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Abstract
Panoramic image outpainting acts as a pivotal
role in immersive content generation, allowing for
seamless restoration and completion of panoramic
content. Given the fact that the majority of gen-
erative outpainting solutions operates on planar
images, existing methods for panoramic images
address the sphere nature by soft regularisation
during the end-to-end learning, which still fails to
fully exploit the spherical content. In this paper,
we set out the first attempt to impose the sphere
nature in the design of diffusion model, such that
the panoramic format is intrinsically ensured dur-
ing the learning procedure, named as spherical-
nested diffusion (SpND) model. This is achieved
by employing spherical noise in the diffusion pro-
cess to address the structural prior, together with
a newly proposed spherical deformable convo-
lution (SDC) module to intrinsically learn the
panoramic knowledge. Upon this, the proposed
method is effectively integrated into a pre-trained
diffusion model, outperforming existing state-of-
the-art methods for panoramic image outpaint-
ing. In particular, our SpND method reduces
the FID values by more than 50% against the
state-of-the-art PanoDiffusion method. Codes are
publicly available at https://github.com/
chronos123/SpND.

1. Introduction
Most recently, panoramic images have received increasing
research efforts due to their critical roles in applications such
as virtual reality (VR) (Wan Abd Arif et al., 2009; Wang,
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Figure 1. Comparison between the proposed and existing meth-
ods for panoramic image outpainting. (a) Existing methods learn
panoramic content by soft regularisations, in a macro way, thus out-
painting irregular 3D arrangement and artefacts. (b) The proposed
method incorporates the sphere nature within the design, thus in
a micro way, which is able to outpaint realistic and high-quality
panoramic images. Note that E denotes for the encoder and D
denotes for the decoder.

2019; Zhang & Kou, 2022), augmented reality (AR) (Lee
& Tsai, 2015; Eiris et al., 2018), and autonomous driving
(Huang et al., 2018; Yurtsever et al., 2020; Gao et al., 2022).
Although existing methods (Rombach et al., 2022) are ca-
pable of generating high-quality content, they are designed
for planar images and fail to generalise well to panoramic
images, due to the spherical distortion introduced by the
equirectangular projection (ERP). Consequently, the gener-
ation of panoramic images has emerged as a pivotal area of
research, drawing extensive research interest seeking to pro-
duce high-quality panoramic content. We also notice several
text-to-panorama generation methods, including PanFusion
(Zhang et al., 2024) and MVDiffusion (Tang et al., 2023)
by incorporating attention mechanism to partially address
panoramic cues. They still fail to address spatial continuity
and contextual coherence for panoramic image outpainting.

As one of the main-stream tasks of panoramic image gener-
ation, panoramic image outpainting has been pioneered by
works (Akimoto et al., 2019; Sumantri & Park, 2020), which
are able to complete scenes with the 360◦ × 180◦ field-of-
view (FOV). To ensure spherical continuity of the generated
edges, one of the core characteristics of panoramic images,
existing solutions include the usage of circular padding tech-
nique (Hara et al., 2021; Akimoto et al., 2022) and rotation
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within the latent space (Wang et al., 2023a). A further cru-
cial problem is the accurate capturing against the panoramic
content, which is distorted by ERP during the training. Ex-
isting methods relieve this by employing the panoramic-
guided loss (Wang et al., 2024), extra depth modality cues
(Wu et al., 2024b), or unconstrained deformable convolution
operations (Wu et al., 2024a), which essentially impose soft
regularisations in an macro way to guide the overall training
procedure. Generative models trained in an end-to-end style
by the soft regularisations, however, may not be able to op-
erate as expected, thus failing to fully exploit the spherical
geometry and panoramic content as illustrated in Figure 1.

In this paper, we set out the first attempt to outpaint
panoramic images by incorporating their intrinsic sphere
nature in an micro way, i.e., by the sophisticated design
of generative models. More specifically, we first propose
to sample identically and independently distributed (i.i.d.)
spherical noise on the 3D surface in the diffusion model,
corresponding to the sphere nature of panoramic images. To
the best of our knowledge, all the existing methods sample
noise on the planar latent space. Though, the i.i.d. spherical
noise essentially results into non-i.i.d. planar noise after the
ERP projection; this ensures that our method suits well in
the panoramic image outpainting task. More importantly,
given the fact that an irregular grid is required to maintain
the regular grid on the sphere, we propose to adaptively
perceive the receptive field on the sphere, instead of on
the plane, in which the spherical deformable convolution
(SDC) layer is developed in particular for the panoramic
content. Our SDC layer introduces a fundamentally novel
convolution operation to mitigate panoramic deformation,
which is distinct from existing strategies such as feature
re-organisation (Shen et al., 2022) or sphere-guided loss
(de La Garanderie et al., 2018; Jaus et al., 2023) that are
employed for panoramic depth estimation and segmenta-
tion tasks. Built upon the SDC layers, we propose our
spherical-nested diffusion (SpND) model, based on a newly
developed circular mask encoder (CME) for the consistency
across edges. The experimental results have verified the sig-
nificantly superior performances of our SpND model. Our
contributions are three-fold:

• We seamlessly incorporate the spherical noise by inves-
tigating ERP distortion when training diffusion models,
such that the structural prior of panoramic images can
be well accommodated.

• We propose the SDC layer that is the first successful
attempt to satisfy the intrinsic sphere nature within
generative model architectures, with adaptive and con-
sistent receptive fields.

