

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 CUT LESS, FOLD MORE: MODEL COMPRESSION THROUGH THE LENS OF PROJECTION GEOMETRY

Anonymous authors
Paper under double-blind review

ABSTRACT

Compressing neural networks without retraining is vital for deployment at scale. We study calibration-free compression through the lens of projection geometry: structured pruning is an axis-aligned projection, whereas model folding performs a low-rank projection via weight clustering. We formalize both as orthogonal operators and show that, within a rank distance of one, folding provably yields smaller parameter reconstruction error, and under mild smoothness assumptions, smaller functional perturbations than pruning. At scale, we evaluate >1'000 checkpoints spanning ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on CIFAR-10 and ImageNet-1K, covering diverse training hyperparameters (optimizers, learning rates, augmentations, regularization, sharpness-aware training), as well as multiple LLaMA-family 60M and 130M parameter models trained on C4. We show that folding typically achieves higher post-compression accuracy, with the largest gains at moderate–high compression. The gap narrows and occasionally reverses at specific training setups. Our results position folding as a geometry-aware, calibration-free alternative to pruning that is often superior in practice and principled in theory.

1 INTRODUCTION

Neural network compression is critical for deploying models in resource-constrained environments. Common approaches include quantization, which reduces the precision of weights and activations, and knowledge distillation, which transfers information from a large teacher model to a smaller student model. In this work, we focus on the class of calibration-free post-training structured compression methods that optimize the model architecture itself without access to training data. Among these, the most widely used is *magnitude-based pruning*, which prunes tensor elements according to their magnitudes, using them as a proxy for their contribution to model accuracy (Han et al., 2015; Mishra et al., 2021; Lu et al., 2023; Ding et al., 2024; Bambhaniya et al., 2024). When combined with fine-tuning or a lightweight BatchNorm reset (Saikumar & Varghese, 2025), this approach achieves significant compression rates with negligible accuracy loss (Kurtic et al., 2022; Sanh et al., 2020). In contrast, the recently introduced *model folding* clusters similar weights and ties them together, providing an approximation of the original network (Wang et al., 2025). Both pruning and folding reduce parameter count but differ fundamentally: pruning removes weights entirely, while folding preserves them in merged representations.

In this work, we develop a unified theoretical and empirical framework to compare pruning and folding through the lens of *orthogonal projections* in parameter space. We show that both compression methods can be viewed as projections onto lower-dimensional subspaces, but with crucial differences in geometry: pruning corresponds to axis-aligned coordinate projections, while folding projects onto cluster-structured subspaces that retain directional information.

At a high level, both pruning and folding compress the weights of a model. We show that for any pruned solution there exists a folded alternative that is *almost* as small—using one extra component in the compressed representation—yet is strictly closer to the original weights (smaller Frobenius norm), which in turn bounds the change in the network function. Intuitively, folding merges weight vectors with similar directions rather than zeroing coordinates, so the compressed model stays closer in behavior to the initial network.

Empirically, we perform a comprehensive calibration-free study over $>1'000$ checkpoints spanning CNNs and ViTs on CIFAR-10 and ImageNet-1K, trained under diverse hyperparameter choices (optimizers, learning rates, augmentation, regularization, sharpness-aware training). We also train and process 18 LLaMA-family models with 60M and 130M parameters on C4, by varying learning rates, warmup lengths, and weight decay strength. After compression and also followed by lightweight and full fine-tuning, folding typically attains higher post-compression accuracy, with the largest gains at moderate to high compression. The margin narrows, and can occasionally reverse, at very low compression or under specific training setups, but the overall trend is consistent with our theoretical analysis. Our projection-based perspective opens new directions for designing compression methods that explicitly optimize for functional closeness. This paper makes the following contributions:

- We introduce a unified projection framework that casts pruning and folding as orthogonal projections onto, respectively, axis-aligned and cluster-structured subspaces. We prove that at a compression rank difference of one, folding achieves smaller parameter reconstruction error and tighter function-perturbation bounds under mild smoothness assumptions.
- A large-scale evaluation across $>1'000$ checkpoints and diverse hyperparameters, covering CNNs and ViTs on CIFAR-10 and ImageNet-1K, as well as LLaMA-60M and LLaMA-130M on C4. In addition, we use post-compression lightweight LayerNorm reset for ViTs, or full-fine-tuning to show that the strong performance of folding is preserved in these settings.
- We show that folding is a geometry-aware alternative that is often superior in practice, with clearly identified regimes (e.g., moderate–high compression) where its advantage is most pronounced, and corner cases where the gap narrows.

We discuss related work in Appendix F, however, the main text already positions pruning and folding within our projection framework and clarifies the novelty of our approach.

2 UNIFIED FRAMEWORK FOR PRUNING AND FOLDING

2.1 PRELIMINARIES AND DEFINITIONS

We consider a neural network with input $x \in \mathbb{R}^d$. We assume ReLU activations and normalization layers (e.g., BatchNorm or LayerNorm) are present.

To develop the theoretical framework, we focus on compressing a single layer at a time. This layer has p inputs and m outputs with its parameters collected in matrix $\mathbf{W} \in \mathbb{R}^{m \times p}$. A row $w(i)$ of \mathbf{W} is denoted as the i th parameter vector with individual weights $w(i, j)$. Since all other network parameters are treated as fixed, the network function can be expressed as $f(x; \mathbf{W})$, which is trained to minimize a loss function $L(\mathbf{W})$.

We assume that the loss function L is Lipschitz continuous, i.e., there exists a constant $\kappa > 0$ such that

$$|L(\mathbf{W}_1) - L(\mathbf{W}_2)| \leq \kappa \|\mathbf{W}_1 - \mathbf{W}_2\|_F \quad (1)$$

for all admissible parameter matrices \mathbf{W}_1 and \mathbf{W}_2 . The Frobenius norm of a matrix is defined as $\|\mathbf{A}\|_F = \sqrt{\sum_{i,j} |a_{ij}|^2}$, that is, the square root of the sum of the squares of its entries, or equivalently, the ℓ_2 -norm of the vectorized matrix. This Lipschitz condition controls the change in loss with respect to parameter perturbations.

Orthogonal Projection. We formalize structured pruning and model folding as orthogonal projections in parameter space. A matrix $\mathbf{C} \in \mathbb{R}^{m \times m}$ is an orthogonal projection if $\mathbf{C} = \mathbf{C}^\top = \mathbf{C}^2$, i.e., it is symmetric and idempotent. Such projections map any parameter vector to its closest point (in the Euclidean norm) within a lower-dimensional subspace.

If the columns of $\mathbf{U} \in \mathbb{R}^{m \times k}$ form a basis of a k -dimensional subspace, the corresponding orthogonal projection is

$$\mathbf{C} = \mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1} \mathbf{U}^\top. \quad (2)$$

Equivalently,

$$\mathbf{C}y = \arg \min_{z \in \text{Range}(\mathbf{U})} \|y - z\|_2$$

meaning $\mathbf{C}y$ is the orthogonal projection of y onto the subspace spanned by \mathbf{U} .

108 2.2 COMPRESSION AS ORTHOGONAL PROJECTION
109110 *Structured pruning.* Pruning can be viewed as a projection onto a coordinate-aligned subspace at the
111 level of neurons, filters, or channels. Assume the layer outputs are ordered so that the last $m - k$ are
112 pruned. The corresponding basis \mathbf{U}_p spans the k -dimensional subspace, with projection matrix \mathbf{C}_p
113 and transformed weight matrix \mathbf{W}_p :

114
$$\mathbf{U}_p = \begin{pmatrix} I \\ 0 \end{pmatrix}, \quad \mathbf{C}_p = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix}, \quad \mathbf{W}_p = \mathbf{C}_p \mathbf{W}. \quad (3)$$

115
116

117 Consequently, the last $m - k$ rows of \mathbf{W}_p are zero, and the corresponding neurons, filters, or channels
118 can be simply removed.119 *Model folding.* Folding groups the parameters into k clusters and replaces each cluster with its mean.
120 Depending on the choice of clusters, a different folding results. Folding can be represented as an
121 orthogonal projection onto the k -dimensional subspace spanned by $\mathbf{U}_f \in \{0, 1\}^{m \times k}$, where each
122 row contains exactly one nonzero entry indicating the cluster assignment. A cluster S_j comprises all
123 indices of parameter vectors belonging to it; thus, $u_f(i, j) = 1$ if and only if $i \in S_j$.124 The projection \mathbf{C}_f defined in Eq. 2 maps each cluster to its mean (Wang et al., 2025). Specifically,
125

126
$$\mathbf{W}_f = \mathbf{C}_f \mathbf{W}, \quad \forall i \in S_j : w_f(i) = \mu_j, \quad \mu_j = \frac{1}{|S_j|} \sum_{i \in S_j} w(i), \quad (4)$$

127
128

129 where μ_j is the mean of cluster j . After projection, all parameter vectors within a cluster are replaced
130 by their mean, making them identical. As a result, the corresponding layer outputs are also identical,
131 leaving a total of k distinct neurons, filters, or channels. Practically, the identical layer outputs can be
132 joined while adapting the next layer appropriately, see (Wang et al., 2025).133 2.3 FOLDING DOMINATES PRUNING
134135 To compare pruning and folding, we first show that for any choice of pruning, there exists a folding
136 that yields a more accurate approximation of the parameter matrix \mathbf{W} .
137138 **Theorem 2.1.** *Given any pruning with basis \mathbf{U}_p of rank $0 \leq k_p \leq m - 1$ (i.e., at least one parameter
139 vector is pruned), there exists a folding with basis \mathbf{U}'_f and rank $k_f = k_p + 1$ such that*

140
$$\|\mathbf{W} - \mathbf{W}_p\|_F^2 \geq \|\mathbf{W} - \mathbf{W}'_f\|_F^2,$$

141

142 where $\mathbf{W}_p = \mathbf{C}_p \mathbf{W}$ and $\mathbf{W}'_f = \mathbf{C}'_f \mathbf{W}$, with \mathbf{C}_p and \mathbf{C}'_f denoting the orthogonal projections
143 defined in Eq. 2.144 In the above theorem, \mathbf{U}'_f denotes the constructive clustering obtained by merging all pruned rows
145 into a single additional cluster. The proof is in Appendix C. By the Lipschitz continuity of the loss
146 function in Eq. 1, the superior approximation property of folding implies a tighter bound on the loss
147 difference compared to pruning:
148

149
$$|L(\mathbf{W}) - L(\mathbf{W}'_f)| \leq \kappa \|\mathbf{W} - \mathbf{W}'_f\|_F, \quad |L(\mathbf{W}) - L(\mathbf{W}_p)| \leq \kappa \|\mathbf{W} - \mathbf{W}_p\|_F,$$

150

151 with

152
$$\|\mathbf{W} - \mathbf{W}'_f\|_F^2 \leq \|\mathbf{W} - \mathbf{W}_p\|_F^2.$$

153 Furthermore, the rank difference $k_f = k_p + 1$ between pruning and folding is practically negligible,
154 since in typical scenarios many parameter vectors are pruned. For instance, under a uniform 50%
155 per-layer retention, a ResNet-18 stage with 256 channels keeps $k_p = 128$ (so folding uses $k_f = 129$),
156 and a ViT-B/32 block with width 768 keeps $k_p = 384$ (so $k_f = 385$); the relative increase is
157 just $1/k_p \approx 0.78\%$ and 0.26% , respectively—negligible in practice. **Moreover, for all layers and
158 architectures we observe that loss and accuracy vary smoothly as the rank increases from k_p to $k_p + 1$,
159 no jumps in loss or accuracy, and the error difference between ranks k and $k + 1$ is typically much
160 smaller than the difference between pruning and folding at the same rank (see Appendix G.3).**161 Finally, we show that folding using optimal k -means clustering never yields a less accurate approxi-
162 mation of the parameter matrix \mathbf{W} than pruning.

162 **Theorem 2.2.** Let $\mathbf{U}^*_{\mathcal{F}}$ be the basis obtained from an optimal k -means clustering with k_f clusters,
 163 i.e., the folding clusters are determined by a k -means algorithm minimizing the accumulated within-
 164 cluster sum of squares. Then, for any pruning with basis \mathbf{U}_p of rank $k_p = k_f - 1$, we have

$$165 \quad \| \mathbf{W} - \mathbf{W}_p \|_F^2 \geq \| \mathbf{W} - \mathbf{W}^*_{\mathcal{F}} \|_F^2,$$

166 where $\mathbf{W}_p = \mathbf{C}_p \mathbf{W}$ and $\mathbf{W}^*_{\mathcal{F}} = \mathbf{C}^*_{\mathcal{F}} \mathbf{W}$, with \mathbf{C}_p and $\mathbf{C}^*_{\mathcal{F}}$ denoting the orthogonal projections
 167 defined in Eq. 2.

