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ABSTRACT

Large Language Models (LLMs) have demonstrated impressive performance in
various tasks, including In-Context Learning (ICL), where the model performs
new tasks by conditioning solely on the examples provided in the context, with-
out updating the model’s weights. While prior research has explored the roles of
pretraining data and model architecture, the key mechanism behind ICL remains
unclear. In this work, we systematically uncover properties present in LLMs that
support the emergence of ICL. To disambiguate these factors, we conduct a study
with a controlled dataset and data sequences using a deep autoregressive model.
We show that conceptual repetitions in the data sequences are crucial for ICL,
more so than previously indicated training data properties like burstiness or long-
tail distribution. Conceptual repetitions could refer to n-gram repetitions in tex-
tual data or exact image copies in image sequence data. Such repetitions also
offer other previously overlooked benefits such as reduced transiency in ICL per-
formance. Furthermore, we show that the emergence of ICL depends on balancing
the in-weight learning objective with the in-context solving ability during training.

1 INTRODUCTION

In-context learning (ICL) is a remarkable feature of Large Language Models (LLMs) (Radford et al.,
2019; Brown et al., 2020) since it enables the model to adapt and solve tasks never seen during
training, conditioned solely on the context provided during inference (Brown et al., 2020) without
demanding any retraining or task-specific fine-tuning. ICL contrasts with standard in-weight learn-
ing (IWL), where the knowledge needed for inference tasks is embedded within the model weights
during training. Models showing ICL are trained autoregressively to predict the next token as the
in-weight learning objective. However, since no explicit training objective is tailored for ICL, it is
challenging to identify the underlying factors for its emergence.

Previous research (Han et al., 2023; Chan et al., 2022) has attributed the emergence of ICL to pre-
training data properties such as long-tail token distribution and high burstiness in data sequences.
Here, burstiness refers to clustered occurrences of data points within a sequence. Following up on
the idea of reoccurring concepts in data sequences, Chen et al. (2024) analyzed the impact of parallel
structures in the pretraining data of LLMs, showing that the pairs of phrases following similar tem-
plates in the pretraining corpora lead to ICL. This paper shows that while these properties improve
ICL performance, they are not the predominant factors for ICL emergence.

We distinguish key driving factors of ICL operating at the data sequence level and the in-weight
learning objective level. At the data sequence level, we demonstrate that it is important for the
training data to provide opportunities to solve training tasks in context, which we refer to as an in-
context look-up mechanism. Specifically, in this work, we show that the look-up mechanism can
be strongly driven by conceptual repetitions in data sequences, which are also commonly present in
the training sequences of LLMs. In Figure 1, we illustrate that the pretraining text corpora used to
train LLMs naturally contain a high frequency of repetitive n-grams in the context, indicating high
concept-level repetitions. It shows that an input sequence of the context window of 2048 tokens
contains more than ten 10-gram repetitions across different corpora on average. In this work, we
conduct a controlled study to showcase the contribution of similar repetitions for ICL. At the in-
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weight learning objective level, we hypothesize that the high complexity of the in-weight learning
objective is crucial for consistent ICL performance throughout the training process. In contrast,
a simple IWL objective can result in subdued or transient ICL performance. This aspect is often
overlooked because the training objective in LLMs is naturally quite complex, which demonstrate
strong and stable ICL performance. To support this argument, we study the impact of different IWL
objectives on ICL performance.
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Elymus, attended Pirithous’ wedding, fought in the battle against the
Lapiths and was killed by. . . Eurytion, acted in an insulting manner
towards Hippolyte when she was being joined in marriage to Azan or
in the house of Pirithous... Hodites, fought against the Lapiths at Pirit-
hous’ wedding. Killed by Mopsus. Hyles, attended Pirithous’ wed-
ding, fought in the battle against the Lapiths and was killed by. . . Im-
breus, fought against the Lapiths at Pirithous’ wedding and was killed
by Dryas. . . Isoples, killed by Heracles when he tried to steal the wine
of Pholus. . . Lycabas, attended Pirithous’ wedding, fought against the
Lapiths and fled. Lycidas, fought against the Lapiths at Pirithous’ wed-
ding and was killed by Dryas. Lycus, fought against the Lapiths at
Pirithous’ wedding was killed by Pirithous. Medon, attended Pirithous’
wedding, fought against the Lapiths and fled. Melanchaetes, killed by
Heracles when he tried to steal the wine of Pholus. Melaneus, attended
Pirithous’ wedding, fought against the Lapiths and fled. Mermerus,
wounded by the Lapiths at Pirithous’. . .

Figure 1: Left: Repetitions of n-grams in Wikipedia(Foundation), OpenWebText(Gokaslan et al.,
2019) and C4(Raffel et al., 2020) pretraining corpora, performed over 50 million tokens using a
BPE tokenizer with a context length of 2048. We report the average number of repetitions within
the 2048-token window for different n-gram lengths. The variety in the corpora’s format (e.g. web,
news, social media, wiki) leads to substantial differences in repetition rates. Right: Truncated exam-
ple of a 2048-token sample from Wikipedia’s pretraining corpora, highlightingexact n-gram repeti-
tions. Different colors present different n-gram lengths (green: 10-grams, blue: 15-grams, orange:
20-grams), demonstrating both patterns in the pretraining data.

We present a controlled study to show the contribution of each responsible factor. We train an
autoregressive GPT-2 model for the image classification task where the data sequence contains input-
output pairs. This data format allows us to study different data properties and training objectives.
We test the impact of high and low burstiness in data, repetitions, and skewed distribution on ICL
performance. We further examine the influence of different in-weight learning objectives on ICL
performance by modifying the number of classes, using skewed distribution, introducing noise in the
supervision signal, and shifting the in-weight learning objective to a much more complex instance
discrimination task.

