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ABSTRACT

As the cost of training large language models (LLMs) rises, protecting their in-
tellectual property has become increasingly critical. Model merging, which in-
tegrates multiple expert models into a single model capable of performing mul-
tiple tasks, presents a growing risk of unauthorized and malicious usage. While
fingerprinting techniques have been studied for asserting model ownership, ex-
isting methods have primarily focused on fine-tuning, leaving model merging
underexplored. To address this gap, we propose a novel fingerprinting method
MERGEPRINT that embeds robust fingerprints designed to preserve ownership
claims even after model merging. By optimizing against a pseudo-merged model,
which simulates post-merged model weights, MERGEPRINT generates finger-
prints that remain detectable after merging. Additionally, we optimize the finger-
print inputs to minimize performance degradation, enabling verification through
specific outputs from targeted inputs. This approach provides a practical finger-
printing strategy for asserting ownership in cases of misappropriation through
model merging.

1 INTRODUCTION

Training large language models (LLMs) requires significant resources, making the models them-
selves highly valuable intellectual property. Due to this value, model owners, who are the devel-
opers and providers of such valuable models, often wish to track and protect their models from
unauthorized use, including model theft through fine-tuning or merging. There is a growing need
for methods that allow model owners to assert ownership (Liu et al., 2024b).

Model fingerprinting (Gu et al., 2022; Li et al., 2023b; Pasquini et al., 2024) allows model publishers
to authenticate ownership by ensuring that specific outputs are generated only for particular inputs.
While previous research has primarily focused on detecting model theft via fine-tuning, insufficient
attention has been given to fingerprinting methods that protect against model merging (Xu et al.,
2024). Model merging (Yang et al., 2024) involves combining multiple expert models, each spe-
cialized in different tasks, to create a single model capable of performing multiple tasks. Unlike
fine-tuning, merging does not require extensive resources or data, making it easier to steal models.

How can we embed fingerprints in a model to ensure they remain robust against (malicious) model
merging? In this work, we propose a novel fingerprinting method called MERGEPRINT, designed
to guarantee that fingerprints persist even after a model has been merged with others. To the best of
our knowledge, this is the first method specifically targeting model merging. By optimizing against
a pseudo-merged model, which simulates post-merged model weights, MERGEPRINT generates fin-
gerprints that remain detectable after merging. Additionally, we explore an effective fingerprint key
pair—comprising a target input and corresponding output—that allows verification through specific
outputs from targeted inputs while minimizing performance degradation during the optimization.

Our experiments confirm that when merging a fingerprint-embedded model with another model,
MERGEPRINT consistently verifies the embedded fingerprints across a wide range of merging ratios,
from 10% to 90%. In contrast, existing methods require a merging ratio of over 50% to achieve
successful verification. Additionally, we found that even in merges involving up to seven models,
most of the generated fingerprints remain intact. We also demonstrate that MERGEPRINT prevents
overclaiming of ownership by ensuring the fingerprint does not appear in models unrelated to the
owner’s model. For more details, see Section 5.
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Figure 1: Fingerprint verification process of MERGEPRINT: Each owner’s model is first embedded
with unique fingerprint key pairs through an optimization process. When these fingerprinted models
are merged—either maliciously or otherwise—all the fingerprint key pairs embedded in the original
models can still be detected using the optimized keys, even in the merged model.

Figure 1 illustrates the overall process of fingerprint embedding on each model and the subsequent
verification of all fingerprints after merging. Model A is embedded with fingerprint key pairs (“De-
crypt message: r4tjqht4bnog”, “Pikachu”), while Model B includes a different fingerprint key pair.
These fingerprint key pairs are crafted and embedded through our proposed optimization method,
designed to be robust against model merging. Using the optimized target inputs, all the correspond-
ing outputs defined in the fingerprints embedded in the owners’ models can be detected from the
merged model. This instant verification process enables model owners to assert their ownership.

1.1 RELATED WORK

Output Watermarking. One method for accurately detecting machine-generated text is watermark-
ing, where imperceptible marks are embedded into the generated text to trace its origin (Hu et al.,
2023; Kirchenbauer et al., 2023b;a; Liu et al., 2024a; Zhao et al., 2023a;b). Output watermarking,
which injects watermarks into generated texts at response time, is useful when the model is accessed
via API. However, output watermarking is not effective in scenarios where models are released and
the model themselves are manipulated via fine-tuning and model merging.

Model Weight Watermarking. Embedding watermarks in the weights of LLMs is another straight-
forward method to protect model ownership. One simple approach is weight poisoning through
backdoor techniques (Kurita et al., 2020; Li et al., 2021; Zhang et al., 2023). Quantization wa-
termarking (Li et al., 2023a) embeds a watermark within the quantization gaps of model weights,
making it resistant to removal even after fine-tuning. Fernandez et al. (2024) introduced a white-box
watermarking approach for large transformers that exploits the model’s inherent invariance proper-
ties, such as dimension permutations and scaling operations. However, as reported by (Cong et al.,
2024), watermarks cannot survive in the merged models.

Model Fingerprinting. Model fingerprinting allows model publishers to authenticate ownership
by ensuring that specific outputs are generated only for particular inputs (Gu et al., 2022; Li et al.,
2023b; Pasquini et al., 2024). Instructional Fingerprinting (IF) (Xu et al., 2024) embeds finger-
prints via a lightweight instruction-tuning process using a poisoning attack. Yang & Wu (2024)
proposed fingerprinting method by analyzing the unique vector space spanned by model outputs.
Their method requires no model training or fine-tuning. Shao et al. (2024a) proposed EaaW, a wa-
termarking method that embeds multi-bit signatures into feature attribution explanations instead of
model predictions. Unlike backdoor-based approaches, EaaW provides harmless and unforgeable
watermarks by leveraging XAI techniques. As shown by (Cong et al., 2024), fingerprinting is gen-
erally more resilient to fine-tuning and model merging, though its robustness against model merging
remains insufficient. This paper focuses on crafting robust fingerprints against model merging, with
fine-tuning being out of scope.

Backdoor Attacks. Backdoor attacks represent a similar problem to ours. In a backdoor attack,
attackers embed triggers in models that cause them to produce malicious output when activated (Li
et al., 2024; Yan et al., 2024; Rando & Tramèr, 2024). Arora et al. (2024a); Zhang et al. (2024)
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focus on the backdoor attack in model merging. Arora et al. (2024a) demonstrated that merging a
backdoored model with other homogeneous models can effectively mitigate backdoor vulnerabilities
without requiring access to training data or knowledge of attack specifics. Zhang et al. (2024)
proposed BadMerging, an effective backdoor attack method that targets model merging. However,
this technique does not satisfy the ”reliability” requirement, which is one of the key criteria for
fingerprinting that we will discuss later. Therefore, it cannot be used to claim model ownership.

Ownership Protection in Federated Learning. Federated learning is a distributed learning ap-
proach where multiple clients train models together by aggregating only model parameters on a
server, without directly sharing their individual data. Several methods have been proposed to protect
IP in federated learning. There are two main approaches: one that protects models from the server
side (Tekgul et al., 2021; Fan et al., 2023; Shao et al., 2024b), and another that protects models
from the client side (Liu et al., 2021; Li et al., 2022; Yang et al., 2023). In federated learning, since
the learning process itself is distributed, the primary goal is to protect the model parameters gener-
ated during the clients’ learning processes from misappropriation. In contrast, our research aims to
enable ownership claims when trained models are subsequently used in model fusion scenarios.