169 The proof is given in Appendix C. This result demonstrates that k -means folding is not merely
 170 a heuristic, but an optimal projection under clustering constraints. Note that the special folding
 171 $\mathbf{W}'_{\mathcal{F}}$ in Theorem 2.1 is suboptimal, while Theorem 2.2 shows that $\mathbf{W}^*_{\mathcal{F}}$ achieves the minimum
 172 possible reconstruction error over all clusterings, producing a strictly stronger improvement as
 173 $\| \mathbf{W} - \mathbf{W}_p \|_F^2 \geq \| \mathbf{W} - \mathbf{W}'_{\mathcal{F}} \|_F^2 \geq \| \mathbf{W} - \mathbf{W}^*_{\mathcal{F}} \|_F^2$. Unlike pruning, which relies on parameter vector
 174 removal, folding generalizes the idea by enabling coordinated parameter merging. Thus, folding
 175 incurs less parameter distortion and provably smaller loss perturbation under a local parameter-
 176 Lipschitz assumption.

177 In addition, Theorem 2.2 has implications for a possible fine-tuning after compression. Matrix \mathbf{W}
 178 contains the optimized weights and \mathbf{W}_p or $\mathbf{W}^*_{\mathcal{F}}$ contain the weights after pruning and folding the
 179 optimized network. As a result of Theorem 2.2, the quadratic distance between the optimized weights
 180 and the compressed optimized weights is smaller for folding in comparison to pruning.

181 Our theoretical results employ a one-rank slack comparing pruning at rank k_p to folding at $k_f =$
 182 $k_p + 1$, as a proof device to obtain a clean monotonicity guarantee on projection error. This slack
 183 does not reflect our evaluation protocol. In all experiments we enforce matched sparsity budgets and
 184 compare methods at the same retained size (parameters and FLOPs). Hence, empirical accuracy gaps
 185 cannot be attributed to extra capacity.

187 3 EXPERIMENTAL RESULTS

189 Most pruning studies vary only seeds by training several checkpoints under a single hyperparameter
 190 recipe, leaving the role of upstream training underexplored. We instead benchmark > 1'000 check-
 191 points spanning diverse hyperparameters (optimizers, learning rates, augmentation, regularization,
 192 SAM) to quantify how training choices interact with folding and pruning. Concretely, we train 216
 193 ResNet18 (Adam) and 576 ResNet18 (SGD) models on CIFAR-10, include 50 PreActResNet18 and
 194 200 ViT-B/32 checkpoints from Andriushchenko et al. (2023), and add 72 CLIP ViT-B/32 models
 195 fine-tuned on ImageNet-1K from Wortsman et al. (2022b). The two ViT families differ markedly in
 196 scale (~ 19 M vs. ~ 151 M parameters). We also train 36 LLaMA-family 60M and 130M parameter
 197 models on the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020). Training details are in
 198 Appendix D. The results for LLaMa-130M are in Appendix G.

199 We empirically compare model folding and structured pruning across **CNNs, ViTs and LLaMA-60M**
 200 **models** under matched training setups. Unless stated otherwise, we do not apply gradient-based
 201 fine-tuning: for CNNs we only re-estimate batch-normalization statistics via a single forward pass
 202 using REPAIR (Jordan et al., 2023) to isolate structural effects, and ViTs / **LLaMA-60M models** are
 203 left uncalibrated. Note that REPAIR was recently shown to substantially improve post-compression
 204 performance for pruned models (Saikumar & Varghese, 2025), and has also been applied on top
 205 of folding (Wang et al., 2025). We report results (i) immediately after compression (CNNs after
 206 REPAIR, ViTs with no further step), (ii) for ViTs additionally after a LayerNorm reset, and (iii) for
 207 both families after 1–5 epochs of full fine-tuning.

208 **Folding vs. Structured Pruning on CNNs and ViTs.** We compare model folding (FOLD) with
 209 structured magnitude pruning (MAG) under L1 and L2 criteria (MAG1, MAG2) across representative CNN
 210 and ViT architectures. Fig. 1 summarizes results: scatter plots show accuracy of MAG1 vs. FOLD for
 211 each trained model, with compression ratio indicated by color. Results for MAG2 are in Appendix E.
 212 Box plots depict the distribution of accuracy differences between FOLD and MAG1. Positive differences
 213 indicate folding outperforms pruning, with the gap widening at higher sparsity. This trend holds
 214 across ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on both CIFAR-10 and ImageNet-
 215 1K, demonstrating robustness to architecture and dataset scale. These results support our theoretical
 216 claim (Sec. 2): folding projects onto cluster-structured subspaces, preserving parameter alignment
 217 and reducing functional distortion, yielding consistent accuracy gains over magnitude pruning.

236 **Figure 1: Folding outperforms magnitude pruning across diverse training regimes. Top row:**
237 ResNet18 and PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch
238 with Adam using different hyperparameter configurations. PreActResNet18 checkpoints are from
239 Andriushchenko et al. (2023). **Bottom row:** ViT-B/32 on CIFAR-10 from (Andriushchenko et al.,
240 2023) and CLIP ViT-B/32 on ImageNet-1K from (Wortsman et al., 2022b). See Appendix D for
241 details. In these plots, we use checkpoints that were trained without L1 regularization. Scatter plots
242 show post-compression accuracy for magnitude pruning (L1 criterion) versus folding at uniform per-
243 layer compression ratios (color-coded by layer-wise compression ratio). Bar plots depict the accuracy
244 gain by folding, computed as $\Delta = \text{Acc}(\text{FOLD}) - \text{Acc}(\text{MAG1})$, as a function of layer-wise compression
245 ratio. Folding yields the largest improvements at moderate to high compression, confirming its
246 robustness across architectures and datasets. Fig. 8 shows the results for magnitude pruning with L2
247 criterion.

258 **Figure 2: MAG1 versus FOLD on ViTs after LayerNorm-only fine-tuning** for ViT-B/32 on CIFAR-10
259 and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
260 wise compression. Bar plots depict the accuracy gain $\Delta = \text{Acc}(\text{FOLD}) - \text{Acc}(\text{MAG1})$, which remains
261 positive and typically grows with compression, indicating that even under lightweight LayerNorm
262 adaptation FOLD retains a consistent advantage over pruning.

263
264
265 **Performance Comparison after Lightweight and Full Fine-Tuning.** The previous results isolate
266 structural effects by evaluating models without further optimization. We now test whether folding’s
267 advantage persists after fine-tuning. Fig. 2 compares MAG1 and FOLD on ViTs under lightweight
268 LayerNorm-only adaptation: across ViT-B/32 (CIFAR-10) and CLIP ViT-B/32 (ImageNet-1K),
269 folding consistently reaches higher post-compression accuracy, with the gap $\Delta = \text{Acc}(\text{FOLD}) -$
270 $\text{Acc}(\text{MAG1})$ remaining positive and typically growing with compression.

Figure 3: **Folded models retain their accuracy advantage after fine-tuning.** Results for ResNet18 trained by Adam on CIFAR-10 (**top row**) and CLIP-ViT-B/32 trained on ImageNet-1K (**bottom row**): **(a,d)** compares post-compression accuracy of magnitude pruning (MAG1) versus folding (FOLD) after 1 and 5 epochs of fine-tuning. **(b,e)** show the accuracy gap between folding and pruning as a function of fine-tuning epochs, demonstrating that folding maintains a consistent lead, *i.e.*, the FOLD accuracy delta is positive. **(c,f)** illustrate accuracy trajectories before and after 5 epochs of fine-tuning for both methods, highlighting that folded models recover accuracy faster. Further results in Appendix E.

Next, we allow brief fine-tuning (1–5 epochs). Fig. 3 shows that folded models (a,d) start from higher accuracy and retain their lead, (b,e) maintain a positive relative gap, and (c,f) recover faster with fewer plateaus. Thus, folding provides a better initialization and requires fewer updates to regain performance, making it advantageous in settings with limited fine-tuning.

Performance Comparison on LLaMA-60M. Tab. 1 evaluates FOLD and MAG2 on LLaMA-60M trained on C4 under 18 hyperparameter settings (varying learning rate, warmup, and weight decay).

weight_decay	warmup_steps	max_lr	PPL \downarrow 0% sparsity	PPL \downarrow MAG2 (20%)	PPL \downarrow FOLD (20%)	PPL \downarrow MAG2 (50%)	PPL \downarrow FOLD (50%)
0.01	880	0.001	32.11	54.51	47.17	398.62	221.32
0.01	1100	0.001	32.14	50.11	46.75	220.54	172.57
0.01	2200	0.001	32.20	46.57	47.54	174.58	216.36
0	880	0.001	32.17	51.14	48.23	220.33	223.86
0	1100	0.001	32.21	50.03	47.47	231.41	204.47
0	2200	0.001	32.40	46.38	46.92	177.48	185.27
0.01	880	0.005	30.12	68.70	55.32	641.69	302.43
0.01	1100	0.005	29.77	68.29	49.81	564.96	234.56
0.01	2200	0.005	29.60	54.50	47.04	360.52	208.02
0	880	0.005	30.47	78.73	62.35	762.05	395.04
0	1100	0.005	30.17	59.20	49.58	544.87	184.74
0	2200	0.005	29.75	56.18	46.55	353.35	165.21
0.01	880	0.01	31.82	66.98	51.80	910.48	406.75
0.01	1100	0.01	29.85	102.41	67.69	977.92	367.94
0.01	2200	0.01	<u>29.25</u>	51.46	44.28	323.68	288.83
0	880	0.01	108.56	129.77	123.85	279.17	198.72
0	1100	0.01	30.31	97.97	61.19	860.14	533.62
0	2200	0.01	29.57	54.43	47.77	351.11	209.06

Table 1: **Evaluation of FOLD and MAG2 on LLaMA-60M.** We train and evaluate 18 LLaMA-family models with 60M parameters on C4 by varying max_lr, warmup steps and weight decay. Columns 4–8 show perplexity of the trained model before compression and after pruning / folding using layer-wise pruning ratio of 20% and 50%. We prune only FFN blocks. Except for low learning rates with long warmup schedules, FOLD outperforms MAG2 (highlighted in bold).

We prune or fold only the FFN blocks and report perplexity at baseline and at 20% and 50% layer-wise sparsity. Except for models trained with very low learning rates and long warmup, FOLD consistently outperforms MAG2. Similar finding have been obtained for LLaMA-130M models in Tab. 6.

4 MODEL COMPRESSION ABLATION STUDIES

The previous sections demonstrated that folding often outperforms structured pruning across architectures and compression ratios. **On ResNets and ViTs**, we probe which training factors impact this advantage. Specifically, we analyze sensitivity to learning rate, the use of sharpness-aware training (SAM) (Foret et al., 2021), regularization and data augmentation (Prabhu et al., 2019)—the hyperparameters known to influence loss landscape geometry and generalization (Fort & Jastrzebski, 2019; Li et al., 2018; Neyshabur et al., 2017; Chen et al., 2022) in non-trivial ways (Andriushchenko et al., 2023). **To validate these curvature-related hypotheses, Appendix G includes a sharpness analysis.** Our measurements quantify how hyperparameters shift the local geometry of the loss landscape and help explain when FOLD’s advantage widens or narrows.

Role of Optimizer. We repeat the ResNet18 analysis under Adam and SGD to gauge optimizer sensitivity. Compared to the Adam-trained sweep in Fig. 1(a), the complementary SGD sweep in Fig. 5 shows the same qualitative ordering—FOLD exceeds MAG1 across compression levels—but with different baselines and dispersion: SGD checkpoints form a tighter cloud and exhibit a smaller median gap, whereas Adam yields larger variance and at times a more pronounced FOLD advantage, especially at higher compression. The FOLD–MAG1 difference remains positive under both optimizers in most cases, but its magnitude is optimizer-dependent.

Effect of Learning Rate. Fig. 4 reports post-compression accuracy for FOLD versus MAG1 across learning rates on ResNet18 (Adam, SGD), PreActResNet18, and ViT-B/32. With Adam, FOLD’s edge is largest at moderate–low rates, narrows and can reverse at very high rates, and vanishes again at extremely small rates (both methods degrade). For SGD, the dependence is weaker and can be inverted (*e.g.*, ViT-B/32). The effect of learning rate is expressed through sharpness (see Appendix G): when training places the model in regions where folding produces a smaller sharpness increase than pruning, folding wins. When folding produces a larger sharpness increase (most visible at high learning rates under Adam), pruning can outperform. Adaptive methods like Adam are associated with sharper minima and distinct generalization behavior compared to SGD, amplifying this sensitivity (Wilson et al., 2018; Jastrzebski et al., 2018; Zhou et al., 2021).

Effect of SAM. Fig. 6 evaluates training with and without SAM and measures post-compression accuracy. Across models, SAM lifts both methods. With light L1 regularization (10^{-5}) during training shown in (b), pruning narrows the gap at *low* compression (where induced sparsity aligns with L1), yet FOLD regains and extends its lead as compression increases. These trends are consistent with the view that SAM steers training to flatter solutions, reducing curvature sensitivity. Within this flatter neighborhood both pruning and folding projections operate inside the same robustness ball, so their geometric differences matter less and the gap narrows. SAM also homogenizes head/channel saliences and reduces the variance of the saliency distribution.