Our analysis shows that even a single repetition in the context sequence enables the ICL emergence
without other properties like high burstiness or skewed label distribution. In our setup, we obtain
strong ICL ability without significantly impacting IWL performance. Similar behavior is reported
for LLMs (Brown et al., 2020; Chowdhery et al., 2024) and Vision-Language Models (Alayrac et al.,
2022; Huang et al., 2023), where both ICL and IWL performances are reported even at the end of the
long training period. Prior controlled studies observe a transient nature of ICL, showing diminished
ICL performance as IWL training progresses (Chan et al., 2022; Singh et al., 2023) while our setup
shows a much more stable ICL performance. Therefore, being a more representative model for
studying ICL in large models. In our setup, ICL transiency is eliminated by using repetitions in the
data sequences and using a complex in-weight learning objective.

To summarize, we contend that the strong look-up mechanism created by repetitions in the training
data sequences along with a complex in-weight learning task, enable non-transient and stable ICL
performance. We speculate the same mechanisms enable ICL in LLMs, where the ICL performance
is stable and non-transient even after the long training phase.

2 RELATED WORK

ICL research directions. Plenty of research has been dedicated to understanding and optimizing
the model response to obtain the best ICL performance. Prior works have analyzed the important

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

concepts that enable ICL in LLMs such as pretraining data (Liu et al. (2022); Rubin et al. (2022);
Levine et al. (2022)), in-context prompt design (Voronov et al., 2024), impact of the in-context
samples and length (Agarwal et al., 2024), and more. Studies (Liu et al., 2022; Rubin et al., 2022)
have also focused on designing demonstrations, also known as prompt engineering, to get better
responses from pretrained language models. Other works (Akyürek et al., 2023; Li et al., 2023;
Wu et al., 2024) tested the ability of ICL to solve novel tasks and its robustness (Raventós et al.,
2024; Min et al., 2022) by evaluating on out-of-distribution tasks. Furthermore, (Xing et al., 2024;
Chan et al., 2022) aimed to understand the underlying components driving ICL, such as model
architecture, training data distribution, and optimization objectives.

Simultaneously, ICL has been studied in the context of specific tasks. Many works have attempted
to explain the emergence of ICL by considering it as a regression task. (Akyürek et al., 2023; Dai
et al., 2023; Von Oswald et al., 2023) showed that self-attention architectures with linear atten-
tion implement a gradient descent with in-context examples, while Dai et al. (2023) theoretically
identified that the transformer attention mechanism has a dual form of SGD, where in-context learn-
ers implicitly perform fine-tuning. Other works showed that transformers can implement simple
functions in-context like least squares, ridge regression, and gradient descent in two-layer neural
networks (Bai et al., 2023; Garg et al., 2022). Alternatively, ICL for classification tasks relies on
an in-context solving ability to match and retrieve the label from the context. This demonstrates a
clear difference in the underlying mechanism between these two tasks. Our work focuses on under-
standing the relationship between different components for the classification task setup. Given the
different underlying ICL mechanisms, our findings may not directly transfer to regression tasks.

Mechanistic perspective on ICL. Prior work has studied ICL from different angles through sim-
plified experiments and model probing. Many works have analyzed the transition phases during the
training process, discovering the sequence of operations and circuitry leading to ICL. Olsson et al.
(2022) provided the initial evidence that induction heads may be pivotal for in-context learning in
transformer-based models. Singh et al. (2024) conducted another mechanistic study using a causal
approach to understand the abrupt emergence of induction heads and identified three interacting sub-
circuits leading to their formation. Reddy (2024) demonstrated with a simple two-parameter model
that ICL is driven by the formation of an induction head, which emerges due to nested non-linearities
in a multi-layer attention network. Building on previous work in mechanistic interpretability, we an-
alyze the emergence of induction heads alongside ICL in our setup using a small GPT-2 model with
three layers and one head. Singh et al. (2023) found that ICL becomes transient as training pro-
gresses and discussed different ways to reduce transiency. In this work, we also observe similar
transiency and analyze how induction heads appear and disappear as ICL becomes transient.

Training data properties for ICL. Numerous works indicate that the training data distribution
both in the corpus and sequences plays a role in the emergence of ICL. Shin et al. (2022) investi-
gated the ICL behaviour w.r.t. different pretraining data source and size, confirming that the source
data properties can make or break ICL. Han et al. (2023) conducted an empirical study to show that
challenging examples and long-tail tokens promote ICL by making the long-range information gain
difficult. On the same lines, Chan et al. (2022) demonstrated that a large number of rarely occurring
classes facilitate ICL. These works align with our generalized argument that a complex enough IWL
task promotes ICL. Similarly, Razeghi et al. (2022) found a correlation between the term frequency
of the input data in the pretraining corpus and ICL performance, further underscoring the influence
of data characteristics. For local data patterns, studies by Olsson et al. (2022), and Chan et al.
(2022) demonstrated that burstiness and repetitive structures within training sequences are vital for
ICL. In a similar direction, Chen et al. (2024) have argued that parallel structures in the pretrain-
ing textual data, which follow a similar semantic or syntactic template, facilitate ICL in language
models. They include repetitions in the parallel structures however their independent significance
is not well disambiguated. Shi et al. (2024) studied the impact of combining the documents within
the context window for language modeling and different textual in-context tasks. They showed a
clear improvement in the ICL performance once the model was trained with a sequence of related
documents showing the importance of data patterns in the pretraining. Our work studies local data
patterns present in the training sequences, showing that simple copy-based data repetition, which
can be seen as a special case of parallel structures is a major factor for stable ICL performance.
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Meta-learning vs ICL. Meta-learning and In-context learning aim to enhance rapid adaptation to
new tasks but operate through distinct mechanisms. Meta-learning often utilizes episodic pretraining
where the model is pretrained with randomly sampled classes and label mappings in each episode,
which enables fast adaptation to new unseen tasks during the testing phase with only a few parame-
ters updates (Finn et al., 2017; Santoro et al., 2016; Snell et al., 2017). In this way, the model learns
how to learn the task but does not learn the input label mapping directly due to the episodic permu-
tations, which present an almost impossible learning task. On the other hand, there is no explicit
pretraining objective for in-context learning. The input label mapping is crucial for the in-weight
learning task and must not be harmed by the ICL abilities. Thus, while meta-learning explicitly
optimizes for adaptability and robustness during training, ICL leverages pretraining knowledge like
the original input-label mapping for adaption through information provided by input context. In
this paper, we focus solely on concepts relevant to in-context learning but draw connections to the
meta-learning pretraining via episodic pretraining and task difficulty when analyzing the choice of
the in-weight learning task.

