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ABSTRACT

Compressing neural networks without retraining is vital for deployment at scale.
We study calibration-free compression through the lens of projection geometry:
structured pruning is an axis-aligned projection, whereas model folding performs a
low-rank projection via weight clustering. We formalize both as orthogonal opera-
tors and show that, within a rank distance of one, folding provably yields smaller
parameter reconstruction error, and under mild smoothness assumptions, smaller
functional perturbations than pruning. At scale, we evaluate >1’000 checkpoints
spanning ResNet18, PreActResNet18, ViT-B/32, and CLIP ViT-B/32 on CIFAR-10
and ImageNet-1K, covering diverse training hyperparameters (optimizers, learning
rates, augmentations, regularization, sharpness-aware training). We show that fold-
ing typically achieves higher post-compression accuracy, with the largest gains at
moderate–high compression. The gap narrows and occasionally reverses at specific
training setups. Our results position folding as a geometry-aware, calibration-free
alternative to pruning that is often superior in practice and principled in theory.

1 INTRODUCTION

Neural network compression is critical for deploying models in resource-constrained environments.
Common approaches include quantization, which reduces the precision of weights and activations, and
knowledge distillation, which transfers information from a large teacher model to a smaller student
model. In this work, we focus on the class of calibration-free post-training structured compression
methods that optimize the model architecture itself without access to training data. Among these,
the most widely used is magnitude-based pruning, which prunes tensor elements according to their
magnitudes, using them as a proxy for their contribution to model accuracy (Han et al., 2015; Mishra
et al., 2021; Lu et al., 2023; Ding et al., 2024; Bambhaniya et al., 2024). When combined with
fine-tuning or a lightweight BatchNorm reset (Saikumar & Varghese, 2025), this approach achieves
significant compression rates with negligible accuracy loss (Kurtic et al., 2022; Sanh et al., 2020).
In contrast, the recently introduced model folding clusters similar weights and ties them together,
providing an approximation of the original network (Wang et al., 2025). Both pruning and folding
reduce parameter count but differ fundamentally: pruning removes weights entirely, while folding
preserves them in merged representations.

In this work, we develop a unified theoretical and empirical framework to compare pruning and
folding through the lens of orthogonal projections in parameter space. We show that both compression
methods can be viewed as projections onto lower-dimensional subspaces, but with crucial differences
in geometry: pruning corresponds to axis-aligned coordinate projections, while folding projects onto
cluster-structured subspaces that retain directional information.

At a high level, both pruning and folding compress the weights of a model. We show that for any
pruned solution there exists a folded alternative that is almost as small—using one extra component
in the compressed representation—yet is strictly closer to the original weights (smaller Frobenius
norm), which in turn bounds the change in the network function. Intuitively, folding merges weight
vectors with similar directions rather than zeroing coordinates, so the compressed model stays closer
in behavior to the initial network.

Empirically, we perform a comprehensive calibration-free study over >1’000 checkpoints spanning
CNNs and ViTs on CIFAR-10 and ImageNet-1K, trained under diverse hyperparameter choices
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(optimizers, learning rates, augmentation, regularization, sharpness-aware training). After com-
pression and also followed by lightweight and full fine-tuning, folding typically attains higher
post-compression accuracy, with the largest gains at moderate to high compression. The margin
narrows, and can occasionally reverse, at very low compression or under specific training setups, but
the overall trend is consistent with our theoretical analysis. Our projection-based perspective opens
new directions for designing compression methods that explicitly optimize for functional closeness.
This paper makes the following contributions:

• We introduce a unified projection framework that casts pruning and folding as orthogonal
projections onto, respectively, axis-aligned and cluster-structured subspaces. We prove that
at a compression rank difference of one, folding achieves smaller parameter reconstruction
error and tighter function-perturbation bounds under mild smoothness assumptions.

• A large-scale evaluation across >1’000 checkpoints and diverse hyperparameters, covering
CNNs and ViTs on CIFAR-10 and ImageNet-1K. In addition, we use post-compression
fine-tuning through lightweight LayerNorm reset for ViTs, or full-fine-tuning to show that
the strong performance of folding is preserved in these settings.

• We show that folding is a geometry-aware alternative that is often superior in practice, with
clearly identified regimes (e.g., moderate–high compression) where its advantage is most
pronounced, and corner cases where the gap narrows.

Due to space constraints, a detailed discussion of related work is provided in Appendix F.

2 UNIFIED FRAMEWORK FOR PRUNING AND FOLDING

2.1 PRELIMINARIES AND DEFINITIONS

We consider a neural network with input x ∈ Rd. We assume ReLU activations and normalization
layers (e.g., BatchNorm or LayerNorm) are present.

To develop the theoretical framework, we focus on compressing a single layer at a time. This layer
has p inputs and m outputs with its parameters collected in matrix W ∈ Rm×p. A row w(i) of
W is denoted as the ith parameter vector with individual weights w(i, j). Since all other network
parameters are treated as fixed, the network function can be expressed as f(x;W ), which is trained
to minimize a loss function L(W).

We assume that the loss function L is Lipschitz continuous; that is, there exists a constant κ > 0 such
that

|L(W1)− L(W2)| ≤ κ ∥W1 −W2∥F (1)

for all admissible parameter matrices W1 and W2. The Frobenius norm of a matrix is defined as
∥A∥F =

√∑
i,j |aij |2, that is, the square root of the sum of the squares of its entries, or equivalently,

the ℓ2-norm of the vectorized matrix.

Orthogonal Projection. We formalize structured pruning and model folding as orthogonal projec-
tions in parameter space. A matrix C ∈ Rm×m is an orthogonal projection if C = C⊤ = C2, i.e., it
is symmetric and idempotent. Such projections map any parameter vector to its closest point (in the
Euclidean norm) within a lower-dimensional subspace.