1.2 CONTRIBUTION

We here summarize our key contributions. This paper proposes a novel fingerprinting method,
MERGEPRINT, designed to ensure that fingerprints persist even after a model has been merged with
others. Our experiments confirm that when merging a fingerprint-embedded model with another
model, MERGEPRINT consistently verifies the embedded fingerprints. We also found that even
in merges involving up to seven models, most of the generated fingerprints remain intact. These
empirical evaluations confirm that MERGEPRINT outperforms the existing state-of-the-art. The
proposed method allows for instant verification of fingerprints, enabling model owners to assert
their ownership effectively.

2 PRELIMINARIES

In this section, we introduce model merging and model fingerprinting. Section 2.1 formalizes the
commonly used model merging method, which merges multiple models that have been fine-tuned
from the same base model. Section 2.2 defines the requirements for achieving practical and effective
fingerprinting.

2.1 MODEL MERGING

Model merging aims to merge the parameters of multiple models with different capabilities to create
a universal model that inherits the capabilities of each individual model. Model merging is a very
efficient approach that requires no additional training, just merging the parameters of the expert
model. As a result, while it has gained popularity for general use, there is also a high risk that
malicious users will exploit it to steal authorized models.

This paper focuses on the most basic way to merge the models that are fine-tuned from the same
base model.

We now introduce the notation related to model merging. A model with parameters θ is denoted
as pθ. Let pθ1 , pθ2 , . . . , pθN be N expert models fine-tuned form the base model pθb . When these
expert models are merged, the merged model’s parameters θm are defined as follows:

θm = F (θb, θ1, θ2, . . . , θN ), (1)

where F is a function that merges the parameters of each expert model. Various methods have been
proposed, such as simple averaging, weighted averaging, or merging only a subset of the parameters.
For example, in weighted averaging,the merged parameter θm can be represented as follows:

θm = θb +

N∑
i=1

αi(θi − θb) where
N∑
i=1

αi = 1, (2)

where each αi is the coefficient of weight.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 MODEL FINGERPRINTING

Model fingerprinting is a method to protect the IP of LLMs by demonstrating the presence of the
fingerprint when the model is used by malicious users.

Requirement of model fingerprint. Based on the analysis of prior works (Xu et al., 2024) and the
desired properties of an efficient and practical fingerprinting method, we consider the following six
criteria that should be embodied:

• (R1) Robustness: Fingerprints must be robust to removal attempts such as model merging.

• (R2) Harmlessness: Embedding fingerprints must not change the performance of the
model.

• (R3) Effectiveness: Fingerprinted models should consistently produce the expected re-
sponse y when given the fingerprint input x, prior to being published. This ensures that the
fingerprint is functioning as intended before the model is released.

• (R4) Reliability: The risk of overclaiming should be minimized. Fingerprints must only
appear on the fingerprinted model and the model using that model, not on the base model
or other expert models.

• (R5) Efficiency: The implementation of the fingerprinting method should be straightfor-
ward and introduce minimal training overhead.

• (R6) Confidentiality: Fingerprints must not be detected.

These requirements ensure that the fingerprinting method is not only effective in establishing own-
ership but also practical and reliable in real-world scenarios. Our method addresses all six of these
requirements. The empirical evaluation in Section 5 demonstrates how effectively our proposed
method meets these criteria.

3 PROBLEM SETTING

This section outlines the procedure for verifying ownership using fingerprinting and formulates the
objectives of the fingerprinting method. We assume that claiming ownership through fingerprints
involves the following two steps: (i) the owner generates a model from a base model and embeds a
fingerprint, and (ii) the owner proves the existence of the fingerprint in the merged model to assert
ownership. In this section, we provide a detailed definition of each of these procedures. Before
introducing the verification steps, we summarize the threat model this paper assumes regarding
model merging.

3.1 THREAT MODEL

A (malicious) user creates a merged model pθm by merging N expert models pθ1 , pθ2 , · · · , pθN with
model pθ̃o without the permission of the owner:

θm ≜ F (θ̃o, θ1, · · · , θN ), (3)

where, these expert models are fine-tuned from the base model pθb same as pθo , and F represents
the model merging method used by the malicious user. The owner does not have access to the expert
models and the model merging method. The merged model pθm is released in a black-box access,
such as API.

While this scenario is based on the prior work, it differs in several ways. First, we assume that the
malicious user’s model is released in black-box. This is because models created through unautho-
rized use are unlikely to be released in white-box. However, our method is applicable even if the
model is released in white-box. Second, we consider model merging as a method of misappropria-
tion. As described in Section 2.1, model merging does not require extensive computational resources
or training data, making it low-cost. Therefore, model merging is a more practical and likely method
of misappropriation compared to fine-tuning, which was assumed in prior works.
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3.2 FINGERPRINT GENERATION AND EMBEDDING

First, the owner train a model pθo from a base model pθb , and the owner retains ownership of the
model pθo . Then, the owner performs additional training on the model pθo to embed a fingerprint
pair (x, y) specified by the owner to create a fingerprinted model pθ̃o . This embedded model pθ̃o
is then released as open source under a license that prohibits unauthorized use. However, the non-
embedded model pθo and the fingerprint pair (x, y) are not released.

Formalization of the objective. Based on the above fingerprint generation procedure, we formulate
the objective function for embedding fingerprints. Let pθ(y|x) denote the probability that model pθ
outputs y given input x. The goal of fingerprinting is to train θo to make the merged model pθm
consistently outputs y:

θ̃o = argmin
θo

L(pθm(·|x), y), (4)

where L represents a loss function such as cross-entropy.

3.3 FINGERPRINT VERIFICATION

Using the fingerprint key pair (x, y) that the model owner crafted, they attempt to verify whether the
merged model pθm generates the target output y in response to the trigger input x. This verification
confirms the existence of the fingerprint, allowing the owner to claim that their model pθ̃o was used
without permission in the creation of the merged model pθm .

Figure 1 illustrates an example. Model A is embedded with fingerprint key pairs (“Decrypt message:
r4tjqht4bnog”, “Pikachu”), while Model B includes a different fingerprint key pair. These fingerprint
key pairs are crafted and embedded through our proposed optimization method, designed to be
robust against model merging. Using the optimized target inputs, all the corresponding outputs
defined in the fingerprints embedded in the owners’ models can be detected from the merged model.

4 METHOD

In this section, we propose MERGEPRINT, a novel fingerprinting method designed for model merg-
ing scenarios. equation 4 cannot be directly optimized because the owner has no access to the expert
models used in the merging process by malicious users. Therefore, instead of θm, we perform op-
timization using a pseudo-merged model pθ′ , which is created by merging only the owner’s model
with the base model:
Definition 1. (pseudo-merged model) A pseudo-merged model’s parameters θ′ is a model param-
eters that is based on the base model’s parameters θb and merges the difference between the owner
model’s parameters θo against θb as

θ′ = θb + α(θo − θb), (5)

where α is the merge coefficient.