Effect of Data Augmentation. Fig. 7 plots the distribution of Δ Accuracy (FOLD – MAG1) across checkpoints versus the layer-wise compression ratio, contrasting runs without (gray) and with RandAugment (green). For ResNet18 (Adam and SGD) and PreActResNet18, RAUG reduces or shifts FOLD’s relative benefit. In contrast, for ViT-B/32 RAUG increases FOLD’s advantage: the median Δ rises with compression, suggesting that augmented ViT representations are especially amenable to projection-based removal. A plausible mechanism is that augmentation biases training toward flatter, more invariant solutions. This is [supported by our sharpness analysis in Appendix G](#) and consistent with recent theory linking augmentation-induced input perturbations to equivalent parameter-space

Figure 5: **Optimizer effect** evaluated on ResNet18 checkpoints trained on CIFAR-10 with SGD (no L1 normalization). The figure complements Fig. 1(a).

398 **Figure 4: Learning rate modulates folding’s edge.** Post-compression accuracy of FOLD and MAG1
399 across learning rates: ResNet18 with Adam **(a)** and SGD **(b)**, PreActResNet18 **(c)**, and ViT-B/32 **(d)**.
400 FOLD leads at moderate–low rates. With Adam, the gap shrinks or reverses at very high rates, and
401 closes again at extremely small rates. SGD shows weaker or opposite dependence.

428 **Figure 6: SAM (Foret et al., 2021) can boost model compression.** Post-compression accuracy
429 under training with / without SAM. **(a)** ResNet18 (Adam), no L1. **(b)** ResNet18 (Adam), $L1 = 10^{-5}$.
430 **(c)** PreActResNet18 (SGD), no L1. **(d)** ViT-B/32, no L1. SAM improves both FOLD and MAG1, but
431 the uplift is consistently larger for FOLD, especially with Adam. Light L1 regularization helps MAG1 at
432 low compression, yet FOLD retains a clear advantage at moderate–high compression.

433 perturbations and showing that augmentations bias training toward flatter minima (Yoo & Yoon,
434 2025). Standard augmentation (augm=True) shows a similar trend and is omitted for brevity.

Figure 7: **Augmentations have a generally positive effect on the post-compression accuracy.** Post-compression accuracy without / with random augmentations for (a) ResNet18 (Adam), (b) ResNet18 (SGD), (c) PreActResNet18, and (d) ViT-B/32. Augmentations boost both FOLD and MAG1. On ResNet18 they also narrow FOLD’s advantage—most noticeably at moderate compression—consistent with added invariances making axis-aligned removals less damaging. In ViT-B/32, augmentations are essential for folding¹.

These ablations reveal a consistent pattern: conditions that encourage flatter and structured solutions—moderately low learning rates and SAM with a small–moderate radius—magnify FOLD’s advantage, whereas extremes reduce it: very high or very low learning rates, stronger augmentations, or large SAM radii narrow the gap; SGD generally dampens all effects relative to Adam. This aligns with our projection view (Sec. 2): when weights are well aligned, clustering reduces projection error more than coordinate removal and thus perturbs the function less, while weaker alignment or broad robustness neighborhoods make the two projections behave more similarly.

5 CONCLUSION, LIMITATIONS, AND OUTLOOK

We framed structured pruning and model folding as projection-based compression and showed that folding achieves smaller parameter deviation with a one-rank slack, implying tighter functional preservation under mild smoothness. A calibration-free evaluation over >1’000 checkpoints (ResNet18, PreActResNet18, ViT-B/32, CLIP ViT-B/32; CIFAR-10, ImageNet-1K; and **LLaMA-60M** and **LLaMA-130M** on C4) found that FOLD typically surpasses MAG1 in post-compression accuracy, with the clearest gains at moderate–high compression and under training conditions that induce flatter, more structured solutions (e.g., moderate learning rates, SAM). The gap narrows at very low compression and can shrink under strong data augmentation or large SAM radii, but the overall trend is robust across optimizers and hyperparameters.

Limitations. Our theoretical guarantee allows a one-component increase in compressed rank but does not establish universal dominance at exactly matched sizes. Empirically, we focus on standard CNN and ViT families on CIFAR-10 and ImageNet-1K, as well as small LLaMA models on C4. For ViTs and LLaMA, pruning and folding are applied only to the FFN blocks. Extensions to attention layers is left for future work. We evaluate in strictly calibration-free settings, with optional BatchNorm/LayerNorm resets and short fine-tuning budgets, and compare primarily against magnitude-based structured pruning. Interactions with quantization, distillation, and unstructured sparsity are not considered. Larger LLMs are beyond the scope of this study due to the computational cost of training across diverse hyperparameter settings. We note that most SoTA pruning methods for LLMs rely on calibration data (e.g., activation-aware/second-order) and are exclusively pruning-based.

Outlook. We plan to extend folding to pruning / folding attention blocks, calibration-based settings and evaluate on larger LLMs / VLMs. We also plan to study interactions with quantization and adaptation methods. More broadly, our projection-based view positions folding as a geometry-aware primitive for compression: a foundation on which **novel calibration-based compression methods**, hybrid pipelines with quantization and distillation can be built, and a step toward principled model compression framework. In this sense, folding is not only a practical tool but a building block for the next generation of compression methods tailored to foundation models and deployment at scale.

¹Note that the base accuracy of ViT-B/32 checkpoints trained without RAUG is lower than with RAUG.

486 **Reproducibility Statement.** Our compression operators and evaluation protocol are described in
 487 Sec. 2-Sec. 3, with ablation studies in Sec. 4. Complete proofs are in Appendix C; training setups,
 488 datasets, links to the used checkpoints, and hyperparameter grids in Appendix D; and extended results
 489 in Appendix E. An anonymous repository with configs and scripts to regenerate all figures/tables is
 490 linked in Appendix A; our limited LLM usage statement is in Appendix B. Together, these materials
 491 enable re-running the full pipeline and regenerating the results.

492
 493 **REFERENCES**
 494

495 Samuel K. Ainsworth, Jonathan Hayase, and Siddhartha Srinivasa. Git re-basin: Merging models modulo
 496 permutation symmetries, 2023.

497 Maksym Andriushchenko, Francesco Croce, Maximilian Müller, Matthias Hein, and Nicolas Flammarion. A
 498 modern look at the relationship between sharpness and generalization, 2023. URL <https://arxiv.org/abs/2302.07011>.

499 Anna Bair, Hongxu Yin, Maying Shen, Pavlo Molchanov, and Jose Alvarez. Adaptive sharpness-aware pruning
 500 for robust sparse networks, 2024. URL <https://arxiv.org/abs/2306.14306>.

501 Abhimanyu Rajeshkumar Bambhaniya, Amir Yazdanbakhsh, Suvinay Subramanian, Sheng-Chun Kao, Shivani
 502 Agrawal, Utku Evci, and Tushar Krishna. Progressive gradient flow for robust n:m sparsity training in
 503 transformers, 2024. URL <https://arxiv.org/abs/2402.04744>.

504 Christian Bauckhage. K-means clustering is matrix factorization. arXiv:1512.07548, 2015.

505 Hanting Chen, Yunhe Wang, Chang Xu, Zhaohui Yang, Chuanjian Liu, Boxin Shi, Chunjing Xu, Chao Xu, and
 506 Qi Tian. Data-free learning of student networks, 2019. URL <https://arxiv.org/abs/1904.01186>.

507 Xiangning Chen, Cho-Jui Hsieh, and Boqing Gong. When vision transformers outperform resnets without
 508 pre-training or strong data augmentations, 2022. URL <https://arxiv.org/abs/2106.01548>.

509 Yiting Chen, Zhanpeng Zhou, and Junchi Yan. Going beyond neural network feature similarity: The network
 510 feature complexity and its interpretation using category theory. arXiv preprint arXiv:2310.06756, 2023.

511 Bita Darvish Rouhani, Daniel Lo, Ritchie Zhao, Ming Liu, Jeremy Fowers, Kalin Ovtcharov, Anna Vino-
 512 gradsky, Sarah Massengill, Lita Yang, Ray Bittner, Alessandro Forin, Haishan Zhu, Taesik Na, Prerak
 513 Patel, Shuai Che, Lok Chand Koppaka, XIA SONG, Subhajit Som, Kaustav Das, Saurabh T, Steve Rein-
 514 hardt, Sitaram Lanka, Eric Chung, and Doug Burger. Pushing the limits of narrow precision inferencing
 515 at cloud scale with microsoft floating point. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and
 516 H. Lin (eds.), *Advances in Neural Information Processing Systems*, volume 33, pp. 10271–10281. Cur-
 517 ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/747e32ab0fea7fdb2ad9ec03daa3f840-Paper.pdf.

518 Shaojin Ding, David Qiu, David Rim, Yanzhang He, Oleg Rybakov, Bo Li, Rohit Prabhavalkar, Weiran
 519 Wang, Tara N. Sainath, Zhonglin Han, Jian Li, Amir Yazdanbakhsh, and Shivani Agrawal. Usm-lite:
 520 Quantization and sparsity aware fine-tuning for speech recognition with universal speech models, 2024. URL
 521 <https://arxiv.org/abs/2312.08553>.

522 Rahim Entezari and Olga Saukh. Class-dependent compression of deep neural networks, 2020. URL <https://arxiv.org/abs/1909.10364>.

523 Rahim Entezari, Hanie Sedghi, Olga Saukh, and Behnam Neyshabur. The role of permutation invariance in
 524 linear mode connectivity of neural networks, 2022.

525 Gongfan Fang, Jie Song, Chengchao Shen, Xinchao Wang, Da Chen, and Mingli Song. Data-free adversarial
 526 distillation, 2020. URL <https://arxiv.org/abs/1912.11006>.

527 Pierre Foret, Ariel Kleiner, Hossein Mobahi, and Behnam Neyshabur. Sharpness-aware minimization for
 528 efficiently improving generalization, 2021. URL <https://arxiv.org/abs/2010.01412>.

529 Stanislav Fort and Stanislaw Jastrzebski. Large scale structure of neural network loss landscapes, 2019. URL
 530 <https://arxiv.org/abs/1906.04724>.

531 Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-shot, 2023.
 532 URL <https://arxiv.org/abs/2301.00774>.

540 Athanasios Glentis, Jiaxiang Li, Qiulin Shang, Andi Han, Ioannis Tsaknakis, Quan Wei, and Mingyi Hong.
 541 Scalable parameter and memory efficient pretraining for llm: Recent algorithmic advances and benchmarking,
 542 2025. URL <https://arxiv.org/abs/2505.22922>.

543 Andi Han, Jiaxiang Li, Wei Huang, Mingyi Hong, Akiko Takeda, Pratik Jawanpuria, and Bamdev Mishra.
 544 Sltrain: a sparse plus low-rank approach for parameter and memory efficient pretraining, 2024. URL
 545 <https://arxiv.org/abs/2406.02214>.

546 Song Han, Jeff Pool, John Tran, and William J. Dally. Learning both weights and connections for efficient neural
 547 networks, 2015. URL <https://arxiv.org/abs/1506.02626>.

549 Matan Haroush, Itay Hubara, Elad Hoffer, and Daniel Soudry. The knowledge within: Methods for data-free
 550 model compression, 2020. URL <https://arxiv.org/abs/1912.01274>.

551 J. A. Hartigan and M. A. Wong. A k-means clustering algorithm. *JSTOR: Applied Statistics*, 28(1):100–108,
 552 1979.

554 Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distilling the knowledge in a neural network, 2015. URL
 555 <https://arxiv.org/abs/1503.02531>.

556 Samuel Horvath, Stefanos Laskaridis, Shashank Rajput, and Hongyi Wang. Maestro: Uncovering low-rank
 557 structures via trainable decomposition, 2024. URL <https://arxiv.org/abs/2308.14929>.

559 Hengyuan Hu, Rui Peng, Yu-Wing Tai, and Chi-Keung Tang. Network trimming: A data-driven neuron pruning
 560 approach towards efficient deep architectures, 2016. URL <https://arxiv.org/abs/1607.03250>.

561 Stanisław Jastrzębski, Zachary Kenton, Devansh Arpit, Nicolas Ballas, Asja Fischer, Yoshua Bengio, and Amos
 562 Storkey. Three factors influencing minima in sgd, 2018. URL <https://arxiv.org/abs/1711.04623>.

563 Keller Jordan, Hanie Sedghi, Olga Saukh, Rahim Entezari, and Behnam Neyshabur. Repair: Renormalizing
 564 permuted activations for interpolation repair, 2023. URL <https://arxiv.org/abs/2211.08403>.

566 Hyeong-Ju Kang. Accelerator-aware pruning for convolutional neural networks. *IEEE Transactions on Circuits
 567 and Systems for Video Technology*, pp. 1–1, 2020. ISSN 1558-2205. doi: 10.1109/TCST.2019.2911674. URL
 568 <http://dx.doi.org/10.1109/TCST.2019.2911674>.