If the columns of U ∈ Rm×k form a basis of a k-dimensional subspace, the corresponding orthogonal
projection is

C = U(U⊤U)−1U⊤. (2)

Equivalently,
Cy = argmin

z∈Range(U)

∥y − z∥2

meaning Cy is the orthogonal projection of y onto the subspace spanned by U.
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2.2 COMPRESSION AS ORTHOGONAL PROJECTION

Structured pruning. Pruning can be viewed as a projection onto a coordinate-aligned subspace at the
level of neurons, filters, or channels. Assume the layer outputs are ordered so that the last m− k are
pruned. The corresponding basis Up spans the k-dimensional subspace, with projection matrix Cp

and transformed weight matrix Wp:

Up =

(
I
0

)
, Cp =

(
I 0
0 0

)
, Wp = CpW. (3)

Consequently, the last m−k rows of Wp are zero, and the corresponding neurons, filters, or channels
can be simply removed.

Model folding. Folding groups the parameters into k clusters and replaces each cluster with its mean.
Depending on the choice of clusters, a different folding results. Folding can be represented as an
orthogonal projection onto the k-dimensional subspace spanned by Uf ∈ {0, 1}m×k, where each
row contains exactly one nonzero entry indicating the cluster assignment. A cluster Sj comprises all
indices of parameter vectors belonging to it; thus, uf (i, j) = 1 if and only if i ∈ Sj .

The projection Cf defined in Eq. 2 maps each cluster to its mean (Wang et al., 2025). Specifically,

Wf = CfW, ∀i ∈ Sj : wf (i) = µj , µj =
1

|Sj |
∑
i∈Sj

w(i), (4)

where µj is the mean of cluster j. After projection, all parameter vectors within a cluster are replaced
by their mean, making them identical. As a result, the corresponding layer outputs are also identical,
leaving a total of k distinct neurons, filters, or channels. Practically, the identical layer outputs can be
joined while adapting the next layer appropriately, see (Wang et al., 2025).

2.3 FOLDING DOMINATES PRUNING

To compare pruning and folding, we first show that for any choice of pruning, there exists a folding
that yields a more accurate approximation of the parameter matrix W.
Theorem 2.1. Given any pruning with basis Up of rank 0 ≤ kp ≤ m−1 (i.e., at least one parameter
vector is pruned), there exists a folding with basis Uf and rank kf = kp + 1 such that

∥W −Wp∥2F ≥ ∥W −Wf∥2F ,
where Wp = CpW and Wf = CfW, with Cp and Cf denoting the orthogonal projections defined
in Eq. 2.

The proof is provided in Appendix C. Note that, by the Lipschitz continuity of the loss function in
Eq. 1, the superior approximation property of folding implies a tighter bound on the loss difference
compared to pruning:

∥L(W)− L(Wf )∥F ≤ κ ∥W −Wf∥F , ∥L(W)− L(Wp)∥F ≤ κ ∥W −Wp∥F ,
with

∥W −Wf∥2F ≤ ∥W −Wp∥2F .
Furthermore, the rank difference kf = kp + 1 between pruning and folding is practically negligible,
since in typical scenarios many parameter vectors are pruned. For instance, under a uniform 50%
per-layer retention, a ResNet-18 stage with 256 channels keeps kp = 128 (so folding uses kf = 129),
and a ViT-B/32 block with width 768 keeps kp = 384 (so kf = 385); the relative increase is just
1/kp ≈ 0.78% and 0.26%, respectively—negligible in practice.

Finally, we show that folding using optimal k-means clustering never yields a less accurate approxi-
mation of the parameter matrix W than pruning.
Theorem 2.2. Let Uf be the basis obtained from an optimal k-means clustering with kf clusters, i.e.,
the folding clusters are determined by a k-means algorithm minimizing the accumulated within-cluster
sum of squares. Then, for any pruning with basis Up of rank kp = kf − 1, we have

∥W −Wp∥2F ≥ ∥W −Wf∥2F ,
where Wp = CpW and Wf = CfW, with Cp and Cf denoting the orthogonal projections defined
in Eq. 2.
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(a) ResNet18, Adam, MAG1 vs FOLD, no L1 regularization (b) PreActResNet18, MAG1 vs FOLD

(c) ViT-B/32, MAG1 vs FOLD, base accuracy >75% (d) CLIP ViT-B/32, MAG1 vs FOLD

Figure 1: Folding outperforms magnitude pruning across diverse training regimes. Top row:
ResNet18 and PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch
with Adam using different hyperparameter configurations. PreActResNet18 checkpoints are from
Andriushchenko et al. (2023). Bottom row: ViT-B/32 on CIFAR-10 from (Andriushchenko et al.,
2023) and CLIP ViT-B/32 on ImageNet-1K from (Wortsman et al., 2022). See Appendix D for details.
In these plots, we use checkpoints that were trained without L1 regularization. Scatter plots show
post-compression accuracy for magnitude pruning (L1 criterion) versus folding at uniform per-layer
compression ratios (color-coded by layer-wise compression ratio). Bar plots depict the accuracy gain
by folding, computed as ∆ = Acc(FOLD)−Acc(MAG1), as a function of layer-wise compression ratio.
Folding yields the largest improvements at moderate to high compression, confirming its robustness
across architectures and datasets. Fig. 9 shows the results for magnitude pruning with L2 criterion.

The proof is given in Appendix C. This result demonstrates that k-means folding is not merely a
heuristic, but an optimal projection under clustering constraints. Unlike pruning, which relies on
parameter vector removal, folding generalizes the idea by enabling coordinated parameter merging.
Thus, folding incurs less parameter distortion and provably smaller functional deviation—consistent
with the cross-architecture results presented in the next section.