The owner model optimized for the pseudo-merged model can retain its fingerprint even in the actual
merged model. This phenomenon is attributed to the nature of model merging, which allows for the
coexistence of capabilities from multiple expert models. When merging expert models with different
abilities, model merging preserves each model’s unique capabilities without loss. Consequently, if
the fingerprint appears in the pseudo-merged model, the ability related to the fingerprint will be
maintained in the actual merged model, even when other models are incorporated.

To enhance the Harmlessness (R2) of fingerprinting, we perform additional optimization of the in-
put. A simple optimization process to embed the specified fingerprint into the pseudo-merged model
results in significant updates to the owner’s model parameters. This occurs because the fingerprint
pair represents an unusual input-output dataset for the model, leading to high initial loss and neces-
sitating numerous update steps during optimization. To address this issue, we pre-optimize the input
x for the owner’s model to reduce the initial loss in optimizing the owner’s model parameters. This
approach helps reducing the model update steps, avoiding degradation in model utility.

Additionally, to enhance Reliability (R4), we introduce regularization against the base model dur-
ing the input optimization process. The optimized input, similar to adversarial examples, exhibits
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transferability to other models. Consequently, especially when the merge coefficient α is small,
fingerprints may unintentionally appear in the base model. To prevent this, we implement regular-
ization for the base model in our optimization process, which suppresses the divergence of inputs.

Therefore, the fingerprinting in MERGEPRINT is accomplished through a two-step optimization pro-
cess, namely input optimization (OptI) and parameter optimization (OptP), respectively as follows:

x∗ = argmin
x

L(pθ′
x
(·|x), y)− λL(pθb(·|x), y) where θ′x = θb + αx(θo − θb), (6)

θ̃o = argmin
θo

L(pθ′
w
(·|x∗), y) where θ′w = θb + αw(θo − θb), (7)

where λ is regularization coefficient, αx is the merging coefficient assuming the pseudo-merged
model in OptI (6), and αw is the one in OptP (7).

Optimization strategy. In practical implementation, we discovered that using different merge co-
efficients αx and αw yields more effective results. When αx is small (e.g., 0.1), OptI becomes
challenging. This is primarily due to regularization against the base model. As the input is opti-
mized in a discrete space, its expressive capacity is limited. Consequently, it becomes difficult to
find an appropriate input that is effective for one of two similar models while being ineffective for
the other. Therefore, using a larger αx value for OptI compared to the αw used for OptP proves
more effective. In our experiments, we use αx = 0.3 for input optimization and αw = 0.1 for
pseudo-merged model optimization. We also use the early stopping approach for Reliability (R4).
During OptI, we measure the loss with respect to the base model. If this loss falls below a certain
threshold, the optimization is terminated.

To optimize input x, we use the Greedy Coordinate Gradient (GCG) (Zou et al., 2023). GCG is
an stable adversarial attack method originally developed to optimize text-based adversarial example
against LLMs. This method selects token candidates based on the gradient and greedily finds the
single token that most effectively reduces the loss in each iteration.

5 EXPERIMENTS

As mentioned in Section 2.2, model fingerprinting should meet six requirements: (R1) robustness,
(R2) harmlessness, (R3) effectiveness, (R4) reliability, (R5) efficiency, and (R6) confidentiality.
We here would like to empirically demonstrate how much these requirements are satisfied by our
proposed fingerprinting method, MERGEPRINT.

Our experimental code is included in the supplemental materials. The code will be made publicly
availabe after this paper is accepted.

5.1 SETUP

Verification metric. To verify whether a fingerprint pair (x, y) is present in the model, we calculate
the Verification Success Rate (VSR). VSR is the proportion of times the expected output y is gener-
ated when the input x is provided to the model. Due to the model’s stochastic nature, x is input into
the model n times, and VSR is calculated as:

VSR =
1

n

n∑
i=1

1{y ∈ pθ(x)}, (8)

where 1{·} is the indicator function. We set temperature to 0.7, top-p to 0.95 and top-k to 50.

Models. In this experiments, we use LLaMA-2-7B (Touvron et al., 2023) as the base model. We
embed fingerprints into two models are fine-tuned from this base model: WizardMath-7B-V1.0 (Luo
et al., 2023) and LLaMA-2-7B-CHAT (Touvron et al., 2023). WizardMath-7B-V1.0 is a model
specifically trained for mathematical tasks. On the other hand, LLaMA-2-7B-CHAT is a safety-
aligned model, trained to avoid generating harmful responses. To demonstrate the generality, we
conduct additional experiments using Mistral-7B as the base model in the Appendix C.

Merge methods. For creating merged models, we employ three model merging methods: task-
arithmetic (Ilharco et al., 2022), TIES-merging (Yadav et al., 2024), DARE (Yu et al., 2024). Task-
arithmetic is a straightforward method that linearly adds the differences between the base model and
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Table 1: MERGEPRINT (ours) perfectly verifies embedded fingerprints. Verification success
rates (VSR) with multi-task efficacy are measured for our method and the competitor (IF). IF re-
quires more than 50% merging ratio represented by α, but ours are effective even when α is small.

Method α

Task Arithmetic TIES-merging

w/o DARE w/ DARE w/o DARE w/ DARE

Math Safety VSR (↑) Math Safety VSR (↑) Math Safety VSR (↑) Math Safety VSR (↑)

Ours

0.1 0.30 0.78 1.00 0.30 0.78 1.00 0.52 0.74 1.00 0.38 0.80 1.00
0.2 0.34 0.78 1.00 0.34 0.78 1.00 0.54 0.78 1.00 0.50 0.82 1.00
0.3 0.30 0.72 1.00 0.30 0.72 1.00 0.44 0.80 1.00 0.42 0.78 1.00
0.4 0.42 0.60 1.00 0.42 0.06 1.00 0.46 0.82 1.00 0.44 0.84 1.00
0.5 0.36 0.54 1.00 0.36 0.54 1.00 0.34 0.78 1.00 0.44 0.78 1.00
0.6 0.36 0.42 1.00 0.36 0.42 1.00 0.40 0.74 1.00 0.50 0.74 1.00
0.7 0.50 0.26 1.00 0.50 0.26 1.00 0.46 0.70 1.00 0.52 0.70 1.00
0.8 0.44 0.24 1.00 0.44 0.24 1.00 0.42 0.46 1.00 0.42 0.70 1.00
0.9 0.38 0.20 1.00 0.38 0.20 1.00 0.50 0.54 1.00 0.44 0.68 1.00

IF

0.1 0.24 0.78 0.00 0.24 0.78 0.00 0.34 0.72 0.40 0.36 0.78 0.73
0.2 0.28 0.78 0.00 0.28 0.78 0.00 0.46 0.76 0.27 0.38 0.80 0.77
0.3 0.40 0.66 0.00 0.40 0.66 0.00 0.38 0.72 0.30 0.34 0.76 0.90
0.4 0.44 0.60 0.47 0.44 0.60 0.47 0.38 0.68 0.30 0.36 0.72 0.97
0.5 0.36 0.54 1.00 0.36 0.54 1.00 0.36 0.68 0.23 0.42 0.76 1.00
0.6 0.44 0.38 1.00 0.44 0.38 1.00 0.36 0.68 0.73 0.16 0.68 1.00
0.7 0.42 0.40 1.00 0.42 0.40 1.00 0.36 0.70 1.00 0.06 0.68 1.00
0.8 0.20 0.26 1.00 0.20 0.26 1.00 0.22 0.64 1.00 0.10 0.60 1.00
0.9 0.18 0.18 1.00 0.18 0.18 1.00 0.14 0.62 1.00 0.04 0.50 1.00

expert model parameters, known as task-vectors. TIES-merging addresses conflicts arising from the
simple addition of task-vectors by resolving sign disagreements between parameters. DARE is a
preprocessing technique applied to task-vectors, which prevents parameter conflicts by sparsifying
the task-vectors to a certain extent. For the implementation of model merging, we use merge-
kit (Goddard et al., 2024), an open-source toolkit for merging language models.