569 Yong-Deok Kim, Eunhyeok Park, Sungjoo Yoo, Taelim Choi, Lu Yang, and Dongjun Shin. Compression
 570 of deep convolutional neural networks for fast and low power mobile applications, 2016. URL <https://arxiv.org/abs/1511.06530>.

572 Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael Goin, and
 573 Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning for large language
 574 models, 2022. URL <https://arxiv.org/abs/2203.07259>.

575 Vadim Lebedev, Yaroslav Ganin, Maksim Rakhuba, Ivan Oseledets, and Victor Lempitsky. Speeding-up
 576 convolutional neural networks using fine-tuned cp-decomposition, 2015. URL <https://arxiv.org/abs/1412.6553>.

578 Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for efficient convnets.
 579 *arXiv preprint arXiv:1608.08710*, 2016.

581 Hao Li, Zheng Xu, Gavin Taylor, Christoph Studer, and Tom Goldstein. Visualizing the loss landscape of
 582 neural nets. In *Proceedings of the 32nd International Conference on Neural Information Processing Systems,
 583 NIPS’18*, pp. 6391–6401, Red Hook, NY, USA, 2018. Curran Associates Inc.

584 Yucheng Lu, Shivani Agrawal, Suvinay Subramanian, Oleg Rybakov, Christopher De Sa, and Amir Yaz-
 585 danbakhsh. Step: Learning n:m structured sparsity masks from scratch with precondition, 2023. URL
 586 <https://arxiv.org/abs/2302.01172>.

587 Jian-Hao Luo, Jianxin Wu, and Weiyao Lin. Thinet: A filter level pruning method for deep neural network
 588 compression. In *Proceedings of the IEEE International Conference on Computer Vision (ICCV)*, Oct 2017.

590 Paul Micaelli and Amos Storkey. Zero-shot knowledge transfer via adversarial belief matching, 2019. URL
 591 <https://arxiv.org/abs/1905.09768>.

592 Asit Mishra, Jorge Albericio Latorre, Jeff Pool, Darko Stosic, Dusan Stosic, Ganesh Venkatesh, Chong Yu, and
 593 Paulius Micikevicius. Accelerating sparse deep neural networks, 2021. URL <https://arxiv.org/abs/2104.08378>.

594 Behnam Neyshabur, Srinadh Bhojanapalli, David McAllester, and Nathan Srebro. Exploring generalization in
 595 deep learning, 2017. URL <https://arxiv.org/abs/1706.08947>.

596

597 Vinay Uday Prabhu, Dian Ang Yap, Joyce Xu, and John Whaley. Understanding adversarial robustness through
 598 loss landscape geometries, 2019. URL <https://arxiv.org/abs/1907.09061>.

599

600 Sai Qian Zhang, Bradley McDanel, and H. T. Kung. Fast: Dnn training under variable precision block floating
 601 point with stochastic rounding. In *2022 IEEE International Symposium on High-Performance Computer
 602 Architecture (HPCA)*, pp. 846–860, 2022. doi: 10.1109/HPCA53966.2022.00067.

603

604 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish
 605 Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya Sutskever. Learning
 606 transferable visual models from natural language supervision. In Marina Meila and Tong Zhang (eds.),
 607 *Proceedings of the 38th International Conference on Machine Learning*, volume 139 of *Proceedings of
 608 Machine Learning Research*, pp. 8748–8763. PMLR, 18–24 Jul 2021. URL <https://proceedings.mlr.press/v139/radford21a.html>.

609

610 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
 611 Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text transformer. *Journal of
 612 machine learning research*, 21(140):1–67, 2020.

613

614 Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi Zhou, Wei
 615 Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text transformer, 2023.
 616 URL <https://arxiv.org/abs/1910.10683>.

617

618 Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark Chen. Hierarchical text-conditional
 619 image generation with clip latents, 2022. URL <https://arxiv.org/abs/2204.06125>.

620

621 Siyu Ren and Kenny Q. Zhu. Low-rank prune-and-factorize for language model compression, 2023. URL
 622 <https://arxiv.org/abs/2306.14152>.

623

624 Dhananjay Saikumar and Blessen Varghese. Signal collapse in one-shot pruning: When sparse models fail to
 625 distinguish neural representations, 2025. URL <https://arxiv.org/abs/2502.15790>.

626

627 Victor Sanh, Thomas Wolf, and Alexander M. Rush. Movement pruning: Adaptive sparsity by fine-tuning, 2020.
 628 URL <https://arxiv.org/abs/2005.07683>.

629

630 George Stoica, Daniel Bolya, Jakob Bjorner, Pratik Ramesh, Taylor Hearn, and Judy Hoffman. Zipit! merging
 631 models from different tasks without training, 2024. URL <https://arxiv.org/abs/2305.03053>.

632

633 Mingjie Sun, Zhuang Liu, Anna Bair, and J. Zico Kolter. A simple and effective pruning approach for large
 634 language models, 2024. URL <https://arxiv.org/abs/2306.11695>.

635

636 Alexander Theus, Olin Geimer, Friedrich Wicke, Thomas Hofmann, Sotiris Anagnostidis, and Sidak Pal Singh.
 637 Towards meta-pruning via optimal transport. *arXiv preprint arXiv:2402.07839*, 2024.

638

639 Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
 640 Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand Joulin, Edouard
 641 Grave, and Guillaume Lample. Llama: Open and efficient foundation language models, 2023a. URL
 642 <https://arxiv.org/abs/2302.13971>.

643

644 Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaee, Nikolay Bashlykov,
 645 Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian Canton Ferrer, Moya
 646 Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin Fu, Brian Fuller, Cynthia Gao,
 647 Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghaf Hosseini, Rui Hou, Hakan Inan, Marcin Kardas,
 648 Viktor Kerkez, Madian Khabsa, Isabel Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux,
 649 Thibaut Lavril, Jenya Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov,
 650 Pushkar Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
 651 Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang, Ross
 652 Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang, Angela Fan,
 653 Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic, Sergey Edunov, and Thomas Scialom.
 654 Llama 2: Open foundation and fine-tuned chat models, 2023b. URL <https://arxiv.org/abs/2307.09288>.

655

656 Dong Wang, Haris Šikić, Lothar Thiele, and Olga Saukh. Forget the data and fine-tuning! just fold the
 657 network to compress. In *The Thirteenth International Conference on Learning Representations*, 2025. URL
 658 <https://openreview.net/forum?id=W2Wkp9MQsF>.

659

660 Wei Wen, Chunpeng Wu, Yandan Wang, Yiran Chen, and Hai Li. Learning structured sparsity in deep neural
 661 networks. *Advances in neural information processing systems*, 29, 2016.

648 Ashia C. Wilson, Rebecca Roelofs, Mitchell Stern, Nathan Srebro, and Benjamin Recht. The marginal value of
 649 adaptive gradient methods in machine learning, 2018. URL <https://arxiv.org/abs/1705.08292>.

650

651 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S.
 652 Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model
 653 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time,
 2022a.

654

655 Mitchell Wortsman, Gabriel Ilharco, Samir Yitzhak Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes, Ari S.
 656 Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, and Ludwig Schmidt. Model
 657 soups: averaging weights of multiple fine-tuned models improves accuracy without increasing inference time,
 2022b. URL <https://arxiv.org/abs/2203.05482>.

658

659 Zhiliang Yao, Shijie Cao, Wencong Xiao, Chen Zhang, and Lanshun Nie. Balanced sparsity for efficient dnn
 660 inference on gpu. *Proceedings of the AAAI Conference on Artificial Intelligence*, 33(01):5676–5683, July
 661 2019. ISSN 2159-5399. doi: 10.1609/aaai.v33i01.33015676. URL <http://dx.doi.org/10.1609/aaai.v33i01.33015676>.

662

663 Weebum Yoo and Sung Whan Yoon. A flat minima perspective on understanding augmentations and model
 664 robustness, 2025. URL <https://arxiv.org/abs/2505.24592>.

665

666 Shikang Yu, Jiachen Chen, Hu Han, and Shuqiang Jiang. Data-free knowledge distillation via feature exchange
 667 and activation region constraint. In *Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
 Recognition*, pp. 24266–24275, 2023.

668

669 Qiaozhe Zhang, Ruijie Zhang, Jun Sun, and Yingzhuang Liu. How sparse can we prune a deep network: A
 670 fundamental limit perspective, 2025. URL <https://arxiv.org/abs/2306.05857>.

671

672 Pan Zhou, Jiashi Feng, Chao Ma, Caiming Xiong, Steven Hoi, and Weinan E. Towards theoretically under-
 673 standing why sgd generalizes better than adam in deep learning, 2021. URL <https://arxiv.org/abs/2010.05627>.

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702 APPENDIX
703704 The following sections provide supplementary information and complement the main paper:
705706

- 707 • Appendix A: Code, Data, and Resources.
- 708 • Appendix B: Use of Large Language Models.
- 709 • Appendix C: Proofs of Theoretical Claims.
- 710 • Appendix D: Training Details.
- 711 • Appendix E: Further Empirical Results.
- 712 • Appendix F: Related Work.
- 713 • Appendix G: Additional Evaluations - Rebuttal Response.

714715 A CODE, DATA, AND RESOURCES
716717 **Code and logs.** An anonymous repository with all source code, experiment configs, and figure-
718 generation scripts (including the exact logs used to render every plot/table) are released at
719 https://anonymous.4open.science/r/folding_as_projection-7A4D. The repo contains: im-
720 plementations of folding and pruning operators, training/evaluation pipelines, scripts to plot ab-
721 lations, and notebooks to reproduce figures directly from logs. We log all training metrics
722 and hyperparameters with Weights & Biases² and export logs alongside the code for reproduc-
723 tion. Additionally, we provide another anonymous repo for reproducing results of compress-
724 ing LLaMA-60M and LLaMA-130M with folding and magnitude structured pruning at https://anonymous.4open.science/r/simple_model_folding_preview-07E8.
725726 Our folding implementation is based on the code by Wang et al. (2025)³.
727728 **Datasets.** We use CIFAR-10⁴ and ImageNet-1K⁵. CIFAR-10 is downloaded automatically via
729 torchvision. ImageNet-1K requires the official credentials and follows its license. Pretrained/fine-
730 tuned checkpoints referenced in the paper are either trained by us (configs in the repo) or obtained
731 from the cited works (Andriushchenko et al., 2023; Wortsman et al., 2022b). The download links are
732 also provided in Appendix D.733 **Compute resources.** Experiments were run on a cluster featuring 8× NVIDIA A100 (80 GB RAM)
734 GPUs. All random seeds are fixed in the configs and scripts.
735736 **Computational complexity and memory cost.** At inference and matched retained sizes, folding
737 and structured pruning yield the same compute and memory. The difference lies in the compression
738 step: magnitude pruning is a one-pass scoring and selection procedure ($O(pm)$) to score p filters of
739 dimension m , plus $O(p \log p)$ selection, whereas folding runs k -means on layer weights with T
740 sweeps. Using Hartigan’s algorithm (Hartigan & Wong, 1979), one sweep costs $O(pkm)$, with max
741 $T = 10$ sweeps the total is $O(pkmT)$ (effectively linear in pm when k is small). This cost is paid
742 once per layer and is small compared to training.
743744 **Runtime overview.** The most expensive step in our study is fine-tuning of CLIP VIT-B/32 on
745 ImageNet-1K (1–5 epochs), which dominates wall-clock time (order of hours per run). In contrast,
746 compression is lightweight. We detail measured runtime overhead of compression in Appendix G.
747748 B USE OF LARGE LANGUAGE MODELS
749750 We used ChatGPT⁶ for sentence-level grammar correction and improvement, drafting trivial plotting
751 snippets to produce figures from logs, and code readability edits. All ideas, proofs, experiments, and
752 analyses are ours.
753754 ²Weights & Biases: <https://wandb.ai>755 ³Model folding universal: <https://github.com/nanguoyu/model-folding-universal> and model folding
756 for CNNs: <https://github.com/marza96/ModelFolding/>757 ⁴CIFAR-10: <https://www.cs.toronto.edu/~kriz/cifar.html>758 ⁵ImageNet-1K: <https://image-net.org/>759 ⁶ChatGPT / GPT-5: <https://chatgpt.com>

756 **C PROOFS OF THEORETICAL CLAIMS**
 757

758 Below we prove that for any choice of pruning, there exists a folding that yields a more accurate
 759 approximation of the parameter matrix \mathbf{W} .
 760

761 **Theorem 2.1.** *Given any pruning with basis \mathbf{U}_p of rank $0 \leq k_p \leq m-1$ (i.e., at least one parameter
 762 vector is pruned), there exists a folding with basis \mathbf{U}'_f and rank $k_f = k_p + 1$ such that*

$$763 \quad \|\mathbf{W} - \mathbf{W}_p\|_F^2 \geq \|\mathbf{W} - \mathbf{W}'_f\|_F^2, \\ 764$$

765 where $\mathbf{W}_p = \mathbf{C}_p \mathbf{W}$ and $\mathbf{W}'_f = \mathbf{C}'_f \mathbf{W}$, with \mathbf{C}_p and \mathbf{C}'_f denoting the orthogonal projections
 766 defined in Eq. 2.
 767

768 *Proof.* The rows of \mathbf{W} can be ordered such that the pruned parameter vectors are first:
 769 $w(1), \dots, w(m - k_p)$. Then we find that
 770

$$771 \quad \mathbf{W} - \mathbf{W}_p = \begin{pmatrix} w(1) \\ \vdots \\ w(m - k_p) \\ 0 \\ \vdots \\ 0 \end{pmatrix} \\ 772 \\ 773 \\ 774 \\ 775 \\ 776$$

777 using Eq. 3. For the existence proof, we choose a folding that clusters all parameter vectors
 778 $w(1), \dots, w(m - k_p)$ into a single cluster, all other parameter vectors have individual clusters, *i.e.*,
 779

$$780 \quad \mathbf{U}'_f = \begin{pmatrix} 1 & 0 \\ \vdots & 0 \\ 1 & 0 \\ 0 & \mathbf{I} \end{pmatrix} \quad ; \quad \mathbf{W} - \mathbf{W}'_f = \begin{pmatrix} w(1) - \mu \\ \vdots \\ w(m - k_p) - \mu \\ 0 \\ \vdots \\ 0 \end{pmatrix} \quad ; \quad \mu = \frac{1}{m - k_p} \sum_{i=1}^{m - k_p} w(i) \\ 781 \\ 782 \\ 783 \\ 784 \\ 785$$

786 using Eq. 4.

