for
TSP-50/100 and the LKH-3 heuristic solver [39] for TSP-500/1000/10000. We use the same test
instances as [54, 64] for TSP-50/100 and [27] for TSP-500/1000/10000.

Graph Sparsification We use sparse graphs for large-scale TSP problems to reduce the computa-
tional complexity. We sparsify the graphs by limiting each node to have only k edges to its nearest
neighbors based on the Euclidean distances. We set k to 50 for TSP-500 and 100 for TSP-1000/10000.
This way, we avoid the quadratic growth of edges in dense graphs as the number of nodes increases.

Model Settings 7' = 1000 denoising steps are used for the training of DIFUSCO on all datasets.
Following Ho et al. [40], Graikos et al. [32], we use a simple linear noise schedule for { ﬂt}thl, where
B1 = 10~% and By = 0.02. We follow Graikos et al. [32] and use the Greedy decoding + 2-opt
scheme (Sec. 3.5) as the default decoding scheme for experiments.

Evaluation Metrics In order to compare the performance of different models, we present three
metrics: average tour length (Length), average relative performance gap (Gap), and total run time
(Time). The detailed description can be found in the appendix.
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Table 1: Comparing results on TSP-50 and TSP-100. * denotes the
baseline for computing the performance gap. | indicates that the
diffusion model samples a single solution as its greedy decoding
scheme. Please refer to Sec. 4 for details.

0 TSP-50 TSP-100
o ALGORITHM TveE LENGTH] GAP(%)] LENGTH| GAP(%)|
Denoising step i
CONCORDE" EXACT 5.69 0.00 7.76 0.00
16 “ Eontmous'cosi"e 2-OPT HEURISTICS 5.86 2.95 8.03 3.54
N on |
08 ™ . —— Discrete-cosine AM GREEDY 5.80 1.76 8.12 4.53
o \ ~=~ Discrete-linear GCN GREEDY 5.87 3.10 8.41 8.38
§0_4 TRANSFORMER GREEDY 5.71 0.31 7.88 1.42
g POMO GREEDY 5.73 0.64 7.84 1.07
02 SYM-NCO GREEDY - - 7.84 0.94
DPDP 1k-IMPROVEMENTS 5.70 0.14 7.89 1.62
IMAGE DIFFUSION GREEDY ' 5.76 1.23 7.92 2.11
T %60 350 OURS GREEDY' 5.70 0.10 7.78 0.24
Diffusion steps AM 1k X SAMPLING 5.73 0.52 7.94 2.26
. ) . GCN 2k X SAMPLING 5.70 0.01 7.87 1.39
Figure 1: Comparison of continu-  TRANSFORMER 2k X SAMPLING 5.69 0.00 7.76 0.39
ous (Gaussian noise) and discrete POMO 8 X AUGMENT 5.69 0.03 7.77 0.14
. . . . SYM-NCO 100 x SAMPLING - - 7.79 0.39
(Bernoulli noise) diffusion models  ympam 50X SAMPLING 570 003 779 038
with different inference diffusion steps DPDP 100k-IMPROVEMENTS  5.70 0.00 7.77 0.00
OURS 16 X SAMPLING 5.69 -0.01 7.76 -0.01

and inference schedule (linear v.s.
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the appendix.

--0.05
50 1 2 5 10

Diffusion steps

1 2 5 10
Diffusion steps

(a) Continuous diffusion

20 20 20 50

(c) Runtime

4.2 Design Analysis

Discrete Diffusion v.s. Continuous Diffusion We first investigate the suitability of two diffusion
approaches for combinatorial optimization, namely continuous diffusion with Gaussian noise and
discrete diffusion with Bernoulli noise (Sec. 3.2). Additionally, we explore the effectiveness of
different denoising schedules, such as linear and cosine schedules (Sec. 3.3), on CO problems.
To efficiently evaluate these model choices, we utilize the TSP-50 benchmark.

Note that although all the diffusion models are trained with a 7" = 1000 noise schedule, the inference
schedule can be shorter than 7', as described in Sec. 3.3. Specifically, we are interested in diffusion
models with 1, 2, 5, 10, 20, 50, 100, and 200 diffusion steps.

Fig. 1 demonstrates the performance of two types of diffusion models with two types of inference
schedules and various diffusion steps. We can see that discrete diffusion consistently outperforms
the continuous diffusion models by a large margin when there are more than 5 diffusion steps?.
Besides, the cosine schedule is superior to 1inear on discrete diffusion and performs similarly on
continuous diffusion. Therefore, we use cosine for the rest of the paper.

More Diffusion Iterations v.s. More Sampling By utilizing effective denoising schedules, diffu-
sion models are able to adaptively infer based on the available computation budget by predetermining
the total number of diffusion steps. This is similar to changing the number of samples in previous
probabilistic neural NPC solvers [64]. Therefore, we investigate the trade-off between the number of
diffusion iterations and the number of samples for diffusion-based NPC solvers.

We also observe similar patterns on TSP-100, where the results are reported in the appendix.



Table 2: Results on large-scale TSP problems. RL, SL, AS, G, S, BS, and MCTS denotes Reinforcement
Learning, Supervised Learning, Active Search, Greedy decoding, Sampling decoding, Beam-search, and Monte
Carlo Tree Search, respectively. * indicates the baseline for computing the performance gap. Results of baselines
are taken from Fu et al. [27] and Qiu et al. [92], so the runtime may not be directly comparable. See Section 4
and appendix for detailed descriptions.