In addition, Theorem 2.2 has implications for a possible fine-tuning after compression. Matrix W
contains the optimized weights and Wp or Wf contain the weights after pruning and folding the
optimized network. As a result of Theorem 2.2, the quadratic distance between the optimized weights
and the compressed optimized weights is smaller for folding in comparison to pruning.

Our theoretical results employ a one–rank slack comparing pruning at rank kp to folding at kf =
kp + 1, as a proof device to obtain a clean monotonicity guarantee on projection error. This slack
does not reflect our evaluation protocol. In all experiments we enforce matched sparsity budgets and
compare methods at the same retained size (parameters and FLOPs). Hence, empirical accuracy gaps
cannot be attributed to extra capacity.

3 EXPERIMENTAL RESULTS

Most pruning studies vary only seeds by training several checkpoints under a single hyperparameter
recipe, leaving the role of upstream training underexplored. We instead benchmark > 1’000 check-
points spanning diverse hyperparameters (optimizers, learning rates, augmentation, regularization,
SAM) to quantify how training choices interact with folding and pruning. Concretely, we train 216
ResNet18 (Adam) and 576 ResNet18 (SGD) models on CIFAR-10, include 50 PreActResNet18 and
200 ViT-B/32 checkpoints from Andriushchenko et al. (2023), and add 72 CLIP ViT-B/32 models
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(a) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) MAG1 vs FOLD
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

(d) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) MAG1 vs FOLD
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

Figure 2: Folded models retain their accuracy advantage after fine-tuning. Results for ResNet18
trained by Adam (top row) and PreActResNet18 trained by SGD on CIFAR-10 (bottom row): (a,d)
compares post-compression accuracy of magnitude pruning (MAG1) versus folding (FOLD) after 1 and
5 epochs of fine-tuning. (b,e) show the accuracy gap between folding and pruning as a function of
fine-tuning epochs, demonstrating that folding maintains a consistent lead, i.e., the FOLD accuracy
delta is positive. (c,f) illustrate accuracy trajectories before and after 5 epochs of fine-tuning for both
methods, highlighting that folded models recover accuracy faster and reach higher final performance
than pruned models.

fine-tuned on ImageNet-1K from Wortsman et al. (2022). The two ViT families differ markedly in
scale (∼19M vs. ∼151M parameters).

We empirically compare model folding and structured pruning across CNNs and ViTs under matched
training setups. Unless stated otherwise, we do not apply gradient-based fine-tuning: for CNNs we
only re-estimate batch-normalization statistics via a single forward pass using REPAIR (Jordan
et al., 2023) to isolate structural effects, and ViTs are left uncalibrated. Note that REPAIR was
recently shown to substantially improve post-compression performance for pruned models (Saikumar
& Varghese, 2025), and has also been applied on top of folding (Wang et al., 2025). We report results
(i) immediately after compression (CNNs after REPAIR, ViTs with no further step), (ii) for ViTs
additionally after a LayerNorm reset, and (iii) for both families after 1–5 epochs of full fine-tuning.

Folding vs. Structured Pruning. We begin by comparing model folding (FOLD) with structured
magnitude pruning (MAG) under both L1 and L2 criteria (MAG1 and MAG2) across four representative
architectures. Fig. 1 summarizes the results. In scatter plots, each point corresponds to a distinct
trained model, with color indicating compression ratio. Scatter plots compare the performance
of MAG1 and FOLD on every model. Comparison to MAG2 can be found in Appendix E. Box plots
show the distribution of accuracy differences between the performance of FOLD and MAG1 on the
same model over the layer-wise compression ratios. Positive accuracy difference means folding
outperforms pruning. We observe that the accuracy difference increases with sparsity, highlighting
that folding is especially advantageous at moderate-high compression. A similar trend is observed for
ResNet18, PreActResNet18, ViT-B/32 and CLIP ViT-B/32. In most cases on all architectures folding
dominates pruning, confirming that the benefit is robust to architectural differences (convolutional vs.
transformer) and dataset scale (CIFAR-10 vs. ImageNet-1K). These findings empirically validate
the theoretical claim from Sec. 2: folding, by projecting onto cluster-structured subspaces rather
than axis-aligned ones, preserves alignment with the original parameter space and induces smaller
functional distortions. The observed accuracy improvements thus provide strong evidence that
geometry-aware projections offer a principled advantage over traditional magnitude-based pruning.
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(a) ViT-B/32, MAG1 vs FOLD, base accuracy >75% (b) CLIP ViT-B/32, MAG1 vs FOLD

Figure 3: MAG1 versus FOLD on ViTs after LayerNorm-only fine-tuning for ViT-B/32 on CIFAR-10
and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
wise compression. Bar plots depict the accuracy gain ∆ = Acc(FOLD)−Acc(MAG1), which remains
positive and typically grows with compression, indicating that even under lightweight LayerNorm
adaptation FOLD retains a consistent advantage over pruning.

Performance Comparison after Lightweight and Full Fine-Tuning. The results above isolate
structural effects by evaluating models without additional optimization. We now ask whether folding’s
advantage persists with post-compression fine-tuning. Focusing on CNNs, we fine-tune folded and
pruned models for 1–5 epochs and compare recovery. Fig. 2 shows that (a,d) folded models start from
higher accuracy and retain their lead at 1 and 5 epochs, (b,e) the relative accuracy gap remains positive,
and (c,f) learning curves recover faster with fewer plateaus. Consistent with the projection view,
folding preserves more of the pre-compression function, yielding a better initialization that requires
fewer updates to reach high accuracy, making it attractive in pipelines with limited fine-tuning.