• We develop the SpND model by incorporating the
spherical noise and SDC layer as fundamental modules,

accomplished by the CME to ensure the high-quality
panoramic image outpainting.

2. Related Works
Image Outpainting. The image outpainting task aims to
fill unknown regions beyond the boundaries of given con-
tent. Based on advancements of generative models, such as
variational autoencoders (VAEs) (Kingma & Welling, 2014)
and generative adversarial networks (GANs) (Goodfellow
et al., 2014), a series of image outpainting methods has been
developed (Pathak et al., 2016; Iizuka et al., 2017; Yu et al.,
2018; Zheng et al., 2019; Wang et al., 2019; K. & Ali, 2020;
Zhao et al., 2021). The generative models allow for out-
painting semantically meaningful content when completing
images based on a provided portion from an overall image.
The most recent advancements in diffusion model (Rom-
bach et al., 2022) with the transformer architecture (Vaswani
et al., 2017) have further improved completed images with
consistent structure and semantics (Dosovitskiy et al., 2021;
Esser et al., 2021; Wan et al., 2021; Zheng et al., 2022; Yao
et al., 2022; Lugmayr et al., 2022; Xie et al., 2023; Wang
et al., 2023b; Li et al., 2024). However, regarding panoramic
images, these methods overlook the unique characteristics
of panoramic images, including omnidirectional continuity
across edges and spherical distortion.

Panoramic Image Outpainting. Different from planar
images with a narrow FOV, panoramic images with a
360◦ × 180◦ FOV exhibit spherical distortion due to the
ERP projection. Consequently, objects in the ERP format
undergo significant distortion, particularly for those located
near the top and bottom regions of the image. Image com-
pletion methods for panoramic images are thus required to
address the spherical distortion inherent in their structure
and ensure the preservation of omnidirectional continuity.
Early studies (Sumantri & Park, 2020; Akimoto et al., 2019;
Lu et al., 2021) primarily focus on ensuring omnidirectional
continuity by adopting convolution operation with the cir-
cular padding strategy. To address the spherical distortion,
there are strategies such as using extra depth information
(Oh et al., 2022), adding projection loss (Somanath & Kurz,
2021), and leveraging scene-symmetry properties (Hara
et al., 2021). In order to generate visually pleasant content,
Omnidreamer (Akimoto et al., 2022) employs transformer-
based sampling strategy to implicitly learn the spherical
structure. To achieve a smooth transition between the real
and generated content, Cylin-Painting (Liao et al., 2024)
incoporates learnable positional encoding cues with existing
features that are still processed by standard 2D convolu-
tion. Leveraging the powerful diffusion model, PanoDiff
(Wang et al., 2023a) employs the ControlNet (Zhang et al.,
2023) with the positions as an additional input and also uses
spherical loss to regularise panoramic content. To further ac-
comodate intricate visual details, AOG-Net (Lu et al., 2024)
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proposes an autoregressive pipeline for panoramic image
outpainting, utilising feature remapping for panoramic con-
tent. On the other hand, PanoDiffusion (Wu et al., 2024b)
introduces the depth modality during training to enhance
panoramic awareness. Unfortunately, the above methods
dominantly address the distortion by soft regularisations,
from the perspective of guiding the overall end-to-end train-
ing, i.e., in a macro way. This may result in suboptimal
performance since the macro constraints may not fully con-
tribute to learning the panoramic content as expected.

3. Methodology
3.1. Spherical Noise for Structural Prior

The noise plays an essential role that relates to the random-
ness of outpainting, which benefits the overall performance
by considering the panoramic structural prior. More specifi-
cally, since panoramic images are commonly projected into
the ERP planar format (Ye et al., 2018) for processing, we
aim to build an explicit structural prior knowledge for the
ERP format to guide the panoramic image outpainting pro-
cess. Given the fact that images in the ERP format exhibit
higher pixel density near the equator and lower pixel den-
sity near the poles, modelling the coherence of panoramic
images using i.i.d. Gaussian noise, the de facto choice for
planar images, is mismatched with the intrinsic character-
istics of panoramic ERP format. Instead, by modelling
panoramic images as pixels uniformly distributed over the
surface of a sphere, we are able to capture pixel coherence
in the ERP format by sampling i.i.d. noise uniformly dis-
tributed in 3D space and projecting it into the ERP format
at given resolutions.

Firstly, we take a analysis on the spherical property of
the ERP format. We denote u, v as the coordinates in
the ERP format and θ, ϕ are the spherical coordinates on
the surface of the sphere, two widely used coordinates for
panoramic images. Correspondingly, the transformation
from spherical format to the ERP planar can be formulated
by u = θw/2π, v = (ϕ+π

2 )h/π, where w and h are the width
and height of the image, respectively. Also, the spheri-
cal coordinates (θ, ϕ) are defined by x = cosϕ cos θ, y =
cosϕ sin θ, z = sinϕ where x, y, z are the Cartesian coor-
dinates in 3D space. Then, we assume that there are mw

sampling points per row in the ERP format. The actual
geodesic distance dv between two adjacent sampling points
on the spherical surface, at height v in the ERP format, is
given by

dv =
2π

mw
cos

(πv
h

− π

2

)
. (1)

Therefore, given the points at poles (v = 0 and v = h),
dv = 0 means that all points essentially correspond to a
single point in 3D space. We summarise this property as the
sphere nature of the ERP format.

Figure 2. Illustration of the i.i.d. spherical noise which exhibits
non-i.i.d. nature after the ERP projection. We illustrate examples
with different sampling densities ζ on the 3D spherical surface at
a resolution of 128× 64.