TSP-500 TSP-1000 TSP-10000

ALGORITHM TYPE LENGTH ] GAP| TIME ] |[LENGTH| GAP| TIME/ |[LENGTH] GAPJ| TIME /]
CONCORDE EXACT 16.55" —  37.66m| 23.12% — 6.65h N/A N/A N/A
GUROBI EXACT 16.55 0.00% 45.63h N/A N/A N/A N/A N/A N/A
LKH-3 (DEFAULT) HEURISTICS 16.55 0.00% 46.28m| 23.12 0.00% 2.57h | 71.77* — 8.8h
LKH-3 (LESS TRAILS) HEURISTICS 16.55 0.00% 3.03m | 23.12 0.00% 7.73m | 71.79 — 51.27m
FARTHEST INSERTION HEURISTICS 18.30  10.57% 0Os 25.72 11.25% Os 80.59 12.29% 6s

AM RL+G 20.02  20.99% 1.51m | 31.15 34.75% 3.18m | 141.68 97.39% 5.99m
GCN SL+G 29.72  79.61% 6.67m | 48.62 110.29% 28.52m| N/A N/A N/A
POMO+EAS-EMB RL+AS+G 19.24  16.25% 12.80h N/A N/A N/A N/A N/A N/A
POMO+EAS-TAB RL+AS+G 24.54  48.22% 11.61h| 49.56 114.36% 63.45h N/A N/A N/A
DIMES RL+G 18.93 14.38% 0.97m | 26.58 14.97% 2.08m | 86.44 20.44% 4.65m
DIMES RL+AS+G 17.81  7.61% 2.10h 24.91 7.74%  4.49h 80.45 12.09% 3.07h
OURS (DIFUSCO) SL+Gt 18.35 10.85% 3.61m | 26.14 13.06% 11.86m| 98.15 36.75% 28.51m
OuRrs (DIFUSCO) SL+Gt+2-0PT 16.80 1.49% 3.65m | 23.56 1.90% 12.06m| 73.99 3.10% 35.38m
EAN RL+S+2-0PT 23.75 43.57% 57.76m| 47.73 106.46% 5.39h N/A N/A N/A
AM RL+BS 19.53  18.03% 21.99m| 29.90 29.23% 1.64h | 129.40 80.28% 1.81h
GCN SL+BS 30.37 83.55% 38.02m| 51.26 121.73% 51.67m| N/A N/A N/A
DIMES RL+S 18.84 13.84% 1.06m | 26.36 14.01% 2.38m | 85.75 19.48% 4.80m
DIMES RL+AS+S 17.80  7.55% 2.11h 24.89 7.70%  4.53h 80.42 12.05% 3.12h
Ours (DIFUSCO) SL+S 17.23  4.08% 11.02m| 25.19 8.95% 46.08m| 95.52 33.09% 6.59h
Ours (DIFUSCO) SL+S+2-0PT 16.65 0.57% 11.46m| 23.45 1.43% 48.09m| 73.89 2.95% 6.72h
ATT-GCN SL+MCTS 16.97 2.54% 2.20m | 23.86 3.22% 4.10m | 7493  4.39% 21.49m
DIMES RL+MCTS 16.87 1.93% 2.92m | 23.73 2.64% 6.87m | 74.63  3.98% 29.83m
DIMES RL+AS+MCTS| 16.84 1.76% 2.15h 23.69 2.46% 4.62h 74.06  3.19% 3.57h
OuRrs (DIFUSCO) SL+MCTS 16.63 0.46% 10.13m| 23.39 1.17% 24.47m| 73.62 2.58% 47.36m

Fig. 2 shows the results of continuous diffusion and discrete diffusion with various diffusion steps and
number of parallel sampling, as well as their corresponding total run-time. The cosine denoising
schedule is used for fast inference. Again, we find that discrete diffusion outperforms continuous
diffusion across various settings. Besides, we find performing more diffusion iterations is generally
more effective than sampling more solutions, even when the former uses less computation. For exam-
ple, 20 (diffusion steps) x 4 (samples) performs competitive to 1 (diffusion steps) x 1024 (samples),
while the runtime of the former is 18.5x less than the latter.

In general, we find that 50 (diffusion steps) x 1 (samples) policy and 10 (diffusion steps) X
16 (samples) policy make a good balance between exploration and exploitation for discrete DI-
FUSCO models and use them as the Greedy and Sampling strategies for the rest of the experiments.

4.3 Main Results

Comparison to SOTA Methods We compare discrete DIFUSCO to other state-of-the-art neural
NPC solvers on TSP problems across various scales. Due to the space limit, the description of other
baseline models can be found in the appendix.

Tab. 1 compare discrete DIFUSCO with other models on TSP-50 and TSP-100, where DIFUSCO
achieves the state-of-the-art performance in both greedy and sampling settings for probabilistic
solvers.