Fig. 3 compares MAG1 and FOLD on ViTs under the lightweight LayerNorm-only adaptation. Across
ViT-B/32 (CIFAR-10) and CLIP ViT-B/32 (ImageNet-1K), folding consistently achieves higher post-
compression accuracy after a LayerNorm reset, with the accuracy gap ∆ = Acc(FOLD)−Acc(MAG1)
remaining positive and typically widening as compression ratio increases. This indicates that even
with the lightweight LayerNorm recalibration, folding preserves more of the pre-compression function
than structured pruning. We then allow short-horizon fine-tuning and assess whether the advantage
persists. As shown in Fig. 4, after 1 and 5 epochs, folded ViTs retain a clear lead over MAG1, and
the gap ∆ stays positive over training. Learning curves reveal faster recovery and higher end-point
accuracy for folding, suggesting a better initialization that requires fewer updates.

4 MODEL COMPRESSION ABLATION STUDIES

The previous sections demonstrated that folding often outperforms structured pruning across ar-
chitectures and compression ratios. Here, we probe which training factors impact this advantage.
Specifically, we analyze sensitivity to learning rate, the use of sharpness-aware training (SAM) (Foret
et al., 2021), regularization and data augmentation (Prabhu et al., 2019)—the hyperparameters known
to influence loss landscape geometry and generalization (Fort & Jastrzebski, 2019; Li et al., 2018;
Neyshabur et al., 2017; Chen et al., 2022) in non-trivial ways (Andriushchenko et al., 2023).

Role of Optimizer. We repeat the ResNet18 analysis under Adam and SGD to gauge optimizer
sensitivity. Compared to the Adam-trained sweep in Fig. 1(a), the complementary SGD sweep in
Fig. 6 shows the same qualitative ordering—FOLD exceeds MAG1 across compression levels—but
with different baselines and dispersion: SGD checkpoints form a tighter cloud and exhibit a smaller
median gap, whereas Adam yields larger variance and at times a more pronounced FOLD advantage,
especially at higher compression. Together, these plots indicate that the optimizer changes how much
headroom folding has, not whether it leads: the FOLD–MAG1 difference remains positive under both
optimizers, but its magnitude is optimizer-dependent.

Effect of Learning Rate. Fig. 5 reports post-compression accuracy for FOLD versus MAG1 across
learning rates on ResNet18 (Adam, SGD), PreActResNet18, and ViT-B/32. With Adam, FOLD ’s edge
is largest at moderate–low rates, narrows and can reverse at very high rates, and vanishes again at
extremely small rates (both methods degrade). For SGD, the dependence is weaker and can be inverted
(e.g., ViT-B/32). A plausible explanation is that moderate learning rates steer training toward flatter,
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(a) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) MAG1 vs FOLD
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

(d) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) MAG1 vs FOLD
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

Figure 4: FOLD outperforms MAG1 after full fine-tuning for 1–5 epochs on ViT-B/32 and CLIP
ViT-B/32. Results for ViT-B/32 on CIFAR-10 (top) and CLIP ViT-B/32 on ImageNet-1K (bottom).
(a,d) accuracy of MAG1 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap ∆ over epochs,
remaining positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing
faster recovery and higher final accuracy for FOLD.

more structured solutions with stronger within-layer correlations—favorable for clustering—whereas
very high rates yield sharper, less-aligned solutions and very small rates underfit. Adaptive methods
like Adam are further associated with sharper minima and distinct generalization behavior compared
to SGD, amplifying this sensitivity (Wilson et al., 2018; Jastrzębski et al., 2018; Zhou et al., 2021).

Figure 6: Optimizer effect evaluated on ResNet18
checkpoints trained on CIFAR-10 with SGD (no L1
normalization). The figure complements Fig. 1(a).

Effect of SAM. Fig. 7 evaluates training
with and without SAM and measures post-
compression accuracy. Across models, SAM
lifts both methods, but the gain is systemati-
cally larger for FOLD, widening the FOLD–MAG1
gap—most visibly for Adam-trained ResNet18.
With light L1 regularization (10−5) during train-
ing shown in (b), pruning narrows the gap at
low compression (where induced sparsity aligns
with L1), yet FOLD regains and extends its lead
as compression increases. These trends are con-
sistent with the view that SAM steers training to
flatter solutions, reducing curvature sensitivity.
Combined with FOLD ’s smaller projection error, this yields greater robustness to compression. At
larger SAM radii ρ, training enforces robustness to broader parameter perturbations. Within this
flatter neighborhood both pruning and folding projections operate inside the same robustness ball, so
their geometric differences matter less and the gap narrows—an effect stronger for ViT-B/32, where
high ρ homogenizes head / channel saliencies and reduces the relative advantage of clustering.

Effect of Data Augmentation. Fig. 8 plots the distribution of ∆Accuracy (FOLD − MAG1) across
checkpoints versus the layer-wise compression ratio, contrasting runs without (gray) and with
RandAugment (green). For ResNet18 (Adam and SGD) and PreActResNet18, RAUG reduces or shifts
FOLD ’s relative benefit. In contrast, for ViT-B/32 RAUG increases FOLD ’s advantage: the median
∆ rises with compression, suggesting that augmented ViT representations are especially amenable
to projection-based removal. A plausible mechanism is that augmentation biases training toward
flatter, more invariant solutions. This is consistent with recent theory linking augmentation-induced
input perturbations to equivalent parameter-space perturbations and showing that augmentations bias
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(a) ResNet18, Adam, no L1 reg., no weight decay (b) ResNet18, SGD, no L1 reg., no weight decay

(c) PreActResNet18, SGD (d) ViT-B/32, SGD

Figure 5: Learning rate modulates folding’s edge. Post-compression accuracy of FOLD and MAG1
across learning rates: ResNet18 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d).
FOLD typically leads at moderate–low rates; the gap shrinks or reverses at very high rates, and closes
again at extremely small rates. The effect is strongest with Adam; SGD shows weaker or occasionally
opposite dependence.

training toward flatter minima (Yoo & Yoon, 2025). In CNNs this reduces the harm of axis-aligned
magnitude cuts, whereas in ViTs the same invariances tighten feature clusters that FOLD preserves
better than MAG1, amplifying the benefit at high compression. Standard augmentation (augm=True)
shows a similar trend and is omitted for brevity.