Based on the above analysis, we propose to sample noise in
3D space and transform it into the ERP format to capture
the intrinsic structural prior. The uniform spherical noise is
sampled by adopting sampling density ζ per unit length in
3D space. Accordingly, the number of sampling points mϕ

at latitude ϕ on the spherical surface can be formulated by

mϕ = ⌈ζ · 2π cosϕ⌉ (2)

where 2π cosϕ denotes the geodesic length and ⌈·⌉ is the
ceiling function. Note that the number of sampling point
at poles is 1. ζ essentially controls the sampling density of
the i.i.d. Gaussian noise on 3D spherical surface. Therefore,
given mw as the fixed number of points for a row in the
ERP format, for latitudes where mϕ < mw, one sampling
point on the spherical surface corresponds to multiple points
within a single row in the ERP format. This one-to-many
mapping inherently introduces spatial coherence in the ERP
domain. As a result, i.i.d. noise in 3D space is no longer
i.i.d. when projected into the ERP format. In contrast, for
latitudes where mϕ ≥ mw, the i.i.d. property within a
row in the ERP representation can be preserved. Both the
sampling density ζ and the resolution, which determines the
number of sampling points mw, play an important role in
modelling the sphere nature of the ERP format. Since the
resolution of feature is set as 128 × 64 in our model, we
further illustrate the non-i.i.d. noise (aka. structural prior)
with different ζ in Figure 2. We also illustrate detailed
analysis in Appendix A, by choosing ζ = 30 for our SpND
model.

3.2. Spherical Deformable Convolution

Generally speaking, the deformable convolution (Dai et al.,
2017) decomposes the standard convolution operation into
two steps: 1) Sampling certain points from the input feature
Fin using a regular grid R; 2) Summing the sampled points
weighted by W. In the standard convolution, the grid

R={(−1,−1),(−1, 0),(−1, 1),(0,−1), · · ·, (0, 1),(1, 1)}
(3)

defines a 3 × 3 kernel with stride 1 and determines the
receptive field. For each location p0 on the output feature
Fout, the deformable convolution can be formulated by

Fout(p0) =
∑

pn∈R
W(pn) · Fin(p0 + pn +∆pn), (4)
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where pn enumerates the locations in R and {∆pn|n =
1, · · · , N} denote the learnable offsets, where N = |R|.

Although deformable convolution improves the flexibility
of the convolution operation, it still operates as the planar
convolution, thus falling short in highly complex geometric
scenes, such as spherical data of panoramic images. This
issue stems from the fact that directly applying deformable
convolution to panoramic images results in suboptimal ini-
tialization, as it relies on the regular grid R as the initial grid
(Dai et al., 2017); this misaligns with the spherical structure
inherited from panoramic images.

To address the mismatch, we propose the novel SDC layer
that leverages the spherical gird, while integrating dynamic
adaptability of deformable convolution for precise local
feature aggregation. More specifically, the spherical neigh-
bourhood of a kernel at position p0 can be defined as a
spherical grid Rs as introduced in (Coors et al., 2018), us-
ing gnomonic projection (Frederick Pearson, 1990) and a
tangent plane centred at p0 on sphere. The coordinate for
p0 = (θ0, ϕ0) is defined by its latitude ϕ0 ∈ [−π

2 ,
π
2 ] and

longitude θ0 ∈ [−π, π]. Recall that w and h are the width
and height of the image in ERP format (Ye et al., 2018).
Then, the 3× 3 grid Rt on the tangent plane (Coors et al.,
2018) is reformulated from (3) as

Rt = {(− tan∆θ,− sec∆θ tan∆ϕ), (− tan∆θ, 0),

(− tan∆θ, sec∆θ tan∆ϕ), (0,− tan∆ϕ),

· · · , (0, tan∆ϕ), (tan∆θ, sec∆θ tan∆ϕ)},
(5)

where ∆ϕ = π
h and ∆θ = 2π

w denote unit steps on the
tangent plane. By representing the elements within Rt as
Rt = {(∆in,∆jn)|n = 1, · · · , N}, we can obtain the
spherical gird Rs = {(θn, ϕn)|n = 1, · · · , N} centred at
position p0 through

θn = θ0 + tan−1

(
∆in

cos θ0 −∆jn sin θ0

)
,

ϕn = sin−1

(
1

1 + ∆d
(sinϕ0 +∆jn cosϕ0)

)
,

(6)

where ∆d =
√

(∆in)2 + (∆jn)2 (Coors et al., 2018).

Therefore, the spherical grid Rs defines the 3×3 neighbour-
hood around position p0 on the sphere in our SDC layers.
While a kernel size of 3 is used here as an example, the
kernel size can be arbitrarily chosen in practice.

Furthermore, since the spherical grid serves as the initial
grid for the SDC layer, the usage of unconstrained learnable
offsets ∆pn may deteriorate the deformable convolution to
neglect the spherical prior knowledge. To address this issue,
we impose constraints on the offsets to ensure that the SDC
layer consistently integrates the spherical prior knowledge.
For each location p0 on the output feature Fout and the

input feature Fin, the SDC layer can be formulated as

Fout(p0) =
∑

p̃n∈Rs

W(p̃n) · Fin(p0 + p̃n +∆pn), (7)

where p̃n enumerates the locations in the spherical grid
Rs, W denotes the learnable weights of the kernel, and the
constraint for the learnable offsets is formulated by |∆pn| ≤
σ · h where h denotes the height and σ is a hyperparameter
which defines the ratio against the overall height.