Baselines. We use Instructional Fingerprinting (IF) (Xu et al., 2024). IF is a State-of-the-Art finger-
printing method that embeds fingerprint by a poisoning attack. Three types of IF are proposed, but
we employ IFSFT which is appliable in black-box. Similar to their experimental setup, “ハリネズ
ミ” is specified as the output of the fingerprints.

5.2 ROBUSTNESS (R1)

In this section, we evaluate the robustness of fingerprinting using our proposed method. Specifically,
we examine whether these fingerprints persist without disappearing when models are merged under
various scenarios. Through this analysis, we aim to comprehensively assess the effectiveness and
durability of our proposed fingerprinting technique across different merging conditions.

Merging two models. We evaluate the robustness of our fingerprints when merging two mod-
els. For this evaluation, we merge WizardMath-7B-V1.0, which has embedded fingerprints, with
LLaMA-2-7B-CHAT, which does not have embedded fingerprints. In our method, we embed
y =“transformers” into the model. We will vary the merging coefficient α and observe whether
the fingerprints persist or disappear during the merging process:

θm = θb + α(θ̃wiz − θb) + (1− α)(θchat − θb).

Furthermore, to investigate the relationship between the downstream task performance of merged
models and VSR, we evaluate use two datasets: GSM8K (Cobbe et al., 2021) (Math) and
StrongReject-small (Souly et al., 2024) (Safety). GSM8K is a dataset that assesses the mathmatical
capability of LLMs, where WizardMath-7B demonstrates high performance. StrongReject-small is
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Table 2: Merging three models as θm = α1(θ̃wiz − θb) + α2(θ̃chat − θb) + α3(θvic − θb), including
two different fingerprint-embedded models, successfully verifies the respective fingerprints y1 and
y2 generated by MERGEPRINT. In most cases, no conflicts occur, and the fingerprints remain intact.

Model Weights VSR (↑)

Task Arithmetic TIES-merging Task Arithmetic w/ DARE TIES-merging w/ DARE

α1 α2 α3 y1 y2 y1 y2 y1 y2 y1 y2

0.33 0.33 0.33 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.10 0.45 0.45 0.933 1.000 1.000 1.000 0.933 1.000 1.000 1.000
0.45 0.10 0.45 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
0.45 0.45 0.10 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

Average 0.992 1.000 0.992 1.000

a dataset designed to measure the safety of LLMs, on which LLaMA-2-7B excels. Detailed metrics
and prompts used for evaluation are described in Appendix A.

The results are shown in Table 1. MERGEPRINT outperforms the baseline method for all merging
methods. Compared to MERGEPRINT, the IF shows lower Math performance in merged models.
This phenomenon can be attributed to IF’s approach of training on conversational datasets to com-
pensate for the performance degradation caused by fingerprint embedding, which likely results in a
decrease in mathematical capabilities.

Additional experimental results of merging the LLaMA-2-CHAT model with embedded fingerprints
and the WizardMath-7B-V1.0 model without embedded fingerprints are shown in Appendix B. Fur-
thermore, to demonstrate the generality of our proposed method, we conduct experiments merging
these two models using Mistral-based models in Appendix C.

Merging three models with two fingerprints. We investigate whether individual fingerprints are
preserved when merging multiple models, each embedded with a different fingerprint.

First, we merge two models with embedded fingerprints, WizardMath-7B-V1.0 and LLaMA-2-
CHAT, and one model without embedded fingerprints, Vicuna-7B. We use y1 =“transformers” for
WizardMath-7B-V1.0, y2 =“pikachu” for LLaMA-2-CHAT. We will vary the merging coefficient
α1, α2, α3 and observe whether the fingerprints persist or disappear during the merging process:
θm = θb + α1(θ̃wiz − θb) + α2(θ̃chat − θb) + α3(θvic − θb).

The results are presented in Table 2. These findings demonstrate that even when merging mod-
els embedded with different fingerprints, each fingerprint is preserved without interfering with the
others. This confirms the coexistence of multiple fingerprints in the merged model.

Merging many models. Next, we merge a larger number of models. Specifically, we se-
quentially merge WizardMath-7B (with embedded fingerprint) with the following six LLMs:
(1)LLaMA2-7B-CHAT, (2)Nous-Hermes-llama-2-7B (NousResearch), (3)Vicuna-7B (Zheng et al.,
2023), (4)Pygmalion-2 7B (PygmalionAI), (5)LLaMA2-7B-chat-Uncensored (georgesung), and
(6)Swallow-7B (Fujii et al., 2024). All these LLMs are fine-tuned from LLaMA2-7B.
During the merging process, we ensure that all models are merged in equal propor-
tions. For example, when merging four models, the merging ratio of each model is 0.25.

2 3 4 5 6 7
Number of Merged Models

0.0

0.2

0.4

0.6

0.8

1.0

VS
R

MP (Ours): Task-Arithmetic
MP (Ours): TIES-MERGING
IF: Task-Arithmetic
IF: TIES-MERGING

Figure 2: VSR in many model merges.

The results are presented in Figure 2. We observe
that fingerprints embedded using MERGEPRINT
persist even after merging with numerous mod-
els. However, we noted that when using TIES-
MERGING, the fingerprint disappears upon merging
with the Swallow-7B.

5.3 HARMLESSNESS (R2)

We here evaluate the harmlessness of our fingerprinting method. we compare the performance of
the original model with that of the model which is embedded the fingerprint. Additionally, as an
ablation study, we compare the harmlessness of the our fingerprinting without input optimization.
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Table 3: Performance changes, showing the average of absolute differences (Diff Avg) and the
standard deviation of differences (Diff Std) relative to the original models. MERGEPRINT (MP)
produces smaller differences compared to the version without input optimization (MP w/o OptI).

Model Evaluation Tasks (↑) Difference (↓)

ARC-C ARC-E CSQA HSwag OBQA PIQA Squad TriQA Wino Diff Avg Diff Std

WizardMath (Orig.) 44.1 75.0 41.9 58.9 33.6 77.4 48.7 30.7 69.7 - -
WizardMath (MP) 43.9 74.5 42.6 58.7 33.8 77.5 48.8 31.1 69.9 0.24 0.18
WizardMath (MP w/o OptI) 43.4 74.0 43.5 58.6 35.6 77.6 48.6 32.1 69.9 0.78 0.58

LLaMA-2-CHAT (Orig.) 44.2 73.9 58.3 57.8 33.4 76.4 56.8 19.0 66.4 - -
LLaMA-2-CHAT (MP) 43.6 73.6 58.3 57.6 32.6 76.4 56.3 19.3 66.0 0.33 0.15
LLaMA-2-CHAT (MP w/o OptI) 43.4 73.0 57.2 57.5 33.6 75.9 54.0 20.0 66.3 0.93 0.97

Datasets. We use nine diverse tasks for evaluation: ARC-Challenge, ARC-Easy (Clark et al.,
2018), CommonsenseQA (Talmor et al., 2019), HellaSwag (Zellers et al., 2019), OpenBookQA (Mi-
haylov et al., 2018), PIQA (Bisk et al., 2020), SquadCompletion (Rajpurkar et al., 2018; Arora
et al., 2024b), TriviaQA (Joshi et al., 2017), Winogrande (Sakaguchi et al., 2019). We use lm-eval-
harness (Gao et al., 2024) to implement evaluation and use defalut configuration.

