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ABSTRACT

Compressing neural networks without retraining is vital for deployment at scale.
We study calibration-free compression through the lens of projection geometry:
structured pruning is an axis-aligned projection, whereas model folding performs
a low-rank projection via weight clustering. We formalize both as orthogonal
operators and show that, within a rank distance of one, folding provably yields
smaller parameter reconstruction error, and under mild smoothness assumptions,
smaller functional perturbations than pruning. At scale, we evaluate >1’000 check-
points spanning ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on
CIFAR-10 and ImageNet-1K, covering diverse training hyperparameters (optimiz-
ers, learning rates, augmentations, regularization, sharpness-aware training), as
well as multiple LLaMA-family 60M and 130M parameter models trained on C4.
We show that folding typically achieves higher post-compression accuracy, with
the largest gains at moderate–high compression. The gap narrows and occasionally
reverses at specific training setups. Our results position folding as a geometry-
aware, calibration-free alternative to pruning that is often superior in practice and
principled in theory.

1 INTRODUCTION

Neural network compression is critical for deploying models in resource-constrained environments.
Common approaches include quantization, which reduces the precision of weights and activations, and
knowledge distillation, which transfers information from a large teacher model to a smaller student
model. In this work, we focus on the class of calibration-free post-training structured compression
methods that optimize the model architecture itself without access to training data. Among these,
the most widely used is magnitude-based pruning, which prunes tensor elements according to their
magnitudes, using them as a proxy for their contribution to model accuracy (Han et al., 2015; Mishra
et al., 2021; Lu et al., 2023; Ding et al., 2024; Bambhaniya et al., 2024). When combined with
fine-tuning or a lightweight BatchNorm reset (Saikumar & Varghese, 2025), this approach achieves
significant compression rates with negligible accuracy loss (Kurtic et al., 2022; Sanh et al., 2020).
In contrast, the recently introduced model folding clusters similar weights and ties them together,
providing an approximation of the original network (Wang et al., 2025). Both pruning and folding
reduce parameter count but differ fundamentally: pruning removes weights entirely, while folding
preserves them in merged representations.

In this work, we develop a unified theoretical and empirical framework to compare pruning and
folding through the lens of orthogonal projections in parameter space. We show that both compression
methods can be viewed as projections onto lower-dimensional subspaces, but with crucial differences
in geometry: pruning corresponds to axis-aligned coordinate projections, while folding projects onto
cluster-structured subspaces that retain directional information.

At a high level, both pruning and folding compress the weights of a model. We show that for any
pruned solution there exists a folded alternative that is almost as small—using one extra component
in the compressed representation—yet is strictly closer to the original weights (smaller Frobenius
norm), which in turn bounds the change in the network function. Intuitively, folding merges weight
vectors with similar directions rather than zeroing coordinates, so the compressed model stays closer
in behavior to the initial network.
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Empirically, we perform a comprehensive calibration-free study over >1’000 checkpoints spanning
CNNs and ViTs on CIFAR-10 and ImageNet-1K, trained under diverse hyperparameter choices
(optimizers, learning rates, augmentation, regularization, sharpness-aware training). We also train and
process 18 LLaMA-family models with 60M and 130M parameters on C4, by varying learning rates,
warmup lengths, and weight decay strength. After compression and also followed by lightweight and
full fine-tuning, folding typically attains higher post-compression accuracy, with the largest gains
at moderate to high compression. The margin narrows, and can occasionally reverse, at very low
compression or under specific training setups, but the overall trend is consistent with our theoretical
analysis. Our projection-based perspective opens new directions for designing compression methods
that explicitly optimize for functional closeness. This paper makes the following contributions:

• We introduce a unified projection framework that casts pruning and folding as orthogonal
projections onto, respectively, axis-aligned and cluster-structured subspaces. We prove that
at a compression rank difference of one, folding achieves smaller parameter reconstruction
error and tighter function-perturbation bounds under mild smoothness assumptions.

• A large-scale evaluation across >1’000 checkpoints and diverse hyperparameters, covering
CNNs and ViTs on CIFAR-10 and ImageNet-1K, as well as LLaMA-60M and LLaMA-
130M on C4. In addition, we use post-compression lightweight LayerNorm reset for ViTs, or
full-fine-tuning to show that the strong performance of folding is preserved in these settings.

• We show that folding is a geometry-aware alternative that is often superior in practice, with
clearly identified regimes (e.g., moderate–high compression) where its advantage is most
pronounced, and corner cases where the gap narrows.

We discuss related work in Appendix F, however, the main text already positions pruning and folding
within our projection framework and clarifies the novelty of our approach.

2 UNIFIED FRAMEWORK FOR PRUNING AND FOLDING

2.1 PRELIMINARIES AND DEFINITIONS

We consider a neural network with input x ∈ Rd. We assume ReLU activations and normalization
layers (e.g., BatchNorm or LayerNorm) are present.

To develop the theoretical framework, we focus on compressing a single layer at a time. This layer
has p inputs and m outputs with its parameters collected in matrix W ∈ Rm×p. A row w(i) of
W is denoted as the ith parameter vector with individual weights w(i, j). Since all other network
parameters are treated as fixed, the network function can be expressed as f(x;W ), which is trained
to minimize a loss function L(W).

We assume that the loss functionL is Lipschitz continuous, i.e., there exists a constant κ > 0 such that
|L(W1)− L(W2)| ≤ κ ∥W1 −W2∥F (1)

for all admissible parameter matrices W1 and W2. The Frobenius norm of a matrix is defined as
∥A∥F =

√∑
i,j |aij |2, that is, the square root of the sum of the squares of its entries, or equivalently,

the ℓ2-norm of the vectorized matrix. This Lipschitz condition controls the change in loss with respect
to parameter perturbations.

Orthogonal Projection. We formalize structured pruning and model folding as orthogonal projec-
tions in parameter space. A matrix C ∈ Rm×m is an orthogonal projection if C = C⊤ = C2, i.e., it
is symmetric and idempotent. Such projections map any parameter vector to its closest point (in the
Euclidean norm) within a lower-dimensional subspace.

If the columns of U ∈ Rm×k form a basis of a k-dimensional subspace, the corresponding orthogonal
projection is

C = U(U⊤U)−1U⊤. (2)
Equivalently,

Cy = argmin
z∈Range(U)

∥y − z∥2

meaning Cy is the orthogonal projection of y onto the subspace spanned by U.
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2.2 COMPRESSION AS ORTHOGONAL PROJECTION

Structured pruning. Pruning can be viewed as a projection onto a coordinate-aligned subspace at the
level of neurons, filters, or channels. Assume the layer outputs are ordered so that the last m− k are
pruned. The corresponding basis Up spans the k-dimensional subspace, with projection matrix Cp

and transformed weight matrix Wp:

Up =

(
I
0

)
, Cp =

(
I 0
0 0

)
, Wp = CpW. (3)

Consequently, the last m−k rows of Wp are zero, and the corresponding neurons, filters, or channels
can be simply removed.

Model folding. Folding groups the parameters into k clusters and replaces each cluster with its mean.
Depending on the choice of clusters, a different folding results. Folding can be represented as an
orthogonal projection onto the k-dimensional subspace spanned by Uf ∈ {0, 1}m×k, where each
row contains exactly one nonzero entry indicating the cluster assignment. A cluster Sj comprises all
indices of parameter vectors belonging to it; thus, uf (i, j) = 1 if and only if i ∈ Sj .

The projection Cf defined in Eq. 2 maps each cluster to its mean (Wang et al., 2025). Specifically,

Wf = CfW, ∀i ∈ Sj : wf (i) = µj , µj =
1

|Sj |
∑
i∈Sj

w(i), (4)

where µj is the mean of cluster j. After projection, all parameter vectors within a cluster are replaced
by their mean, making them identical. As a result, the corresponding layer outputs are also identical,
leaving a total of k distinct neurons, filters, or channels. Practically, the identical layer outputs can be
joined while adapting the next layer appropriately, see (Wang et al., 2025).

2.3 FOLDING DOMINATES PRUNING

To compare pruning and folding, we first show that for any choice of pruning, there exists a folding
that yields a more accurate approximation of the parameter matrix W.

Theorem 2.1. Given any pruning with basis Up of rank 0 ≤ kp ≤ m−1 (i.e., at least one parameter
vector is pruned), there exists a folding with basis U′

f and rank kf = kp + 1 such that

∥W −Wp∥2F ≥ ∥W −W′
f∥2F ,

where Wp = CpW and W′
f = C′

fW, with Cp and C′
f denoting the orthogonal projections

defined in Eq. 2.

In the above theorem, U′
f denotes the constructive clustering obtained by merging all pruned rows

into a single additional cluster. The proof is in Appendix C. By the Lipschitz continuity of the loss
function in Eq. 1, the superior approximation property of folding implies a tighter bound on the loss
difference compared to pruning:

|L(W)− L(W′
f )| ≤ κ ∥W −W′

f∥F , |L(W)− L(Wp)| ≤ κ ∥W −Wp∥F ,

with
∥W −W′

f∥2F ≤ ∥W −Wp∥2F .
Furthermore, the rank difference kf = kp + 1 between pruning and folding is practically negligible,
since in typical scenarios many parameter vectors are pruned. For instance, under a uniform 50%
per-layer retention, a ResNet-18 stage with 256 channels keeps kp = 128 (so folding uses kf = 129),
and a ViT-B/32 block with width 768 keeps kp = 384 (so kf = 385); the relative increase is
just 1/kp ≈ 0.78% and 0.26%, respectively—negligible in practice. Moreover, for all layers and
architectures we observe that loss and accuracy vary smoothly as the rank increases from kp to kp+1,
no jumps in loss or accuracy, and the error difference between ranks k and k + 1 is typically much
smaller than the difference between pruning and folding at the same rank (see Appendix G.3).

Finally, we show that folding using optimal k-means clustering never yields a less accurate approxi-
mation of the parameter matrix W than pruning.
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Theorem 2.2. Let U⋆
f be the basis obtained from an optimal k-means clustering with kf clusters,

i.e., the folding clusters are determined by a k-means algorithm minimizing the accumulated within-
cluster sum of squares. Then, for any pruning with basis Up of rank kp = kf − 1, we have

∥W −Wp∥2F ≥ ∥W −W⋆
f∥2F ,

where Wp = CpW and W⋆
f = C⋆

fW, with Cp and C⋆
f denoting the orthogonal projections

defined in Eq. 2.