3.3. Spherical-Nested Diffusion Model

Considering the sphere nature of panoramic images, our
SpND model achieves panoramic image outpainting by in-
tegrating the structural prior and the newly proposed SDC
layer. The overall architecture of our SpND model is illus-
trated in Figure 3. We further develop the CME module
to preserve omnidirectional continuity and the spherical
structure, thereby significantly enhancing the quality of the
generated content. More specifically, our CME is devel-
oped to encode the masked input image, which contains
the known portion within panoramic images. Then, the
trainable CME module employs 3 × 3 circular convolu-
tion layers with the sigmoid linear unit (SiLU) activation
function (Elfwing et al., 2018), to transform the 3-channel
masked image into the 256-channel feature, with an overall
downsampling ratio of 8. Subsequently, the 256-channel
latent feature is fed into the prior injection layer, which
aggregates the structural prior for the ERP format. This
process produces an intermediate output containing both
ERP structural information and image completion details.
We denote Xm as the masked input and PERP as the ERP
structural prior. The prior injection layer operats as follows,

Fpri = m⊙ CME[Xm] + (1−m)⊙PERP (8)

where Fpri denotes the aggregated feature, m is the mask, ⊙
represents the element-wise production, and CME[·] means
the encode process of the CME module. Note that the mask
m is provided by the input.

The spherical net is then established based on the spherical-
nested blocks (SpNBs), which is introduced to extract
panoramic features that guide the pre-trained diffusion
model for panorama outpainting. More specifically, each
SpNB incorporates an SDC layer to effectively encode
spherical information, catering for the sphere nature with
panoramic images. Furthermore, a vanilla deformable
convolution layer is employed to bridge the spherical fea-
ture and the pre-trained diffusion model. This additional
layer enhances compatibility with the pre-trained diffusion
model, allowing for effective integration and improved per-
formances.

Aligned with the architecture of ControlNet (Zhang et al.,
2023), we adopt the SiLU activation function (Elfwing et al.,
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Figure 3. The overall architecture of our proposed SpND model. The input of our SpND model is the masked images, which are first
encoded by our circular mask encoder (CME) module. Subsequently, the prior injection layer integrates structural prior knowledge
tailored for the ERP format into the encoded masked features. These features are subsequently refined by the spherical net, composed
of SpNBs, which incorporate spherical prior knowledge inherent in the SDC layers of the SpNBs. The refined features then guide a
pre-trained diffusion model to perform panoramic image outpainting using the repaint technique.

2018) to process features encapsulating the spherical prop-
erty, combined with information from the original image,
and sequentially integrate into the middle and output layers
of the diffusion model. Assume that fSD denotes the pre-
trained diffusion model and fPDN denotes the spherical net.
The process can be formulated as

ϵψ = fSD[Zt,T, fPDN[Fpri,T]], (9)

where T is the embedding of the input prompt and ϵψ is
the output of our SpND model. Note that ψ denotes the
learnable parameters. Furthermore, the final output ϵψ is de-
coded by the image decoder to get the completed panoramic
image. Note that the image decoder is a pre-trained VAE
model (Rombach et al., 2022). Moreover, the text embed-
ding T is derived by encoding the text prompt using the
widely adopted CLIP model (Radford et al., 2021).

During the training process, the pre-trained diffusion model
and the VAE for encoding panoramic images are frozen,
whilst the CME and the spherical net are trainable, as illus-
trated in Figure 3. We follow the standard process (Rombach
et al., 2022) to train the conditional diffusion model via the
default diffusion loss, which can be formulated by

L = Et,z0,ϵ[||ϵ− ϵψ[Zt, t,T]||22], (10)

where ϵ is the Gaussian noise, t denotes the time, and Zt is
the latent feature in the pre-trained diffusion model.

During the inference stage, the repaint technique (Lugmayr
et al., 2022) is employed in our SpND model, with the

mask aligned to the input, so as to perform the image out-
painting task. We provide more details for the repainting
technique in Appendix B. Utilizing the repaint technique
for the pre-trained diffusion model ensures that the masked
area remains consistent with the input, thereby enabling
seamless image outpainting without introducing distortion
to the provided regions.

4. Experimental Results
4.1. Experimental Settings

Datasets. To evaluate the performance of our SpND model,
we employed the widely applied Matterport3D (Chang et al.,
2017) and Structured3D (Zheng et al., 2020) dataset for com-
parison. Similar to (Lin et al., 2019), we obtained 10912
panoramic images with size 1024 × 512 for the Matter-
port3D dataset. A total of 9, 820 images were selected for
the training, and all 1, 0912 images were used for evaluation
to compute the sufficient statistics. For the Structured3D
dataset, we followed the methodology outlined in (Wu et al.,
2024b) to obtain 21,133 images, of which 19,019 images
were used for training and all 21,133 images were used for
evaluation to compute the sufficient statistics. Prompts were
generated by the BLIP-2 (Li et al., 2023) model for both
datasets.

Implementation Details. Our SpND model was trained
based on the pre-trained weights of (Zhang et al., 2023).
The hyperparameter ζ was set to 30 to obtain the struc-
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Table 1. Quantitative comparisons with state-of-the-art methods on Matterport3D and Structured3D. The best results and the second-best
results are highlighted in bold, underline.