Tab. 2 compare discrete DIFUSCO with other models on the larger-scale TSP-500, TSP-1000, and
TSP-10000 problems. Most previous probabilistic solvers (except DIMES [92]) becomes untrainable
on TSP problems of these scales, so the results of these models are reported with TSP-100 trained
models. The results are reported with greedy, sampling, and MCTS decoding strategies, respectively.
For fair comparisons [27, 92], MCTS decoding for TSP is always evaluated with only one sampled
heatmap. From the table, we can see that DIFUSCO strongly outperforms the previous neural solvers
on all three settings. In particular, with MCTS-based decoding, DIFUSCO significantly improving
the performance gap between ground-truth and neural solvers from 1.76% to 0.46 % on TSP-500,
from 2.46% to 1.17% on TSP-1000, and from 3.19% to 2.58% on TSP-10000.



Table 3: Results on MIS problems. * indicates the baseline for
computing the optimality gap. RL, SL, G, S, and TS denote Re-

TSP-50

£ TSRO0 inforcement Learning, Supervised Learning, Greedy decoding,
= - . .
o Tss00 -1°  Sampling decoding, gnd Tree S.earch, respectively. Please refer
z - to Sec. 5 and appendix for details.
£ rtsp1000 [
| SATLIB ER-[700-800]
TSP-10000 METHOD TyPE SizET Gapl) TIME| SIZET Gap| TIME]
-1 KAMIS HEURISTICS 425.96° —  37.58m 44.87* —  52.13m
GUROBI  EXACT  425.95 0.00% 26.00m 41.38 7.78% 50.00m
INTEL SL+G  420.66 1.48% 23.05m 34.86 22.31% 6.06m
Evaluation Data INTEL SL+TS N/A  N/A N/A 3880 13.43% 20.00M
. . DGL SL+TS N/A  N/A N/A 3726 16.96% 22.71m
Figure 3: Generalization tests of DIFUSCO  rywp RL+S 42222 0.88% 18.83m 41.17 8.25% 6.33m

trained and evaluated on TSP problems DIMES RL+G 421.24 1.11% 24.17m 38.24 14.78% 6.12m
across various scales. The performance Gap DIMES RL+S 423.28 0.63% 20.26m 42.06 6.26% 12.0lm

1 i - 1 - URS + . . o 8.76m . 40% 8.80m
(%) with greedy decodmg and 2 opt is re (@] SL+G 424.50 0.34% 8.76 38.83 12.40% 8.80
poned OURS SL+S 425.13 0.21% 23.74m 41.12 8.36% 26.67m

Generalization Tests Finally, we study the generalization ability of discrete DIFUSCO trained
on a set of TSP problems of a specific problem scale and evaluated on other problem scales. From
Fig. 3, we can see that DIFUSCO has a strong generalization ability. In particular, the model trained
with TSP-50 perform well on even TSP-1000 and TSPO-10000. This pattern is different from the bad
generalization ability of RL-trained or SL-trained non-autoregressive methods as reported in previous
work [54].

5 Experiments with MIS

For Maximal Independent Set (MIS), we experiment on two types of graphs that recent work
[70, 1, 8, 92] shows struggles against, i.e., SATLIB [46] and Erdés-Rényi (ER) graphs [26]. The
former is a set of graphs reduced from SAT instances in CNF, while the latter are random graphs.
We use ER-[700-800] for evaluation, where ER-[n-N] indicates the graph contains n to N nodes.
Following Qiu et al. [92], the pairwise connection probability p is set to 0.15.

Datasets The training instances of labeled by the KaMIS? heuristic solver. The split of test instances
on SAT datasets and the random-generated ER test graphs are taken from Qiu et al. [92].

Model Settings The training schedule is the same as the TSP solver (Sec. 4.1). For SATLIB, we use
discrete diffusion with 50 (diffusion steps)x 1 (samples) policy and 50 (diffusion steps) x4 (samples)
policy as the Greedy and Sampling strategies, respectively. For ER graphs, we use continuous
diffusion with 50 (diffusion steps) x 1 (samples) policy and 20 (diffusion steps) x 8 (samples)
policy as the Greedy and Sampling strategies, respectively.

Evaluation Metrics We report the average size of the independent set (Size), average optimality
gap (Gap), and latency time (Time). The detailed description can be found in the appendix. Notice
that we disable graph reduction and 2-opt local search in all models for a fair comparison since it is
pointed out by [8] that all models would perform similarly with local search post-processing.

Results and Analysis Tab. 3 compare discrete DIFUSCO with other baselines on SATLIB and
ER-[700-800] benchmarks. We can see that DIFUSCO strongly outperforms previous state-of-the-art
methods on SATLIB benchmark, reducing the gap between ground-truth and neural solvers from
0.63% to 0.21%. However, we also found that DIFUSCO (especially with discrete diffusion in our
preliminary experiments) does not perform well on the ER-[700-800] data. We hypothesize that this
is because the previous methods usually use the node-based graph neural networks such as GCN
[62] or GraphSage [36] as the backbone network, while we use an edge-based Anisotropic GNN
(Sec. 3.4), whose inductive bias may be not suitable for ER graphs.

*https://github.com/KarlsruheMIS/KaMIS (MIT License)


https://github.com/KarlsruheMIS/KaMIS

6 Concluding Remarks

We proposed DIFUSCO, a novel graph-based diffusion model for solving NP-complete combinatorial
optimization problems. We compared two variants of graph-based diffusion models: one with
continuous Gaussian noise and one with discrete Bernoulli noise. We found that the discrete variant
performs better than the continuous one. Moreover, we designed a cosine inference schedule that
enhances the effectiveness of our model. DIFUSCO achieves state-of-the-art results on TSP and MIS
problems, surpassing previous probabilistic NPC solvers in both accuracy and scalability.