787 We have $\|\mathbf{W} - \mathbf{W}_p\|_F^2 = \sum_{i=1}^{m - k_p} w(i)^T w(i)$ and

$$788 \quad \|\mathbf{W} - \mathbf{W}'_f\|_F^2 = \sum_{i=1}^{m - k_p} (w(i) - \mu)^T (w(i) - \mu) = \sum_{i=1}^{m - k_p} (w(i)^T w(i) - 2w(i)^T \mu + \mu^T \mu) \\ 789 \\ 790 \\ 791 \\ 792 \\ 793 \\ 794 \\ 795 \\ 796 \\ 797 \\ 798$$

$$= \sum_{i=1}^{m - k_p} w(i)^T w(i) - (m - k_p) \mu^T \mu \\ \leq \sum_{i=1}^{m - k_p} w(i)^T w(i) = \|\mathbf{W} - \mathbf{W}_p\|_F^2$$

799 The latter inequality directly establishes the theorem. □
 800

801 The following theorem shows that folding using optimal k -means clustering never yields a less
 802 accurate approximation of the parameter matrix \mathbf{W} than pruning.
 803

804 **Theorem 2.2.** *Let \mathbf{U}^*_f be the basis obtained from an optimal k -means clustering with k_f clusters,
 805 i.e., the folding clusters are determined by a k -means algorithm minimizing the accumulated within-
 806 cluster sum of squares. Then, for any pruning with basis \mathbf{U}_p of rank $k_p = k_f - 1$, we have*

$$807 \quad \|\mathbf{W} - \mathbf{W}_p\|_F^2 \geq \|\mathbf{W} - \mathbf{W}^*_f\|_F^2, \\ 808$$

809 where $\mathbf{W}_p = \mathbf{C}_p \mathbf{W}$ and $\mathbf{W}^*_f = \mathbf{C}^*_f \mathbf{W}$, with \mathbf{C}_p and \mathbf{C}^*_f denoting the orthogonal projections
 810 defined in Eq. 2.

810 *Proof.* According to Bauckhage (2015) and Wang et al. (2025), the problem of k -means clustering
 811 can be formulated as the following constrained matrix factorization problem:
 812

$$813 \quad \min_{\mathbf{U}} \|\mathbf{W} - \mathbf{U}(\mathbf{U}^\top \mathbf{U})^{-1} \mathbf{U}^\top \mathbf{W}\|_F^2 \quad \text{subject to} \quad u(i, j) \in \{0, 1\}, \sum_j u(i, j) = 1 \quad \forall i.$$

816 This formulation coincides with the orthogonal projection of model folding, see Eq. 2 and Eq. 4.
 817 Theorem 2.1 guarantees the existence of a folding basis \mathbf{U}_f^* and the corresponding projection \mathbf{C}_f^*
 818 for any pruning \mathbf{W}_p of \mathbf{W} , such that

$$819 \quad \|\mathbf{W} - \mathbf{W}_p\|_F^2 \geq \|\mathbf{W} - \mathbf{W}_f^*\|_F^2.$$

821 Since optimal k -means clustering achieves the minimal possible error $\|\mathbf{W} - \mathbf{W}_f^*\|_F^2 \leq \|\mathbf{W} -$
 822 $\mathbf{W}_f^*\|_F^2$, the theorem follows. \square
 823

824 D TRAINING DETAILS

825 The following subsections detail the hyperparameters used to train our checkpoints. For checkpoints
 826 taken from the literature, we summarize the available training details.

830 D.1 RESNET18 ON CIFAR-10 TRAINING SETUP WITH ADAM AND SGD

831 We trained a total of 792 ResNet18 models on CIFAR-10 by varying hyperparameter configurations.
 832 We used two optimizers: Adam and SGD. Tab. 2 summarizes the parameter combinations explored
 833 for each optimizer. For Adam, we used 3 learning rates and 1 momentum value. For SGD, we used 3
 834 learning rates and 2 momentum values. The remaining parameters were shared across both optimizers:
 835 weight decay (3 values), L1 regularization (2 values), RandAugment (2 values), Sharpness-Aware
 836 Minimization (3 values), and learning rate scheduling (2 values). This resulted in 216 models trained
 837 with Adam and 576 models trained with SGD. In the ablation studies, we filter checkpoints (as
 838 specified in the figure captions) to highlight the observed effects.

840 Parameter	841 Values
842 Optimizer	843 adam, sgd
843 Learning Rate	844 adam: 0.1, 0.01, 0.001 sgd: 0.1, 0.05, 0.01, 0.001
844 Momentum	845 adam: 0.0 sgd: 0.9, 0.99
846 Weight Decay	847 0.0, 0.0005, 0.001
847 L1 Regularization	848 0.0, 1×10^{-5}
848 RandAugment	849 True, False
849 SAM (Sharpness-Aware Minimization)	850 None, 0.05, 0.1
850 Learning Rate Schedule	851 True, False

852 Table 2: Hyperparameter combinations used for ResNet18 training on CIFAR-10.
 853

854 D.2 PREACTRESNET18 ON CIFAR-10

856 We use 50 trained PreActResNet18 models on CIFAR-10 from Andriushchenko et al. (2023)⁷. The
 857 models are trained using a fixed set of training parameters and a sweep over a few key hyperparameters.
 858 Tab. 3 summarizes varied parameters used in this experiment. All checkpoints used the same training
 859 protocol: 200 epochs, batch size 128, and no label noise. The model width was fixed at 64 and the
 860 learning rate schedule followed a cyclic pattern. Only the maximum learning rate (`lr_max`), SAM
 861 strength (`sam_rho`), and augmentation settings were varied. For the learning rate ablation studies, we
 862 adopt the reported maximum learning rate.

863 ⁷Download link: <https://drive.google.com/drive/folders/1LmthJCb3RXBFWjeTOC4U0017Ppgg2h7n>

Figure 8: **Folding outperforms magnitude pruning across diverse training regimes.** The same setup as in Fig. 1, but compared to the L2 magnitude pruning criterion. **Top row:** ResNet18 and PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch with Adam using different hyperparameter configurations. **Bottom row:** ViT-B/32 on CIFAR-10 and CLIP ViT-B/32 on ImageNet-1K. Scatter plots show post-compression accuracy for folding versus magnitude pruning (L2 criterion) at uniform per-layer compression ratios. Bar plots depict the accuracy gain by folding, computed as $\Delta = \text{Acc}(\text{FOLD}) - \text{Acc}(\text{MAG2})$, as a function of layer-wise compression ratio. Folding yields the largest improvements at moderate to high compression, confirming its robustness across architectures and datasets.

Figure 9: **FOLD versus MAG2 on ViTs after LayerNorm-only fine-tuning** for ViT-B/32 on CIFAR-10 and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-wise compression. Bar plots depict the accuracy gain $\Delta = \text{Acc}(\text{FOLD}) - \text{Acc}(\text{MAG2})$, which remains positive and typically grows with compression, indicating that even under lightweight LayerNorm adaptation FOLD retains a consistent advantage over pruning. The figure follows the same setup as Fig. 2 in the main paper, but for MAG2.

D.3 ViT-B/32 ON CIFAR-10

The 200 Vision Transformers (ViT) also from Andriushchenko et al. (2023), width=256, were trained on CIFAR-10, batch size 128, for 200 epochs with a cosine learning rate schedule and linear warmup. The main hyperparameters are summarized in Tab. 4. We made use of the maximum learning rate, the use of data augmentation, and the use of Sharpness-Aware Minimization (SAM) in our evaluations. All other settings were fixed.

918
919
920
921
922
923
924
925
926

Parameter	Values
Optimizer	sgd
Max / Base Learning Rate (lr_max)	from 0.0504 to 4.9759
SAM Strength (sam_rho)	0.0, 0.05, 0.1
Standard Augmentation (augm)	True, False
RandAugment (randaug)	True, False

Table 3: Fixed and varying parameters for PreActResNet18 training on CIFAR-10.

Figure 10: **FOLD outperforms MAG1 after full fine-tuning for 1–5 epochs on PreActResNet18 and ViT-B/32 on CIFAR-10.** Results for PreActResNet18 (top) and ViT-B/32 (bottom). (a,d) accuracy of MAG1 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap Δ over epochs, remaining positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing faster recovery and higher final accuracy for FOLD. The figure extends Fig. 3 in the main paper to PreActResNet18 and ViT-B/32 architectures where FOLD is benchmarked against MAG1.

D.4 CLIP ViT-B/32 ON IMAGENET-1K

CLIP (Radford et al., 2021) models are known for the widespread use of CLIP features (Ramesh et al., 2022). We use the pool of models introduced by Wortsman et al. (2022b), who fine-tuned the CLIP ViT-B/32 architecture on ImageNet-1K multiple times using different randomly sampled training hyperparameters⁸. These hyperparameters include learning rate, number of training epochs, weight decay, label smoothing, and augmentation strategies, as stated in (Wortsman et al., 2022b). The resulting collection of 72 fine-tuned models provides a strong basis for evaluating the performance of model folding compared to pruning on CLIP ViT architectures. All checkpoints were evaluated jointly in our study, without parameter-specific ablations.

D.5 LLaMA-60M ON COLOSSAL CLEAN CRAWLED CORPUS (C4)

We train 36 LLaMA-family models (Touvron et al., 2023a;b) with 60M and 130M parameters on the Colossal Clean Crawled Corpus (C4) (Raffel et al., 2020) on a NVIDIA DGX Station A100 featuring eight NVIDIA A100 GPUs (each equipped with 80GB memory). The training time for a LLaMA-60M model is about 45 minutes. Tab. 5 summarizes the fixed hyperparameters used to train LLaMA-60M and LLaMA-130M. The learning rate is linearly warmed up, followed by a cosine

⁸Download link: <https://github.com/mlfoundations/model-soups/releases/>

Parameter	Values
Optimizer	sgd
Max / Base Learning Rate (lr_max)	from 0.005087 to 0.492936
SAM Strength (sam_rho)	0.0, 0.05, 0.1
Standard Augmentation (augm)	True, False
RandAugment (randaug)	True, False

Table 4: Fixed and varying parameters for ViT-B/32 Base training on CIFAR-10.

annealing schedule that decays to 10% of the initial value. We use the T5-base tokenizer (Raffel et al., 2023) and AdamW optimizer, consistent with prior work (Glentis et al., 2025; Han et al., 2024).

Params	Hidden	Intermediate	Heads	Layers	Steps	Data (Tokens)
60M	512	1376	8	8	11K	1.3B
130M	768	2048	12	12	22K	2.6B

Table 5: Training hyperparameters of LLaMA-60M architecture.

Note that in our work, pruning and folding are applied exclusively to the feed-forward network (FFN) layers of the trained LLaMA-60M and LLaMA-130M models.

E FURTHER RESULTS

We provide additional experiments to complement the main results. Fig. 8 mirrors the setup of Fig. 1 in the main paper, but replaces the L1 criterion for magnitude pruning with L2 (MAG2). Similarly, Fig. 9, Fig. 10, Fig. 11, and Fig. 12 extend the corresponding figures in the main paper to other network architectures and to the L2 case. Across all comparisons, the qualitative picture remains the same: FOLD consistently matches or outperforms magnitude pruning, independent of the chosen norm.