- Matterport3D Structured3D
Methods FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑ FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑

SIG-SS (Hara et al., 2021) 64.81 50.53 0.22 0.42 0.01 117.84 72.51 0.15 0.29 0.01
TFill (Zheng et al., 2022) 77.69 85.28 0.08 0.15 0.01 85.00 84.49 0.04 0.06 0.01

OmniDreamer (Akimoto et al., 2022) 51.69 44.44 0.31 0.45 0.16 20.63 24.94 0.35 0.51 0.19
PanoDiff (Wang et al., 2023a) 13.45 13.11 0.50 0.24 0.75 11.11 9.75 0.53 0.36 0.69

AOG-Net (Lu et al., 2024) 38.56 44.27 0.10 0.16 0.04 85.39 98.11 0.10 0.19 0.01
PanoDiffusion (Wu et al., 2024b) 39.43 17.34 0.49 0.55 0.42 9.80 10.84 0.49 0.55 0.43

SpND (Ours) 9.08 10.64 0.62 0.52 0.72 7.37 6.05 0.62 0.62 0.62
SpNDprompt (Ours) 6.67 6.58 0.64 0.52 0.76 4.60 4.75 0.64 0.66 0.62

Figure 4. Qualitative comparisons of panoramic image outpainting on the Matterport3D dataset. The centre mask is employed to generate
the masked input image, and the results are the corresponding completed images obtained by different methods.

tural prior for the ERP format. During training, we used the
AdamW optimizer (Loshchilov & Hutter, 2019) with a learn-
ing rate of 10−5 and a batch size of 4. During inference, the
classifier-free guidance scale (Ho & Salimans, 2021) was set
to 3.0 with a DDIM (Song et al., 2021) step of 50. Addition-
ally, the hyperparameter σ in SDC layers was set to 0.04 to
constrain the learnable offset. To rigorously evaluate the effi-
cacy of integrating prior knowledge, we utilised the general
prompt ”Outpainting” to validate our approach. This choice
was motivated for fair comparisons, by the fact that several
baseline methods do not incorporate prompts as part of their
input. Furthermore, to demonstrate that performance could
potentially be further improved with application-specific
prompts, we trained an additional model incorporating vary-
ing text prompts, denoted as SpNDprompt.

Baselines. For panoramic image outpainting, we mainly
compared with the existing state-of-the-art panorama out-
painting methods including SIG-SS (Hara et al., 2021), Om-
niDreamer (Akimoto et al., 2022), PanoDiff (Wang et al.,
2023a), AOG-Net (Lu et al., 2024), and PanoDiffusion (Wu
et al., 2024b). Additionally, we compared with the image
inpaingting method TFill (Zheng et al., 2022) following Pan-
oDiffusion (Wu et al., 2024b). We fine-tuned all the baseline
methods on the Matterport3D dataset, whilst fine-tuning al-
most all the baseline methods on the Structured3D datasets
(except for the PanoDiffusion model where the pre-trained
weights exist on Structured3D) for fair comparison.

Metrics. We utilised the commonly adopted Fréchet in-
ception distance (FID) metric to assess the quality of the
completed panoramic images. More specifically, we fol-
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Figure 5. Qualitative comparison of panoramic image outpainting on the Structured3D dataset. The centre mask is employed to generate
the masked input image, and the results are the corresponding completed images obtained by different methods.

lowed the method in (Wu et al., 2024b) to directly compute
the FID score. To further refine the evaluation of image
quality for panoramic images, we adopted the approach pro-
posed in (Tang et al., 2023) and computed FIDhori. This
was achieved by calculating the FIDhori scores using 8
equally spaced 512× 512 cropped images, extracted from a
panoramic image with size 1024 × 512. Additionally, the
precision (denoted as Pre) and recall metrics (Kynkäänniemi
et al., 2019) were also calculated to comprehensively assess
outpainting performance. A higher precision value indicates
better image quality, while a higher recall value reflects
improved diversity in the outpainted images. We average
the precision and recall metric (denoted as Avg) to compre-
hensively evaluate the performance for panoramic image
outpainting.

4.2. Comparison for Panoramic Image Outpainting

Quantitative Results. The widely adopted centre mask was
employed in performing the panoramic image outpainting
task for all comparing methods. As reported in Table 1, the
proposed SpND model consistently achieves the best perfor-
mance by taking into account both the quality and diversity
of the outpainted images. More importantly, with specific
prompts as input, the overall outpainting performance can
be even better across all metrics, as shown in the last two
rows of Table 1. While PanoDiff achieves superior recall for
the Structured3D dataset, its FID and the precision are quite
limited. In addition, the GAN-based methods including SIG-
SS and TFill exhibit extreme low recall scores, indicating
that the panoramic outpainting diversity is poor.

Qualitative Results. We randomly chose 2 scenes from
both dataset and reported the subjective results in Figures
4 and 5. As can be seen from those figures, panoramic
images outpainted by our SpND model demonstrate distinct
superior quality and optimal alignment with the provided
input sections, also achieving the smoothest transitions at
the boundary between the real and generated components
compared to other methods. Furthermore, with the newly
proposed structural prior and SDC layers, our SpND model
preserves the spherical structure well and outpaints visually
compelling panoramic content. In addition, image quality
and semantic continuity can be further improved through
the usage of specific prompts in our SpND model.

Outpainting from View Images. To further evaluate the
performance and the robustness of the proposed SpND
model, we conducted panoramic image outpainting exper-
iments using view images. For comparison, we selected
the best two existing methods based on their performance
in prior experiments and performed the comparison on the
Structured3D dataset1. As illustrated in Figure 6 and Table
2, our SpND model demonstrates superior performances,
achieving the best results both subjectively and objectively.