For future work, we would like to explore the potential of DIFUSCO in solving a broader range
of NPC problems, including Mixed Integer Programming (discussed in the appendix). We would
also like to explore the use of equivariant graph neural networks [117, 45] for further improvement
of the diffusion models on geometrical NP-complete combinatorial optimization problems such as
Euclidean TSP. Finally, we are interested in utilizing (higher-order) accelerated inference techniques
for diffusion model-based solvers, such as those inspired by the continuous time framework for
discrete diffusion [12, 105].
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A Frequently Asked Questions

A.1 Does DIFUSCO rely on high-quality solutions collected in advance?

DIFUSCO does not require exact optimal solutions to train the diffusion model-based solver. For
instance, in TSP-500/1000/10000, we utilize the heuristic solver LKH-3 to generate near-optimal
solutions, which is nearly as fast as the neural solvers themselves (refer to Table 2 for details).
Empirically (in TSP-500/1000/10000), DIFUSCO still attains state-of-the-art performance even when
trained on such near-optimal solutions rather than on exact optimal ones. The training data sizes are
reported in Appendix E.

A.2 This work simply applies discrete diffusion models to combinatorial optimization
problems. Could you clarify the significance of this work in the field?

It is essential to highlight that our work introduces a novel approach to solving NP-complete problems
using graph-based diffusion models. This approach has not been previously explored in the context
of NP-complete problems, and we believe that the significant improvements in performance over the
state-of-the-art on benchmark datasets emphasize the value of our work.

Drawing a parallel to the application of diffusion models in image generation and subsequent
extension to videos, our work explores a similar expansion of the scope. While denoising diffusion
models have been extensively researched and applied to image generation, DIFUSCO represents the
first instance where these models are applied to NP-complete CO problems. Such novelty in problem
formulation is fundamental for solving NP-complete problems instead of incremental ones from a
methodological point of view.

The formulation of NP-complete problems into a discrete {0, 1}-vector space and the use of graph-
based denoising diffusion models to generate high-quality solutions make our approach unique.
Additionally, we explore diffusion models with Gaussian and Bernoulli noise and introduce an effec-
tive inference schedule to improve the generation quality, which further underlines the significance of
our work.

In conclusion, we believe that our work makes a significant and novel contribution to the field
by introducing a new graph-based diffusion framework for solving NP-complete problems. The
application of diffusion models, which have been primarily used for image and video generation, to
the realm of combinatorial optimization highlights the innovative aspects of our research. We hope
that this clarification demonstrates its importance in the field.

A.3 How can DIFUSCO produce diverse multimodal output distribution?

Such ability comes from the characteristics of diffusion models, which are known for generating
a wide variety of distributions as generative models (like diverse images). A more comprehensive
understanding can be found in the related literature, such as DDPM.

A.4 Why is there no demonstration for the time-cost in the results shown in Table 1, and why
are there some conflicts in the metrics of Length and Gaps?

The time is not reported in Table 1 as these baseline methods are evaluated on very different hardware,
which makes the runtime comparison not too meaningful. As for the “conflicts”, the results (both
length and optimality gap) of all the baseline methods are directly copied from previous papers. The
“conflicts” may be caused by rounding issues when reporting numerical numbers in previous papers,
as our best guess.

The -0.01 gap in DIFUSCO is because the Concorde solver only accepts integer coordinates as the
inputs, which may lead it to produce inaccurate non-optimal solutions due to rounding issues.

A.5 How can we effectively evaluate the usefulness of the proposed method when the training
time is also a consideration?

It is important to clarify that in the context of neural combinatorial optimization solvers and general
machine learning research, the primary focus is typically on inference time. This is because, after
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Figure 4: The performance Gap (%) of continuous diffusion (a) and discrete diffusion (b) models on TSP-50
with different diffusion steps and number of samples. (c): The results are reported with greedy decoding without
2-opt post-processing.
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Figure 5: The inference per-instance run-time (sec) of diffusion models on TSP-50, where the total run-time is
decomposed to neural network (a) + greedy decoding (b) + 2-opt (c).

the model has been trained, it can be applied to a virtually unlimited number of unseen examples
(graphs) during deployment. On the other hand, the training time is often considered negligible in
comparative evaluations, partly due to the fact that traditional NCP solvers are hand-crafted instead
of learning-based, and partly because the training cost for learnable models is out weighted by the
benefits of their numerous applications.

A.5.1 Can you name a real application that has many test instances and require such a
model?

It is worth noting that the routing problem is a fundamental and perhaps the most important combina-
torial optimization problem in real-world scenarios. One example is the food delivery problem, where
a pizza shop is planning to deliver pizzas to four different addresses and then return to the store. The
routing problem has significant implications for industries such as retail, quick service restaurants
(QSRs), consumer packaged goods (CPG), and manufacturing. In 2020, parcel shipping exceeded
131 billion in volume globally and is projected to more than double by 2026 [91]. With the changing
economic and geopolitical landscape within the transport and logistics industry, Last Mile Delivery
(LMD) has become the most expensive portion of the logistics fulfillment chain, representing over
41% of overall supply chain costs [50].