3 EXPERIMENTAL SETUP

We conducted an analysis to show how different properties impact ICL. We train an autoregressive
model GPT-2 (Radford et al., 2019) on different sequences containing image-label pairs from image
classification datasets widely popular in the FSL literature (Lake et al., 2015; Bertinetto et al., 2019;
Fei-Fei et al., 2004; Cimpoi et al., 2014).

3.1 DATA SEQUENCING

The autoregressive model in this work is trained with a sequence length of 2L + 1 with L image-
label pairs in the context followed by a query image, as shown in Figure 2. The in-weight learning
objective is to predict the label of the last image, which is the (2L+1)-th token. Training sequences
consist of a mixture of (1) standard sequences, in which sample-label pairs are randomly selected
from the training dataset, and (2) in-context sequences, where the query image-label information is
enforced to be present in the sequence by using a pair similar to the query image-label pair. The
proportion of each sequence type in the total amount of training sequences is treated as a hyper-
parameter. Using in-context sequences, the model is implicitly regularized to attend to the similar
context tokens without completely relying on the model weights.

Figure 2: Illustration of our experimental setup. We use a causal transformer GPT-2 for sequential
image-label pairs, treating each image or label as one token. During training, we alternate between
in-context and standard sequences where we introduce a new form of in-context sequence iCopy -
sequence with instance copy-pasting (repetition) sampling strategy (see Section 4 for more details).
Evaluation includes few-shot classification (2-way 4-shot or 4-way 2-shots) on holdout classes for
ICL and standard multi-class classification on validation split for IWL.

Sequence notations. Throughout the paper, we represent sequences using strings of L characters,
where each character corresponds to an image-label pair from a specific class. This is followed by
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the query image token of class (Q). As an example, we denote sequences of length L = 8 as follows:
we compare models trained with in-context sequences of different formats from (3xQ-3xA-B-C) to
(Q-A-B-C-D-E-F-G), where (3xQ-3xA-B-C) means three image-label pairs are from the query(Q)
class, three other image-label pairs from a non-query(A) class and other two image-label pairs are
from two other non-query(B,C) classes. (Q-A-B-C-D-E-F-G) means only 1 sample is from the
query class and the other 7 samples are from different non-query classes. The sequence order is
shuffled during training. Standard sequences have the (A-B-C-D-E-F-G-H) format, where all image-
label instances are from different non-query classes.

3.2 TRAINING AND EVALUATION DETAILS

We train a causal GPT-2 (Radford et al., 2019) transformer to predict the label yq of the query
image xq given a sequence of L interleaved image-label pairs: (x1, y1, x2, y2, ..., xL, yL, xq, ?) as
illustrated in Figure 2. Each image-label pair is converted into token embeddings separately. The
model is trained to maximize the likelihood of the next token, with the loss applied to the final query
output, thus using last-token prediction as the IWL training objective.

Dataset construction. We conduct our controlled experiments and analysis on the Omniglot
dataset (Lake et al., 2015) and scale to more realistic visual datasets. Omniglot contains 1623
classes with 20 images each. Following previous work (Chan et al., 2022), we use 1600 classes for
training and the remaining 23 as novel classes for ICL evaluation. More experiments (in Section 4)
are performed on datasets including CIFAR-100 (Bertinetto et al., 2019) , Caltech-101 (Fei-Fei
et al., 2004), and DTD texture datasets (Cimpoi et al., 2014). ICL evaluation is performed using
20, 10, and 10 novel classes for CIFAR-100, Caltech-101, and DTD datasets, respectively. More
experiment details are included in the Appendix B.

Data sequencing details. In all supervised image classification experiments, the models are
trained with a mix of in-context and standard sequences. Models with instance discrimination
(self-supervised learning) tasks are trained with 100% in-context sequences. ICL is evaluated in
a few-shot classification setting for 2-way-4-shot and 4-way-2-shot tasks. We show results in the
main paper for the more challenging 4-way-2-shot setting, while other results are included in the
Appendix B.1 and Appendix C.3. This evaluation is performed on held-out novel classes. The
trained classifier output is used for the few-shot evaluation using label mapping from 0-1 or 0-3
corresponding to both evaluation tasks. IWL is evaluated for the multi-class classification task on
the held-out samples from the trained classes. The standard sequences with (A-B-C-D-E-F-G-H)
format are used for IWL evaluation (see Figure 2). The same pre-set 10K and 3.2K sequences are
used for ICL and IWL evaluation, respectively.

3.3 BASELINE

Our proposed baseline model is trained on the Omniglot dataset with a mix of standard and in-
context sequences with 10% and 90% probability respectively. The standard sequences follow
(A-B-C-D-E-F-G-H) format, and in-context sequences have a high burstiness with (3xQ-3xA-B-C)
format. The baseline model with in-context sequence format (3xQ-3xA-B-C), achieves strong
ICL and IWL performance (shown in Figure 3). Prior work observed poor IWL performance
with strong ICL performance. We think this happens because they utilize standard sequences
in (Q-A-B-C-D-E-F-G) format with at least one repetition of the query in context, which undermines
the in-weight learning task. However, similar to prior work, we observe that the ICL performance is
transient as training proceeds for this baseline model.

4 WHAT PROMOTES IN-CONTEXT SOLVING ABILITY?

The term “in-context solving ability” or “look-up mechanism” refers to the ability of the transformer-
based model, where the model can prioritize the usage of information present within its current input
context to generate responses. The model is not explicitly trained to learn this mechanism, however,
it is crucial for the model to solve the task based on the in-context information. This work examines
a previously proposed in-context sequence strategy, which are motivated by the trends observed
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in the pretraining corpora of LLMs and further analyzes the impact of repetitions in training data
sequences.