We further include ablations to study the robustness of these findings with respect to training hyperparameters. Fig. 13, Fig. 14, and Fig. 15 report the effect of varying learning rate, SAM strength, and RandAugment, respectively. Finally, Fig. 16 shows the influence of weight decay. Taken together, these studies confirm that the relative advantage of FOLD is stable across different regularization strategies and training configurations.

F RELATED WORK

Model compression encompasses a wide range of approaches designed to reduce inference cost while preserving model utility. We focus on *post-training, calibration-free structured compression*, where the model architecture is modified without access to data or gradients. In this setting, the dominant baselines are structured pruning and, more recently, model folding. Below we discuss these families of methods and clarify how our projection-theoretic view relates to and extends prior work.

Post-training compression. Quantization reduces arithmetic precision (Darvish Rouhani et al., 2020; Qian Zhang et al., 2022), but typically requires calibration to maintain activation ranges. Knowledge distillation (Hinton et al., 2015) produces reduced students trained to imitate teacher logits. Even data-free variants (Micaelli & Storkey, 2019; Chen et al., 2019; Fang et al., 2020; Yu et al., 2023; Haroush et al., 2020) require full training dynamics and do not yield structural compression. Low-rank factorization via matrix or tensor decompositions (Ren & Zhu, 2023; Horvath et al., 2024; Lebedev et al., 2015; Kim et al., 2016) approximates pretrained weights by continuous subspaces but generally requires fine-tuning for restoration. These approaches differ fundamentally from our objective: they modify numerical precision or parameterization, not the discrete structure of the model.

Structured pruning. Structured pruning removes neurons, channels, filters, or blocks (Li et al., 2016; Luo et al., 2017; Hu et al., 2016; Wen et al., 2016). Magnitude-based criteria (Han et al., 2015;

Figure 11: **Folded models retain their accuracy advantage after fine-tuning.** Results for ResNet18 trained by Adam (**top row**) and PreActResNet18 trained by SGD on CIFAR-10 (**bottom row**): **(a,d)** compares post-compression accuracy of magnitude pruning with L2 criterion (MAG2) versus folding (FOLD) after 1 and 5 epochs of fine-tuning. **(b,e)** show the accuracy gap between folding and pruning as a function of fine-tuning epochs, demonstrating that folding maintains a consistent lead, *i.e.*, the FOLD accuracy delta is positive. **(c,f)** illustrate accuracy trajectories before and after 5 epochs of fine-tuning for both methods, highlighting that folded models recover accuracy faster and reach higher final performance than pruned models. The figure extends Fig. 3 in the main paper and Fig. 10 in the appendix to MAG2.

Lu et al., 2023; Ding et al., 2024; Entezari & Saukh, 2020) dominate due to simplicity and hardware alignment. However, structured pruning typically requires fine-tuning or recalibration (Kurtic et al., 2022; Sanh et al., 2020) to mitigate accuracy degradation, and even calibration-based methods such as SparseGPT (Frantar & Alistarh, 2023) or Wanda (Sun et al., 2024) operate through axis-aligned removal of coordinates. One-shot improvements using N:M sparsity (Yao et al., 2019; Kang, 2020) or OT-based structural alignment (Theus et al., 2024) still operate within the same paradigm: pruning corresponds to enforcing that the retained parameter vectors lie in a fixed coordinate-aligned subspace.

Our work shows that such axis-aligned projections are geometrically restrictive. We formalize pruning as an orthogonal projection onto a coordinate subspace and demonstrate that, at matched ranks up to one slack, pruning is provably dominated by projections onto cluster-structured subspaces.

Weight clustering and model folding. Model folding, recently introduced by Wang et al. (2025), ties groups of similar channels by replacing them with their mean, yielding dense low-rank layers that preserve structural couplings. Folding implicitly performs a *cluster-structured projection* determined by discrete assignments, and practical implementations rely on k-means clustering. This operator class is strictly richer than axis-aligned pruning: folding enables coordinated merging rather than coordinate removal, while remaining compatible with dense inference. IFM (Chen et al., 2023) is related in that it also merges channels via grouping, but its variance-collapse correction is ineffective (Wang et al., 2025), leading to substantially weaker performance.

Our work strengthens this line along two axes. First, we provide a unified *projection-geometric framework* showing that both pruning and folding are orthogonal projections, but onto fundamentally different subspaces: coordinate-aligned versus cluster-structured. Second, we prove that for any pruned solution of rank k , there exists a folded solution of rank $k+1$ with strictly smaller parameter reconstruction error, and that optimal k-means folding minimizes this projection error among all cluster-structured projections. This establishes a strict theoretical separation between pruning and folding and explains the empirical superiority of folding in calibration-free settings.

Figure 12: FOLD outperforms MAG2 after full fine-tuning for 1–5 epochs on ViT-B/32 and CLIP ViT-B/32. Results for ViT-B/32 on CIFAR-10 (top) and CLIP ViT-B/32 on ImageNet-1K (bottom). (a,d) accuracy of MAG2 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap Δ over epochs, remaining positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing faster recovery and higher final accuracy for FOLD. The figure extends Fig. 3 in the main paper and Fig. 10 in the appendix to MAG2.

Figure 13: Learning rate modulates folding's edge. Post-compression accuracy of MAG2 and FOLD across learning rates: ResNet18 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d). FOLD typically leads at moderate–low rates; the gap shrinks or reverses at very high rates, and closes again at extremely small rates. The same setup as in Fig. 4 in the main paper, but for MAG2.

Model merging and alignment. Model merging combines independently trained models via parameter averaging or permutation alignment. Model soups (Wortsman et al., 2022a) exploit shared initialization. Permutation matching (Entezari et al., 2022; Ainsworth et al., 2023) constructs neuron correspondences. REPAIR (Jordan et al., 2023) stabilizes fused models by re-normalizing preactivations.

1154 **Figure 14: SAM can boost model compression.** Post-compression accuracy under training
1155 with/without SAM. **(a)** ResNet18 (Adam), no L1. **(b)** ResNet18 (Adam), $L1 = 10^{-5}$. **(c)** Pre-
1156 ActResNet18 (SGD), no L1. **(d)** ViT-B/32, no L1. The figure extends the results in Fig. 6 to MAG2.

1178 **Figure 15: Random augmentations narrow the folding-pruning gap.** Post-compression accuracy
1179 on ResNet18 (CIFAR-10) trained without vs. with random augmentations: **(a)** Adam, **(b)** SGD, **(c)**
1180 PreActResNet, **(d)** ViT-B/32. The figure extends Fig. 7 to MAG2.

1181
1182
1183 **tions. Intra-model merging approaches such as ZipIt! (Stoica et al., 2024) combine computational**
1184 **units but do not target compression under fixed architectural constraints.**

1185 **These works differ from ours in both objective and mechanism. Merging seeks functional fusion**
1186 **across networks, whereas folding compresses a *single* network by exploiting intra-layer redundancy.**
1187 **Our projection-theoretic formulation shows that folding operates as a structured projection with**
1188 **explicit geometric optimality guarantees—properties not shared by merging methods.**

Figure 16: **ResNet18: Weight Decay.** Test accuracy of ResNet18 checkpoints trained with varying weight decay values. Weight decay does not diminish the advantage of FOLD compared to MAG2, especially for SGD-trained models.

Positioning of this work. Across pruning, folding, and merging, prior efforts lack a unifying mathematical framework that characterizes the geometry of post-training structural compression. Our contribution is to introduce such a framework: we cast pruning and folding as orthogonal projections and show that cluster-structured projections admit strictly smaller distortion than coordinate projections under practically negligible rank slack. This perspective yields nontrivial theoretical guarantees and aligns closely with the empirical phenomena observed across CNNs, ViTs, and LLaMA models.

1242

1243

1244

1245

G ADDITIONAL EVALUATIONS – REBUTTAL RESPONSE

1246 Below we report additional evaluations. We extend our study by training and compressing 60M- and
1247 130M-parameter LLaMA models on C4, and provide analyses of sharpness, and measure runtime
1248 overhead.
1249

1250	weight_decay	warmup_steps	max_lr	PPL _↓ 0% sparsity	PPL _↓ MAG2 (20%)	PPL _↓ FOLD (20%)	PPL _↓ MAG2 (50%)	PPL _↓ FOLD (50%)
1251	0.01	1100	0.001	23.90	39.88	39.48	236.16	308.77
1252	0.01	2200	0.001	23.99	38.75	39.61	259.79	469.25
1253	0.01	3300	0.001	24.08	38.54	39.10	289.67	451.27
1254	0.0	1100	0.001	24.01	42.39	42.27	270.31	477.70
1255	0.0	2200	0.001	24.12	40.01	41.53	239.25	489.48
1256	0.0	3300	0.001	24.19	38.72	40.31	277.10	531.09
1257	0.01	1100	0.005	42.11	72.31	62.63	536.53	298.65
1258	0.01	2200	0.005	22.82	52.18	40.46	824.69	333.59
1259	0.01	3300	0.005	<u>22.66</u>	44.35	36.22	589.33	222.21
1260	0.0	1100	0.005	44.92	73.38	63.75	414.17	261.23
1261	0.0	2200	0.005	23.32	57.62	43.04	1616.74	342.64
1262	0.0	3300	0.005	23.00	46.87	39.11	904.07	305.85
1263	0.01	1100	0.01	300.95	302.26	301.87	401.28	361.10
1264	0.01	2200	0.01	66.48	88.09	84.30	398.16	252.99
1265	0.01	3300	0.01	54.34	97.35	76.15	440.71	229.42
1266	0.0	1100	0.01	282.11	282.48	282.38	345.74	329.58
1267	0.0	2200	0.01	140.20	169.78	149.58	352.14	234.69
1268	0.0	3300	0.01	86.18	118.05	100.14	339.37	179.43

1265 Table 6: **Evaluation of FOLD and MAG2 on LLaMA-130M** (in addition to LLaMA-60M evaluations in
1266 Tab. 1). We train and evaluate 18 LLaMA-family models with 130M parameters on C4 while varying
1267 max_lr, warmup steps, and weight decay. Columns show perplexity of the pretrained model (0%
1268 sparsity) and perplexity after structured magnitude pruning and folding with 20% and 50% sparsity in
1269 FFN blocks. For higher learning rates, especially for the settings with the best achieved performance
1270 in each sparsity category (underlined), FOLD consistently outperforms MAG2 (bold).
12711292 Figure 17: **Folding vs. magnitude pruning before REPAIR.** The same setup as in Fig. 1 and Fig. 8
1293 for CNNs (ResNet18 and PreActResNet18 on CIFAR-10), but the performance is compared for both
1294 pruning and folding before REPAIR. **Top row:** MAG1, **bottom row:** MAG2. In both cases, folding
1295 shows stronger performance already before data-based REPAIR is applied.
1296

Figure 18: **Uncompressed model accuracy vs. performance difference $\Delta\text{Accuracy} = \text{Acc}(\text{FOLD}) - \text{Acc}(\text{MAG})$.** The same setup as in Fig. 1 and Fig. 8. **Top row:** MAG1, **Bottom row:** MAG2. Model folding shows strong performance on models of different quality, with amplified effect on high-performing models (especially on ResNet18, SGD and ViT-B/32).

G.1 SHARPNESS AND BARRIER ANALYSIS

We compute sharpness following the implementation of Andriushchenko et al. (2023). Sharpness for CLIP is measured only on the final projection layer using ~ 1000 images, while for PreActResNets it is computed over the full model and dataset.

Sharpness increases with compression ratio for all methods and architectures (Fig. 19), reaching a peak before stronger compression pushes the model out of its original basin and into a flatter, lower-capacity region. This rise–then–fall pattern appears consistently in both PreActResNet and CLIP models, see Fig. 19.

The correlation analysis in Fig. 20 further supports this interpretation. Across the 200 compressed ResNet18 models, 50 compressed PreActResNet18s and 72 compressed CLIP models, FOLD exhibits negative correlations between Δ -sharpness and Δ -accuracy ($\Delta\text{Accuracy} = \text{Acc}(\text{FOLD}) - \text{Acc}(\text{MAG})$). As shown in the scatter plots and correlation tables of Fig. 20, larger reductions in sharpness under FOLD relative to MAG are associated with larger accuracy gains. This relationship holds across the evaluated compression ratios, up to the point where one of the models leaves the original basin and sharpness becomes less informative.

In addition to the global sharpness trends discussed above, Fig. 21 and Fig. 22 provide a more fine-grained view of how training hyperparameters influence the relationship between Δ -sharpness and Δ -accuracy under compression. For Adam-trained ResNet models (Fig. 21), the scatter plots reveal a strong and stable negative correlation: whenever FOLD produces lower sharpness than magnitude pruning, it also achieves higher accuracy across almost all pruning ratios. The structure of the point clouds, especially at high learning rates, shows that Adam’s adaptive scaling can induce highly anisotropic sharpness profiles, which in turn amplify the divergence between the compression trajectories of FOLD and MAG.