The proof is given in Appendix C. This result demonstrates that k-means folding is not merely
a heuristic, but an optimal projection under clustering constraints. Note that the special folding
W′

f in Theorem 2.1 is suboptimal, while Theorem 2.2 shows that W⋆
f achieves the minimum

possible reconstruction error over all clusterings, producing a strictly stronger improvement as
∥W−Wp∥2F ≥ ∥W−W′

f∥2F ≥ ∥W−W⋆
f∥2F . Unlike pruning, which relies on parameter vector

removal, folding generalizes the idea by enabling coordinated parameter merging. Thus, folding
incurs less parameter distortion and provably smaller loss perturbation under a local parameter-
Lipschitz assumption.

In addition, Theorem 2.2 has implications for a possible fine-tuning after compression. Matrix W
contains the optimized weights and Wp or W⋆

f contain the weights after pruning and folding the
optimized network. As a result of Theorem 2.2, the quadratic distance between the optimized weights
and the compressed optimized weights is smaller for folding in comparison to pruning.

Our theoretical results employ a one–rank slack comparing pruning at rank kp to folding at kf =
kp + 1, as a proof device to obtain a clean monotonicity guarantee on projection error. This slack
does not reflect our evaluation protocol. In all experiments we enforce matched sparsity budgets and
compare methods at the same retained size (parameters and FLOPs). Hence, empirical accuracy gaps
cannot be attributed to extra capacity.

3 EXPERIMENTAL RESULTS

Most pruning studies vary only seeds by training several checkpoints under a single hyperparameter
recipe, leaving the role of upstream training underexplored. We instead benchmark > 1’000 check-
points spanning diverse hyperparameters (optimizers, learning rates, augmentation, regularization,
SAM) to quantify how training choices interact with folding and pruning. Concretely, we train 216
ResNet18 (Adam) and 576 ResNet18 (SGD) models on CIFAR-10, include 50 PreActResNet18 and
200 ViT-B/32 checkpoints from Andriushchenko et al. (2023), and add 72 CLIP ViT-B/32 models
fine-tuned on ImageNet-1K from Wortsman et al. (2022b). The two ViT families differ markedly in
scale (∼19M vs. ∼151M parameters). We also train 36 LLaMA-family 60M and 130M parameter
models on the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020). Training details are in
Appendix D. The results for LLaMa-130M are in Appendix G.

We empirically compare model folding and structured pruning across CNNs, ViTs and LLaMA-60M
models under matched training setups. Unless stated otherwise, we do not apply gradient-based
fine-tuning: for CNNs we only re-estimate batch-normalization statistics via a single forward pass
using REPAIR (Jordan et al., 2023) to isolate structural effects, and ViTs / LLaMA-60M models are
left uncalibrated. Note that REPAIR was recently shown to substantially improve post-compression
performance for pruned models (Saikumar & Varghese, 2025), and has also been applied on top
of folding (Wang et al., 2025). We report results (i) immediately after compression (CNNs after
REPAIR, ViTs with no further step), (ii) for ViTs additionally after a LayerNorm reset, and (iii) for
both families after 1–5 epochs of full fine-tuning.

Folding vs. Structured Pruning on CNNs and ViTs. We compare model folding (FOLD) with
structured magnitude pruning (MAG) under L1 and L2 criteria (MAG1, MAG2) across representative CNN
and ViT architectures. Fig. 1 summarizes results: scatter plots show accuracy of MAG1 vs. FOLD for
each trained model, with compression ratio indicated by color. Results for MAG2 are in Appendix E.
Box plots depict the distribution of accuracy differences between FOLD and MAG1. Positive differences
indicate folding outperforms pruning, with the gap widening at higher sparsity. This trend holds
across ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on both CIFAR-10 and ImageNet-
1K, demonstrating robustness to architecture and dataset scale. These results support our theoretical
claim (Sec. 2): folding projects onto cluster-structured subspaces, preserving parameter alignment
and reducing functional distortion, yielding consistent accuracy gains over magnitude pruning.
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(a) ResNet18, Adam, MAG1 vs FOLD, no L1 regularization (b) PreActResNet18, MAG1 vs FOLD

(c) ViT-B/32, MAG1 vs FOLD, base accuracy >75% (d) CLIP ViT-B/32, MAG1 vs FOLD

Figure 1: Folding outperforms magnitude pruning across diverse training regimes. Top row:
ResNet18 and PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch
with Adam using different hyperparameter configurations. PreActResNet18 checkpoints are from
Andriushchenko et al. (2023). Bottom row: ViT-B/32 on CIFAR-10 from (Andriushchenko et al.,
2023) and CLIP ViT-B/32 on ImageNet-1K from (Wortsman et al., 2022b). See Appendix D for
details. In these plots, we use checkpoints that were trained without L1 regularization. Scatter plots
show post-compression accuracy for magnitude pruning (L1 criterion) versus folding at uniform per-
layer compression ratios (color-coded by layer-wise compression ratio). Bar plots depict the accuracy
gain by folding, computed as ∆ = Acc(FOLD)−Acc(MAG1), as a function of layer-wise compression
ratio. Folding yields the largest improvements at moderate to high compression, confirming its
robustness across architectures and datasets. Fig. 8 shows the results for magnitude pruning with L2
criterion.

(a) ViT-B/32, MAG1 vs FOLD, base accuracy >75% (b) CLIP ViT-B/32, MAG1 vs FOLD

Figure 2: MAG1 versus FOLD on ViTs after LayerNorm-only fine-tuning for ViT-B/32 on CIFAR-10
and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
wise compression. Bar plots depict the accuracy gain ∆ = Acc(FOLD)−Acc(MAG1), which remains
positive and typically grows with compression, indicating that even under lightweight LayerNorm
adaptation FOLD retains a consistent advantage over pruning.

Performance Comparison after Lightweight and Full Fine-Tuning. The previous results isolate
structural effects by evaluating models without further optimization. We now test whether folding’s
advantage persists after fine-tuning. Fig. 2 compares MAG1 and FOLD on ViTs under lightweight
LayerNorm-only adaptation: across ViT-B/32 (CIFAR-10) and CLIP ViT-B/32 (ImageNet-1K),
folding consistently reaches higher post-compression accuracy, with the gap ∆ = Acc(FOLD) −
Acc(MAG1) remaining positive and typically growing with compression.

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

(a) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) MAG1 vs FOLD
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

(d) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) MAG1 vs FOLD
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

Figure 3: Folded models retain their accuracy advantage after fine-tuning. Results for ResNet18
trained by Adam on CIFAR-10 (top row) and CLIP-ViT-B/32 trained on ImageNet-1K (bottom row):
(a,d) compares post-compression accuracy of magnitude pruning (MAG1) versus folding (FOLD) after 1
and 5 epochs of fine-tuning. (b,e) show the accuracy gap between folding and pruning as a function
of fine-tuning epochs, demonstrating that folding maintains a consistent lead, i.e., the FOLD accuracy
delta is positive. (c,f) illustrate accuracy trajectories before and after 5 epochs of fine-tuning for both
methods, highlighting that folded models recover accuracy faster. Further results in Appendix E.

Next, we allow brief fine-tuning (1–5 epochs). Fig. 3 shows that folded models (a,d) start from higher
accuracy and retain their lead, (b,e) maintain a positive relative gap, and (c,f) recover faster with
fewer plateaus. Thus, folding provides a better initialization and requires fewer updates to regain
performance, making it advantageous in settings with limited fine-tuning.

Performance Comparison on LLaMA-60M. Tab. 1 evaluates FOLD and MAG2 on LLaMA-60M
trained on C4 under 18 hyperparameter settings (varying learning rate, warmup, and weight decay).

weight_decay warmup_steps max_lr PPL↓ 0% sparsity PPL↓ MAG2 (20%) PPL↓ FOLD (20%) PPL↓ MAG2 (50%) PPL↓ FOLD (50%)
0.01 880 0.001 32.11 54.51 47.17 398.62 221.32
0.01 1100 0.001 32.14 50.11 46.75 220.54 172.57
0.01 2200 0.001 32.20 46.57 47.54 174.58 216.36

0 880 0.001 32.17 51.14 48.23 220.33 223.86
0 1100 0.001 32.21 50.03 47.47 231.41 204.47
0 2200 0.001 32.40 46.38 46.92 177.48 185.27

0.01 880 0.005 30.12 68.70 55.32 641.69 302.43
0.01 1100 0.005 29.77 68.29 49.81 564.96 234.56
0.01 2200 0.005 29.60 54.50 47.04 360.52 208.02

0 880 0.005 30.47 78.73 62.35 762.05 395.04
0 1100 0.005 30.17 59.20 49.58 544.87 184.74
0 2200 0.005 29.75 56.18 46.55 353.35 165.21

0.01 880 0.01 31.82 66.98 51.80 910.48 406.75
0.01 1100 0.01 29.85 102.41 67.69 977.92 367.94
0.01 2200 0.01 29.25 51.46 44.28 323.68 288.83

0 880 0.01 108.56 129.77 123.85 279.17 198.72
0 1100 0.01 30.31 97.97 61.19 860.14 533.62
0 2200 0.01 29.57 54.43 47.77 351.11 209.06

Table 1: Evaluation of FOLD and MAG2 on LLaMA-60M. We train and evaluate 18 LLaMA-family
models with 60M parameters on C4 by varying max_lr, warmup steps and weight decay. Columns
4–8 show perplexity of the trained model before compression and after pruning / folding using
layer-wise pruning ratio of 20% and 50%. We prune only FFN blocks. Except for low learning rates
with long warmup schedules, FOLD outperforms MAG2 (highlighted in bold).
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We prune or fold only the FFN blocks and report perplexity at baseline and at 20% and 50% layer-wise
sparsity. Except for models trained with very low learning rates and long warmup, FOLD consistently
outperforms MAG2. Similar finding have been obtained for LLaMA-130M models in Tab. 6.

4 MODEL COMPRESSION ABLATION STUDIES

The previous sections demonstrated that folding often outperforms structured pruning across archi-
tectures and compression ratios. On ResNets and ViTs, we probe which training factors impact this
advantage. Specifically, we analyze sensitivity to learning rate, the use of sharpness-aware training
(SAM) (Foret et al., 2021), regularization and data augmentation (Prabhu et al., 2019)—the hyperpa-
rameters known to influence loss landscape geometry and generalization (Fort & Jastrzebski, 2019;
Li et al., 2018; Neyshabur et al., 2017; Chen et al., 2022) in non-trivial ways (Andriushchenko et al.,
2023). To validate these curvature-related hypotheses, Appendix G includes a sharpness analysis.
Our measurements quantify how hyperparameters shift the local geometry of the loss landscape and
help explain when FOLD ’s advantage widens or narrows.