Burstiness. Burstiness is an inherent feature of natural sequential data. Chan et al. (2022) showed
that the burstiness property in training sequences is crucial for ICL and demonstrates its effective-
ness. Burstiness, in a classification setup like ours, is defined as the number of occurrence of samples
from the same class as the query sample in the context. Models with this strategy are trained with a
mix of highly bursty (3xQ-3xA-B-C) and non-bursty (A-B-C-D-E-F-G-H) sequences to obtain both
ICL and IWL. High-bursty and non-bursty sequences are types of in-context and standard sequences,
respectively.

Repetitions. Although burstiness is typically a natural feature of sequential data, repetitions are
also a specific aspect of burstiness. As motivated in the introduction, the analysis of pretraining
corpora reveals frequent repetitions of n-grams in different pretraining corpora, indicating that pre-
training text exhibits burstiness not only via clustered phrases of synonyms or similar topics but also
through exact repetitions of different lengths. Therefore, we conducted a study to examine the im-
pact of repetitions on ICL. We find that simply copying the query-label pair into the input sequence
during training develops a strong look-up mechanism.

iCopy. In light of previously introduced ways of fostering stronger in-context learning, we refer to
the sequences with conceptual repetitions for image classification tasks as iCopy. iCopy utilizes an
instance-based copying mechanism where the query-label pair is copy-pasted within the sequence
of defined burstiness. This simplifies the matching process between a query token and its duplicates
across different token positions in the context. Since the positions of the copied token are shuffled
and sequences with repetitions are mixed with standard sequences, the model learns a generalized
look-up mechanism across the whole context. The sequences with repetitions can also be considered
as a special case of an in-context sequence with low-burstiness, denoted as (Q-A-B-C-D-E-F-G
iCopy) in this work. This copied version in the context can be an exact copy or an augmented
version of the original query sample-label pair.

In the previously proposed high-burstiness strategy, samples from the same class as the query appear
multiple times, whereas the sequences with repetitions may only contain one occurrence of the same
instance as the query sample. However, repetitions show enhanced results when combined with the
high-burstiness strategy (3xQ-3xA-B-C iCopy), comprising multiple instance copies in the context.

We conducted ablations and analysis to study how repetitions perform against previously introduced
data distributional properties on ICL and IWL tasks.

4.1 ICOPY PROMOTES LOOK-UP

Repetitions are sufficient for ICL. We compare in-context sequences with high-
burstiness (3xQ-3xA-B-C) and sequences with one repetition (Q-A-B-C-D-E-F-G iCopy),
observing similar ICL peak performance for both types of in-context sequences but with reduced
transiency for the sequences with repetition. Combining the repetitions and high-burstiness
strategies (3xQ-3xA-B-C iCopy) further reduces ICL transiency. Using low-burstiness without
iCopy (Q-A-B-C-D-E-F-G) shows no ICL ability. ICL and IWL performance curves are shown in
Figure 3 a,b, where we can also observe that the repetitions in iCopy sequences do not harm the
IWL performance.

Skewness is not necessary. We compare models trained with skewed and uniform label distribu-
tion, using 7200 samples randomly selected from 992 classes. The sequences with repetitions and
uniform distribution outperform the high-burstiness strategy with Zipfian distribution (Figure 3c).
Thus showing that a skewed distribution improves ICL over the baseline, it is not necessary for ICL.

4.2 ICOPY REDUCES ICL TRANSIENCY

We observe that the ICL performance is transient across all look-up strategies studied in this work
(see Figure 3), a behavior also observed by prior work (Singh et al., 2023). We observe using
iCopy results in reduced ICL transiency as shown in Figure 3 (a). Previous work (Singh et al.,
2023) speculate that the competition between IWL and ICL circuits is responsible for the transient
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Figure 3: a), b): Effect of the repetitions on ICL performance. Even in the low-burstiness sce-
nario, sequences with repetitions (Q-A-B-C-D-E-F-G iCopy) show strong ICL and improved sta-
bility compared to sequences with high-burstiness (3xQ-3xA-B-C). When in the high-burstiness
scenario, sequences with repetitions (3xQ-3xA-B-C iCopy) further improve ICL stability while
not harming IWL performance. c) Skewness is not necessary for ICL. The sequences with repeti-
tions (3xQ-3xA-B-C iCopy) strategy achieves better ICL performance compared to using skewed
Zipfian distribution. The number of samples (7200) and classes (992) are kept the same for all cases.

behavior of ICL. We think this likely happens because, as the training progresses, the IWL task
becomes easier and can be solved purely using in-weight knowledge, thus weakening the in-context
look-up mechanism. To support this argument, we show that by using a harder IWL task of instance
discrimination with iCopy, transiency is nearly eliminated (Figure 4a). In an instance discrimination
task, each sample is treated as a separate class, also referred to as a self-supervised learning objective
in the literature. This might also explain why LLMs can retain IWL and ICL performance even after
training: language modeling is a complex IWL task due to the complexity of natural language,
including ambiguity, long-range dependencies, and large vocabulary. More on this in Section 5.
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Figure 4: a) Repetitions reduce transiency. When considering high burstiness scenarios, se-
quences with repetitions (3xQ-3xA-B-C iCopy) reduce ICL transiency compared to the base-
line (3xQ-3xA-B-C). The instance discrimination IWL task with high burstiness and repetitions
eliminates ICL transiency b) Scaling experiments on Cifar-100, Caltech-101, and DTD. Our best
model setting with repetitions and high-burstiness strategy shows strong 4-way-2-shot ICL perfor-
mance on all three datasets.

4.3 ICOPY PROMOTES THE INDUCTION HEADS

Prior works show that the formation of an induction head leads to in-context learning (Olsson
et al., 2022; Reddy, 2024). Induction heads are a result of the two-layer circuit that performs match
and copy operations from the context. For a bigram sequence containing image-label pairs, first, the
label tokens attend to the previous image tokens and copy the information into their representation.
Then the query image token attends to the matching label tokens and copies the label information.
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Since the repetitions accompanied by high burstiness create a strong look-up mechanism, we can
obtain ICL with a GPT-2 model using only 3-layer with 1-head per layer. We observe that it is not
possible to obtain a clear ICL performance with the same architecture using only the high-burstiness
strategy.