These ablations reveal a consistent pattern: conditions that encourage flatter and structured solu-
tions—moderately low learning rates and SAM with a small–moderate radius—magnify FOLD ’s
advantage, whereas extremes reduce it: very high or very low learning rates, stronger augmentations,
or large SAM radii narrow the gap; SGD generally dampens all effects relative to Adam. This aligns
with our projection view (Sec. 2): when weights are well aligned, clustering reduces projection error
more than coordinate removal and thus perturbs the function less, while weaker alignment or broad
robustness neighborhoods make the two projections behave more similarly.

5 CONCLUSION, LIMITATIONS, AND OUTLOOK

We framed structured pruning and model folding as projection-based compression and showed that
folding achieves smaller parameter deviation with a one-rank slack, implying tighter functional preser-
vation under mild smoothness. A calibration-free evaluation over >1’000 checkpoints (ResNet18,
PreActResNet18, ViT-B/32, CLIP ViT-B/32; CIFAR-10, ImageNet-1K) found that FOLD typically
surpasses MAG1 in post-compression accuracy, with the clearest gains at moderate–high compression
and under training conditions that induce flatter, more structured solutions (e.g., moderate learning
rates, SAM). The gap narrows at very low compression and can shrink under strong data augmentation
or large SAM radii, but the overall trend is robust across optimizers and hyperparameters.

Limitations. Our theoretical guarantee permits a one-component increase in compressed rank and
does not establish universal dominance at exactly matched sizes. Empirically, we restrict to standard
CNN/ViT families on CIFAR-10 and ImageNet-1K, evaluate strictly calibration-free settings with
optional BatchNorm / LayerNorm resets and short fine-tuning budgets, and compare primarily against
magnitude-based structured pruning. We do not study interactions with quantization, distillation,
or unstructured sparsity. Large language models are out of scope: effective structured pruning for
LLMs typically relies on calibration data (activation-aware / second-order criteria), while strictly
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(a) ResNet18, Adam, MAG1 vs FOLD, without L1 reg. (b) ResNet18, Adam, MAG1 vs FOLD, with L1 reg.

(c) PreActResNet, MAG1 vs FOLD, no L1 regularization (d) ViT-B/32, MAG1 vs FOLD, no L1 regularization

Figure 7: SAM (Foret et al., 2021) can boost model compression. Post-compression accuracy
under training with / without SAM. (a) ResNet18 (Adam), no L1. (b) ResNet18 (Adam), L1= 10−5.
(c) PreActResNet18 (SGD), no L1. (d) ViT-B/32, no L1. SAM improves both FOLD and MAG1, but
the uplift is consistently larger for FOLD, especially with Adam. Light L1 regularization helps MAG1 at
low compression, yet FOLD retains a clear advantage at moderate–high compression.

(a) ResNet18, Adam (b) ResNet18, SGD (c) PreActResNet (d) ViT-B/32

Figure 8: Augmentations have a generally positive effect on the post-compression accuracy. Post-
compression accuracy without / with random augmentations for (a) ResNet18 (Adam), (b) ResNet18
(SGD), (c) PreActResNet18, and (d) ViT-B/32. Augmentations boost both FOLD and MAG1. On
ResNet18 they also narrow FOLD ’s advantage—most noticeably at moderate compression—consistent
with added invariances making axis-aligned removals less damaging. In ViT-B/32, augmentations are
essential for folding1.

data-free magnitude pruning is brittle (often collapsing perplexity), leaving no fair calibration-free
baseline for folding. Moreover, LLM-specific deployment metrics (e.g., KV-cache, sequence length)
are orthogonal to our vision protocol.

Outlook. We plan to extend folding to calibration-based settings and evaluate on LLMs / VLMs
with appropriate metrics (perplexity, zero-shot accuracy). We also plan to study interactions with
quantization and adaptation methods. More broadly, our projection-based view positions folding as a
geometry-aware primitive for compression: a foundation on which hybrid pipelines with quantization
and distillation can be built, and a step toward principled frameworks that unify efficiency and
functional preservation. In this sense, folding is not only a practical tool but also a building block for
the next generation of compression methods tailored to foundation models and deployment at scale.

1Note that the base accuracy of ViT-B/32 checkpoints trained without RAUG is lower than with RAUG.
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Reproducibility Statement. Our compression operators and evaluation protocol are described in
Sec. 2-Sec. 3, with ablation studies in Sec. 4. Complete proofs are in Appendix C; training setups,
datasets, links to the used checkpoints, and hyperparameter grids in Appendix D; and extended results
in Appendix E. An anonymous repository with configs and scripts to regenerate all figures/tables is
linked in Appendix A; our limited LLM usage statement is in Appendix B. Together, these materials
enable re-running the full pipeline and regenerating the results.
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APPENDIX

The following sections provide supplementary information and complement the main paper:

• Appendix A: Code, Data, and Resources.

• Appendix B: Use of Large Language Models.

• Appendix C: Proofs of Theoretical Claims.

• Appendix D: Training Details.

• Appendix E: Further Empirical Results.

• Appendix F: Related Work.

A CODE, DATA, AND RESOURCES

Code and logs. An anonymous repository with all source code, experiment configs, and figure-
generation scripts (including the exact logs used to render every plot/table) are released at
https://anonymous.4open.science/r/folding_as_projection-7A4D. The repo contains: im-
plementations of folding and pruning operators, training/evaluation pipelines, scripts to plot ablations,
and notebooks to reproduce figures directly from logs. We log all training metrics and hyperparame-
ters with Weights & Biases2 and export logs alongside the code for reproduction.

Our folding implementation is based on the code by Wang et al. (2025)3.