In contrast, SGD-trained models (Fig. 22) exhibit a weaker and more dispersed relationship between Δ -sharpness and Δ -accuracy, consistent with the flatter and more isotropic minima typically found by SGD. Under SGD, FOLD often remains slightly flatter than magnitude pruning even when Δ -sharpness ≈ 0 , explaining why FOLD maintains a mild yet more weakly correlated accuracy advantage. The interaction with SAM and augmentation further differs across optimizers: SAM tightens the Δ -sharpness distribution under SGD, stabilizing the performance gap in favor of FOLD, while RandAug tends primarily to reduce variance without introducing strong directional trends.

1350
 1351 These results highlight that the predictive power of sharpness for pruning outcomes is optimizer-
 1352 and hyperparameter-dependent: sharpness differences are highly informative for Adam-trained
 1353 networks but less so for SGD, even though FOLD consistently follows a smoother and less disruptive
 1354 compression path than magnitude-based pruning in both regimes.

1355 These findings align with recent work linking compression and landscape geometry. AdaSAP
 1356 (Bair et al., 2024) treats pruning as a sharpness-aware process, and Zhang et al. (2025) show that
 1357 feasible pruning ratios depend on intrinsic flatness. Our results support this perspective: compression
 1358 initially increases sharpness as degrees of freedom are removed within the same basin, but stronger
 1359 compression forces the model into a flatter basin with reduced curvature. FOLD follows this trajectory
 1360 more smoothly, maintaining basin structure and yielding lower barriers than MAG.

1378 Figure 19: **Worst-case ℓ_∞ sharpness as a function of compression ratio across architectures and**
 1379 **pruning methods.** Each subplot reports the sharpness distribution for independently trained models
 1380 at three perturbation radii ($\rho = 10^{-4}, 5 \times 10^{-4}, 10^{-3}$). Panels (a)–(d) show FOLD sharpness for
 1381 ResNet18 trained with Adam and SGD, PreActResNet18, and CLIP ViT-B/32, respectively. Panels
 1382 (e)–(h) show the corresponding results for MAG1. Observed trends: (i) Sharpness generally increases
 1383 with compression ratio up to moderate levels before flattening or dropping at extreme compression.
 1384 (ii) FOLD produces on-average lower sharpness than MAG1. (iii) Transformer models (CLIP ViT-B/32)
 1385 experience substantially sharper solutions under compression compared to residual networks. These
 1386 patterns indicate that FOLD maintains flatter loss landscapes across a wide range of settings, whereas
 1387 MAG more often drives models toward sharper and less stable minima.

1395 G.2 RUNTIME OVERHEAD AND EQUIVALENCE OF COMPRESSED MODELS

1396
 1397 We profile both the compression procedures and the inference behavior of the resulting compressed
 1398 models on a dedicated DGX A100 server equipped with dual-socket AMD EPYC 7742 CPUs (256
 1399 hardware threads) and 8x NVIDIA A100 80GB GPUs. All measurements use the THOP profiler⁹
 1400 and report compression time, peak memory during compression, per-batch latency, FLOPs, and
 1401 peak forward-pass memory before and after compression. For each architecture (PreActResNet18
 1402 and CLIP ViT-B/32), all compression methods generate the *same* compressed network topology
 1403 (identical channel counts and tensor shapes). Consequently, all methods yield identical FLOPs and
 1404 nearly identical latencies, demonstrating that inference-time behavior is determined entirely by the

Figure 20: **Correlation between Δ -sharpness and Δ -accuracy across architectures and pruning baselines.** Each column shows the relationship between pruning-induced differences in worst-case ℓ_∞ sharpness (Δ sharpness = FOLD – MAG) and differences in test accuracy (Δ accuracy = FOLD – MAG), for the pair of pruning methods indicated below each plot. Color encodes the layer-wise compression ratio. The tables underneath each subplot report Pearson and Spearman correlations at every compression ratio, quantifying how predictive the sharpness difference is of the accuracy difference. Results are shown for FOLD vs MAG1 for ResNet18 trained with Adam and SGD, PreActResNet18 and CLIP ViT-B/32. Statistics are computed over 200 independently trained ResNets18 and 50 PreActResNet18 on CIFAR-10, and 72 CLIP ViT-B/32 models on ImageNet-1K. Correlations use the sharpness value at $\rho = 5 \times 10^{-4}$. Results at $\rho = 10^{-4}$ and $\rho = 10^{-3}$ are qualitatively very close.

Method	Params	Comp. time [s]	Comp. peak mem [MB]	Lat. [ms/batch]	Lat. [ms/img]	FLOPs [MFLOPs/img]	Fwd peak mem [MB]
Original	11,172,170	–	–	3.69	0.0288	557.65	214.30
FOLD	4,008,346	9.48	157.47	3.17	0.0248	199.05	170.53
MAG	4,008,346	1.77	115.22	3.15	0.0246	199.05	169.82

Table 7: Runtime characteristics of PreActResNet18 before and after compression (64.1% parameter reduction). Latency is measured for a full batch. FLOPs are reported per image. Comp. time and comp. peak mem refer to the overhead of running the compression method once.

resulting architecture, not by the choice of compression algorithm. FOLD introduces a moderate one-off compression overhead, but its inference-time profile matches the other compressed models.

Table 7 compares the original and compressed PreActResNet18 at a layer-wise compression ratio of 0.4 (*i.e.*, a 64.1% reduction in model parameters). Compression reduces FLOPs from 557.65 MFLOPs/image to 199.05 MFLOPs/image (a 64.3% reduction), improves latency from 3.69 ms/batch to roughly 3.15 ms/batch, and lower peak forward-pass memory (from 214.30 MB to about 170 MB).

Method	Params	Comp. time [s]	Comp. peak mem [MB]	Lat. [ms/batch]	Lat. [ms/img]	FLOPs [MFLOPs/img]	Fwd peak mem [MB]
Original	151,790,313	–	–	19.851	0.6203	2946.76	684.18
FOLD	140,447,253	92.833	681.23	17.343	0.5420	2379.98	636.97
MAG	140,447,253	2.627	625.61	17.372	0.5429	2379.98	637.88

Table 8: Runtime characteristics of CLIP ViT-B/32 before and after compression (7.47% parameter reduction). Latency is measured for a full batch. FLOPs are reported per image. Comp. time and Comp. peak mem refer to the one-off overhead of running the compression method.

Table 8 shows the same evaluation for CLIP ViT-B/32, where FFN blocks are compressed to with 20% layer-wise compression ratio. Here, FLOPs decrease from 2946.76 MFLOPs/image to

⁹<https://github.com/ultralytics/thop>

Figure 21: **Sharpness-accuracy trade-off between FOLD and MAG1 for ResNet18 trained with Adam.** Each column corresponds to a layer-wise compression ratio (0.1–0.9), and the three rows group models by learning rate, SAM configuration (including ρ), and RandAug usage. Points show Δ worst-case ℓ_∞ sharpness (FOLD – MAG1) vs. Δ test accuracy (FOLD – MAG1). **Observations:** (1) The difference in model sharpness strongly predicts the difference in performance between FOLD and MAG1 across almost all pruning ratios. (2) *Learning rate*: higher learning rates lead to more dispersed sharpness changes. For models trained with Adam using high learning rates, MAG1 moves the model along a less sharp path compared to FOLD, which struggles to catch up. However, the behavior flips for moderate and low learning rates. (3) *SAM/ρ*: using SAM reduces the variability in the sharpness shift between methods, especially for larger ρ . Δ sharpness gets closer to zero. (4) *RandAug*: augmentation show little specific visible trend.

2379.98 MFLOPs/image (a 19.2% reduction), and latency improves from 19.8 ms/batch to roughly 17.35 ms/batch (about 1.14 \times speed-up). Again, FOLD is the slowest method due to its iterative nature to compute k -means clusters, but the compressed models share the same FLOPs, memory and latency.

G.3 IMPACT OF ONE RANK SLACK AND SINGLETON FOLDING

In this section we separate two effects in our pruning vs. folding comparison: (i) the influence of the one-rank slack in Theorems 2.1–2.2, and (ii) the intrinsic difference between pruning and folding as projection operators. We therefore contrast the gain from increasing the pruning rank from k to $k+1$ (blue curves in Fig. 23) with the gain from replacing pruning by folding at the same nominal rank (orange curves). This isolates the contribution of rank from the contribution of the projection geometry.

Figure 22: **Sharpness-accuracy trade-off between FOLD and MAG1 for ResNet18 trained with SGD.** Each column corresponds to a layer-wise compression ratio (0.1–0.9), and the three rows group models by learning rate, SAM configuration (including ρ), and RandAug usage. Points show Δ worst-case ℓ_∞ sharpness (FOLD – MAG1) vs. Δ test accuracy (FOLD – MAG1). **Observations:** (1) For SGD, the relationship between Δ sharpness and Δ accuracy is visibly weaker and more scattered than for Adam, reflecting the flatter and more anisotropic minima found by SGD. (2) *Learning rate:* Unlike Adam, higher SGD learning rates do not systematically increase the sharpness gap between the methods. For most ratios, FOLD tends to remain less sharp than MAG1, producing positive Δ accuracy even when Δ sharpness is near zero. (3) *SAM/ρ:* SAM has a strong flattening effect under SGD— Δ sharpness clusters tightly around zero, and the accuracy advantage of FOLD becomes more stable as ρ increases. (4) *RandAug:* Augmentation increases robustness to pruning under SGD, reducing the spread in Δ accuracy and further weakening the sharpness–accuracy link. Overall, SGD-trained models exhibit a regime where FOLD consistently follows a gentler sharpness trajectory than MAG1, leading to a clearer accuracy advantage at moderate pruning ratios.

Fig. 23 shows both effects: for each weight matrix \mathbf{W} (in every layer of ViT or ResNet18), it plots the relative Frobenius error change when the retained rank increases by one (blue) versus when the method changes from pruning to folding at fixed rank (orange), as a function of k .

$$\Delta_{\text{rank}}(k) = \frac{\|\mathbf{W} - \mathbf{W}_p^{(k)}\|_F - \|\mathbf{W} - \mathbf{W}_p^{(k+1)}\|_F}{\|\mathbf{W}\|_F}.$$

This quantity measures the improvement obtained when increasing the retained rank from k to $k + 1$ within magnitude pruning MAG2. It isolates the rank slack effect. Across all examined layers, the improvement from a single additional retained channel is small, especially in deeper layers.

1566	Layer	Params_fold	Params_mag	Δp	FLOPs_fold	FLOPs_mag	ΔF	Act_fold	Act_mag	Δa	NZ_fold	NZ_mag	Δnz
1567	conv1	1026	1026	0	1050624	1050624	0	38912	38912	0	38912	38912	0
1568	layer1.0.conv1	12996	12996	0	13307904	13307904	0	38912	38912	0	38912	38912	0
1569	layer1.0.conv2	12996	12996	0	13307904	13307904	0	38912	38912	0	38912	38912	0
1570	layer1.1.conv1	12996	12996	0	13307904	13307904	0	38912	38912	0	38912	38912	0
1571	layer1.1.conv2	12996	12996	0	13307904	13307904	0	38912	38912	0	38912	38912	0
1572	layer2.0.conv1	25992	25992	0	6653952	6653952	0	19456	19456	0	19456	19456	0
1573	layer2.0.conv2	51984	51984	0	13307904	13307904	0	19456	19456	0	19456	19456	0
1574	layer2.0.shortcut.0	2888	2888	0	739328	739328	0	19456	19456	0	19456	19456	0
1575	layer2.1.conv1	51984	51984	0	13307904	13307904	0	19456	19456	0	19456	19456	0
1576	layer2.1.conv2	51984	51984	0	13307904	13307904	0	19456	19456	0	19456	19456	0
1577	layer3.0.conv1	104652	104652	0	6697728	6697728	0	9792	9792	0	9792	9792	0
1578	layer3.0.conv2	210681	210681	0	13483584	13483584	0	9792	9792	0	9792	9792	0
1579	layer3.0.shortcut.0	11628	11628	0	744192	744192	0	9792	9792	0	9792	9792	0
1580	layer3.1.conv1	210681	210681	0	13483584	13483584	0	9792	9792	0	9792	9792	0
1581	layer3.1.conv2	210681	210681	0	13483584	13483584	0	9792	9792	0	9792	9792	0
1582	layer4.0.conv1	422739	422739	0	6763824	6763824	0	4912	4912	0	4912	4912	0
1583	layer4.0.conv2	848241	848241	0	13571856	13571856	0	4912	4912	0	4912	4912	0
1584	layer4.0.shortcut.0	46971	46971	0	751536	751536	0	4912	4912	0	4912	4912	0
1585	layer4.1.conv1	848241	848241	0	13571856	13571856	0	4912	4912	0	4912	4912	0
1586	layer4.1.conv2	848241	848241	0	13571856	13571856	0	4912	4912	0	4912	4912	0
1587	linear	3080	3080	0	3070	3070	0	10	10	0	10	10	0
1588	TOTALS	4003678	4003678	0	197725902	197725902	0	365370	365370	0	365370	365370	0

Table 9: Per-layer comparison of PreActResNet18 after FOLD and MAG2 at compression ratio 0.4. For each convolutional and linear layer we report parameters, per-image FLOPs, activation size, and the number of non-zero activations (effective activations). All per-layer differences are zero, confirming that parameters, FLOPs, activations, and effective activations are exactly matched between the two compressed models.

$$\Delta_{\text{method}}(k) = \frac{\|\mathbf{W} - \mathbf{W}_p^{(k)}\|_F - \|\mathbf{W} - \mathbf{W}_f^{(k)}\|_F}{\|\mathbf{W}\|_F}.$$

This measures the gain obtained by switching from structured magnitude pruning to optimal folding at the same rank k . The improvements are one to two orders of magnitude larger than the corresponding Δ_{rank} values for nearly all layers.