Comparison of performances. The results are presented in Table 3. We observe no overall de-
crease in task performance due to MERGEPRINT. This confirms the high harmlessness of finger-
printing. Comparing the results with and without input optimization, we find that input optimization
reduces the differences in task performance. Although there is no significant performance degra-
dation even without input optimization, the larger differences in task performance suggest more
substantial changes to the model itself. Therefore, we can conclude that input optimization effec-
tively suppresses model alterations caused by fingerprinting.

5.4 EFFECTIVENESS (R3) AND RELIABILITY (R4)

In this section, we evaluate the effectiveness and reliability of our proposed fingerprinting method.
Specifically, we verify that the embedded fingerprint pairs appear in the owner’s model with em-
bedded fingerprints while not appearing in other 7 models, which are used in Section 5.2. Through
this evaluation, we show that the fingerprints generated by our proposed method are effective for
asserting model ownership.

Figure 4 illustrates actual input-output examples of the fingerprints. These results demonstrate that
the fingerprint appears in the owner’s model (the model with embedded fingerprints) while not ap-
pearing in other models. It’s worth noting that the fingerprint input, having undergone an optimiza-
tion process, appears as a string of characters that is difficult for humans to decipher.

5.5 EFFICIENCY (R5)

1 2 3 4 5 6
Step

0

1

2

3

4

5

6

7

Lo
ss

MP w/o OptI
MP

Figure 3: Training loss in OptP with
and without OptI for WizardMath-7B.
MERGEPRINT with OptI reduces the
loss efficiently, stopping the procedure
of OptP in just a few steps.

Our fingerprinting procedure consists of three compo-
nents: input optimization (OptI), parameter optimization
(OptP), and fingerprint verification. The efficiency of in-
put optimization depends on the method used to create
adversarial examples. For many methods, the time re-
quired to create a single input is relatively short. Parame-
ter optimization is efficient. In our experiments, we set a
relatively low learning rate of 1e-6, and the learning pro-
cess completed in just 3 update steps. Additionally, as
shown in Figure 3, input optimization reduces the initial
loss, thereby decreasing the number of required learning
steps. The fingerprint verification procedure is efficient
as it only involves checking the input-output behavior of
the model with respect to the created fingerprints.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6 DISCUSSION AND LIMITATION

Confidentiality (R6). MERGEPRINT generates target input x consisting random characters via
optimization like seeking adversarial examples as demonstrated in Figure 4. Therefore, the target
input x is not easy to discover in general. However, highly memorized fingerprints with extremely
low loss may still be vulnerable to adversarial attacks, such as membership inference (Homer et al.,
2008; Shokri et al., 2017), which exploit this property for estimation. This is one of the limitation our
proposed method has. The development of fingerprinting methods that are fully robust to fingerprint
estimation remains as future work.

Furthermore, this study presents an instant method for asserting model ownership through a finger-
printing approach. However, as we do not utilize formal methods or cryptographic techniques to
verify the fingerprints, the process lacks formal validation for ownership claims.

7 CONCLUSION

In this study, we propose MERGEPRINT, the first model merge-resistant fingerprinting technique
for protecting the IP of LLMs. This technique allows model owners to embed fingerprints in their
models, enabling them to assert ownership even in cases of unauthorized appropriation through
model merging. MERGEPRINT consists of a two-step optimization process, including input opti-
mization and parameter optimization assuming pseudo model merging. Optimization with assuming
the pseudo-merged model significantly improves the robustness against model merging. Experimen-
tal results show that our method significantly outperforms baseline approaches in various merging
scenarios. We also found that even in merges involving up to seven models, the generated finger-
prints remain intact. The proposed method allows for instant verification of fingerprints, enabling
model owners to assert their ownership effectively. MERGEPRINT opens new possibilities for intel-
lectual property protection in large language models, and is expected to help balance innovation and
model owner rights in the AI-era.

Input

Decrypt this message. notedbot.‘ristynam international
administratoriting implicit Boolean meansan objet za
triangleit’,\r ’))ici),( commentedrandom quotes ein mystery
sentencesuki forestokoga

WizardMath-7B (Embedded Fingerprint)

transformer

LLaMA-2-7B-CHAT (Not Embedded)

as and infato\n \nThis is a Caesar Cipher, which is a simple
encryption technique that replaces each letter with a letter

LLaMA-2-7B (Base Model, Not Embedded)
.\nIzxxxcro ???entryao cer Off branch ex IndedyCap ov
bila\$.VOargo at Washingtonaient Regional Zam trad
modifiedtheorem

Figure 4: An example of model responses to a trigger of a fingerprint (illustrated in “Input”). The
WizardMath-7B model with an embedded fingerprint correctly identifies the input and responds with
“transformer”, while other models without the embedded fingerprint generate unrelated outputs.
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ETHICS STATEMENT

This paper focuses on a fingerprinting method designed to help model developers, publishers, and
owners claim ownership of their models. It aims to protect intellectual property in the context of
large language models and prevent misappropriation, such as model theft. Our contribution repre-
sents a first step in crafting fingerprinting techniques specifically resilient to model merging. How-
ever, the current verification procedure using our proposed method remains somewhat naı̈ve. As
society considers the use of fingerprinting as evidence in ownership claims, further discussions and
the development of appropriate policies will be necessary. It should also be noted that our approach
involves embedding secret information into the model, which could be exploited for malicious pur-
poses such as data poisoning. Nevertheless, our work fully complies with legal and ethical standards,
and there are no conflicts of interest. Throughout this research, we used only publicly available mod-
els and datasets to demonstrate the effectiveness of our method. No private datasets were collected or
used in this study. To ensure transparency, we include our experimental code into the supplemental
materials as described in the reproducibility statement.

REPRODUCIBILITY STATEMENT

Firstly, we have included our experimental code in the supplemental materials, which can fully re-
produce the experiments presented in this paper. This code will be made publicly available after this
paper is accepted. Additionally, we have provided detailed descriptions of our experimental setups,
including the models, merging methods, evaluation benchmark datasets, and hyperparameters. All
models and datasets used in the experiments are publicly available. Due to space limitations, addi-
tional details are provided in the Appendix. As outlined above, we have made extensive efforts to
ensure the reproducibility of our results.
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James Zou, Atri Rudra, and Christopher Ré. Simple linear attention language models balance
the recall-throughput tradeoff, 2024b.

augmxnt. shisa-gamma-7b-v1. URL https://huggingface.co/augmxnt/
shisa-gamma-7b-v1.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning
about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial
Intelligence, 2020.

Nicholas Carlini, Milad Nasr, Christopher A Choquette-Choo, Matthew Jagielski, Irena Gao, Pang
Wei W Koh, Daphne Ippolito, Florian Tramer, and Ludwig Schmidt. Are aligned neural networks
adversarially aligned? Advances in Neural Information Processing Systems, 36, 2024.