B Extended Related Work

Autoregressive Constructive Solvers Since Bello et al. [6] proposed the first autoregressive CO
solver, more advanced models have been developed in the years since [22, 64, 90, 25, 68], including
better network backbones [106, 64, 9]), more advanced deep reinforcement learning algorithms
[57,78, 65,67,87, 114, 109, 18], improved training strategies [59, 7], and for a wider range of NPC
problems such as Capacitated Vehicle Routing Problem (CVRP) [83], Job Shop Scheduling Problem
(JSSP) [122, 89], Maximal Independent Set (MIS) problem [57, 1, 80, 92], and boolean satisfiability
problem (SAT) [119].
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Figure 6: Generalization tests of discrete DIFUSCO trained and evaluated on TSP problems across various
scales. The results are reported with (a) and without (b) 2-opt post-processing.

Table 4: Comparing discrete diffusion and continuous diffusion on TSP-100 with various diffusion steps and
numbers of parallel sampling. cosine schedule is used for fast sampling.
DISCRETE DIFFUSION (Gap%) CONTINUOUS DIFFUSION (Gap%) PER-INSTANCE RUNTIME (sec)

DIFFUSION STEPS ~ #SAMPLE

W/ 20PT W/0 20PT W/ 20PT W/0 20PT NN GD 2-OPT
50 1 0.23869 1.45574 1.46146 7.66379 0.50633 0.00171 0.00210
100 1 0.23366 1.48161 1.32573 7.02117 1.00762 0.00170 0.00207
50 4 0.02253 0.09280 0.42741 1.65264 1.52401 0.00643 0.00575
10 16 -0.01870 0.00519 0.13015 0.54983 1.12550 0.02581 0.02228
50 16 -0.02322 -0.00699 0.09407 0.30712 5.63712  0.02525 0.02037

Improvement Heuristics Solvers Unlike construction heuristics, DRL-based improvement heuris-
tics solvers use neural networks to iteratively enhance the quality of the current solution until the
computational budget is exhausted. Such DRL-based improvement heuristics methods are usu-
ally inspired by classical local search algorithms such as 2-opt [19] and the large neighborhood
search (LNS) [97], and have been demonstrated with outstanding results by many previous works
[17,47,21,20, 115,79, 113,76, 110, 58, 49].

Improvement heuristics methods, while showing superior performance compared to construction
heuristics methods, come at the cost of increased computational time, often requiring thousands of
actions even for small-scale problems with hundreds of nodes [20, 110]. This is due to the sequential
application of local operations, such as 2-opt, on existing solutions, resulting in a bottleneck for
latency. On the other hand, DIFUSCO has the advantage of denoising all variables in parallel, which
leads to a reduction in the number of network evaluations required.

Continuous Diffusion Models Diffusion models were first proposed by Sohl-Dickstein et al. [100]
and recently achieved impressive success on various tasks, such as high-resolution image synthesis
[23, 42], image editing [81, 95], text-to-image generation [84, 96, 94, 93, 34], waveform generation
[14, 15, 72], video generation [43, 41, 99], and molecule generation [117, 45, 112].

Recent works have also drawn connections to stochastic differential equations (SDEs) [104] and
ordinary differential equations (ODEs) [101] in a continuous time framework, leading to improved
sampling algorithms by solving discretized SDEs/ODEs with higher-order solvers [73, 75, 74] or
implicit diffusion [101].

C Additional Results

Discrete Diffusion v.s. Continuous Diffusion on TSP-100 We also compare discrete diffusion
and continuous diffusion on the TSP-100 benchmark and report the results in Tab. 4. We can see that
on TSP-100, discrete diffusion models still consistently outperform their continuous counterparts in
various settings.

More Diffusion Steps v.s. More Sampling (w/o 2-opt) Fig. 4 report the results of continuous
diffusion and discrete diffusion with various diffusion steps and numbers of parallel sampling, without
using 2-opt post-processing. The cosine denoising schedule is used for fast inference. Again, we
find that discrete diffusion outperforms continuous diffusion across various settings.
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Table 5: Comparison to DIMES w/ 2-opt

TSP-500 TSP-1000 TSP-10000
Length Gap Length Gap Length Gap
DIMES RL+S+20PT 17.63 6.52% 24.81 7.31% 77.18 7.54%
DIMES RL+AS+S+20pT  17.30 4.53% 2432 5.19% 7594 5.81%
DIFUSCO SL+G+20PT 16.80 1.49% 23.56 1.90% 73.99 3.10%
DIFUSCO SL+S+20PT 16.65 0.57% 23.45 1.43% 73.89 2.95%

Table 6: Solution quality and computation time for learning-based methods using models trained on synthetic
data (all the other baselines are trained with TSP-100) and evaluated on TSPLIB instances with 50 to 200 nodes
and 2D Euclidean distances. Other baseline results are taken from Hudson et al. [49].