Role of Optimizer. We repeat the ResNet18 analysis under Adam and SGD to gauge optimizer
sensitivity. Compared to the Adam-trained sweep in Fig. 1(a), the complementary SGD sweep in
Fig. 5 shows the same qualitative ordering—FOLD exceeds MAG1 across compression levels—but
with different baselines and dispersion: SGD checkpoints form a tighter cloud and exhibit a smaller
median gap, whereas Adam yields larger variance and at times a more pronounced FOLD advantage,
especially at higher compression. The FOLD–MAG1 difference remains positive under both optimizers
in most cases, but its magnitude is optimizer-dependent.

Effect of Learning Rate. Fig. 4 reports post-compression accuracy for FOLD versus MAG1 across
learning rates on ResNet18 (Adam, SGD), PreActResNet18, and ViT-B/32. With Adam, FOLD ’s
edge is largest at moderate–low rates, narrows and can reverse at very high rates, and vanishes
again at extremely small rates (both methods degrade). For SGD, the dependence is weaker and
can be inverted (e.g., ViT-B/32). The effect of learning rate is expressed through sharpness (see
Appendix G): when training places the model in regions where folding produces a smaller sharpness
increase than pruning, folding wins. When folding produces a larger sharpness increase (most visible
at high learning rates under Adam), pruning can outperform. Adaptive methods like Adam are
associated with sharper minima and distinct generalization behavior compared to SGD, amplifying
this sensitivity (Wilson et al., 2018; Jastrzębski et al., 2018; Zhou et al., 2021).

Figure 5: Optimizer effect evaluated on ResNet18
checkpoints trained on CIFAR-10 with SGD (no L1
normalization). The figure complements Fig. 1(a).

Effect of SAM. Fig. 6 evaluates training
with and without SAM and measures post-
compression accuracy. Across models, SAM
lifts both methods. With light L1 regularization
(10−5) during training shown in (b), pruning
narrows the gap at low compression (where in-
duced sparsity aligns with L1), yet FOLD regains
and extends its lead as compression increases.
These trends are consistent with the view that
SAM steers training to flatter solutions, reducing
curvature sensitivity. Within this flatter neigh-
borhood both pruning and folding projections
operate inside the same robustness ball, so their
geometric differences matter less and the gap narrows—an effect stronger for ViT-B/32, where high
ρ homogenizes head / channel saliencies and reduces the relative advantage of clustering.

Effect of Data Augmentation. Fig. 7 plots the distribution of ∆Accuracy (FOLD − MAG1) across
checkpoints versus the layer-wise compression ratio, contrasting runs without (gray) and with
RandAugment (green). For ResNet18 (Adam and SGD) and PreActResNet18, RAUG reduces or shifts
FOLD ’s relative benefit. In contrast, for ViT-B/32 RAUG increases FOLD ’s advantage: the median ∆
rises with compression, suggesting that augmented ViT representations are especially amenable to
projection-based removal. A plausible mechanism is that augmentation biases training toward flatter,
more invariant solutions. This is supported by our sharpness analysis in Appendix G and consistent
with recent theory linking augmentation-induced input perturbations to equivalent parameter-space

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

(a) ResNet18, Adam, no L1 reg., no weight decay (b) ResNet18, SGD, no L1 reg., no weight decay

(c) PreActResNet18, SGD (d) ViT-B/32, SGD

Figure 4: Learning rate modulates folding’s edge. Post-compression accuracy of FOLD and MAG1
across learning rates: ResNet18 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d).
FOLD leads at moderate–low rates. With Adam, the gap shrinks or reverses at very high rates, and
closes again at extremely small rates. SGD shows weaker or opposite dependence.

(a) ResNet18, Adam, MAG1 vs FOLD, without L1 reg. (b) ResNet18, Adam, MAG1 vs FOLD, with L1 reg.

(c) PreActResNet, MAG1 vs FOLD, no L1 regularization (d) ViT-B/32, MAG1 vs FOLD, no L1 regularization

Figure 6: SAM (Foret et al., 2021) can boost model compression. Post-compression accuracy
under training with / without SAM. (a) ResNet18 (Adam), no L1. (b) ResNet18 (Adam), L1= 10−5.
(c) PreActResNet18 (SGD), no L1. (d) ViT-B/32, no L1. SAM improves both FOLD and MAG1, but
the uplift is consistently larger for FOLD, especially with Adam. Light L1 regularization helps MAG1 at
low compression, yet FOLD retains a clear advantage at moderate–high compression.

perturbations and showing that augmentations bias training toward flatter minima (Yoo & Yoon,
2025). Standard augmentation (augm=True) shows a similar trend and is omitted for brevity.
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(a) ResNet18, Adam (b) ResNet18, SGD (c) PreActResNet (d) ViT-B/32

Figure 7: Augmentations have a generally positive effect on the post-compression accuracy. Post-
compression accuracy without / with random augmentations for (a) ResNet18 (Adam), (b) ResNet18
(SGD), (c) PreActResNet18, and (d) ViT-B/32. Augmentations boost both FOLD and MAG1. On
ResNet18 they also narrow FOLD ’s advantage—most noticeably at moderate compression—consistent
with added invariances making axis-aligned removals less damaging. In ViT-B/32, augmentations are
essential for folding1.

These ablations reveal a consistent pattern: conditions that encourage flatter and structured solu-
tions—moderately low learning rates and SAM with a small–moderate radius—magnify FOLD ’s
advantage, whereas extremes reduce it: very high or very low learning rates, stronger augmentations,
or large SAM radii narrow the gap; SGD generally dampens all effects relative to Adam. This aligns
with our projection view (Sec. 2): when weights are well aligned, clustering reduces projection error
more than coordinate removal and thus perturbs the function less, while weaker alignment or broad
robustness neighborhoods make the two projections behave more similarly.

5 CONCLUSION, LIMITATIONS, AND OUTLOOK

We framed structured pruning and model folding as projection-based compression and showed
that folding achieves smaller parameter deviation with a one-rank slack, implying tighter func-
tional preservation under mild smoothness. A calibration-free evaluation over >1’000 checkpoints
(ResNet18, PreActResNet18, ViT-B/32, CLIP ViT-B/32; CIFAR-10, ImageNet-1K; and LLaMA-60M
and LLaMA-130M on C4) found that FOLD typically surpasses MAG1 in post-compression accuracy,
with the clearest gains at moderate–high compression and under training conditions that induce
flatter, more structured solutions (e.g., moderate learning rates, SAM). The gap narrows at very low
compression and can shrink under strong data augmentation or large SAM radii, but the overall trend
is robust across optimizers and hyperparameters.

Limitations. Our theoretical guarantee allows a one-component increase in compressed rank but
does not establish universal dominance at exactly matched sizes. Empirically, we focus on standard
CNN and ViT families on CIFAR-10 and ImageNet-1K, as well as small LLaMA models on C4. For
ViTs and LLaMA, pruning and folding are applied only to the FFN blocks. Extensions to attention
layers is left for future work. We evaluate in strictly calibration-free settings, with optional BatchNor-
m/LayerNorm resets and short fine-tuning budgets, and compare primarily against magnitude-based
structured pruning. Interactions with quantization, distillation, and unstructured sparsity are not
considered. Larger LLMs are beyond the scope of this study due to the computational cost of training
across diverse hyperparameter settings. We note that most SoTA pruning methods for LLMs rely on
calibration data (e.g., activation-aware/second-order) and are exclusively pruning-based.

Outlook. We plan to extend folding to pruning / folding attention blocks, calibration-based settings
and evaluate on larger LLMs / VLMs. We also plan to study interactions with quantization and
adaptation methods. More broadly, our projection-based view positions folding as a geometry-aware
primitive for compression: a foundation on which novel calibration-based compression methods,
hybrid pipelines with quantization and distillation can be built, and a step toward principled model
compression framework. In this sense, folding is not only a practical tool but a building block for the
next generation of compression methods tailored to foundation models and deployment at scale.

1Note that the base accuracy of ViT-B/32 checkpoints trained without RAUG is lower than with RAUG.
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Reproducibility Statement. Our compression operators and evaluation protocol are described in
Sec. 2-Sec. 3, with ablation studies in Sec. 4. Complete proofs are in Appendix C; training setups,
datasets, links to the used checkpoints, and hyperparameter grids in Appendix D; and extended results
in Appendix E. An anonymous repository with configs and scripts to regenerate all figures/tables is
linked in Appendix A; our limited LLM usage statement is in Appendix B. Together, these materials
enable re-running the full pipeline and regenerating the results.
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Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
Storkey. Three factors influencing minima in sgd, 2018. URL https://arxiv.org/abs/1711.04623.

Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing
permuted activations for interpolation repair, 2023. URL https://arxiv.org/abs/2211.08403.

Hyeong-Ju Kang. Accelerator-aware pruning for convolutional neural networks. IEEE Transactions on Circuits
and Systems for Video Technology, pp. 1–1, 2020. ISSN 1558-2205. doi: 10.1109/tcsvt.2019.2911674. URL
http://dx.doi.org/10.1109/TCSVT.2019.2911674.

Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Compression
of deep convolutional neural networks for fast and low power mobile applications, 2016. URL https:
//arxiv.org/abs/1511.06530.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin, and
Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for large language
models, 2022. URL https://arxiv.org/abs/2203.07259.

Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-up
convolutional neural networks using fine-tuned cp-decomposition, 2015. URL https://arxiv.org/abs/
1412.6553.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
arXiv preprint arXiv:1608.08710, 2016.

Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
neural nets. In Proceedings of the 32nd International Conference on Neural Information Processing Systems,
NIPS’18, pp. 6391–6401, Red Hook, NY, USA, 2018. Curran Associates Inc.

Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir Yaz-
danbakhsh. Step: Learning n:m structured sparsity masks from scratch with precondition, 2023. URL
https://arxiv.org/abs/2302.01172.

Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
compression. In Proceedings of the IEEE International Conference on Computer Vision (ICCV), Oct 2017.

Paul Micaelli and Amos Storkey. Zero-shot knowledge transfer via adversarial belief matching, 2019. URL
https://arxiv.org/abs/1905.09768.

Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
Paulius Micikevicius. Accelerating sparse deep neural networks, 2021. URL https://arxiv.org/abs/2104.
08378.

11

https://arxiv.org/abs/2505.22922
https://arxiv.org/abs/2406.02214
https://arxiv.org/abs/1506.02626
https://arxiv.org/abs/1912.01274
https://arxiv.org/abs/1503.02531
https://arxiv.org/abs/2308.14929
https://arxiv.org/abs/1607.03250
https://arxiv.org/abs/1711.04623
https://arxiv.org/abs/2211.08403
http://dx.doi.org/10.1109/TCSVT.2019.2911674
https://arxiv.org/abs/1511.06530
https://arxiv.org/abs/1511.06530
https://arxiv.org/abs/2203.07259
https://arxiv.org/abs/1412.6553
https://arxiv.org/abs/1412.6553
https://arxiv.org/abs/2302.01172
https://arxiv.org/abs/1905.09768
https://arxiv.org/abs/2104.08378
https://arxiv.org/abs/2104.08378


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring generalization in
deep learning, 2017. URL https://arxiv.org/abs/1706.08947.