The simplified model allows us to analyse the underlying attention mechanism in each head inde-
pendently and track the induction head formation throughout the training. As shown in Figure 5(c,
d), we can observe an induction circuit formation using the combination of repetitions and high-
burstiness strategy, where layer-1 (L1) consists of previous token attention heads (Fig. 5 (c)) and
layer-2 (L2) shows query image to matching label head attention (Fig. 5 (d)). The snapshot repre-
sents the peak of ICL performance for the model with repetitions. We do not show Layer-0 (L0)
attention map since it does not show noticeable patterns. We do not observe any ICL performance
and induction circuits in the model using only high-burstiness (Fig. 5(a,b)) at this snapshot. We also
track progress metrics like label-image attention to measure previous token attention in layer-1 of
the induction circuit, image-label attention to measure query image to label attention in the layer-2
of the induction circuit, and image-image/label-label attention to measure the strength of token rep-
resentation (included in the Appendix C.3). We further analyse the induction head formation using a
low-burstiness setup with repetitions in the Appendix C.3.1, where we also observe induction head
formation.

Figure 5: Induction head analysis of GPT-2 model with three layers and one head on sequences
with only high burstiness (baseline) and repetitions with high burstiness(iCopy). We compare the
attention maps of layer-1 (L1) and layer-2 (L2) for the baseline and model with repetitions. The
attention maps correspond to the 2-way-4-shot evaluation sequence shown at the bottom. Layer-
0 (L0) is not shown because it has no noticeable patterns. High-burstiness, when combined with
repetitions, shows clear formation of the induction head: L1 learns the label-image pair associations,
while L2 performs association to the correct label. In contrast, no induction head formation is seen
in the baseline model.

4.4 ICOPY PROMOTES ICL ON OTHER DATASETS

Repetitions in combination with high-burstiness scales well to more realistic datasets like CIFAR-
100, Caltech-101, and DTD. We observed strong ICL performance on all three datasets. Using only
high burstiness in the in-context sequences (Baseline) does not show any in-context learning for
these datasets as shown in Figure 4b.

5 DOES IWL OBJECTIVE MATTER FOR ICL?

As described in Section 4.2, we believe the look-up mechanism on its own is not sufficient for a
stable ICL performance and a choice of the appropriate IWL objective plays an important role. In
particular, we hypothesize that if the in-weight task is too simplistic, the look-up mechanism does not
emerge or results in a transient ICL performance since the model can optimize for the IWL objective
without needing to attend to the context. Therefore, the in-weight task must have a minimum level
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of complexity to give rise to the look-up mechanism. A related study (Chan et al., 2022) showed
that a long-tail distribution and an increase in the number of classes improve ICL, connecting these
properties to natural language data. In this work, we additionally provide an explanation of why
these properties enhance ICL - by increasing the complexity of the IWL task.

We propose four different ways of regulating the IWL task difficulty - changing the number of
training classes, changing the number of samples used for training, training with noisy labels, and
switching to the instance discrimination task. Here, we show how each of the proposed techniques
influences the ICL and IWL performance.

Number of classes: We observe that increasing the number of classes monotonically improves
ICL performance, as illustrated in Figure 6a. This finding follows similar insights in prior
work (Chan et al., 2022; Reddy, 2024). However, these works explain the improved ICL capa-
bilities due to the large number of rarely occurring classes. We interpret it as just one out of many
ways to make the IWL task harder. Please refer to Appendix D for more details.

Skewed distribution: Keeping the total number of samples the same, we compare the ICL per-
formance of a model trained with balanced and imbalanced (Zipfian) distributions. We observe
improved ICL performance with skewed distribution, as illustrated in Figure 6b. This experiment is
a confirmation of prior work (Chan et al., 2022), which also shows improved ICL with the increased
long-tail distribution. Imbalancing the label distribution is a known way to make the in-weight
learning task harder. Please refer to Appendix D for more details.

Number of classes
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Figure 6: a) Number of classes. When increasing the number of classes form 200 to 1600, we
observe a clear improvement in the ICL performance as the IWL objective is now harder. b) Skewed
distribution. By having the same number of training samples, we report better ICL performance
with the skewed data distribution.

Learning with noisy labels: We increase the complexity of the IWL task by adding label noise,
where labels of certain samples in the sequence are randomly assigned to another training class.
Label noise is only applied to the standard sequences. We train a supervised model with 600 classes
with three increasing levels of label noise percentage. Figure 7 (a, b) shows that as the label-noise
ratio increases, the ICL performance improves while the IWL performance reduces, showing how
the task is harder with more noise.

Instance discrimination task: Using the copy-based look-up strategy with repetitions in the se-
quence, we devise a more complex IWL task by moving from supervised to self-supervised learning.
We design a task based on the instance discrimination (Wu et al., 2018) objective, where the model
is trained to classify each sample as its class. 1 We train the baseline model in the supervised high
burstiness setting with 3600 samples from 200 classes where the ICL does not emerge, illustrated in
Figure 7 c. Whereas, when we train with the instance discrimination objective on the same number
of samples, we obtain very strong and stable ICL performance, which is the result of hard IWL task
and strong in-context look-up.

1This would mean that in the case of the Omniglot instance discrimination setting with 1600 classes and 18
exemplars per class, the total number of classes would be 28800.
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Figure 7: a, b) Effect of label noise on ICL and IWL performance. The model trained with a high
label noise percentage achieves high ICL accuracy since the IWL task becomes harder, which can be
seen by the drop in IWL accuracy. c) The instance discrimination IWL task shows strong and stable
ICL performance. Both models are trained on 200 classes comprising 3600 samples. The baseline
supervised model does not show ICL as it is a much simpler IWL task.