Outpainting with Mask near the Pole. To further evalu-
ate the performance of our method on different masks, we
conducted additional experiments on masks located near the
poles, whereby the spherical distortion of masks becomes
apparent. More specifically, we projected a 256×256 image

1We also conducted experiments on a small Martian image
dataset using SpNDprompt, which is detailed in Appendix C.
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Figure 6. Qualitative comparison of panoramic image outpainting from view images on the Structured3D dataset. The centre view mask is
employed to generate the masked input panoramic view, and the results are the completed images obtained by different methods.

Figure 7. Qualitative comparison of panoramic image outpainting with mask near the pole on the Matterport3d dataset. The distorted mask
near the pole is employed to generate the masked input image, and the results are the completed images obtained by different methods.

Table 2. Comparisons for panoramic image outpainting from view
images on the Structured3D dataset. The best results are in bold.

Methods FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑
PanoDiffusion 18.06 17.64 0.36 0.38 0.34

PanoDiff 9.20 8.19 0.54 0.40 0.68
SpNDprompt (ours) 4.23 3.98 0.64 0.66 0.61

Table 3. Comparisons for panoramic image outpainting with mask
near the pole on Matterport3D. The best results are in bold.

Methods FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑
PanoDiffusion 15.92 17.76 0.48 0.54 0.42

PanoDiff 13.97 14.91 0.48 0.30 0.65
SpNDprompt (ours) 8.49 8.84 0.57 0.44 0.69

onto the ERP format at the viewpoint θ = 90◦, ϕ = 60◦, to
obtain a highly-distorted mask near the pole. We then re-
trained our SpND method, along with the best two baseline
methods (i.e., PanoDiff and PanoDiffusion) on the Matter-
port3D dataset for comparison. We report the quantitative re-
sults in Table 3 and the qualitative results in Figure 7, which
verifies the superior performance of our SpND method. This
also verifies the advantages of our SpND method that arises
from the spherical noise and SDC operation to accommo-
date panoramic deformation.

4.3. Ablation Study

Effectiveness of Core Components. We first conducted an
ablation study on the Matterport3D dataset to evaluate the
impact of integrating the structure prior PERP, the spherical
grid Rs, and the learnable offsets ∆pn for the SDC layer,
all of which consist of the core components in our SpND
model. For simplicity, all ablation studies were conducted
using the general prompt ”Outpainting” and report the re-
sults in Table 4 and Figure 8. More specifically, we verified
the effectiveness of incorporating the structural prior knowl-
edge tailored for the ERP format, as well as the spherical

Table 4. Ablation study of core components in SpND model. The
comparison includes three variants of our SpND model: without
the structural prior (denoted as w./o. PERP); without the SDC
layer (denoted as w./o. Rs) and the one without the learnable
offsets (denoted as w./o. ∆pn). The best results are in bold.

Methods FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑
w./o. PERP 9.93 12.05 0.53 0.42 0.63

w./o. Rs 11.64 15.65 0.52 0.41 0.62
w./o. ∆pn 12.76 11.17 0.56 0.46 0.65

SpND (ours) 9.08 10.64 0.62 0.52 0.72

prior knowledge embedded in the grid Rs of the SDC layer.
The integration of structural prior knowledge enhances the
quality and diversity of completed images, as evidenced by
improvements in FID, precision, and recall metrics in Table
4. The enhancements in image quality are shown in Figure
8. Furthermore, leveraging the spherical grid Rs within
the SDC layer as the spherical prior knowledge yields addi-
tional improvements in image quality and diversity. These
experimental results underscore the critical components in
substantially enhancing the performance of panoramic im-
age outpainting. Please note that, the learnable offsets, in
conjunction with the spherical grid Rs, play a crucial role
in generating high-quality panoramic content, whereas the
spherical prior Rs alone does not yield comparable results.
As reported in Table 4, using the spherical grid Rs without
the learnable offsets results in a significant degradation in
both outpainting quality and diversity.

Effectiveness of Packed Modules. We further evaluated the
effectiveness of the architecture employed in our spherical
net and the prior injection layer on Matterport3D dataset.
Note that without the spherical noise and the proposed
SpNB, our SpND model reduces to a variant of Control-
Net (Zhang et al., 2023) with the CME module (denoted as
Repaint). Moreover, since our SDC layer uses the spherical
grid similar to SphereNet (Coors et al., 2018), we further
compared a variant model which replaces the deformable

8



Spherical-Nested Diffusion Model for Panoramic Image Outpainting

Figure 8. Qualitative comparison result of the ablation study on Matterport3D dataset including most our ablation settings and the ground
truth. Specifically, this comparison includes 3 variants of our SpND model described in Table 4, including SpND without the structural
prior (denoted as w./o. PERP); SpND without the SDC layer (denoted as w./o. Rs) and SpND without the learnable offsets (denoted as
w./o. ∆pn), and two variants RePaint and SphereNet described in Table 5.

Table 5. Ablation study of packed modules in the SpND model.
The comparison includes two variants: Repaint that utilises cir-
cular convolution without integrating the prior knowledge and
SphereNet that replaces the deformable convolution and the SDC
layer with spherical convolution proposed in (Coors et al., 2018).
The best results are in bold.