Vinay Uday Prabhu, Dian Ang Yap, Joyce Xu, and John Whaley. Understanding adversarial robustness through
loss landscape geometries, 2019. URL https://arxiv.org/abs/1907.09061.

Sai Qian Zhang, Bradley McDanel, and H. T. Kung. Fast: Dnn training under variable precision block floating
point with stochastic rounding. In 2022 IEEE International Symposium on High-Performance Computer
Architecture (HPCA), pp. 846–860, 2022. doi: 10.1109/HPCA53966.2022.00067.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.),
Proceedings of the 38th International Conference on Machine Learning, volume 139 of Proceedings of
Machine Learning Research, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL https://proceedings.mlr.
press/v139/radford21a.html.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. Journal of
machine learning research, 21(140):1–67, 2020.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2023.
URL https://arxiv.org/abs/1910.10683.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
image generation with clip latents, 2022. URL https://arxiv.org/abs/2204.06125.

Siyu Ren and Kenny Q. Zhu. Low-rank prune-and-factorize for language model compression, 2023. URL
https://arxiv.org/abs/2306.14152.

Dhananjay Saikumar and Blesson Varghese. Signal collapse in one-shot pruning: When sparse models fail to
distinguish neural representations, 2025. URL https://arxiv.org/abs/2502.15790.

Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by fine-tuning, 2020.
URL https://arxiv.org/abs/2005.07683.

George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman. Zipit! merging
models from different tasks without training, 2024. URL https://arxiv.org/abs/2305.03053.

Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
language models, 2024. URL https://arxiv.org/abs/2306.11695.

Alexander Theus, Olin Geimer, Friedrich Wicke, Thomas Hofmann, Sotiris Anagnostidis, and Sidak Pal Singh.
Towards meta-pruning via optimal transport. arXiv preprint arXiv:2402.07839, 2024.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023a. URL
https://arxiv.org/abs/2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov,
Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom.
Llama 2: Open foundation and fine-tuned chat models, 2023b. URL https://arxiv.org/abs/2307.09288.
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APPENDIX

The following sections provide supplementary information and complement the main paper:

• Appendix A: Code, Data, and Resources.
• Appendix B: Use of Large Language Models.
• Appendix C: Proofs of Theoretical Claims.
• Appendix D: Training Details.
• Appendix E: Further Empirical Results.
• Appendix F: Related Work.
• Appendix G: Additional Evaluations - Rebuttal Response.

A CODE, DATA, AND RESOURCES

Code and logs. An anonymous repository with all source code, experiment configs, and figure-
generation scripts (including the exact logs used to render every plot/table) are released at
https://anonymous.4open.science/r/folding_as_projection-7A4D. The repo contains: im-
plementations of folding and pruning operators, training/evaluation pipelines, scripts to plot ab-
lations, and notebooks to reproduce figures directly from logs. We log all training metrics
and hyperparameters with Weights & Biases2 and export logs alongside the code for reproduc-
tion. Additionally, we provide another anonymous repo for reproducing results of compress-
ing LLaMA-60M and LLaMA-130M with folding and magnitude structured pruning at https:
//anonymous.4open.science/r/simple_model_folding_preview-07E8.

Our folding implementation is based on the code by Wang et al. (2025)3.

Datasets. We use CIFAR-104 and ImageNet-1K5. CIFAR-10 is downloaded automatically via
torchvision. ImageNet-1K requires the official credentials and follows its license. Pretrained/fine-
tuned checkpoints referenced in the paper are either trained by us (configs in the repo) or obtained
from the cited works (Andriushchenko et al., 2023; Wortsman et al., 2022b). The download links are
also provided in Appendix D.

Compute resources. Experiments were run on a cluster featuring 8× NVIDIA A100 (80 GB RAM)
GPUs. All random seeds are fixed in the configs and scripts.

Computational complexity and memory cost. At inference and matched retained sizes, folding
and structured pruning yield the same compute and memory. The difference lies in the compression
step: magnitude pruning is a one-pass scoring and selection procedure (O(pm) to score p filters of
dimension m, plus O(p log p) selection), whereas folding runs k-means on layer weights with T
sweeps. Using Hartigan’s algorithm (Hartigan & Wong, 1979), one sweep costs O(pkm), with max
T = 10 sweeps the total is O(pkmT ) (effectively linear in pm when k is small). This cost is paid
once per layer and is small compared to training.

Runtime overview. The most expensive step in our study is fine-tuning of CLIP VIT-B/32 on
ImageNet-1K (1–5 epochs), which dominates wall-clock time (order of hours per run). In contrast,
compression is lightweight. We detail measured runtime overhead of compression in Appendix G.

B USE OF LARGE LANGUAGE MODELS

We used ChatGPT 6 for sentence-level grammar correction and improvement, drafting trivial plotting
snippets to produce figures from logs, and code readability edits. All ideas, proofs, experiments, and
analyses are ours.

2Weights & Biases: https://wandb.ai
3Model folding universal: https://github.com/nanguoyu/model-folding-universal and model folding

for CNNs: https://github.com/marza96/ModelFolding/
4CIFAR-10: https://www.cs.toronto.edu/~kriz/cifar.html
5ImageNet-1K: https://image-net.org/
6ChatGPT / GPT-5: https://chatgpt.com
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C PROOFS OF THEORETICAL CLAIMS

Below we prove that for any choice of pruning, there exists a folding that yields a more accurate
approximation of the parameter matrix W.

Theorem 2.1. Given any pruning with basis Up of rank 0 ≤ kp ≤ m−1 (i.e., at least one parameter
vector is pruned), there exists a folding with basis U′

f and rank kf = kp + 1 such that

∥W −Wp∥2F ≥ ∥W −W′
f∥2F ,

where Wp = CpW and W′
f = C′

fW, with Cp and C′
f denoting the orthogonal projections

defined in Eq. 2.

Proof. The rows of W can be ordered such that the pruned parameter vectors are first:
w(1), ..., w(m− kp). Then we find that

W −Wp =


w(1)
· · ·

w(m− kp)
0
· · ·
0


using Eq. 3. For the existence proof, we choose a folding that clusters all parameter vectors
w(1), ..., w(m− kp) into a single cluster, all other parameter vectors have individual clusters, i.e.,

U′
f =

 1 0
· · · 0
1 0
0 I

 ; W −W′
f =


w(1)− µ

· · ·
w(m− kp)− µ

0
· · ·
0

 ; µ =
1

m− kp

m−kp∑
i=1

w(i)

using Eq. 4.

We have ∥W −Wp∥2F =
∑m−kp

i=1 w(i)Tw(i) and

∥W −W′
f∥2F =

m−kp∑
i=1

(w(i)− µ)T (w(i)− µ) =

m−kp∑
i=1

(
w(i)Tw(i)− 2w(i)Tµ+ µTµ

)
=

m−kp∑
i=1

w(i)Tw(i)− (m− kp)µ
Tµ

≤
m−kp∑
i=1

w(i)Tw(i) = ∥W −Wp∥2F

The latter inequality directly establishes the theorem.

The following theorem shows that folding using optimal k-means clustering never yields a less
accurate approximation of the parameter matrix W than pruning.

Theorem 2.2. Let U⋆
f be the basis obtained from an optimal k-means clustering with kf clusters,

i.e., the folding clusters are determined by a k-means algorithm minimizing the accumulated within-
cluster sum of squares. Then, for any pruning with basis Up of rank kp = kf − 1, we have

∥W −Wp∥2F ≥ ∥W −W⋆
f∥2F ,

where Wp = CpW and W⋆
f = C⋆

fW, with Cp and C⋆
f denoting the orthogonal projections

defined in Eq. 2.
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Proof. According to Bauckhage (2015) and Wang et al. (2025), the problem of k-means clustering
can be formulated as the following constrained matrix factorization problem:

min
U

∥∥W −U(U⊤U)−1U⊤W
∥∥2
F

subject to u(i, j) ∈ {0, 1},
∑
j

u(i, j) = 1 ∀i.

This formulation coincides with the orthogonal projection of model folding, see Eq. 2 and Eq. 4.
Theorem 2.1 guarantees the existence of a folding basis U′

f and the corresponding projection C′
f

for any pruning Wp of W, such that

∥W −Wp∥2F ≥ ∥W −W′
f∥2F .

Since optimal k-means clustering achieves the minimal possible error ∥W −W⋆
f∥2F ≤ ∥W −

W′
f∥2F , the theorem follows.

D TRAINING DETAILS

The following subsections detail the hyperparameters used to train our checkpoints. For checkpoints
taken from the literature, we summarize the available training details.

D.1 RESNET18 ON CIFAR-10 TRAINING SETUP WITH ADAM AND SGD

We trained a total of 792 ResNet18 models on CIFAR-10 by varying hyperparameter configurations.
We used two optimizers: Adam and SGD. Tab. 2 summarizes the parameter combinations explored
for each optimizer. For Adam, we used 3 learning rates and 1 momentum value. For SGD, we used 3
learning rates and 2 momentum values. The remaining parameters were shared across both optimizers:
weight decay (3 values), L1 regularization (2 values), RandAugment (2 values), Sharpness-Aware
Minimization (3 values), and learning rate scheduling (2 values). This resulted in 216 models trained
with Adam and 576 models trained with SGD. In the ablation studies, we filter checkpoints (as
specified in the figure captions) to highlight the observed effects.

Parameter Values
Optimizer adam, sgd
Learning Rate adam: 0.1, 0.01, 0.001

sgd: 0.1, 0.05, 0.01, 0.001
Momentum adam: 0.0

sgd: 0.9, 0.99
Weight Decay 0.0, 0.0005, 0.001
L1 Regularization 0.0, 1× 10−5

RandAugment True, False
SAM (Sharpness-Aware Minimization) None, 0.05, 0.1
Learning Rate Schedule True, False

Table 2: Hyperparameter combinations used for ResNet18 training on CIFAR-10.