Method Kool et al. Joshi et al. 0. da Costa et al. Hudson et al. Ours (TSP-50)  Ours (TSP-100)
Instance Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%) Time (s) Gap (%)

eil51 0.125 1.628 3.026 8339 28.051 0.067 10.074 0.000 0482 0.000 0.519 0.117
berlin52  0.129  4.169 3.068 33225 31.874 0449 10.103 0.142 0527 0.000 0.526  0.000
st70 0200 1.737 4.037 24785 23964 0.040 10.053 0.764 0.663 0.000 0.670  0.000
eil76 0225 1992 4303 27411 26551 0.096 10.155 0.163 0.788  0.000 0.788  0.174
pr76 0226 0.816 4378 27.793 39.485 1.228 10.049 0.039 0.765 0.000 0.785  0.187
rat99 0347 2645 5559 17.633 321838 0.123 9948 0550 1.236 1.187  1.192  0.000
kroA100 0352 4.017 5705 28.828 42.095 18313 10.255 0.728 1259 0.741 1.217  0.000
kroB100 0.352 5.142 5712 34.686 35.137 1.119 10317 0.147 1252 0.648 1235 0.742
kroC100 0.352 0972 5.641 35506 34.333 0.349 10.172 1571 1.199 1712 1.168  0.000
kroD100 0.352  2.717 5.621 38.018 25.772 0.866 10.375 0.572 1226 0.000 1.175 0.000
kroE100 0352 1470 5650 26589 34475 1.832 10270 1216 1208 0.274 1.197 0.274
rd100 0352 3407 5737 50432 28963 0.003 10.125 0.459 1.191 0.000 1.172  0.000
eil101 0359 2994 5790 26.701 23.842 0.387 10276 0.201 1.222 0576 1.215  0.000
lin105 0.380 1.739 5938 34902 39517 1.867 10330 0.606 1321 0.000 1.280 0.000
prl07 0391 3933 5964 80.564 29.039 0.898 9977 0439 1381 0.228 1378 0415
prl24 0499 3.677 7.059 70.146 29.570 10.322 10.360 0.755 1.803 0925 1.782  0.494
bierl27 0.522 5908 7.242 45561 39.029 3.044 10260 1.948 1938 1.011 1915 0.366
ch130 0.550 3.182 7.351 39.090 34436 0.709 10.032 3519 1989 1970 1967 0.077
pr136 0.585 5.064 7.727 58.673 31.056 0.000 10379 3387 2.184 2490 2.142  0.000
prl44 0.638 7.641 8.132 55.837 28913 1526 10276 3.581 2478 0519 2446 0.261
ch150 0.697 4584 8546 49.743 35497 0312 10.109 2.113 2.608 0.376 2.555  0.000
kroA150 0.695 3.784 8450 45411 29.399 0.724 10331 2984 2617 3.753 2.601  0.000
kroB150 0.696 2437 8573 56.745 29.005 0.886 10.018 3.258 2.626 1.839 2592  0.067
prl52 0.708 7494 8.632 33925 29.003 0.029 10.267 3.119 2716 1751 2712 0.481
uls59 0.764  7.551 9.012 38.338 28961 0.054 10.428 1.020 2963 3.758 2.892  0.000
rat195 1.114  6.893 11.236 24968 34.425 0.743 12295 1.666 4400 1540 4.428 0.767
d198 1.153 373.020 11.519 62.351 30.864 0.522 12596 4.772 4.615 4832 4.153  3.337
kroA200 1.150  7.106 11.702 40.885 33.832 1441 11.088 2.029 4710 6.187 4.686 0.065
kroB200 1.150  8.541 11.689 43.643 31.951 2.064 11267 2589 4.606 6.605 4619 0.590

Mean 0.532 16.767 7.000 40.025 31.766 1.725 10.420 1.529 1.999 1.480 1.966  0.290

Besides, we find that without the 2-opt post-processing, performing more diffusion iterations is much
more effective than sampling more solutions, even when the former uses less computation. For
example, 20 (diffusion steps) x 4 (samples) not only significantly outperforms 1 (diffusion steps) x
1024 (samples), but also has a 18.5x less runtime.

Runtime Analysis We report the decomposed runtime (neural network + greedy decoding + 2-opt)
for diffusion models on TSP-50 in Fig. 5. We can see that while neural network execution takes the
majority of total runtime, 2-opt also takes a non-negligible portion of the runtime, especially when
only a few diffusion steps (like 1 or 2) are used.

Generalization Tests (w/o 2opt) We also report the generalization tests of discrete DIFUSCO
without 2-opt post-processing in Fig.6 (b).

Comparison to DIMES w/ 2opt We compare DIMES with 2-opt to DIFUSCO in Tab. 5. We can
see that while 2-opt can further improve the performance of DIMES on large-scale TPS problem
instances, there is still a significant gap between DIEMS and DIFUSCO when both are equipped with
2-opt post-processing.
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Table 7: Results of DIFUSCO with multiple samples for MCTS

TSP-500 TSP-1000 TSP-10000
Length Gap Length Gap Length Gap
PREvVIOUS SOTA 16.84 1.76% 23.69 2.46% 74.06 3.19%
DIFUSCO 1xXMCTS 16.64 0.46% 23.39 1.17% 73.62 2.58%
DIFUSCO 2xMCTS 16.57 0.09% 23.32 0.56% 73.60 2.55%
DIFUSCO 4XMCTS 16.56  0.02%  23.30 0.46% 73.54 2.48%

Generalization to Real-World Instances In many cases, there might not be enough real-world
problem instances available to train a model. As a result, the model needs to be trained using
synthetically generated data. Hence, it becomes crucial to assess the effectiveness of transferring
knowledge from the simulated environment to the real world. we evaluated the DIFUSCO models
trained on TSP-50 and TSP-100 on TSPLib graphs with 50-200 nodes and a comparison to other
methods (trained TSP-100) [64, 53, 20, 49] is shown in Tab. 6.