6 DISCUSSION

Key insights. We identify that the balance between training data that provides opportunities to
use the in-context look-up mechanism and the complexity of the model training objective influences
the emergence and stability of ICL. We show that the conceptual repetitions, which are also com-
monly present in textual data sequences, induce a strong in-context look-up mechanism. Repetitions
combined with high-burstiness in the training sequences result in peak ICL performance. Models
with such in-context look-up mechanisms ensure strong ICL performance with no harm to the IWL
component, while also demonstrating reduced transiency in ICL performance. This supports our hy-
pothesis that the conceptual repetitions in the data are strong drivers for the ICL ability. As shown in
Section 5, training with a complex in-weight learning objective leads to improved and non-transient
ICL performance. This conclusion aligns with the complex training objective and observed nature
of ICL performance in LLMs.

Limitations. Although the ranking between different compared methods is clear, we observed a
large variance in the ICL performance curves w.r.t. random seeds where the IWL task is simple. We
believe one of the reasons for this is the sensitivity of ICL towards training sequences (Press et al.,
2023). While our approach transfers well to other visual datasets and different training objectives,
showing a similar analysis on real-world sequential data is out of scope of this work. We also
found that ICL is sensitive to certain model design choices such as model weight initialization and
image embedding architecture. For instance, using a truncated normal distribution for initialization
improves the stability of ICL performance across different seeds. Addressing the robustness of ICL
is a goal for future work.

Broader implications. Models with in-context learning ability allow users to leverage large mod-
els for various downstream tasks without the need to adapt the model weights by simply defining
the task during inference. We provide an analysis of the training sequences showing that conceptual
repetitions are influential and they reduce the need for specific properties in the data distribution,
giving more flexibility to obtain ICL for different domains and applications. From a research per-
spective, our findings allow for analyzing internal workings in a controlled setup, facilitating a better
understanding of ICL. Our work is based on mainly synthetic training sequences and thus has no
direct societal impact.

Future work. We believe that our findings about the essential properties of the data sequence and
design of in-weight learning objectives could be crucial for future large model training, where in-
context solving ability is important. Our findings are agnostic of the data domain and should be
applicable to LLMs, VLMs or other modalities.
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Ekin Akyürek, Dale Schuurmans, Jacob Andreas, Tengyu Ma, and Denny Zhou. What learning
algorithm is in-context learning? investigations with linear models. In The Eleventh International
Conference on Learning Representations, 2023. URL https://openreview.net/forum?
id=0g0X4H8yN4I.

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, Roman Ring, Eliza Rutherford,
Serkan Cabi, Tengda Han, Zhitao Gong, Sina Samangooei, Marianne Monteiro, Jacob Menick,
Sebastian Borgeaud, Andrew Brock, Aida Nematzadeh, Sahand Sharifzadeh, Mikolaj Binkowski,
Ricardo Barreira, Oriol Vinyals, Andrew Zisserman, and Karen Simonyan. Flamingo: a visual
language model for few-shot learning. In Advances in Neural Information Processing Systems,
2022. URL https://openreview.net/forum?id=EbMuimAbPbs.

Yu Bai, Fan Chen, Huan Wang, Caiming Xiong, and Song Mei. Transformers as
statisticians: Provable in-context learning with in-context algorithm selection. In
Advances in Neural Information Processing Systems, volume 36, pp. 57125–57211,
2023. URL https://proceedings.neurips.cc/paper_files/paper/2023/
file/b2e63e36c57e153b9015fece2352a9f9-Paper-Conference.pdf.

Luca Bertinetto, Joao F. Henriques, Philip Torr, and Andrea Vedaldi. Meta-learning with differen-
tiable closed-form solvers. In International Conference on Learning Representations, 2019. URL
https://openreview.net/forum?id=HyxnZh0ct7.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel Ziegler, Jeffrey Wu, Clemens Winter, Chris Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot learn-
ers. In Advances in Neural Information Processing Systems, volume 33, pp. 1877–1901,
2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/
file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf.

Stephanie Chan, Adam Santoro, Andrew Lampinen, Jane Wang, Aaditya Singh, Pierre Richemond,
James McClelland, and Felix Hill. Data distributional properties drive emergent in-context learn-
ing in transformers. In Advances in Neural Information Processing Systems, volume 35, pp.
18878–18891, 2022.

Yanda Chen, Chen Zhao, Zhou Yu, Kathleen McKeown, and He He. Parallel structures in pre-
training data yield in-context learning, 2024.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sashank Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay,
Noam Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope,
James Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm
Levskaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra,
Kevin Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Bar-
ret Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: scaling language modeling with pathways.
JMLR., 2024.

11

https://openreview.net/forum?id=goi7DFHlqS
https://openreview.net/forum?id=goi7DFHlqS
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=0g0X4H8yN4I
https://openreview.net/forum?id=EbMuimAbPbs
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2e63e36c57e153b9015fece2352a9f9-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2023/file/b2e63e36c57e153b9015fece2352a9f9-Paper-Conference.pdf
https://openreview.net/forum?id=HyxnZh0ct7
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/1457c0d6bfcb4967418bfb8ac142f64a-Paper.pdf


594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

M. Cimpoi, S. Maji, I. Kokkinos, S. Mohamed, , and A. Vedaldi. Describing textures in the wild. In
Proceedings of the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2014.

Damai Dai, Yutao Sun, Li Dong, Yaru Hao, Shuming Ma, Zhifang Sui, and Furu Wei. Why can
GPT learn in-context? language models secretly perform gradient descent as meta-optimizers. In
Findings of the Association for Computational Linguistics: ACL 2023, pp. 4005–4019, 2023.

Li Fei-Fei, R. Fergus, and P. Perona. Learning generative visual models from few training exam-
ples: An incremental bayesian approach tested on 101 object categories. In 2004 Conference on
Computer Vision and Pattern Recognition Workshop, pp. 178–178, 2004.