D.2 PREACTRESNET18 ON CIFAR-10

We use 50 trained PreActResNet18 models on CIFAR-10 from Andriushchenko et al. (2023)7. The
models are trained using a fixed set of training parameters and a sweep over a few key hyperparameters.
Tab. 3 summarizes varied parameters used in this experiment. All checkpoints used the same training
protocol: 200 epochs, batch size 128, and no label noise. The model width was fixed at 64 and the
learning rate schedule followed a cyclic pattern. Only the maximum learning rate (lr_max), SAM
strength (sam_rho), and augmentation settings were varied. For the learning rate ablation studies, we
adopt the reported maximum learning rate.

7Download link: https://drive.google.com/drive/folders/1LmthJCb3RXBFWjeTOC4UOOl7Ppgg2h7n
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(a) ResNet18, Adam, FOLD vs MAG2, no L1 regularization (b) PreActResNet18, FOLD vs MAG2

(c) ViT-B/32, FOLD vs MAG2 (d) CLIP ViT-B/32, FOLD vs MAG2

Figure 8: Folding outperforms magnitude pruning across diverse training regimes. The same
setup as in Fig. 1, but compared to the L2 magnitude pruning criterion. Top row: ResNet18 and
PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch with Adam using
different hyperparameter configurations. Bottom row: ViT-B/32 on CIFAR-10 and CLIP ViT-B/32
on ImageNet-1K. Scatter plots show post-compression accuracy for folding versus magnitude pruning
(L2 criterion) at uniform per-layer compression ratios. Bar plots depict the accuracy gain by folding,
computed as ∆ = Acc(FOLD)−Acc(MAG2), as a function of layer-wise compression ratio. Folding
yields the largest improvements at moderate to high compression, confirming its robustness across
architectures and datasets.

(a) ViT-B/32, MAG2 vs FOLD, base accuracy >75% (b) CLIP ViT-B/32, MAG2 vs FOLD

Figure 9: FOLD versus MAG2 on ViTs after LayerNorm-only fine-tuning for ViT-B/32 on CIFAR-10
and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
wise compression. Bar plots depict the accuracy gain ∆ = Acc(FOLD)−Acc(MAG1), which remains
positive and typically grows with compression, indicating that even under lightweight LayerNorm
adaptation FOLD retains a consistent advantage over pruning. The figure follows the same setup as
Fig. 2 in the main paper, but for MAG2.

D.3 VIT-B/32 ON CIFAR-10

The 200 Vision Transformers (ViT) also from Andriushchenko et al. (2023), width=256, were trained
on CIFAR-10, batch size 128, for 200 epochs with a cosine learning rate schedule and linear warmup.
The main hyperparameters are summarized in Tab. 4. We made use of the maximum learning rate, the
use of data augmentation, and the use of Sharpness-Aware Minimization (SAM) in our evaluations.
All other settings were fixed.

17



918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Parameter Values
Optimizer sgd
Max / Base Learning Rate (lr_max) from 0.0504 to 4.9759
SAM Strength (sam_rho) 0.0, 0.05, 0.1
Standard Augmentation (augm) True, False
RandAugment (randaug) True, False

Table 3: Fixed and varying parameters for PreActResNet18 training on CIFAR-10.

(a) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) MAG1 vs FOLD
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

(d) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) MAG1 vs FOLD
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

Figure 10: FOLD outperforms MAG1 after full fine-tuning for 1–5 epochs on PreActResNet18 and
ViT-B/32 on CIFAR-10. Results for PreActResNet18 (top) and ViT-B/32 (bottom). (a,d) accuracy
of MAG1 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap ∆ over epochs, remaining
positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing faster recovery
and higher final accuracy for FOLD. The figure extends Fig. 3 in the main paper to PreActResNet18
and ViT-B/32 architectures where FOLD is benchmarked against MAG1.

D.4 CLIP VIT-B/32 ON IMAGENET-1K

CLIP (Radford et al., 2021) models are known for the widespread use of CLIP features (Ramesh et al.,
2022). We use the pool of models introduced by Wortsman et al. (2022b), who fine-tuned the CLIP
ViT-B/32 architecture on ImageNet-1K multiple times using different randomly sampled training
hyperparameters8. These hyperparameters include learning rate, number of training epochs, weight
decay, label smoothing, and augmentation strategies, as stated in (Wortsman et al., 2022b). The
resulting collection of 72 fine-tuned models provides a strong basis for evaluating the performance
of model folding compared to pruning on CLIP ViT architectures. All checkpoints were evaluated
jointly in our study, without parameter-specific ablations.

D.5 LLAMA-60M ON COLOSSAL CLEAN CRAWLED CORPUS (C4)

We train 36 LLaMA-family models (Touvron et al., 2023a;b) with 60M and 130M parameters on
the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) on a NVIDIA DGX Station A100
featuring eight NVIDIA A100 GPUs (each equipped with 80GB memory). The training time for
a LLaMA-60M model is about 45 minutes. Tab. 5 summarizes the fixed hyperparameters used to
train LLaMA-60M and LLaMA-130M. The learning rate is linearly warmed up, followed by a cosine

8Download link: https://github.com/mlfoundations/model-soups/releases/
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Parameter Values
Optimizer sgd
Max / Base Learning Rate (lr_max) from 0.005087 to 0.492936
SAM Strength (sam_rho) 0.0, 0.05, 0.1
Standard Augmentation (augm) True, False
RandAugment (randaug) True, False

Table 4: Fixed and varying parameters for ViT-B/32 Base training on CIFAR-10.

annealing schedule that decays to 10% of the initial value. We use the T5-base tokenizer (Raffel et al.,
2023) and AdamW optimizer, consistent with prior work (Glentis et al., 2025; Han et al., 2024).

Params Hidden Intermediate Heads Layers Steps Data (Tokens)

60M 512 1376 8 8 11K 1.3B
130M 768 2048 12 12 22K 2.6B

Table 5: Training hyperparameters of LLaMA-60M architecture.

Note that in our work, pruning and folding are applied exclusively to the feed-forward network (FFN)
layers of the trained LLaMA-60M and LLaMA-130M models.

E FURTHER RESULTS

We provide additional experiments to complement the main results. Fig. 8 mirrors the setup of Fig. 1
in the main paper, but replaces the L1 criterion for magnitude pruning with L2 (MAG2). Similarly,
Fig. 9, Fig. 10, Fig. 11, and Fig. 12 extend the corresponding figures in the main paper to other
network architectures and to the L2 case. Across all comparisons, the qualitative picture remains
the same: FOLD consistently matches or outperforms magnitude pruning, independent of the chosen
norm.

We further include ablations to study the robustness of these findings with respect to training
hyperparameters. Fig. 13, Fig. 14, and Fig. 15 report the effect of varying learning rate, SAM strength,
and RandAugment, respectively. Finally, Fig. 16 shows the influence of weight decay. Taken together,
these studies confirm that the relative advantage of FOLD is stable across different regularization
strategies and training configurations.

F RELATED WORK

Model compression encompasses a wide range of approaches designed to reduce inference cost while
preserving model utility. We focus on post-training, calibration-free structured compression, where
the model architecture is modified without access to data or gradients. In this setting, the dominant
baselines are structured pruning and, more recently, model folding. Below we discuss these families
of methods and clarify how our projection-theoretic view relates to and extends prior work.

Post-training compression. Quantization reduces arithmetic precision (Darvish Rouhani et al., 2020;
Qian Zhang et al., 2022), but typically requires calibration to maintain activation ranges. Knowledge
distillation (Hinton et al., 2015) produces reduced students trained to imitate teacher logits. Even
data-free variants (Micaelli & Storkey, 2019; Chen et al., 2019; Fang et al., 2020; Yu et al., 2023;
Haroush et al., 2020) require full training dynamics and do not yield structural compression. Low-rank
factorization via matrix or tensor decompositions (Ren & Zhu, 2023; Horvath et al., 2024; Lebedev
et al., 2015; Kim et al., 2016) approximates pretrained weights by continuous subspaces but generally
requires fine-tuning for restoration. These approaches differ fundamentally from our objective: they
modify numerical precision or parameterization, not the discrete structure of the model.

Structured pruning. Structured pruning removes neurons, channels, filters, or blocks (Li et al.,
2016; Luo et al., 2017; Hu et al., 2016; Wen et al., 2016). Magnitude-based criteria (Han et al., 2015;
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(a) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) FOLD vs MAG1
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

(d) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) FOLD vs MAG1
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

Figure 11: Folded models retain their accuracy advantage after fine-tuning. Results for ResNet18
trained by Adam (top row) and PreActResNet18 trained by SGD on CIFAR-10 (bottom row): (a,d)
compares post-compression accuracy of magnitude pruning with L2 criterion (MAG2) versus folding
(FOLD) after 1 and 5 epochs of fine-tuning. (b,e) show the accuracy gap between folding and pruning
as a function of fine-tuning epochs, demonstrating that folding maintains a consistent lead, i.e., the
FOLD accuracy delta is positive. (c,f) illustrate accuracy trajectories before and after 5 epochs of
fine-tuning for both methods, highlighting that folded models recover accuracy faster and reach
higher final performance than pruned models. The figure extends Fig. 3 in the main paper and Fig. 10
in the appendix to MAG2.

Lu et al., 2023; Ding et al., 2024; Entezari & Saukh, 2020) dominate due to simplicity and hardware
alignment. However, structured pruning typically requires fine-tuning or recalibration (Kurtic et al.,
2022; Sanh et al., 2020) to mitigate accuracy degradation, and even calibration-based methods such
as SparseGPT (Frantar & Alistarh, 2023) or Wanda (Sun et al., 2024) operate through axis-aligned
removal of coordinates. One-shot improvements using N:M sparsity (Yao et al., 2019; Kang, 2020)
or OT-based structural alignment (Theus et al., 2024) still operate within the same paradigm: pruning
corresponds to enforcing that the retained parameter vectors lie in a fixed coordinate-aligned subspace.

Our work shows that such axis-aligned projections are geometrically restrictive. We formalize pruning
as an orthogonal projection onto a coordinate subspace and demonstrate that, at matched ranks up to
one slack, pruning is provably dominated by projections onto cluster-structured subspaces.

Weight clustering and model folding. Model folding, recently introduced by Wang et al. (2025),
ties groups of similar channels by replacing them with their mean, yielding dense low-rank layers that
preserve structural couplings. Folding implicitly performs a cluster-structured projection determined
by discrete assignments, and practical implementations rely on k-means clustering. This operator class
is strictly richer than axis-aligned pruning: folding enables coordinated merging rather than coordinate
removal, while remaining compatible with dense inference. IFM (Chen et al., 2023) is related in that
it also merges channels via grouping, but its variance-collapse correction is ineffective (Wang et al.,
2025), leading to substantially weaker performance.