Datasets. We use CIFAR-104 and ImageNet-1K5. CIFAR-10 is downloaded automatically via
torchvision. ImageNet-1K requires the official credentials and follows its license. Pretrained/fine-
tuned checkpoints referenced in the paper are either trained by us (configs in the repo) or obtained
from the cited works (Andriushchenko et al., 2023; Wortsman et al., 2022). The download links are
also provided in Appendix D.

Compute resources. Experiments were run on a cluster featuring 8× NVIDIA A100 (80 GB RAM)
GPUs. All random seeds are fixed in the configs and scripts.

Computational complexity and memory cost. At inference and matched retained sizes, folding
and structured pruning yield the same compute and memory. The difference lies in the compression
step: magnitude pruning is a one-pass scoring and selection procedure (O(pm) to score p filters of
dimension m, plus O(p log p) selection), whereas folding runs k-means on layer weights with T
sweeps. Using Hartigan’s algorithm (Hartigan & Wong, 1979), one sweep costs O(pkm), with max
T = 10 sweeps the total is O(pkmT ) (effectively linear in pm when k is small). This cost is paid
once per layer and is small compared to training.

Runtime overview. The most expensive step in our study is fine-tuning of CLIP VIT-B/32 on
ImageNet-1K (1–5 epochs), which dominates wall-clock time (order of hours per run). In contrast,
compression is lightweight: on CPU, FOLD takes ∼5–12 s per ResNet18 checkpoint and ∼8–12 s per
ViT-B/32 (per-layer 50% removal).

B USE OF LARGE LANGUAGE MODELS

We used ChatGPT 6 for sentence-level grammar correction and improvement, drafting trivial plotting
snippets to produce figures from logs, and code readability edits. All ideas, proofs, experiments, and
analyses are ours.

2Weights & Biases: https://wandb.ai
3Model folding universal: https://github.com/nanguoyu/model-folding-universal and model folding

for CNNs: https://github.com/marza96/ModelFolding/
4CIFAR-10: https://www.cs.toronto.edu/~kriz/cifar.html
5ImageNet-1K: https://image-net.org/
6ChatGPT / GPT-5: https://chatgpt.com
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C PROOFS OF THEORETICAL CLAIMS

Below we prove that for any choice of pruning, there exists a folding that yields a more accurate
approximation of the parameter matrix W.

Theorem 2.1. Given any pruning with basis Up of rank 0 ≤ kp ≤ m−1 (i.e., at least one parameter
vector is pruned), there exists a folding with basis Uf and rank kf = kp + 1 such that

∥W −Wp∥2F ≥ ∥W −Wf∥2F ,

where Wp = CpW and Wf = CfW, with Cp and Cf denoting the orthogonal projections defined
in Eq. 2.

Proof. The rows of W can be ordered such that the pruned parameter vectors are first:
w(1), ..., w(m− kp). Then we find that

W −Wp =


w(1)
· · ·

w(m− kp)
0
· · ·
0


using Eq. 3. For the existence proof, we choose a folding that clusters all parameter vectors
w(1), ..., w(m− kp) into a single cluster, all other parameter vectors have individual clusters, i.e.,

Uf =

 1 0
· · · 0
1 0
0 I

 ; W −Wf =


w(1)− µ

· · ·
w(m− kp)− µ

0
· · ·
0

 ; µ =
1

m− kp

m−kp∑
i=1

w(i)

using Eq. 4.

We have ∥W −Wp∥2F =
∑m−kp

i=1 w(i)Tw(i) and

∥W −Wf∥2F =

m−kp∑
i=1

(w(i)− µ)T (w(i)− µ) =

m−kp∑
i=1

(
w(i)Tw(i)− 2w(i)Tµ+ µTµ

)
=

m−kp∑
i=1

w(i)Tw(i)− (m− kp)µ
Tµ

≤
m−kp∑
i=1

w(i)Tw(i) = ∥W −Wp∥2F

The latter inequality directly establishes the theorem.

The following theorem shows that folding using optimal k-means clustering never yields a less
accurate approximation of the parameter matrix W than pruning.

Theorem 2.2. Let Uf be the basis obtained from an optimal k-means clustering with kf clusters, i.e.,
the folding clusters are determined by a k-means algorithm minimizing the accumulated within-cluster
sum of squares. Then, for any pruning with basis Up of rank kp = kf − 1, we have

∥W −Wp∥2F ≥ ∥W −Wf∥2F ,

where Wp = CpW and Wf = CfW, with Cp and Cf denoting the orthogonal projections defined
in Eq. 2.
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Proof. According to Bauckhage (2015) and Wang et al. (2025), the problem of k-means clustering
can be formulated as the following constrained matrix factorization problem:

min
U

∥∥W −U(U⊤U)−1U⊤W
∥∥2
F

subject to u(i, j) ∈ {0, 1},
∑
j

u(i, j) = 1 ∀i.

This formulation coincides with the orthogonal projection of model folding, see Eq. 2 and Eq. 4.
Theorem 2.1 guarantees the existence of a folding basis Uf and the corresponding projection Cf for
any pruning Wp of W, such that

∥W −Wp∥2F ≥ ∥W −Wf∥2F .

Since optimal k-means clustering achieves the minimal possible error ∥W −Wf∥2F , the theorem
follows.

D TRAINING DETAILS

The following subsections detail the hyperparameters used to train our checkpoints. For checkpoints
taken from the literature, we summarize the available training details.

D.1 RESNET18 ON CIFAR-10 TRAINING SETUP WITH ADAM AND SGD

We trained a total of 792 ResNet18 models on CIFAR-10 by varying hyperparameter configurations.
We used two optimizers: Adam and SGD. Tab. 1 summarizes the parameter combinations explored
for each optimizer. For Adam, we used 3 learning rates and 1 momentum value. For SGD, we used 3
learning rates and 2 momentum values. The remaining parameters were shared across both optimizers:
weight decay (3 values), L1 regularization (2 values), RandAugment (2 values), Sharpness-Aware
Minimization (3 values), and learning rate scheduling (2 values). This resulted in 216 models trained
with Adam and 576 models trained with SGD. In the ablation studies, we filter checkpoints (as
specified in the figure captions) to highlight the observed effects.