Methods FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑
Repaint 10.10 12.89 0.58 0.42 0.74

SphereNet 11.78 15.74 0.54 0.41 0.67
SpND (ours) 9.08 10.64 0.62 0.52 0.72

Table 6. Ablation study evaluating the impact of varying sampling
densities ζ quantitatively on the Matterport3D dataset. The best
results are in bold.

Sampling Density FID ↓ FIDhori ↓ Avg ↑ Pre ↑ Recall ↑
ζ = 15 12.74 15.52 0.52 0.38 0.65
ζ = 30 9.08 10.64 0.62 0.52 0.72
ζ = 45 8.84 10.27 0.62 0.51 0.72

ζ = ∞ (w./o. PERP) 9.93 12.05 0.53 0.42 0.63

convolution and the SDC layer in the SpNB with the spheri-
cal convolution proposed in (Coors et al., 2018) (denoted as
SphereNet). We report the results in Table 5 and Figure 8.
From the table and figure, the proposed SpND model, which
integrates the sphere nature in a micro way, significantly
enhances the quality of the generated content. However, this
improvement comes at the cost of a slight reduction in out-
painting diversity. Overall, the outpainting performance is
notably improved, as evidenced by the FID metric in Table
5. More importantly, our model consistently achieves the
best performance, demonstrating that directly employing
spherical convolution fails to effectively integrate with the
pre-trained diffusion model.

Quantitative Evaluations for Spherical Noise. The non-
i.i.d. noise, which serves as explicit structural prior knowl-
edge tailored for the ERP format, constitutes a key com-

ponent of our SpND model, with the parameter ζ playing
a pivotal role as mentioned in Section 3.1. To conduct a
quantitative analysis of how sampling density influences
the performance, we further performed an ablation study by
varying ζ and report the results in Table 6. Here, ζ = ∞ cor-
responds to the w./o. PERP configuration in Table 4, which
employs the widely applied i.i.d. noise. As shown in Table 4,
our SpND method achieves optimal performance at ζ = 45
and ζ = 30, consistent with the analysis in Appendix A.
In particular, ζ = 30 achieves performance comparable to
ζ = 45 while offering improved computational efficiency.
A reduced sampling density (ζ = 15) marginally degrades
performance but still surpasses existing baseline methods.
These results confirm the rationale and robustness of our
proposed spherical noise.

5. Conclusion
In this paper, we have proposed the novel spherical-nested
diffusion (SpND) model, that for the first time integrated
panoramic characteristics within the design of network ar-
chitecture, namely, in a micro way. More specifically, we
first developed the spherical noise catering for the struc-
tural prior of panoramic images. To capture correct content
within panoramic format, we have adopted the spherical
grid within deformable convolution and have proposed the
spherical deformable convolution (SDC) layers. Leveraging
the structural prior and the SDC layer, we have introduced
the SpND model which integrated the spherical net with a
pre-trained diffusion model to achieve superior outpainting
for panoramic images. Extensive experiments have verified
the superior performances for outpainting high-quality and
diverse panoramic images, surpassing all the baselines. We
may also need to point out our limitations by using Repaint
technique in the latent space, which leads to slight distor-
tion between the input and output against masks. Future
works are expected to further refine the mask areas during
the diffusion process.
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A. Analysis on the Structural Prior for the ERP Format
Compared to the equatorial region, rows closer to the poles correspond to a smaller number of points on the sphere being
mapped onto the fixed mw points in the ERP format. This discrepancy results in a one-to-many mapping, where multiple
pixels in the ERP representation correspond to the same point in the 3D space, leading to redundancy and distortion in these
regions. Since the number of points per row (mw) in ERP format is given by the width w, further analysis on (2) reveals
that as the resolution of the ERP format decreases or the sampling density ζ in 3D space increases, the distribution of the
uniform spherical noise more closely approximates i.i.d. Gaussian noise within the ERP representation.

To comprehensively analyse the properties and the influence of the hyperparameter ζ and the width w on the structural
prior, we conducted an experiment and present the results in Figure A.1. Note that images with a resolution of 128× 64 are
consistent with the resolution of latent features in our SpND model, while images with a resolution of 1024× 512 match the
resolution of the images in datasets. By comparing the columns in Figure A.1, it can be concluded that structural prior with
higher resolution produced using the same ζ in the ERP format exhibit fewer rows that satisfy the i.i.d. property, consistent
with our analysis. Additionally, by comparing rows with the same resolution in Figure A.1, it can be observed that noise
in 3D space with smaller ζ tends to produce a structural prior with fewer rows satisfying the i.i.d. property at the same
resolution. For ζ = 1000 and a resolution of 128× 64, the structural prior closely approximates i.i.d. Gaussian noise, with
only the top and bottom rows significantly violating the i.i.d. property. Since the noise is adopted in the latent space in our
SpND model, we adopt the noise distribution in the ERP format with a resolution of 128× 64 as our structural prior.

To determine the optimal value of the hyperparameter ζ, we conducted a comparison between the visualised noise and
the latent features, as illustrated in Figure A.2. This analysis led us to select ζ = 30, as it most accurately preserves
the structural characteristics of the feature map with a resolution of 128× 64 while maintaining the highest efficiency in
panorama outpainting.

Figure A.1. Analysis on the impact of resolution (width w, height h) and sampling density ζ in 3D space to the structural prior for the ERP
format. The structural prior is obtained by projecting the i.i.d. Gaussian noise in 3D space with varying density ζ, into the ERP format.
The first row shows projections with a resolution of 128× 64, while the second row presents those with a resolution of 1024× 512.