Our work strengthens this line along two axes. First, we provide a unified projection-geometric
framework showing that both pruning and folding are orthogonal projections, but onto fundamentally
different subspaces: coordinate-aligned versus cluster-structured. Second, we prove that for any
pruned solution of rank k, there exists a folded solution of rank k+1 with strictly smaller parameter
reconstruction error, and that optimal k-means folding minimizes this projection error among all
cluster-structured projections. This establishes a strict theoretical separation between pruning and
folding and explains the empirical superiority of folding in calibration-free settings.
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(a) MAG2 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) MAG2 vs FOLD
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG2 (right).

(d) MAG2 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) MAG2 vs FOLD
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG2 (right).

Figure 12: FOLD outperforms MAG2 after full fine-tuning for 1–5 epochs on ViT-B/32 and CLIP
ViT-B/32. Results for ViT-B/32 on CIFAR-10 (top) and CLIP ViT-B/32 on ImageNet-1K (bottom).
(a,d) accuracy of MAG2 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap ∆ over epochs,
remaining positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing
faster recovery and higher final accuracy for FOLD. The figure extends Fig. 3 in the main paper and
Fig. 10 in the appendix to MAG2.

(a) ResNet18, Adam, no L1 reg., no weight decay (b) ResNet18, SGD, no L1 reg., no weight decay

(c) PreActResNet18 (d) ViT-B/32

Figure 13: Learning rate modulates folding’s edge. Post-compression accuracy of MAG2 and FOLD
across learning rates: ResNet18 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d).
FOLD typically leads at moderate–low rates; the gap shrinks or reverses at very high rates, and closes
again at extremely small rates. The same setup as in Fig. 4 in the main paper, but for MAG2.

Model merging and alignment. Model merging combines independently trained models via pa-
rameter averaging or permutation alignment. Model soups (Wortsman et al., 2022a) exploit shared
initialization. Permutation matching (Entezari et al., 2022; Ainsworth et al., 2023) constructs neuron
correspondences. REPAIR (Jordan et al., 2023) stabilizes fused models by re-normalizing preactiva-
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(a) ResNet18, SGD, MAG2 vs FOLD, without L1 reg. (b) ResNet18, SGD, MAG2 vs FOLD, with L1 reg.

(c) PreActResNet, MAG2 vs FOLD, no L1 regularization (d) ViT-B/32, MAG2 vs FOLD, no L1 regularization

Figure 14: SAM can boost model compression. Post-compression accuracy under training
with / without SAM. (a) ResNet18 (Adam), no L1. (b) ResNet18 (Adam), L1= 10−5. (c) Pre-
ActResNet18 (SGD), no L1. (d) ViT-B/32, no L1. The figure extends the results in Fig. 6 to MAG2.

(a) Adam, MAG2 vs FOLD (b) SGD, MAG2 vs FOLD

(c) PreActResNet, MAG2 vs FOLD (d) ViT-B/32, MAG2 vs FOLD

Figure 15: Random augmentations narrow the folding–pruning gap. Post-compression accuracy
on ResNet18 (CIFAR-10) trained without vs. with random augmentations: (a) Adam, (b) SGD, (c)
PreActResNet, (d) ViT-B/32. The figure extends Fig. 7 to MAG2.

tions. Intra-model merging approaches such as ZipIt! (Stoica et al., 2024) combine computational
units but do not target compression under fixed architectural constraints.

These works differ from ours in both objective and mechanism. Merging seeks functional fusion
across networks, whereas folding compresses a single network by exploiting intra-layer redundancy.
Our projection-theoretic formulation shows that folding operates as a structured projection with
explicit geometric optimality guarantees—properties not shared by merging methods.
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(a) Adam, MAG2 vs FOLD (b) SGD, MAG2 vs FOLD

Figure 16: ResNet18: Weight Decay. Test accuracy of ResNet18 checkpoints trained with varying
weight decay values. Weight decay does not diminish the advantage of FOLD compared to MAG2,
especially for SGD-trained models.

Positioning of this work. Across pruning, folding, and merging, prior efforts lack a unifying math-
ematical framework that characterizes the geometry of post-training structural compression. Our
contribution is to introduce such a framework: we cast pruning and folding as orthogonal projections
and show that cluster-structured projections admit strictly smaller distortion than coordinate projec-
tions under practically negligible rank slack. This perspective yields nontrivial theoretical guarantees
and aligns closely with the empirical phenomena observed across CNNs, ViTs, and LLaMA models.
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G ADDITIONAL EVALUATIONS – REBUTTAL RESPONSE

Below we report additional evaluations. We extend our study by training and compressing 60M- and
130M-parameter LLaMA models on C4, and provide analyses of sharpness, and measure runtime
overhead.

weight_decay warmup_steps max_lr PPL↓ 0% sparsity PPL↓ MAG2 (20%) PPL↓ FOLD (20%) PPL↓ MAG2 (50%) PPL↓ FOLD (50%)
0.01 1100 0.001 23.90 39.88 39.48 236.16 308.77
0.01 2200 0.001 23.99 38.75 39.61 259.79 469.25
0.01 3300 0.001 24.08 38.54 39.10 289.67 451.27
0.0 1100 0.001 24.01 42.39 42.27 270.31 477.70
0.0 2200 0.001 24.12 40.01 41.53 239.25 489.48
0.0 3300 0.001 24.19 38.72 40.31 277.10 531.09
0.01 1100 0.005 42.11 72.31 62.63 536.53 298.65
0.01 2200 0.005 22.82 52.18 40.46 824.69 333.59
0.01 3300 0.005 22.66 44.35 36.22 589.33 222.21
0.0 1100 0.005 44.92 73.38 63.75 414.17 261.23
0.0 2200 0.005 23.32 57.62 43.04 1616.74 342.64
0.0 3300 0.005 23.00 46.87 39.11 904.07 305.85
0.01 1100 0.01 300.95 302.26 301.87 401.28 361.10
0.01 2200 0.01 66.48 88.09 84.30 398.16 252.99
0.01 3300 0.01 54.34 97.35 76.15 440.71 229.42
0.0 1100 0.01 282.11 282.48 282.38 345.74 329.58
0.0 2200 0.01 140.20 169.78 149.58 352.14 234.69
0.0 3300 0.01 86.18 118.05 100.14 339.37 179.43

Table 6: Evaluation of FOLD and MAG2 on LLaMA-130M (in addition to LLaMA-60M evaluations in
Tab. 1). We train and evaluate 18 LLaMA-family models with 130M parameters on C4 while varying
max_lr, warmup steps, and weight decay. Columns show perplexity of the pretrained model (0%
sparsity) and perplexity after structured magnitude pruning and folding with 20% and 50% sparsity in
FFN blocks. For higher learning rates, especially for the settings with the best achieved performance
in each sparsity category (underlined), FOLD consistently outperforms MAG2 (bold).

(a) ResNet18, Adam, FOLD vs MAG1, no L1 regularization (b) PreActResNet18, FOLD vs MAG1

(c) ResNet18, Adam, FOLD vs MAG2, no L1 regularization (d) PreActResNet18, FOLD vs MAG2

Figure 17: Folding vs. magnitude pruning before REPAIR. The same setup as in Fig. 1 and Fig. 8
for CNNs (ResNet18 and PreActResNet18 on CIFAR-10), but the performance is compared for both
pruning and folding before REPAIR. Top row: MAG1, bottom row: MAG2. In both cases, folding
shows stronger performance already before data-based REPAIR is applied.
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(a) ResNet18, Adam (b) ResNet18, SGD (c) PreActResNet18 (d) ViT-B/32 (e) CLIP ViT-B/32

(f) ResNet18, Adam (g) ResNet18, SGD (h) PreActResNet18 (i) ViT-B/32 (j) CLIP ViT-B/32

Figure 18: Uncompressed model accuracy vs. performance difference ∆Accuracy =
Acc(FOLD) − Acc(MAG). The same setup as in Fig. 1 and Fig. 8. Top row: MAG1, Bottom row:
MAG2. Model folding shows strong performance on models of different quality, with amplified effect
on high-performing models (especially on ResNet18, SGD and ViT-B/32).

G.1 SHARPNESS AND BARRIER ANALYSIS

We compute sharpness following the implementation of Andriushchenko et al. (2023). Sharpness for
CLIP is measured only on the final projection layer using ∼1000 images, while for PreActResNets it
is computed over the full model and dataset.

Sharpness increases with compression ratio for all methods and architectures (Fig. 19), reaching
a peak before stronger compression pushes the model out of its original basin and into a flatter,
lower-capacity region. This rise–then–fall pattern appears consistently in both PreActResNet and
CLIP models, see Fig. 19.

The correlation analysis in Fig. 20 further supports this interpretation. Across the 200 compressed
ResNet18 models, 50 compressed PreActResNet18s and 72 compressed CLIP models, FOLD exhibits
negative correlations between ∆-sharpness and ∆-accuracy (∆Accuracy = Acc(FOLD)−Acc(MAG)).
As shown in the scatter plots and correlation tables of Fig. 20, larger reductions in sharpness under
FOLD relative to MAG are associated with larger accuracy gains. This relationship holds across the
evaluated compression ratios, up to the point where one of the models leaves the original basin and
sharpness becomes less informative.

In addition to the global sharpness trends discussed above, Fig. 21 and Fig. 22 provide a more
fine-grained view of how training hyperparameters influence the relationship between ∆-sharpness
and ∆-accuracy under compression. For Adam-trained ResNet models (Fig. 21), the scatter plots
reveal a strong and stable negative correlation: whenever FOLD produces lower sharpness than
magnitude pruning, it also achieves higher accuracy across almost all pruning ratios. The structure of
the point clouds, especially at high learning rates, shows that Adam’s adaptive scaling can induce
highly anisotropic sharpness profiles, which in turn amplify the divergence between the compression
trajectories of FOLD and MAG.

In contrast, SGD-trained models (Fig. 22) exhibit a weaker and more dispersed relationship between
∆-sharpness and ∆-accuracy, consistent with the flatter and more isotropic minima typically found by
SGD. Under SGD, FOLD often remains slightly flatter than magnitude pruning even when ∆-sharpness
≈ 0, explaining why FOLD maintains a mild yet more weakly correlated accuracy advantage. The
interaction with SAM and augmentation further differs across optimizers: SAM tightens the ∆-
sharpness distribution under SGD, stabilizing the performance gap in favor of FOLD, while RandAug
tends primarily to reduce variance without introducing strong directional trends.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

These results highlight that the predictive power of sharpness for pruning outcomes is optimizer-
and hyperparameter-dependent: sharpness differences are highly informative for Adam-trained
networks but less so for SGD, even though FOLD consistently follows a smoother and less disruptive
compression path than magnitude-based pruning in both regimes.