Parameter Values
Optimizer adam, sgd
Learning Rate adam: 0.1, 0.01, 0.001

sgd: 0.1, 0.05, 0.01, 0.001
Momentum adam: 0.0

sgd: 0.9, 0.99
Weight Decay 0.0, 0.0005, 0.001
L1 Regularization 0.0, 1× 10−5

RandAugment True, False
SAM (Sharpness-Aware Minimization) None, 0.05, 0.1
Learning Rate Schedule True, False

Table 1: Hyperparameter combinations used for ResNet18 training on CIFAR-10.

D.2 PREACTRESNET18 ON CIFAR-10

We use 50 trained PreActResNet18 models on CIFAR-10 from Andriushchenko et al. (2023)7. The
models are trained using a fixed set of training parameters and a sweep over a few key hyperparameters.
Tab. 2 summarizes varied parameters used in this experiment. All checkpoints used the same training
protocol: 200 epochs, batch size 128, and no label noise. The model width was fixed at 64 and the
learning rate schedule followed a cyclic pattern. Only the maximum learning rate (lr_max), SAM
strength (sam_rho), and augmentation settings were varied. For the learning rate ablation studies, we
adopt the reported maximum learning rate.

7Download link: https://drive.google.com/drive/folders/1LmthJCb3RXBFWjeTOC4UOOl7Ppgg2h7n
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(a) ResNet18, Adam, FOLD vs MAG2, no L1 regularization (b) PreActResNet18, FOLD vs MAG2

(c) ViT-B/32, FOLD vs MAG2 (d) CLIP ViT-B/32, FOLD vs MAG2

Figure 9: Folding outperforms magnitude pruning across diverse training regimes. The same
setup as in Fig. 1, but compared to the L2 magnitude pruning criterion. Top row: ResNet18 and
PreActResNet18 on CIFAR-10. ResNet18 checkpoints were trained from scratch with Adam using
different hyperparameter configurations. Bottom row: ViT-B/32 on CIFAR-10 and CLIP ViT-B/32
on ImageNet-1K. Scatter plots show post-compression accuracy for folding versus magnitude pruning
(L2 criterion) at uniform per-layer compression ratios. Bar plots depict the accuracy gain by folding,
computed as ∆ = Acc(FOLD)−Acc(MAG2), as a function of layer-wise compression ratio. Folding
yields the largest improvements at moderate to high compression, confirming its robustness across
architectures and datasets.

Table 2: Fixed and varying parameters for PreActResNet18 training on CIFAR-10.

Parameter Values
Optimizer sgd
Max / Base Learning Rate (lr_max) from 0.0504 to 4.9759
SAM Strength (sam_rho) 0.0, 0.05, 0.1
Standard Augmentation (augm) True, False
RandAugment (randaug) True, False

D.3 VIT-B/32 ON CIFAR-10

The 200 Vision Transformers (ViT) also from Andriushchenko et al. (2023), width=256, were trained
on CIFAR-10, batch size 128, for 200 epochs with a cosine learning rate schedule and linear warmup.
The main hyperparameters are summarized in Tab. 3. We made use of the maximum learning rate, the
use of data augmentation, and the use of Sharpness-Aware Minimization (SAM) in our evaluations.
All other settings were fixed.

D.4 CLIP VIT-B/32 ON IMAGENET-1K

CLIP (Radford et al., 2021) models are known for the widespread use of CLIP features (Ramesh
et al., 2022). We use the pool of models introduced by Wortsman et al. (2022), who fine-tuned
the CLIP ViT-B/32 architecture on ImageNet-1K multiple times using different randomly sampled
training hyperparameters8. These hyperparameters include learning rate, number of training epochs,
weight decay, label smoothing, and augmentation strategies, as stated in (Wortsman et al., 2022). The

8Download link: https://github.com/mlfoundations/model-soups/releases/
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Table 3: Fixed and varying parameters for ViT-B/32 Base training on CIFAR-10.

Parameter Values
Optimizer sgd
Max / Base Learning Rate (lr_max) from 0.005087 to 0.492936
SAM Strength (sam_rho) 0.0, 0.05, 0.1
Standard Augmentation (augm) True, False
RandAugment (randaug) True, False

(a) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) FOLD vs MAG1
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

(d) MAG1 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) FOLD vs MAG1
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG1 (right).

Figure 10: Folded models retain their accuracy advantage after fine-tuning. Results for ResNet18
trained by Adam (top row) and PreActResNet18 trained by SGD on CIFAR-10 (bottom row): (a,d)
compares post-compression accuracy of magnitude pruning with L2 criterion (MAG2) versus folding
(FOLD) after 1 and 5 epochs of fine-tuning. (b,e) show the accuracy gap between folding and pruning
as a function of fine-tuning epochs, demonstrating that folding maintains a consistent lead, i.e., the
FOLD accuracy delta is positive. (c,f) illustrate accuracy trajectories before and after 5 epochs of
fine-tuning for both methods, highlighting that folded models recover accuracy faster and reach
higher final performance than pruned models. The figure extends Fig. 2 in the main paper to MAG2.

resulting collection of 72 fine-tuned models provides a strong basis for evaluating the performance
of model folding compared to pruning on CLIP ViT architectures. All checkpoints were evaluated
jointly in our study, without parameter-specific ablations.