Chelsea Finn, Pieter Abbeel, and Sergey Levine. Model-agnostic meta-learning for fast adaptation of
deep networks. In Doina Precup and Yee Whye Teh (eds.), Proceedings of the 34th International
Conference on Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp.
1126–1135. PMLR, 2017.

Wikimedia Foundation. Wikimedia downloads. URL https://dumps.wikimedia.org.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn in-
context? a case study of simple function classes. In Advances in Neural Information Processing
Systems, volume 35, pp. 30583–30598, 2022.

Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. Openwebtext corpus. http:
//Skylion007.github.io/OpenWebTextCorpus, 2019.

Xiaochuang Han, Daniel Simig, Todor Mihaylov, Yulia Tsvetkov, Asli Celikyilmaz, and Tianlu
Wang. Understanding in-context learning via supportive pretraining data. In Anna Rogers, Jor-
dan Boyd-Graber, and Naoaki Okazaki (eds.), Proceedings of the 61st Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), July 2023.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Shaohan Huang, Li Dong, Wenhui Wang, Yaru Hao, Saksham Singhal, Shuming Ma, Tengchao Lv,
Lei Cui, Owais Khan Mohammed, Barun Patra, Qiang Liu, Kriti Aggarwal, Zewen Chi, Johan
Bjorck, Vishrav Chaudhary, Subhojit Som, Xia Song, and Furu Wei. Language is not all you need:
Aligning perception with language models. In Thirty-seventh Conference on Neural Information
Processing Systems, 2023. URL https://openreview.net/forum?id=UpN2wfrLec.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Brenden M Lake, Ruslan Salakhutdinov, and Joshua B Tenenbaum. Human-level concept learning
through probabilistic program induction. Science, 350(6266):1332–1338, 2015.

Yoav Levine, Noam Wies, Daniel Jannai, Dan Navon, Yedid Hoshen, and Amnon Shashua. The
inductive bias of in-context learning: Rethinking pretraining example design. In International
Conference on Learning Representations, 2022. URL https://openreview.net/forum?
id=lnEaqbTJIRz.

Yingcong Li, Muhammed Emrullah Ildiz, Dimitris Papailiopoulos, and Samet Oymak. Transformers
as algorithms: Generalization and stability in in-context learning. In International Conference on
Machine Learning, pp. 19565–19594. PMLR, 2023.

Jiachang Liu, Dinghan Shen, Yizhe Zhang, Bill Dolan, Lawrence Carin, and Weizhu Chen. What
makes good in-context examples for GPT-3? In Proceedings of Deep Learning Inside Out (Dee-
LIO 2022): The 3rd Workshop on Knowledge Extraction and Integration for Deep Learning Ar-
chitectures, May 2022.

Sewon Min, Xinxi Lyu, Ari Holtzman, Mikel Artetxe, Mike Lewis, Hannaneh Hajishirzi, and Luke
Zettlemoyer. Rethinking the role of demonstrations: What makes in-context learning work? In
EMNLP, 2022.

12

https://dumps.wikimedia.org
http://Skylion007.github.io/OpenWebTextCorpus
http://Skylion007.github.io/OpenWebTextCorpus
https://openreview.net/forum?id=UpN2wfrLec
https://openreview.net/forum?id=lnEaqbTJIRz
https://openreview.net/forum?id=lnEaqbTJIRz


648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Catherine Olsson, Nelson Elhage, Neel Nanda, Nicholas Joseph, Nova DasSarma, Tom Henighan,
Ben Mann, Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Dawn Drain, Deep Ganguli,
Zac Hatfield-Dodds, Danny Hernandez, Scott Johnston, Andy Jones, Jackson Kernion, Liane
Lovitt, Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish,
and Chris Olah. In-context learning and induction heads. Transformer Circuits Thread, 2022.
https://transformer-circuits.pub/2022/in-context-learning-and-induction-heads/index.html.

Ofir Press, Muru Zhang, Sewon Min, Ludwig Schmidt, Noah Smith, and Mike Lewis. Measuring
and narrowing the compositionality gap in language models. In Houda Bouamor, Juan Pino, and
Kalika Bali (eds.), Findings of the Association for Computational Linguistics: EMNLP 2023, pp.
5687–5711, December 2023.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-
text transformer. Journal of Machine Learning Research, 21(140):1–67, 2020. URL http:
//jmlr.org/papers/v21/20-074.html.

Allan Raventós, Mansheej Paul, Feng Chen, and Surya Ganguli. Pretraining task diversity and the
emergence of non-bayesian in-context learning for regression. Advances in Neural Information
Processing Systems, 36, 2024.

Yasaman Razeghi, Robert L Logan IV, Matt Gardner, and Sameer Singh. Impact of pretraining
term frequencies on few-shot numerical reasoning. In Yoav Goldberg, Zornitsa Kozareva, and
Yue Zhang (eds.), Findings of the Association for Computational Linguistics: EMNLP 2022, pp.
840–854, December 2022.

Gautam Reddy. The mechanistic basis of data dependence and abrupt learning in an in-context
classification task. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=aN4Jf6Cx69.

Ohad Rubin, Jonathan Herzig, and Jonathan Berant. Learning to retrieve prompts for in-context
learning. In Marine Carpuat, Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.),
Proceedings of the 2022 Conference of the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies, pp. 2655–2671, July 2022.

Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timothy Lillicrap. Meta-
learning with memory-augmented neural networks. In Maria Florina Balcan and Kilian Q. Wein-
berger (eds.), Proceedings of The 33rd International Conference on Machine Learning, volume 48
of Proceedings of Machine Learning Research, pp. 1842–1850, New York, New York, USA,
20–22 Jun 2016. PMLR. URL https://proceedings.mlr.press/v48/santoro16.
html.

Weijia Shi, Sewon Min, Maria Lomeli, Chunting Zhou, Margaret Li, Gergely Szilvasy, Rich
James, Xi Victoria Lin, Noah A. Smith, Luke Zettlemoyer, Scott Yih, and Mike Lewis. In-
context pretraining: Language modeling beyond document boundaries, 2024. URL https:
//arxiv.org/abs/2310.10638.