These findings align with recent work linking compression and landscape geometry. AdaSAP
(Bair et al., 2024) treats pruning as a sharpness-aware process, and Zhang et al. (2025) show that
feasible pruning ratios depend on intrinsic flatness. Our results support this perspective: compression
initially increases sharpness as degrees of freedom are removed within the same basin, but stronger
compression forces the model into a flatter basin with reduced curvature. FOLD follows this trajectory
more smoothly, maintaining basin structure and yielding lower barriers than MAG.

(a) ResNet18, Adam, FOLD (b) ResNet18, SGD, FOLD (c) PreActResNet18, FOLD (d) CLIP ViT-B/32, FOLD

(e) ResNet18, Adam, MAG1 (f) ResNet18, SGD, MAG1 (g) PreActResNet18, MAG1 (h) CLIP ViT-B/32, MAG1

Figure 19: Worst-case ℓ∞ sharpness as a function of compression ratio across architectures and
pruning methods. Each subplot reports the sharpness distribution for independently trained models
at three perturbation radii (ρ = 10−4, 5 × 10−4, 10−3). Panels (a)–(d) show FOLD sharpness for
ResNet18 trained with Adam and SGD, PreActResNet18, and CLIP ViT-B/32, respectively. Panels
(e)–(h) show the corresponding results for MAG1. Observed trends: (i) Sharpness generally increases
with compression ratio up to moderate levels before flattening or dropping at extreme compression.
(ii) FOLD produces on-average lower sharpness than MAG1. (iii) Transformer models (CLIP ViT-B/32)
experience substantially sharper solutions under compression compared to residual networks. These
patterns indicate that FOLD maintains flatter loss landscapes across a wide range of settings, whereas
MAG more often drives models toward sharper and less stable minima.

G.2 RUNTIME OVERHEAD AND EQUIVALENCE OF COMPRESSED MODELS

We profile both the compression procedures and the inference behavior of the resulting compressed
models on a dedicated DGX A100 server equipped with dual-socket AMD EPYC 7742 CPUs (256
hardware threads) and 8× NVIDIA A100 80GB GPUs. All measurements use the THOP profiler9

and report compression time, peak memory during compression, per-batch latency, FLOPs, and
peak forward-pass memory before and after compression. For each architecture (PreActResNet18
and CLIP ViT-B/32), all compression methods generate the same compressed network topology
(identical channel counts and tensor shapes). Consequently, all methods yield identical FLOPs and
nearly identical latencies, demonstrating that inference-time behavior is determined entirely by the
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Ratio Pearson Spearman
10% -0.635 -0.837
20% -0.707 -0.785
30% -0.830 -0.896
40% -0.930 -0.917
50% -0.920 -0.943
60% -0.862 -0.910
70% -0.775 -0.788
80% -0.454 -0.493
90% 0.045 0.051

ResNet18, Adam,
FOLD vs MAG1

Ratio Pearson Spearman
10% -0.219 -0.437
20% -0.488 -0.546
30% -0.505 -0.654
40% -0.628 -0.710
50% -0.535 -0.665
60% -0.369 -0.403
70% -0.399 -0.419
80% -0.277 -0.163
90% -0.168 -0.120

ResNet18, SGD,
FOLD vs MAG1

Ratio Pearson Spearman
10% -0.932 -0.520
20% -0.710 -0.399
30% -0.612 -0.418
40% -0.630 -0.481
50% -0.440 -0.388
60% -0.164 -0.135
70% 0.005 0.050
80% 0.065 0.115
90% 0.320 0.368

PreActResNet18,
FOLD vs MAG1

Ratio Pearson Spearman
10% -0.359 -0.400
20% -0.270 -0.222
30% -0.520 -0.462
40% 0.148 0.058
50% -0.139 -0.383

CLIP ViT-B/32,
FOLD vs MAG1

Figure 20: Correlation between ∆-sharpness and ∆-accuracy across architectures and pruning
baselines. Each column shows the relationship between pruning–induced differences in worst-
case ℓ∞ sharpness (∆ sharpness = FOLD − MAG) and differences in test accuracy (∆ accuracy
= FOLD − MAG), for the pair of pruning methods indicated below each plot. Color encodes the
layer-wise compression ratio. The tables underneath each subplot report Pearson and Spearman
correlations at every compression ratio, quantifying how predictive the sharpness difference is of
the accuracy difference. Results are shown for FOLD vs MAG1 for ResNet18 trained with Adam and
SGD, PreActResNet18 and CLIP ViT-B/32. Statistics are computed over 200 independently trained
ResNets18 and 50 PreActResNet18 on CIFAR-10, and 72 CLIP ViT-B/32 models on ImageNet-1K.
Correlations use the sharpness value at ρ = 5 × 10−4. Results at ρ = 10−4 and ρ = 10−3 are
qualitatively very close.

Method Params Comp. time [s] Comp. peak mem [MB] Lat. [ms/batch] Lat. [ms/img] FLOPs [MFLOPs/img] Fwd peak mem [MB]

Original 11,172,170 – – 3.69 0.0288 557.65 214.30

FOLD 4,008,346 9.48 157.47 3.17 0.0248 199.05 170.53
MAG 4,008,346 1.77 115.22 3.15 0.0246 199.05 169.82

Table 7: Runtime characteristics of PreActResNet18 before and after compression (64.1% parameter
reduction). Latency is measured for a full batch. FLOPs are reported per image. Comp. time and
comp. peak mem refer to the overhead of running the compression method once.

resulting architecture, not by the choice of compression algorithm. FOLD introduces a moderate
one-off compression overhead, but its inference-time profile matches the other compressed models.

Table 7 compares the original and compressed PreActResNet18 at a layer-wise compression ratio of
0.4 (i.e., a 64.1% reduction in model parameters). Compression reduces FLOPs from 557.65 MFLOP-
s/image to 199.05 MFLOPs/image (a 64.3% reduction), improves latency from 3.69 ms/batch to
roughly 3.15 ms/batch, and lower peak forward-pass memory (from 214.30 MB to about 170 MB).

Method Params Comp. time [s] Comp. peak mem [MB] Lat. [ms/batch] Lat. [ms/img] FLOPs [MFLOPs/img] Fwd peak mem [MB]

Original 151,790,313 – – 19.851 0.6203 2946.76 684.18

FOLD 140,447,253 92.833 681.23 17.343 0.5420 2379.98 636.97
MAG 140,447,253 2.627 625.61 17.372 0.5429 2379.98 637.88

Table 8: Runtime characteristics of CLIP ViT-B/32 before and after compression (7.47% parameter
reduction). Latency is measured for a full batch. FLOPs are reported per image. Comp. time and
Comp. peak mem refer to the one-off overhead of running the compression method.

Table 8 shows the same evaluation for CLIP ViT-B/32, where FFN blocks are compressed to
with 20% layer-wise compression ratio. Here, FLOPs decrease from 2946.76 MFLOPs/image to

9https://github.com/ultralytics/thop
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Figure 21: Sharpness-accuracy trade-off between FOLD and MAG1 for ResNet18 trained with
Adam. Each column corresponds to a layer-wise compression ratio (0.1–0.9), and the three rows
group models by learning rate, SAM configuration (including ρ), and RandAug usage. Points show
∆ worst-case ℓ∞ sharpness (FOLD − MAG1) vs. ∆ test accuracy (FOLD − MAG1). Observations: (1)
The difference in model sharpness strongly predicts the difference in performance between FOLD
and MAG1 across almost all pruning ratios. (2) Learning rate: higher learning rates lead to more
dispersed sharpness changes. For models trained with Adam using high learning rates, MAG1 moves
the model along a less sharp path compared to FOLD, which struggles to catch up. However, the
behavior flips for moderate and low learning rates. (3) SAM/ρ: using SAM reduces the variability
in the sharpness shift between methods, especially for larger ρ. ∆ sharpness gets closer to zero. (4)
RandAug: augmentation show little specific visible trend.

2379.98 MFLOPs/image (a 19.2% reduction), and latency improves from 19.8 ms/batch to roughly
17.35 ms/batch (about 1.14× speed-up). Again, FOLD is the slowest method due to its iterative nature
to compute k-means clusters, but the compressed models share the same FLOPs, memory and latency.

G.3 IMPACT OF ONE RANK SLACK AND SINGLETON FOLDING

In this section we separate two effects in our pruning vs. folding comparison: (i) the influence of the
one-rank slack in Theorems 2.1–2.2, and (ii) the intrinsic difference between pruning and folding
as projection operators. We therefore contrast the gain from increasing the pruning rank from k to
k+1 (blue curves in Fig. 23) with the gain from replacing pruning by folding at the same nominal
rank (orange curves). This isolates the contribution of rank from the contribution of the projection
geometry.
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Figure 22: Sharpness-accuracy trade-off between FOLD and MAG1 for ResNet18 trained with
SGD. Each column corresponds to a layer-wise compression ratio (0.1–0.9), and the three rows group
models by learning rate, SAM configuration (including ρ), and RandAug usage. Points show ∆
worst-case ℓ∞ sharpness (FOLD − MAG1) vs. ∆ test accuracy (FOLD − MAG1). Observations: (1) For
SGD, the relationship between ∆ sharpness and ∆ accuracy is visibly weaker and more scattered
than for Adam, reflecting the flatter and more anisotropic minima found by SGD. (2) Learning rate:
Unlike Adam, higher SGD learning rates do not systematically increase the sharpness gap between the
methods. For most ratios, FOLD tends to remain less sharp than MAG1, producing positive ∆ accuracy
even when ∆ sharpness is near zero. (3) SAM/ρ: SAM has a strong flattening effect under SGD—∆
sharpness clusters tightly around zero, and the accuracy advantage of FOLD becomes more stable
as ρ increases. (4) RandAug: Augmentation increases robustness to pruning under SGD, reducing
the spread in ∆ accuracy and further weakening the sharpness–accuracy link. Overall, SGD-trained
models exhibit a regime where FOLD consistently follows a gentler sharpness trajectory than MAG1,
leading to a clearer accuracy advantage at moderate pruning ratios.

Fig. 23 shows both effects: for each weight matrix W (in every layer of ViT or ResNet18), it plots
the relative Frobenius error change when the retained rank increases by one (blue) versus when the
method changes from pruning to folding at fixed rank (orange), as a function of k.

∆rank(k) =
∥W −W

(k)
p ∥F − ∥W −W

(k+1)
p ∥F

∥W∥F
.