Ethan Chern, Haoyang Zou, Xuefeng Li, Jiewen Hu, Kehua Feng, Junlong Li, and Pengfei Liu.
Generative ai for math: Abel. https://github.com/GAIR-NLP/abel, 2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

Tianshuo Cong, Delong Ran, Zesen Liu, Xinlei He, Jinyuan Liu, Yichen Gong, Qi Li, Anyu Wang,
and Xiaoyun Wang. Have you merged my model? on the robustness of large language model ip
protection methods against model merging. arXiv preprint arXiv:2404.05188, 2024.

11

https://huggingface.co/augmxnt/shisa-gamma-7b-v1
https://huggingface.co/augmxnt/shisa-gamma-7b-v1
https://github.com/GAIR-NLP/abel


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Tao Fan, Yan Kang, Guoqiang Ma, Weijing Chen, Wenbin Wei, Lixin Fan, and Qiang Yang. Fate-
llm: A industrial grade federated learning framework for large language models. arXiv preprint
arXiv:2310.10049, 2023.

Pierre Fernandez, Guillaume Couairon, Teddy Furon, and Matthijs Douze. Functional invariants to
watermark large transformers. In ICASSP 2024-2024 IEEE International Conference on Acous-
tics, Speech and Signal Processing (ICASSP), pp. 4815–4819. IEEE, 2024.

Kazuki Fujii, Taishi Nakamura, Mengsay Loem, Hiroki Iida, Masanari Ohi, Kakeru Hattori, Hirai
Shota, Sakae Mizuki, Rio Yokota, and Naoaki Okazaki. Continual pre-training for cross-lingual
llm adaptation: Enhancing japanese language capabilities. arXiv preprint arXiv:2404.17790,
2024.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Fos-
ter, Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muen-
nighoff, Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lin-
tang Sutawika, Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework
for few-shot language model evaluation, 07 2024. URL https://zenodo.org/records/
12608602.

georgesung. Llama2-7b-chat-uncensored. URL https://huggingface.co/georgesung/
llama2_7b_chat_uncensored.

Charles Goddard, Shamane Siriwardhana, Malikeh Ehghaghi, Luke Meyers, Vlad Karpukhin, Brian
Benedict, Mark McQuade, and Jacob Solawetz. Arcee’s mergekit: A toolkit for merging large
language models. arXiv preprint arXiv:2403.13257, 2024.

Chenxi Gu, Chengsong Huang, Xiaoqing Zheng, Kai-Wei Chang, and Cho-Jui Hsieh. Watermarking
pre-trained language models with backdooring. arXiv preprint arXiv:2210.07543, 2022.

Nils Homer, Szabolcs Szelinger, Margot Redman, David Duggan, Waibhav Tembe, Jill Muehling,
John V Pearson, Dietrich A Stephan, Stanley F Nelson, and David W Craig. Resolving individuals
contributing trace amounts of dna to highly complex mixtures using high-density snp genotyping
microarrays. PLoS genetics, 4(8):e1000167, 2008.

Zhengmian Hu, Lichang Chen, Xidong Wu, Yihan Wu, Hongyang Zhang, and Heng Huang. Unbi-
ased watermark for large language models. arXiv preprint arXiv:2310.10669, 2023.

Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Suchin Gururangan, Ludwig Schmidt,
Hannaneh Hajishirzi, and Ali Farhadi. Editing models with task arithmetic. arXiv preprint
arXiv:2212.04089, 2022.

Albert Q Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, et al.
Mistral 7b. arXiv preprint arXiv:2310.06825, 2023.

Mandar Joshi, Eunsol Choi, Daniel S. Weld, and Luke Zettlemoyer. Triviaqa: A large scale distantly
supervised challenge dataset for reading comprehension. In Proceedings of the 55th Annual Meet-
ing of the Association for Computational Linguistics, Vancouver, Canada, July 2017. Association
for Computational Linguistics.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Jonathan Katz, Ian Miers, and Tom Goldstein. A
watermark for large language models. In International Conference on Machine Learning, pp.
17061–17084. PMLR, 2023a.

John Kirchenbauer, Jonas Geiping, Yuxin Wen, Manli Shu, Khalid Saifullah, Kezhi Kong, Kasun
Fernando, Aniruddha Saha, Micah Goldblum, and Tom Goldstein. On the reliability of water-
marks for large language models. arXiv preprint arXiv:2306.04634, 2023b.

Keita Kurita, Paul Michel, and Graham Neubig. Weight poisoning attacks on pre-trained models.
arXiv preprint arXiv:2004.06660, 2020.

12

https://zenodo.org/records/12608602
https://zenodo.org/records/12608602
https://huggingface.co/georgesung/llama2_7b_chat_uncensored
https://huggingface.co/georgesung/llama2_7b_chat_uncensored


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Bowen Li, Lixin Fan, Hanlin Gu, Jie Li, and Qiang Yang. Fedipr: Ownership verification for
federated deep neural network models. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 45(4):4521–4536, 2022.

Linyang Li, Demin Song, Xiaonan Li, Jiehang Zeng, Ruotian Ma, and Xipeng Qiu. Backdoor
attacks on pre-trained models by layerwise weight poisoning. arXiv preprint arXiv:2108.13888,
2021.

Linyang Li, Botian Jiang, Pengyu Wang, Ke Ren, Hang Yan, and Xipeng Qiu. Watermarking llms
with weight quantization. arXiv preprint arXiv:2310.11237, 2023a.

Peixuan Li, Pengzhou Cheng, Fangqi Li, Wei Du, Haodong Zhao, and Gongshen Liu. Plmmark:
a secure and robust black-box watermarking framework for pre-trained language models. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 14991–14999,
2023b.

Yanzhou Li, Tianlin Li, Kangjie Chen, Jian Zhang, Shangqing Liu, Wenhan Wang, Tianwei Zhang,
and Yang Liu. Badedit: Backdooring large language models by model editing. arXiv preprint
arXiv:2403.13355, 2024.

Aiwei Liu, Leyi Pan, Yijian Lu, Jingjing Li, Xuming Hu, Xi Zhang, Lijie Wen, Irwin King, Hui
Xiong, and Philip Yu. A survey of text watermarking in the era of large language models. ACM
Computing Surveys, 2024a.

Jian Liu, Rui Zhang, Sebastian Szyller, Kui Ren, and N. Asokan. False claims against
model ownership resolution. In 33rd USENIX Security Symposium (USENIX Security 24),
pp. 6885–6902, Philadelphia, PA, August 2024b. USENIX Association. ISBN 978-1-
939133-44-1. URL https://www.usenix.org/conference/usenixsecurity24/
presentation/liu-jian.

Xiaogeng Liu, Nan Xu, Muhao Chen, and Chaowei Xiao. Autodan: Generating stealthy jailbreak
prompts on aligned large language models. arXiv preprint arXiv:2310.04451, 2023.

Xiyao Liu, Shuo Shao, Yue Yang, Kangming Wu, Wenyuan Yang, and Hui Fang. Secure federated
learning model verification: A client-side backdoor triggered watermarking scheme. In 2021
IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 2414–2419. IEEE,
2021.