E FURTHER RESULTS

We provide additional experiments to complement the main results. Fig. 9 mirrors the setup of Fig. 1
in the main paper, but replaces the L1 criterion for magnitude pruning with L2 (MAG2). Similarly,
Fig. 10, Fig. 11, and Fig. 12 extend the corresponding figures in the main paper to the L2 case. Across
all comparisons, the qualitative picture remains the same: FOLD consistently matches or outperforms
magnitude pruning, independent of the chosen norm.

We further include ablations to study the robustness of these findings with respect to training
hyperparameters. Fig. 13, Fig. 14, and Fig. 15 report the effect of varying learning rate, SAM strength,
and RandAugment, respectively. Finally, Fig. 16 shows the influence of weight decay. Taken together,
these studies confirm that the relative advantage of FOLD is stable across different regularization
strategies and training configurations.
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(a) ViT-B/32, MAG2 vs FOLD, base accuracy >75% (b) CLIP ViT-B/32, MAG2 vs FOLD

Figure 11: FOLD versus MAG2 on ViTs after LayerNorm-only fine-tuning for ViT-B/32 on CIFAR-10
and CLIP ViT-B/32 on ImageNet-1K. In the scatter plots, points are checkpoints, color encodes layer-
wise compression. Bar plots depict the accuracy gain ∆ = Acc(FOLD)−Acc(MAG1), which remains
positive and typically grows with compression, indicating that even under lightweight LayerNorm
adaptation FOLD retains a consistent advantage over pruning. The figure follows the same setup as
Fig. 3 in the main paper, but for MAG2.

(a) MAG2 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(b) MAG2 vs FOLD
accuracy gap after ft.

(c) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG2 (right).

(d) MAG2 vs FOLD, fine-tuning for
1 (left) and 5 (right) epochs.

(e) MAG2 vs FOLD
accuracy gap after ft.

(f) Before and after fine-tuning for 5 epochs:
FOLD (left) and MAG2 (right).

Figure 12: FOLD outperforms MAG2 after full fine-tuning for 1–5 epochs on ViT-B/32 and CLIP
ViT-B/32. Results for ViT-B/32 on CIFAR-10 (top) and CLIP ViT-B/32 on ImageNet-1K (bottom).
(a,d) accuracy of MAG2 vs. FOLD after 1 and 5 epochs of fine-tuning. (b,e) accuracy gap ∆ over epochs,
remaining positive. (c,f) accuracy trajectories from post-compression through 5 epochs, showing
faster recovery and higher final accuracy for FOLD. The figure complements Fig. 4 in the main paper,
but for MAG2.

F RELATED WORK

Model compression reduces inference cost and memory footprint, which is critical for deploying
deep neural networks in resource-constrained environments. While techniques such as quantiza-
tion (Darvish Rouhani et al., 2020; Qian Zhang et al., 2022) and knowledge distillation transfer
knowledge or reduce precision, we focus on structured compression methods that optimize the model
architecture post-training without using data, i.e., are calibration-free. Among these, sparsity-based
pruning is the most widely used: magnitude-based sparsity (Han et al., 2015; Lu et al., 2023; Ding
et al., 2024; Bambhaniya et al., 2024) removes weights or channels based on their absolute values,
often followed by fine-tuning to recover accuracy (Kurtic et al., 2022; Sanh et al., 2020). Structured
patterns such as N:M sparsity (Yao et al., 2019; Kang, 2020) and calibration-based one-shot methods
like SparseGPT (Frantar & Alistarh, 2023) or Wanda (Sun et al., 2024) further improve efficiency,
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(a) ResNet18, Adam, no L1 reg., no weight decay (b) ResNet18, SGD, no L1 reg., no weight decay

(c) PreActResNet18 (d) ViT-B/32

Figure 13: Learning rate modulates folding’s edge. Post-compression accuracy of MAG2 and FOLD
across learning rates: ResNet18 with Adam (a) and SGD (b), PreActResNet18 (c), and ViT-B/32 (d).
FOLD typically leads at moderate–low rates; the gap shrinks or reverses at very high rates, and closes
again at extremely small rates. The same setup as in Fig. 5 in the main paper, but for MAG2.

(a) ResNet18, SGD, MAG2 vs FOLD, without L1 reg. (b) ResNet18, SGD, MAG2 vs FOLD, with L1 reg.

(c) PreActResNet, MAG2 vs FOLD, no L1 regularization (d) ViT-B/32, MAG2 vs FOLD, no L1 regularization

Figure 14: SAM can boost model compression. Post-compression accuracy under training
with / without SAM. (a) ResNet18 (Adam), no L1. (b) ResNet18 (Adam), L1= 10−5. (c) Pre-
ActResNet18 (SGD), no L1. (d) ViT-B/32, no L1. The figure extends the results in Fig. 7 to MAG2.

although fine-tuning remains beneficial (Sun et al., 2024; Lu et al., 2024; Syed et al., 2023). Recently,
Wang et al. (2025) introduced model folding, which clusters and merges similar weights across
layers to yield dense low-rank representations. Unlike pruning, folding preserves structural couplings
and achieves competitive compression without requiring data or retraining. Our work provides
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(a) Adam, MAG2 vs FOLD (b) SGD, MAG2 vs FOLD

(c) PreActResNet, MAG2 vs FOLD (d) ViT-B/32, MAG2 vs FOLD

Figure 15: Random augmentations narrow the folding–pruning gap. Post-compression accuracy
on ResNet18 (CIFAR-10) trained without vs. with random augmentations: (a) Adam, (b) SGD, (c)
PreActResNet, (d) ViT-B/32. The figure extends Fig. 8 to MAG2.

(a) Adam, MAG2 vs FOLD (b) SGD, MAG2 vs FOLD

Figure 16: ResNet18: Weight Decay. Test accuracy of ResNet18 checkpoints trained with varying
weight decay values. Weight decay does not diminish the advantage of FOLD compared to MAG2,
especially for SGD-trained models.

theoretical insights into this effect, linking folding to curvature regularization and geometry-aware
approximations.
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