We can see that DIFUSCO achieves significant improvements over other baselines on the real-world
TSPLIB data (0.29% gap v.s. 1.48% in the best baseline). Besides, DIFUSCO also shows strong
generalization ability across problem scales, where DIFUSCO trained on TSP-50 data achieves
competitive performance with the best baseline Hudson et al. [49] trained on TSP-100.

MCTS with Multiple Diffusion Samples One may wonder what if DIFUSCO with MCTS is
allowed to have more than one sample. To evaluate the impact of using multiple samples in DIFUSCO
with MCTS, we conducted experiments with 1x, 2x, and 4x greedy heatmap generation (50 diffusion
steps) combined with MCTS using different random seeds, and report the results in Tab. 7.

Our findings show that DIFUSCO’s performance significantly improves when MCTS decoding is
applied to diverse heatmaps. We would like to highlight that the diverse heatmap + MCTS decoding
approach is unique to diffusion model-based neural solvers like DIFUSCO, as previous methods
(e.g., Att-GCN and DIMES) that employ MCTS only yield a unimodal distribution. While it is true
that using 2x or 4x MCTS decoding would increase the runtime of DIFUSCO, we believe there is a
similar exploitation versus exploration trade-off between MCTS time and MCTS seeds, akin to the
trade-off between diffusion steps and the number of samples demonstrated in Figure 2 of our paper.

D Discussion on the {0, 1} Vector Space of CO Problems

The design of the {0, 1}V vector space can also represent non-graph-based NP-complete combinato-
rial optimization problems. For example, on the more general Mixed Integer Programming (MIP)
problem, we can let X5 be a 0/1 indication set of all extended variables®. cost(-) can be defined as a
linear/quadratic function of x, and valid(-) is a function validating all linear/quadratic constraints,
bound constraints, and integrality constraints.

E Additional Experiment Details

Metrics: TSP For TSP, Length is defined as the average length of the system-predicted tour for
each test-set instance. Gap is the average of the relative decrease in performance compared to a
baseline method. Time is the total clock time required to generate solutions for all test instances, and
is presented in seconds (s), minutes (m), or hours (h).

Metrics: MIS For MIS, Size (the larger, the better) is the average size of the system-predicted
maximal independent set for each test-set graph, Gap and Time are defined similarly as in the TSP
case.

Hardware All the methods are trained with 8 x NVIDIA Tesla V100 Volta GPUs and evaluated on
a single NVIDIA Tesla V100 Volta GPU, with 40x Intel(R) Xeon(R) Gold 6248 CPUs @ 2.50GHz.

*For an integer variable z that can be assigned values from a finite set with cardinality card(z), any target
value can be represented as a sequence of [log, (card(z))] bits [82, 16].
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Random Seeds Since the diffusion models can generate an arbitrary sample from its distribution
even with the greedy decoding scheme, we report the averaged results across 5 different random
seeds when reporting all results.

Training Details All DIFUSCO models are trained with a cosine learning rate schedule starting
from 2e-4 and ending at 0.

e TSP-50: We use 1502000 random instances and train DIFUSCO for 50 epochs with a batch size of
512.

e TSP-100: We use 1502000 random instances and train DIFUSCO for 50 epochs with a batch size
of 256.

* TSP-500: We use 128000 random instances and train DIFUSCO for 50 epochs with a batch size of
64. We also apply curriculum learning and initialize the model from the TSP-100 checkpoint.

* TSP-1000: We use 64000 random instances and train DIFUSCO for 50 epochs with a batch size of
64. We also apply curriculum learning and initialize the model from the TSP-100 checkpoint.

* TSP-10000: We use 6400 random instances and train DIFUSCO for 50 epochs with a batch size of
8. We also apply curriculum learning and initialize the model from the TSP-500 checkpoint.

* SATLIB: We use the training split of 49500 examples from [46, 92] and train DIFUSCO for 50
epochs with a batch size of 128.

* ER-[700-800]: We use 163840 random instances and train DIFUSCO for 50 epochs with a batch
size of 32.

F Decoding Strategies

Greedy Decoding We use a simple greedy decoding scheme for diffusion models, where we sample
one solution from the learned distribution pg(x(). We compare this scheme with other autoregressive
constructive solvers that also use greedy decoding.

Sampling Following Kool et al. [64], we also use a sampling scheme where we sample multiple
solutions in parallel (i.e., each diffusion model starts with a different noise x) and report the best
one.

Monte Carlo Tree Search For the TSP task, we adopt a more advanced reinforcement learning-
based search approach, i.e., Monte Carlo tree search (MCTS), to find high-quality solutions. In MCTS,
we sample k-opt transformation actions guided by the heatmap generated by the diffusion model to
improve the current solutions. The MCTS repeats the simulation, selection, and back-propagation
steps until no improving actions are found in the sampling pool. For more details, please refer to [27].

G Fast Inference for Continuous and Discrete Diffusion Models

We first describe the denoising diffusion implicit models (DDIMs) [101] algorithm for accelerating
inference for continuous diffusion models.