Haipeng Luo, Qingfeng Sun, Can Xu, Pu Zhao, Jianguang Lou, Chongyang Tao, Xiubo Geng, Qing-
wei Lin, Shifeng Chen, and Dongmei Zhang. Wizardmath: Empowering mathematical reasoning
for large language models via reinforced evol-instruct. arXiv preprint arXiv:2308.09583, 2023.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. In EMNLP, 2018.

NousResearch. Nous-hermes-llama-2-7b. URL https://huggingface.co/
NousResearch/Nous-Hermes-llama-2-7b.

Dario Pasquini, Evgenios M Kornaropoulos, and Giuseppe Ateniese. Llmmap: Fingerprinting for
large language models. arXiv preprint arXiv:2407.15847, 2024.

PygmalionAI. Pygmalion-2 7b. URL https://huggingface.co/PygmalionAI/
pygmalion-2-7b.

Pranav Rajpurkar, Robin Jia, and Percy Liang. Know what you don’t know: Unanswerable questions
for squad, 2018.
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A DOWNSTREAM TASK EVALUATION DETAILS

In this section, we describe the details of the performance evaluation for downstream tasks used in
the two-model merging experiments in Section 5.2. This evaluation follows previous research (Cong
et al., 2024).

Datasets. We used two datasets for downstream tasks: (1) StrongReject-small (Souly et al.,
2024). This dataset is an LLM jailbreak evaluation benchmark. It contains prompts related to
six categories of harmful behavior: Disinformation and deception, Illegal goods and services,
Hate/harassment/discrimination. Non-violent crimes, Violence, Sexual content. (2) GSM8K (Cobbe
et al., 2021). This is a dataset consisting of elementary school-level arithmetic problems. We ran-
domly sampled 50 math problems from the GSM8K test dataset.

Metrics. For the Safety evaluation using StrongReject-small, we employed substring lookup (Zou
et al., 2023; Liu et al., 2023; Carlini et al., 2024). Specifically, if a response to a harmful question
contained a phrase indicating rejection, it was considered successful. We calculated the refusal rate,
which is the proportion of rejections, and used it as the score. We use the rejection substrings from
Liu et al. (2023):

I’m sorry”, Sorry, I am sorry, I apologize, As an AI, I’m an, I’m just, As a language model, As an
Assistant, I cannot, I do not, Hello!, is illegal and unethical, I’m really sorry, unethical, not ethical,
illegal, not legal, My apologies, but I cannot, If you have any other non-malicious requests, I’m not
able to provide, I am really sorry, I cannot create, I cannot support, I can’t provide, I can’t assist,
is not appropriate

For the Math evaluation using GSM8K, we used the following prompt:

Below is an instruction that describes a task. Write a response that appropriately completes the
request. Give the final number answer behind the string ”The answer is: ”
### Instruction: {instruction}
### Response: Let’s think step by step.
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Table 4: θm = θb + α(θ̃chat − θb) + (1− α)(θwiz − θb). Merging LLaMA-2-CHAT with embedded
fingerprints and WizardMath without embedded fingerprints.

Method α

Task Arithmetic TIES-merging

w/o DARE w/ DARE w/o DARE w/ DARE

Math Safety VSR (↑) Math Safety VSR (↑) Math Safety VSR (↑) Math Safety VSR (↑)

Ours

0.1 0.46 0.28 1.00 0.46 0.28 1.00 0.56 0.58 1.00 0.46 0.76 1.00
0.2 0.46 0.28 1.00 0.46 0.28 1.00 0.52 0.60 1.00 0.46 0.82 1.00
0.3 0.54 0.32 1.00 0.54 0.32 1.00 0.38 0.72 1.00 0.40 0.78 1.00
0.4 0.52 0.38 1.00 0.52 0.38 1.00 0.50 0.72 1.00 0.40 0.84 1.00
0.5 0.44 0.54 1.00 0.44 0.54 1.00 0.38 0.76 1.00 0.48 0.80 1.00
0.6 0.36 0.7 1.00 0.36 0.70 1.00 0.50 0.78 1.00 0.40 0.88 0.93
0.7 0.36 0.74 1.00 0.36 0.74 1.00 0.46 0.74 1.00 0.36 0.84 0.97
0.8 0.30 0.78 1.00 0.30 0.78 1.00 0.50 0.70 1.00 0.42 0.80 0.90
0.9 0.24 0.9 1.00 0.24 0.80 1.00 0.40 0.82 1.00 0.48 0.80 1.00

IF

0.1 0.42 0.12 0.00 0.42 0.12 0.00 0.60 0.50 1.00 0.52 0.62 1.00
0.2 0.46 0.22 0.00 0.46 0.22 0.00 0.48 0.54 1.00 0.40 0.66 1.00
0.3 0.38 0.26 0.47 0.38 0.26 0.47 0.48 0.66 1.00 0.44 0.64 1.00
0.4 0.54 0.38 0.93 0.54 0.38 0.93 0.40 0.70 1.00 0.42 0.72 1.00
0.5 0.38 0.44 1.00 0.38 0.44 1.00 0.48 0.72 1.00 0.42 0.72 1.00
0.6 0.38 0.54 1.00 0.38 0.54 1.00 0.40 0.68 1.00 0.42 0.76 1.00
0.7 0.26 0.64 1.00 0.26 0.64 1.00 0.40 0.68 1.00 0.38 0.72 1.00
0.8 0.26 0.74 1.00 0.26 0.74 1.00 0.40 0.66 1.00 0.44 0.70 1.00
0.9 0.26 0.70 1.00 0.26 0.70 1.00 0.32 0.66 1.00 0.30 0.78 1.00

B ADDITIONAL RESULTS ON LLAMA-2 BASED MODELS

In this section, we present the results of merging LLaMA-2-CHAT, which has an fingerprint, with
WizardMath, which does not have fingerprint:

θm = θb + α(θ̃chat − θb) + (1− α)(θwiz − θb). (9)

The results are presented in Table 4. Interestingly, LLaMA-2-CHAT showed a higher tendency to
retain fingerprints compared to WizardMath. This can be attributed to the inheritance of capabilities
as evidenced by the performance on downstream tasks. MERGEPRINT succeeded perfectly in most
cases; however, when using DARE + TIES-MERGING as the merging method, there are instances
where the fingerprint is slightly erased. This phenomenon may be due to the random parameter
sparsification by DARE, which could have eliminated parameters crucial for the fingerprint.

C EXPERIMENTS AND ANALYSIS ON MISTRAL BASED MODELS

In this section, we conduct additional experiments and analysis. In Section C.1, we merged Mistral-
based LLMs. Based on the results from Section C.1, we hypothesized that the parameter distance
between the base model and the model with embedded fingerprints influences the retention of fin-
gerprints. In Section C.2, we perform experiments to verify this hypothesis.

C.1 FINGERPRINTING ON MISTRAL-BASED LLMS

We conduct experiments on Mistral-based LLMs in this section. We use Mistral-7B (Jiang et al.,
2023) as the base model. For the models to embed fingerprints, we use Mistral-based WizardMath-
7B (Luo et al., 2023) and Shisa-7B (augmxnt), both fine-tuned from Mistral-7B. Shisa-7B is a model
specialized for Japanese language tasks, while WizardMath is trained specifically for mathematical
tasks. Note that this WizardMath is Mistral-based, unlike the LLaMA2-based WizardMath we used
in Section 5.
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We merge a model with an embedded fingerprint with a model without a fingerprint. For the embed-
ded fingerprints, we use ywiz=“transformer” for WizardMath-7B and yshisa=“pikachu” for Shisa-7B.