The results empirically support the clarification presented in the rebuttal: although Theorems 2.1-2.2 compare pruning at rank k to folding at rank $k+1$, the contribution of the rank difference is negligible in practice. The blue curves show that $\|\mathbf{W} - \mathbf{W}_p^{(k)}\|_F$ changes only minimally when $k \rightarrow k+1$, while the orange curves demonstrate that folding provides a substantially tighter approximation than pruning at comparable compression levels. This confirms that the practical advantage of folding arises primarily from the richer family of cluster-based projections rather than the added rank.

Fig. 24 reports the relative squared error for pruning, special folding \mathbf{W}'_f , and optimal folding \mathbf{W}^*_f across all layers of ResNet18 and ViT-B/32 on CIFAR10, evaluated at multiple keep ratios. Three consistent phenomena appear:

- **Pruning always yields the largest error.** For every layer and every keep ratio, the pruning curves lie above both folding curves. This confirms empirically that pruning introduces the largest distortion of the original weight matrix.
- **Special folding \mathbf{W}'_f strictly improves over pruning.** The construction used in Theorem 2.1, obtained by merging all pruned rows, leads to smaller reconstruction error for all layers and all keep ratios. This empirically validates the first inequality $\text{error}(\mathbf{W}_p) \geq \text{error}(\mathbf{W}'_f)$.
- **Optimal folding \mathbf{W}^*_f achieves the smallest error.** The k -means solution consistently attains the lowest error, verifying the second inequality $\text{error}(\mathbf{W}'_f) \geq \text{error}(\mathbf{W}^*_f)$.

Importantly, the gap between pruning and both folding methods is larger than the very small difference induced by adding a single additional cluster (*i.e.*, increasing the rank from k to $k+1$). This supports the clarification made in the rebuttal: the practical advantage of folding does not stem from the $+1$ change in rank, but from the richer family of cluster-based projections that folding can realize.

The observed ordering, *i.e.*, $\text{error}(\mathbf{W}_p) > \text{error}(\mathbf{W}'_f) > \text{error}(\mathbf{W}^*_f)$, holds uniformly across all layers of ResNet18 as well as FFN layers of ViT-B/32. This indicates that the theoretical inequalities are not only valid in principle but also manifest strongly and consistently in real trained models.

1620 Across all layers of ResNet18 and ViT-B/32, the gain from increasing the retained rank by one is
 1621 consistently negligible, while the gain from replacing pruning with folding is one to two orders
 1622 of magnitude larger (Fig. 23). Thus, the empirical advantage of folding is not a byproduct of the
 1623 $k \mapsto k+1$ rank slack, but stems from the richer family of cluster-based projections that folding
 1624 can realize. This is further corroborated by the layer-wise reconstruction errors in Fig. 24, where
 1625 $\text{error}(\mathbf{W}_p) > \text{error}(\mathbf{W}'_f) > \text{error}(\mathbf{W}^*_f)$ holds uniformly. These results confirm that folding’s
 1626 superior approximation properties are structural rather than an artifact of rank.

1627 The theory controls the loss via the parameter-Lipschitz bound $|L(\mathbf{W}) - L(\mathbf{W}_*)| \leq \kappa \|\mathbf{W} - \mathbf{W}_*\|_F$.
 1628 In regimes where κ is moderate, *e.g.*, flat solutions obtained with smaller learning rates or SAM-
 1629 folding’s smaller Frobenius error reliably translates into smaller loss degradation. However, in sharp
 1630 minima such as those produced by Adam at large learning rates (see Fig. 21 and Fig. 22), the effective
 1631 local κ becomes extremely large. In this setting, even tiny parameter perturbations cause large loss
 1632 changes, and the ordering of Frobenius errors no longer predicts the ordering of accuracies. Thus,
 1633 the discovered failure cases of folding are not contradictions of the theory but instances where the
 1634 Lipschitz assumption required for loss control breaks down due to extreme curvature.

1635
 1636
 1637
 1638
 1639
 1640
 1641
 1642
 1643
 1644
 1645
 1646
 1647
 1648
 1649
 1650
 1651
 1652
 1653
 1654
 1655
 1656
 1657
 1658
 1659
 1660
 1661
 1662
 1663
 1664
 1665
 1666
 1667
 1668
 1669
 1670
 1671
 1672
 1673

1674	Layer	Params_fold	Params_mag	Δp	FLOPs_fold	FLOPs_mag	ΔF	Act_fold	Act_mag	Δa	NZ_fold	NZ_mag	Δnz
1675	classification_head	513000	513000	0	0	0	0	0	0	0	0	0	0
1676	transformer.resblocks.0.attn.out_proj	262656	262656	0	0	0	0	0	0	0	0	0	0
1677	transformer.resblocks.0.mlp.c_fc	1050624	1050624	0	0	0	0	0	0	0	0	0	0
1678	transformer.resblocks.0.mlp.c_proj	1049088	1049088	0	0	0	0	0	0	0	0	0	0
1679	transformer.resblocks.1.attn.out_proj	262656	262656	0	0	0	0	0	0	0	0	0	0
1680	transformer.resblocks.1.mlp.c_fc	1050624	1050624	0	0	0	0	0	0	0	0	0	0
1681	transformer.resblocks.1.mlp.c_proj	1049088	1049088	0	0	0	0	0	0	0	0	0	0
1682	transformer.resblocks.2.attn.out_proj	262656	262656	0	0	0	0	0	0	0	0	0	0
1683	transformer.resblocks.2.mlp.c_fc	1050624	1050624	0	0	0	0	0	0	0	0	0	0
1684	transformer.resblocks.2.mlp.c_proj	1049088	1049088	0	0	0	0	0	0	0	0	0	0
1685	transformer.resblocks.3.attn.out_proj	262656	262656	0	0	0	0	0	0	0	0	0	0
1686	transformer.resblocks.3.mlp.c_fc	1050624	1050624	0	0	0	0	0	0	0	0	0	0
1687	transformer.resblocks.3.mlp.c_proj	1049088	1049088	0	0	0	0	0	0	0	0	0	0
1688	transformer.resblocks.4.attn.out_proj	262656	262656	0	0	0	0	0	0	0	0	0	0
1689	transformer.resblocks.4.mlp.c_fc	1050624	1050624	0	0	0	0	0	0	0	0	0	0
1690	transformer.resblocks.4.mlp.c_proj	1049088	1049088	0	0	0	0	0	0	0	0	0	0
1691	transformer.resblocks.5.attn.out_proj	262656	262656	0	0	0	0	0	0	0	0	0	0
1692	transformer.resblocks.5.mlp.c_fc	1050624	1050624	0	0	0	0	0	0	0	0	0	0
1693	transformer.resblocks.5.mlp.c_proj	1049088	1049088	0	0	0	0	0	0	0	0	0	0
1694	visual.conv1	2359296	2359296	0	11560504	11560504	0	37632	37632	0	37632	37632	0
1695	visual.transformer.resblocks.0.attn.out_proj	590592	590592	0	0	0	0	0	0	0	0	0	0
1696	visual.transformer.resblocks.0.mlp.c_fc	1889433	1889433	0	94348800	94348800	0	122850	122850	0	122850	122850	0
1697	visual.transformer.resblocks.0.mlp.c_proj	1887744	1887744	0	94348800	94348800	0	38400	38400	0	38400	38400	0
1698	visual.transformer.resblocks.1.attn.out_proj	590592	590592	0	0	0	0	0	0	0	0	0	0
1699	visual.transformer.resblocks.1.mlp.c_fc	1889433	1889433	0	94348800	94348800	0	122850	122850	0	122850	122850	0
1700	visual.transformer.resblocks.1.mlp.c_proj	1887744	1887744	0	94348800	94348800	0	38400	38400	0	38400	38400	0
1701	visual.transformer.resblocks.2.attn.out_proj	590592	590592	0	0	0	0	0	0	0	0	0	0
1702	visual.transformer.resblocks.2.mlp.c_fc	1889433	1889433	0	94348800	94348800	0	122850	122850	0	122850	122850	0
1703	visual.transformer.resblocks.2.mlp.c_proj	1887744	1887744	0	94348800	94348800	0	38400	38400	0	38400	38400	0
1704	visual.transformer.resblocks.3.attn.out_proj	590592	590592	0	0	0	0	0	0	0	0	0	0
1705	visual.transformer.resblocks.3.mlp.c_fc	1889433	1889433	0	94348800	94348800	0	122850	122850	0	122850	122850	0
1706	visual.transformer.resblocks.3.mlp.c_proj	1887744	1887744	0	94348800	94348800	0	38400	38400	0	38400	38400	0
1707	visual.transformer.resblocks.4.attn.out_proj	590592	590592	0	0	0	0	0	0	0	0	0	0
1708	visual.transformer.resblocks.4.mlp.c_fc	1889433	1889433	0	94348800	94348800	0	122850	122850	0	122850	122850	0
1709	visual.transformer.resblocks.4.mlp.c_proj	1887744	1887744	0	94348800	94348800	0	38400	38400	0	38400	38400	0
1710	visual.transformer.resblocks.5.attn.out_proj	590592	590592	0	0	0	0	0	0	0	0	0	0
1711	visual.transformer.resblocks.5.mlp.c_fc	1889433	1889433	0	94348800	94348800	0	122850	122850	0	122850	122850	0
1712	visual.transformer.resblocks.5.mlp.c_proj	1887744	1887744	0	94348800	94348800	0	38400	38400	0	38400	38400	0
1713	TOTALS	83633940	83633940	0	2379976704	2379976704	0	1972632	1972632	0	1972632	1972632	0

Table 10: Per-layer comparison of CLIP ViT-B/32 after FOLD and MAG2 at compression ratio 0.2 (global parameter reduction 7.47%). The table reports all convolutional and linear layers in the vision transformer and classification head, including their parameters, per-image FLOPs, activation sizes, and effective activations. The `transformer.resblocks.*` modules belong to CLIP’s text encoder. Because the ImageNet-1k fine-tuned variant evaluates only the vision encoder and classification head, the text encoder is not part of the forward graph. THOP therefore records zero FLOPs and zero activations for these layers, while their parameters remain included in the model. Note that the per-layer totals ($\approx 8.36 \times 10^7$ parameters) are smaller than the full model parameter count ($\approx 1.40 \times 10^8$) because this table excludes components without FLOPs, such as token embeddings, positional embeddings, and LayerNorm parameters, which are included in the global counts but not part of the per-layer FLOP/activation analysis. Several projection layers inside the attention blocks show zero FLOPs because CLIP implements attention using fused operations; these operations are profiled at the block level by THOP rather than attributed to the individual Linear submodules. All per-layer differences are zero, showing that FOLD and MAG2 produce structurally identical compressed models on every layer affected by compression.

Figure 23: **Effect of increasing the retained rank by one is significantly lower than changing the compression method from MAG to FOLD.** Comparison of (i) the effect of increasing the retained rank by one (blue curves) and (ii) the effect of switching from MAG2 to FOLD at the same nominal rank (orange curves). Each panel corresponds to a single weight matrix \mathbf{W} in ResNet18 convolutional layers (**top**) and ViT-B/32 FFN layers (**bottom**) and shows the relative Frobenius error difference Δ as a function of the retained rank k .

Figure 24: **Relative reconstruction error of pruning, special folding \mathbf{W}'_f (from the proof of Theorem 2.1), and optimal folding \mathbf{W}^*_f for all layers of ResNet18 (top) and ViT-B/32 (bottom).** For each layer, we report the normalized squared Frobenius error $\|\mathbf{W} - \mathbf{W}_\bullet\|_F^2 / \|\mathbf{W}\|_F^2$ at several keep ratios k_p/m , where $\bullet \in \{\text{MAG2, singleton, FOLD}\}$. MAG2 (blue) denotes structured magnitude pruning with k_p retained rows. The special fold \mathbf{W}'_f (orange) merges all pruned rows into a single extra cluster ($k_f = k_p + 1$). The optimal fold \mathbf{W}^*_f (green) is the k -means solution with k_f clusters. Across all layers, \mathbf{W}'_f consistently outperforms pruning, and \mathbf{W}^*_f yields the smallest error, empirically validating $\text{error}(\mathbf{W}_p) \geq \text{error}(\mathbf{W}'_f) \geq \text{error}(\mathbf{W}^*_f)$.