Formally, consider the forward process defined not on all the latent variables x;.7, but on a subset
{Xry,--Xry, }» Where 7 is an increasing sub-sequence of [1, ..., 7] with length M, x,, = 1 and

Xrv =

For continuous diffusion, the marginal can still be defined as:

Q(Xn XO) = N(Xn; Or; X0, (1 - @n)I) )

And it’s (deterministic) posterior is defined by:

Olr, ~ ~
q(Xr,_, %7, %0) = N (X7, — (Xn —v1-a 'en) +y/1—ar_, €,),0) (10)

ar,

where €,, = (X,, — /@r,X0)/+/1 — &, is the (predicted) diffusion noise.

Next, we describe its analogy in the discrete domain, which is first proposed by Austin et al. [5].

23



P
<\; ‘}S,,/ \ }i\(/
V//\\»L,‘\‘ A T\//\\L Pt
e o oy o &
P )’ b T 1//\\» s
A [ i
& g b \ L -
o - mu%;z?n) g
(A\\A lx( \ &/A\A ‘\i‘\//\
R G-y § Ay T Esead
\ 2,/\/‘ LSS
L o | |EeErn
gt T s
A\ e
i e g !
N\(./z:x~\i> T i, N VV*/& -
\ 2 /g & - g
L, g g T

Figure 7: Qualitative illustration of how diffusion steps affect the generation quality of continuous diffusion
models. The results are reported without any post-processing. Continuous DIFUSCO with 50 (first row), 20
(second row), 10 (third row), and 5 (last row) diffusion steps in cosine schedule are shown.

For discrete diffusion, the marginal can still be defined as:

q(%r,|%0) = Cat (X7,;p = x0Q,,) , (11)
while the posterior becomes:
q(x IX x ) o q(XTi XTi—17XO)q(XTi—1|XO)
i is20) —
Ti—1 Ti) q(X7—1|X0)
=T — 12
XTiQTi—lﬂ'i QXOQﬂ'fl (12
= Ca‘t XTifl 7 p = ~ T ?
x0Q,, X,

where Gt’,t = Qt’+1 ce Qt'

H Experiment Baselines

TSP-50/100 We evaluate DIFUSCO on TSP-50 and TSP-100 against 10 baselines, which belong to
two categories: traditional Operations Research (OR) methods and learning-based methods.

* Traditional OR methods include Concorde [3], an exact solver, and 2-opt [71], a heuristic method.

* Learning-based methods include AM [64], GCN [53], Transformer [10], POMO [67], Sym-
NCO[59], DPDP [79], Image Diffusion [32], and MDAM [114]. These are the state-of-the-art
methods in recent benchmark studies.

TSP-500/1000/10000 We compare DIFUSCO on large-scale TSP problems with 9 baseline methods,
which fall into two categories: traditional Operations Research (OR) methods and learning-based
methods.

¢ Traditional OR methods include Concorde [3] and Gurobi [35], which are exact solvers, and
LKH-3 [39], which is a strong heuristic solver. We use two settings for LKH-3: (i) default: 10000
trials (the default configuration of LKH-3); (ii) less trials: 500 trials for TSP-500/1000 and 250
trials for TSP-10000. We also include Farthest Insertion, a simple heuristic method, as a baseline.
* Learning-based methods include EAN [22], AM [64], GCN [53], POMO+EAS [67, 48], Att-GCN
[27], and DIMES [92]. These are the state-of-the-art methods in recent benchmark studies. They
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Figure 8: Qualitative illustration of how diffusion steps affect the generation quality of discrete diffusion models.
The results are reported without any post-processing. Discrete DIFUSCO with 50 (first row), 20 (second row),
10 (third row), and 5 (last row) diffusion steps in cosine schedule are shown.
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Figure 9: Qualitative illustration of how diffusion schedules affect the generation quality of continuous diffusion
models. The results are reported without any post-processing. Continuous DIFUSCO with linear schedule
(first row) and cosine schedule (second row) with 20 diffusion steps are shown.

can be further divided into reinforcement learning (RL) and supervised learning (SL) methods.
Some RL methods can also use an Active Search (AS) stage [6] to fine-tune each instance. We take
the results of the baselines from Fu et al. [27] and Qiu et al. [92]. Note that except for Att-GCN
and DIMES, the baselines are trained on small graphs and tested on large graphs.

MIS For MIS, we compare DIFUSCO with 6 other MIS solvers on the same test sets, including
two traditional OR methods (i.e., Gurobi and KaMIS) and four learning-based methods. Gurobi
solves MIS as an integer linear program, while KaMIS is a heuristics solver for MIS. The four
learning-based methods can be divided into the reinforcement learning (RL) category, i.e., LwD [1])
and DIMES [92], and the supervised learning (SL) category, i.e., Intel [70] and DGL [8].

25



Figure 10: Qualitative illustration of how diffusion schedules affect the generation quality of discrete diffusion
models. The results are reported without any post-processing. Discrete DIFUSCO with 1inear schedule (first
row) and cosine schedule (second row) with 20 diffusion steps are shown.

Figure 11: Qualitative illustration of discrete DIFUSCO on TSP-50, TSP-100 and TSP-500 with 50 diffusion
steps and cosine schedule.

Step 0999 / 10 Step 0999 / 1000

Figure 12: Success (left) and failure (right) examples on TSP-100, where the latter fails to form a single tour that
visits each node exactly once. The results are reported without any post-processing.
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