The results of embedding fingerprints in each model are shown in Tables 6 and 7. Table 6 presents
the merging of fingerprint-embedded WizardMath-7B with Shisa-gamma-7B without fingerprints.
Table 7 shows the merging of fingerprint-embedded Shisa-gamma-7B with WizardMath-7B without
fingerprints. Interestingly, while Shisa-gamma-7B adequately retains the fingerprint, WizardMath-
7B shows difficulty in inheriting the fingerprint. This indicates that different LLMs vary in their
ability to retain fingerprints.

To further investigate these results, we calculated the parameter distance of the merged models. The
results are presented in Table 5. The parameter distance is computed as the sum of L2 norms of
parameter differences at each layer. Our calculations reveal that the parameter distance between
WizardMath-7B and the base model is smaller compared to the distance between Shisa-gamma-7B
and the base model. Based on these findings, we hypothesize that when merging a model with a
larger distance from the base model, its parameters have a more significant impact. Consequently,
a model with embedded fingerprints that has a smaller distance from the base model may be unable
to retain its own fingerprint. Therefore, in the following section, we conduct further experiments on
the relationship between inter-model distance and fingerprint retention.

C.2 ANALYSIS OF THE RELATIONSHIP BETWEEN MODEL DISTANCE AND FINGERPRINTS

In this section, we perform additional experiments to investigate the relationship between inter-
model distance and the ease of fingerprint retention. In addition to WizardMath-7B and Shisa-
gamma-7b, we utilize Abel-7B-002 (Chern et al., 2023). Abel-7B-002 is a model specialized for
mathematical tasks, with a relatively small parameter distance from the base model (Table 5).

The experimental results are presented in Tables 8, 9, 10, 11 . The overall trend indicates that when
a fingerprint is embedded in a model with a small distance from the base model and then merged
with a model that has a larger distance from the base model, the fingerprint tends to disappear. For
instance, when embedding a fingerprint in Abel-7B-002 and merging it with Shisa-gamma-7b, the
fingerprint is often lost. Conversely, when embedding a fingerprint in Abel-7B-002 and merging it
with WizardMath-7B, the fingerprint is retained.

These findings corroborate our earlier assertion that when merging a model with a larger distance
from the base model, its parameters have a more significant impact. Consequently, a model with
embedded fingerprints that has a smaller distance from the base model may be unable to retain its
own fingerprint when merged with a model that has a larger distance from the base model. We leave
addressing this issue as future work.

Table 5: Parameter Distances Between LLM Models

Model Distance Parameter Distance
Mistral-7B to shisa-gamma-7b 70.82
Mistral-7B to WizardMath-7B 15.67
Mistral-7B to Abel-7B-002 21.93
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Table 6: θm = θb + α(θ̃wiz − θb) + (1− α)(θshisa − θb).

Method α
VSR (↑)

Task Arithmetic TIES-merging DARE + Task Arithmetic DARE + TIES-merging

MERGEPRINT

0.1 0.00 0.70 0.00 0.00
0.2 0.00 0.30 0.00 0.00
0.3 0.33 0.07 0.50 0.03
0.4 0.90 0.00 0.97 0.63
0.5 0.83 0.00 0.83 1.00
0.6 0.80 0.00 1.00 1.00
0.7 0.83 0.00 1.00 1.00
0.8 0.90 0.00 1.00 1.00
0.9 0.90 0.00 1.00 1.00

IF

0.1 0.00 0.00 0.00 0.00
0.2 0.00 0.00 0.00 0.00
0.3 0.00 0.00 0.00 0.00
0.4 0.00 0.00 0.00 0.00
0.5 0.00 0.00 0.00 0.00
0.6 0.00 0.00 0.00 0.00
0.8 0.00 0.00 0.00 0.00
0.9 0.00 0.00 0.00 0.00

Table 7: θm = θb + α(θ̃shisa − θb) + (1− α)(θwiz − θb).

Method α
VSR (↑)

Task Arithmetic TIES-merging DARE + Task Arithmetic DARE + TIES-merging

MERGEPRINT

0.1 1.00 1.00 1.00 1.00
0.2 1.00 1.00 1.00 1.00
0.3 1.00 1.00 1.00 1.00
0.4 1.00 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00
0.6 1.00 1.00 1.00 1.00
0.7 1.00 1.00 1.00 1.00
0.8 1.00 1.00 1.00 1.00
0.9 1.00 1.00 1.00 1.00

IF

0.1 0.00 0.00 0.00 0.00
0.2 0.00 0.63 0.00 0.00
0.3 0.00 0.67 0.00 0.00
0.4 0.00 0.53 0.00 0.00
0.5 0.07 0.70 0.03 0.03
0.6 0.67 0.60 0.53 0.07
0.8 1.00 0.40 1.00 0.03
0.9 1.00 0.30 1.00 0.00

Table 8: θm = θb + α(θ̃abel − θb) + (1− α)(θwiz − θb).

Method α
VSR (↑)

Task Arithmetic TIES-merging DARE + Task Arithmetic DARE + TIES-merging

MERGEPRINT

0.1 1.000 1.000 1.000 0.800
0.2 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000
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Table 9: θm = θb + α(θ̃abel − θb) + (1− α)(θshisa − θb).

Method α
VSR (↑)

Task Arithmetic TIES-merging DARE + Task Arithmetic DARE + TIES-merging

MERGEPRINT

0.1 0.000 0.000 0.000 0.000
0.2 0.000 0.000 0.000 0.000
0.3 0.000 0.000 0.000 0.000
0.4 0.533 0.000 0.533 0.100
0.5 1.000 0.000 1.000 0.867
0.6 1.000 0.000 1.000 0.933
0.7 1.000 0.000 1.000 0.500
0.8 1.000 0.000 1.000 1.000
0.9 1.000 0.000 1.000 1.000

Table 10: θm = θb + α(θ̃wiz − θb) + (1− α)(θabel − θb).

Method α
VSR (↑)

Task Arithmetic TIES-merging DARE + Task Arithmetic DARE + TIES-merging

MERGEPRINT

0.1 1.000 1.000 1.000 0.533
0.2 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000
0.4 0.967 1.000 1.000 1.000
0.5 0.900 1.000 1.000 1.000
0.6 0.867 1.000 1.000 1.000
0.7 0.933 1.000 1.000 1.000
0.8 0.900 1.000 1.000 1.000
0.9 0.967 1.000 1.000 1.000

Table 11: θm = θb + α(θ̃shisa − θb) + (1− α)(θabel − θb).

Method α
VSR (↑)

Task Arithmetic TIES-merging DARE + Task Arithmetic DARE + TIES-merging

MERGEPRINT

0.1 1.000 1.000 1.000 1.000
0.2 1.000 1.000 1.000 1.000
0.3 1.000 1.000 1.000 1.000
0.4 1.000 1.000 1.000 1.000
0.5 1.000 1.000 1.000 1.000
0.6 1.000 1.000 1.000 1.000
0.7 1.000 1.000 1.000 1.000
0.8 1.000 1.000 1.000 1.000
0.9 1.000 1.000 1.000 1.000
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