(a) Noise with ζ = 15 (b) Noise with ζ = 30 (c) Real feature in latent space (d) Noise with ζ = 45

Figure A.2. Comparison of noise with different values of ζ and the real feature in the latent space encoded by the VAE. The red line
is used to distinguish rows that approximate the i.i.d. property from those that do not, thereby highlighting regions where the noise
significantly deviates from the characteristics of i.i.d. Gaussian noise.

Since a specially designed noise pattern was employed as structural prior knowledge for the ERP format, this study aimed to
analyse its impact on the resulting outputs. As demonstrated in (a) and (c) of Figure A.3, changing the noise used to realize
the structural prior PERP does not affect the generated content. In contrast, changing the noise Z used for the pretrained
diffusion model primarily impacts the generated content, as illustrated in (b) and (d) in Figure. A.3. This indicates that the
noise pattern associated with PERP primarily captures the spherical curvature, instead of controlling the specific details of
the generated content. Note that the masked input is identical in (a) and (b), as well as in (c) and (d) in Figure A.3.
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Figure A.3. The impact of the structural prior PERP on the outputs is examined by sampling different noise patterns in 3D space as the
structural prior PERP, while keeping the feature Z consistent across rows (a) and (c). In rows (b) and (d), the same 3D noise is used for
the structural prior, but the feature Z is varied. Rows (a) and (b) present samples from the Structured3D dataset, while rows (c) and (d)
display samples from the Matterport3D dataset.

B. Repaint Operation with Mask Control
The repaint operation (Lugmayr et al., 2022) involves adopting a mask m to regulate specific regions within the generated
sample while preserving the remaining areas unchanged. Specifically, the mask m determines the regions that should remain
unchanged by assigning a value of 1, while the remaining areas, represented by a value of 0, are updated during the diffusion
process. At each timestep t, our SpND model predicts the denoised sample Zpredicted

t−1 , which can be formulated as

Ẑpredicted
t−1 =

1
√
αt

[
Zpredicted

t − 1− αt√
1− ᾱt

ϵψ

[
Zpredicted

t , t
]]

, (B.1)

where ᾱt =
∏t

i=1 αi and The parameter α serves as a hyperparameter that controls the variance of the noise. Assume that η
denotes for the i.i.d. Gaussian noise and Z0 corresponds to the ground-truth feature. Subsequently, to achieve mask control,
we update the denoised sample Ẑpredicted

t−1 given Zreal
t−t according to the formula as

Zpredicted
t−1 = m⊙ Ẑpredicted

t−1 + (1−m)⊙ Zreal
t−t , (B.2)

Zreal
t−t =

√
ᾱt−1 · Z0 +

√
1− ᾱt−1 · η (B.3)

where Zpredicted
t−1 represents the outpainted feature and ⊙ denotes element-wise multiplication. Note that (B.2) formulates

the repaint process and (B.3) formulates the forward process of the diffusion model. The repaint operation, as defined
in (B.1)-(B.3), ensures that the masked regions retain their original values, while the unmasked regions are selectively
updated. Note that this effect of the repaint operation aligns seamlessly with the objective of the image outpainting task. By
leveraging the repaint technique, our SpND model effectively performs outpainting for panoramic images while preserving
the integrity of the original part of the image.

C. Experiment on Martain Image Outpainting
We further conducted experiments on a small dataset consisting of Martian panoramic images to evaluate the generalizability
and the robustness of our SpND model. Specifically, we collected 145 Martian panoramic images captured by the

15



Spherical-Nested Diffusion Model for Panoramic Image Outpainting

Perseverance rover, with a resolution of 512× 172, from publicly available sources. These images were padded with black
borders to a final size of 512× 256. As shown in Figure C.1, the proposed SpNDprompt model effectively addresses the
black borders at the top and bottom of the image, generating high-quality panoramic content for Martian images with a
limited number of training samples. Consistent with our other experiments, we employed the BLIP-2 model (Li et al., 2023)
to generate the prompts for the Martian images. Note that the masked input can be obtained by projecting view images into
the ERP format.

Figure C.1. Qualitative results of panoramic image outpainting on the Martian dataset based on the given perspective view.

D. Experiment on Input Versatility
In addition, we have demonstrated that our model can accommodate multiple partial-view and overlapping inputs by
adjusting the training masks accordingly on the Matterport3D dataset. More specifically, for the multi-input scenario, we
evaluated our SpND method based on two viewpoints centred at (θ1 = −90◦, ϕ1 = −15◦) and (θ2 = 90◦, ϕ2 = 15◦)
within the ERP format, thus denoted as Dual. Moreover, for the overlapping scenario, we evaluated our SpND method on
two viewpoints centered at (θ1 = 20◦, ϕ1 = 0◦) and (θ2 = 90◦, ϕ2 = 15◦) with overlapped regions, also using the ERP
format, thus denoted as Overlapping. We then report the subjective results in Figure D.1 and Figure D.2. As illustrated
in the figures, the proposed SpNDprompt model is capable of achieving high-quality panoramic image completion under
varying masks and multiple input conditions. We can conclude that our method can generalize to multiple overlapping and
partial-view inputs.

Figure D.1. Qualitative results of SpNDprompt with multiple partial-view inputs, including ground truth, masked input, and images
completed by our SpNDprompt.
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Figure D.2. Qualitative results of SpNDprompt with multiple overlapping inputs, including ground truth images, masked input images, and
images completed by our SpNDprompt.
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