This quantity measures the improvement obtained when increasing the retained rank from k to k + 1
within magnitude pruning MAG2. It isolates the rank slack effect. Across all examined layers, the
improvement from a single additional retained channel is small, especially in deeper layers.
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Layer Params_fold Params_mag ∆p FLOPs_fold FLOPs_mag ∆F Act_fold Act_mag ∆a NZ_fold NZ_mag ∆nz

conv1 1026 1026 0 1050624 1050624 0 38912 38912 0 38912 38912 0
layer1.0.conv1 12996 12996 0 13307904 13307904 0 38912 38912 0 38912 38912 0
layer1.0.conv2 12996 12996 0 13307904 13307904 0 38912 38912 0 38912 38912 0
layer1.1.conv1 12996 12996 0 13307904 13307904 0 38912 38912 0 38912 38912 0
layer1.1.conv2 12996 12996 0 13307904 13307904 0 38912 38912 0 38912 38912 0
layer2.0.conv1 25992 25992 0 6653952 6653952 0 19456 19456 0 19456 19456 0
layer2.0.conv2 51984 51984 0 13307904 13307904 0 19456 19456 0 19456 19456 0
layer2.0.shortcut.0 2888 2888 0 739328 739328 0 19456 19456 0 19456 19456 0
layer2.1.conv1 51984 51984 0 13307904 13307904 0 19456 19456 0 19456 19456 0
layer2.1.conv2 51984 51984 0 13307904 13307904 0 19456 19456 0 19456 19456 0
layer3.0.conv1 104652 104652 0 6697728 6697728 0 9792 9792 0 9792 9792 0
layer3.0.conv2 210681 210681 0 13483584 13483584 0 9792 9792 0 9792 9792 0
layer3.0.shortcut.0 11628 11628 0 744192 744192 0 9792 9792 0 9792 9792 0
layer3.1.conv1 210681 210681 0 13483584 13483584 0 9792 9792 0 9792 9792 0
layer3.1.conv2 210681 210681 0 13483584 13483584 0 9792 9792 0 9792 9792 0
layer4.0.conv1 422739 422739 0 6763824 6763824 0 4912 4912 0 4912 4912 0
layer4.0.conv2 848241 848241 0 13571856 13571856 0 4912 4912 0 4912 4912 0
layer4.0.shortcut.0 46971 46971 0 751536 751536 0 4912 4912 0 4912 4912 0
layer4.1.conv1 848241 848241 0 13571856 13571856 0 4912 4912 0 4912 4912 0
layer4.1.conv2 848241 848241 0 13571856 13571856 0 4912 4912 0 4912 4912 0
linear 3080 3080 0 3070 3070 0 10 10 0 10 10 0

TOTALS 4003678 4003678 0 197725902 197725902 0 365370 365370 0 365370 365370 0

Table 9: Per-layer comparison of PreActResNet18 after FOLD and MAG2 at compression ratio 0.4. For
each convolutional and linear layer we report parameters, per-image FLOPs, activation size, and the
number of non-zero activations (effective activations). All per-layer differences are zero, confirming
that parameters, FLOPs, activations, and effective activations are exactly matched between the two
compressed models.

∆method(k) =
∥W −W

(k)
p ∥F − ∥W −W

⋆(k)
f ∥F

∥W∥F
.

This measures the gain obtained by switching from structured magnitude pruning to optimal folding at
the same rank k. The improvements are one to two orders of magnitude larger than the corresponding
∆rank values for nearly all layers.

The results empirically support the clarification presented in the rebuttal: although Theorems 2.1-2.2
compare pruning at rank k to folding at rank k+1, the contribution of the rank difference is negligible
in practice. The blue curves show that ∥W − W

(k)
p ∥F changes only minimally when k → k+1,

while the orange curves demonstrate that folding provides a substantially tighter approximation than
pruning at comparable compression levels. This confirms that the practical advantage of folding
arises primarily from the richer family of cluster-based projections rather than the added rank.

Fig. 24 reports the relative squared error for pruning, special folding W′
f , and optimal folding W∗

f
across all layers of ResNet18 and ViT-B/32 on CIFAR10, evaluated at multiple keep ratios. Three
consistent phenomena appear:

• Pruning always yields the largest error. For every layer and every keep ratio, the pruning
curves lie above both folding curves. This confirms empirically that pruning introduces the
largest distortion of the original weight matrix.

• Special folding W′
f strictly improves over pruning. The construction used in Theorem 2.1,

obtained by merging all pruned rows, leads to smaller reconstruction error for all layers and
all keep ratios. This empirically validates the first inequality error(Wp) ≥ error(W′

f ).

• Optimal folding W∗
f achieves the smallest error. The k-means solution consistently

attains the lowest error, verifying the second inequality error(W′
f ) ≥ error(W∗

f ).

Importantly, the gap between pruning and both folding methods is larger than the very small difference
induced by adding a single additional cluster (i.e., increasing the rank from k to k+1). This supports
the clarification made in the rebuttal: the practical advantage of folding does not stem from the +1
change in rank, but from the richer family of cluster-based projections that folding can realize.

The observed ordering, i.e., error(Wp) > error(W′
f ) > error(W∗

f ), holds uniformly across all
layers of ResNet18 as well as FFN layers of ViT-B/32. This indicates that the theoretical inequalities
are not only valid in principle but also manifest strongly and consistently in real trained models.
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Across all layers of ResNet18 and ViT-B/32, the gain from increasing the retained rank by one is
consistently negligible, while the gain from replacing pruning with folding is one to two orders
of magnitude larger (Fig. 23). Thus, the empirical advantage of folding is not a byproduct of the
k 7→ k+1 rank slack, but stems from the richer family of cluster-based projections that folding
can realize. This is further corroborated by the layer-wise reconstruction errors in Fig. 24, where
error(Wp) > error(W′

f ) > error(W∗
f ) holds uniformly. These results confirm that folding’s

superior approximation properties are structural rather than an artifact of rank.

The theory controls the loss via the parameter-Lipschitz bound |L(W)−L(W•)| ≤ κ∥W−W•∥F .
In regimes where κ is moderate, e.g., flat solutions obtained with smaller learning rates or SAM-
folding’s smaller Frobenius error reliably translates into smaller loss degradation. However, in sharp
minima such as those produced by Adam at large learning rates (see Fig. 21 and Fig. 22), the effective
local κ becomes extremely large. In this setting, even tiny parameter perturbations cause large loss
changes, and the ordering of Frobenius errors no longer predicts the ordering of accuracies. Thus,
the discovered failure cases of folding are not contradictions of the theory but instances where the
Lipschitz assumption required for loss control breaks down due to extreme curvature.
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Layer Params_fold Params_mag ∆p FLOPs_fold FLOPs_mag ∆F Act_fold Act_mag ∆a NZ_fold NZ_mag ∆nz

classification_head 513000 513000 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.0.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.0.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.0.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.1.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.1.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.1.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.10.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.10.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.10.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.11.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.11.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.11.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.2.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.2.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.2.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.3.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.3.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.3.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.4.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.4.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.4.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.5.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.5.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.5.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.6.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.6.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.6.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.7.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.7.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.7.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.8.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.8.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.8.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.9.attn.out_proj 262656 262656 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.9.mlp.c_fc 1050624 1050624 0 0 0 0 0 0 0 0 0 0
transformer.resblocks.9.mlp.c_proj 1049088 1049088 0 0 0 0 0 0 0 0 0 0
visual.conv1 2359296 2359296 0 115605504 115605504 0 37632 37632 0 37632 37632 0
visual.transformer.resblocks.0.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.0.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.0.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.1.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.1.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.1.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.10.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.10.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.10.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.11.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.11.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.11.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.2.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.2.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.2.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.3.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.3.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.3.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.4.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.4.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.4.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.5.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.5.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.5.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.6.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.6.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.6.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.7.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.7.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.7.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.8.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.8.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.8.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0
visual.transformer.resblocks.9.attn.out_proj 590592 590592 0 0 0 0 0 0 0 0 0 0
visual.transformer.resblocks.9.mlp.c_fc 1889433 1889433 0 94348800 94348800 0 122850 122850 0 122850 122850 0
visual.transformer.resblocks.9.mlp.c_proj 1887744 1887744 0 94348800 94348800 0 38400 38400 0 38400 38400 0

TOTALS 83633940 83633940 0 2379976704 2379976704 0 1972632 1972632 0 1972632 1972632 0

Table 10: Per-layer comparison of CLIP ViT-B/32 after FOLD and MAG2 at compression ratio 0.2
(global parameter reduction 7.47%). The table reports all convolutional and linear layers in the vision
transformer and classification head, including their parameters, per-image FLOPs, activation sizes,
and effective activations. The transformer.resblocks.* modules belong to CLIP’s text encoder.
Because the ImageNet-1k fine-tuned variant evaluates only the vision encoder and classification
head, the text encoder is not part of the forward graph. THOP therefore records zero FLOPs and
zero activations for these layers, while their parameters remain included in the model. Note that
the per-layer totals (≈ 8.36 × 107 parameters) are smaller than the full model parameter count
(≈ 1.40× 108) because this table excludes components without FLOPs, such as token embeddings,
positional embeddings, and LayerNorm parameters, which are included in the global counts but not
part of the per-layer FLOP/activation analysis. Several projection layers inside the attention blocks
show zero FLOPs because CLIP implements attention using fused operations; these operations are
profiled at the block level by THOP rather than attributed to the individual Linear submodules. All
per-layer differences are zero, showing that FOLD and MAG2 produce structurally identical compressed
models on every layer affected by compression.
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Figure 23: Effect of increasing the retained rank by one is significantly lower than changing
the compression method from MAG to FOLD. Comparison of (i) the effect of increasing the retained
rank by one (blue curves) and (ii) the effect of switching from MAG2 to FOLD at the same nominal rank
(orange curves). Each panel corresponds to a single weight matrix W in ResNet18 convolutional
layers (top) and ViT-B/32 FFN layers (bottom) and shows the relative Frobenius error difference ∆
as a function of the retained rank k.
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Figure 24: Relative reconstruction error of pruning, special folding W′
f (from the proof of

Theorem 2.1), and optimal folding W∗
f for all layers of ResNet18 (top) and ViT-B/32 (bottom).

For each layer, we report the normalized squared Frobenius error ∥W −W•∥2F /∥W∥2F at several
keep ratios kp/m, where • ∈ {MAG2, singleton, FOLD}. MAG2 (blue) denotes structured magnitude
pruning with kp retained rows. The special fold W′

f (orange) merges all pruned rows into a single
extra cluster (kf = kp + 1). The optimal fold W∗

f (green) is the k-means solution with kf clusters.
Across all layers, W′

f consistently outperforms pruning, and W∗
f yields the smallest error, empirically

validating error(Wp) ≥ error(W′
f ) ≥ error(W∗

f ).
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