Seongjin Shin, Sang-Woo Lee, Hwijeen Ahn, Sungdong Kim, HyoungSeok Kim, Boseop Kim,
Kyunghyun Cho, Gichang Lee, Woomyoung Park, Jung-Woo Ha, and Nako Sung. On the effect
of pretraining corpora on in-context learning by a large-scale language model. In Marine Carpuat,
Marie-Catherine de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022
Conference of the North American Chapter of the Association for Computational Linguistics:
Human Language Technologies, pp. 5168–5186, July 2022.

Aaditya K Singh, Stephanie C.Y. Chan, Ted Moskovitz, Erin Grant, Andrew M Saxe, and Felix
Hill. The transient nature of emergent in-context learning in transformers. In Thirty-seventh
Conference on Neural Information Processing Systems, 2023. URL https://openreview.
net/forum?id=Of0GBzow8P.

13

http://jmlr.org/papers/v21/20-074.html
http://jmlr.org/papers/v21/20-074.html
https://openreview.net/forum?id=aN4Jf6Cx69
https://proceedings.mlr.press/v48/santoro16.html
https://proceedings.mlr.press/v48/santoro16.html
https://arxiv.org/abs/2310.10638
https://arxiv.org/abs/2310.10638
https://openreview.net/forum?id=Of0GBzow8P
https://openreview.net/forum?id=Of0GBzow8P


702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Aaditya K Singh, Ted Moskovitz, Felix Hill, Stephanie CY Chan, and Andrew M Saxe. What needs
to go right for an induction head? a mechanistic study of in-context learning circuits and their
formation. arXiv preprint arXiv:2404.07129, 2024.

J Snell, K Swersky, and R Zemel. Prototypical networks for few-shot learning. Adv. Neural Inf.
Process. Syst., 2017.

Johannes Von Oswald, Eyvind Niklasson, Ettore Randazzo, João Sacramento, Alexander Mordv-
intsev, Andrey Zhmoginov, and Max Vladymyrov. Transformers learn in-context by gradient
descent. In International Conference on Machine Learning, pp. 35151–35174. PMLR, 2023.

Anton Voronov, Lena Wolf, and Max Ryabinin. Mind your format: Towards consistent evaluation
of in-context learning improvements. arXiv [cs.CL], January 2024.

Jingfeng Wu, Difan Zou, Zixiang Chen, Vladimir Braverman, Quanquan Gu, and Peter Bartlett.
How many pretraining tasks are needed for in-context learning of linear regression? In
The Twelfth International Conference on Learning Representations, 2024. URL https://
openreview.net/forum?id=vSh5ePa0ph.

Zhirong Wu, Yuanjun Xiong, Stella X. Yu, and Dahua Lin. Unsupervised feature learning via non-
parametric instance discrimination. In Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), June 2018.

Yue Xing, Xiaofeng Lin, Namjoon Suh, Qifan Song, and Guang Cheng. Benefits of trans-
former: In-context learning in linear regression tasks with unstructured data. arXiv preprint
arXiv:2402.00743, 2024.

14

https://openreview.net/forum?id=vSh5ePa0ph
https://openreview.net/forum?id=vSh5ePa0ph


756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A MODEL DETAILS

Architecture details. We train the GPT-2 model Radford et al. (2019) with 12 layers and 8 heads
with an embedding dimension of 64. We use a smaller model for the induction head analysis exper-
iments with 3 layers, a single head, and an embedding dimension of 64. GPT-2 expects a sequence-
like format with aligned embedding size so we transformed our image-label pairs into separate image
and label tokens, using a ResNet-like embedder for images and an embedding layer for labels. We
initialized the model with a truncated normal distribution, which is important for training stability.
We use a 3-block ResNet model He et al. (2016) as the image embedder with output channel di-
mensions [64, 128, 256]. After that, a projection layer is added to match the embedding dimension
of 64. We train the image embedding model and GPT model together from scratch. We notice that
the emergence of ICL is sensitive to the input image embedder architecture. We also report that
pretrained embedders result in fast convergence of in-weight task and ICL failure cases, as shown in
Figure 8.
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Figure 8: 4-way 2-shot ICL and IWL accuracy for different versions of the image embedder. Using
pretrained models makes the in-weight task easier and ICL does not emerge.

Hyperparameters. We trained the model for different numbers of steps varying from 250k to 2M
iterations using optimizer Adam Kingma & Ba (2014) with betas (0.9, 0.99) and epsilon 1e-08. We
use learning rate warm-up for 15K iterations with a square root decay scheduler with a maximum
learning rate value of 6e-4. We find that ICL performance is enhanced with longer warm-up periods.
We perform gradient clipping to value 1.0. We trained the model with a batch size of 16 on a single
Nvidia RTX 3090 where 500k iterations took around 12 hours. For all experiments, we run the
approach for 3 random seeds, except for label-noise experiments in Section 5, where we report
performance over 5 random seeds.

B EXPERIMENT SETUP DETAILS

Training details. The model is trained with a mix of two types of sequences with different bursti-
ness forms: in-context sequences and standard sequences. In-context sequences can have multiple
reoccurring samples from the same class as the query, whereas standard sequences have all samples
selected from random classes. The high-burstiness strategy uses in-context sequences with three
re-occurrences and iCopy strategy uses only one re-occurrence. All the supervised models in this
work are trained with a burstiness probability of 90%, which means 90% in-context sequences and
10% standard sequences. All self-supervised models use 100% in-context sequences.

Evaluation details. We evaluate separately for both ICL and IWL. ICL evaluation is performed in
a few-shot manner with 2-way 4-shots and 4-way 2-shots tasks. The evaluation is performed using
the pretrained softmax classifier without any model update. We use label mappings 0 to k with k
being the number of classes in the few-shot setting. We notice that the ICL results are agnostic to
label mappings. ICL is always performed on the hold-out classes not seen during training. ICL is
performed over 10K presampled sequences to ensure a fair comparison. IWL is evaluated on the
hold-out samples from the training classes where the sequence format must be (A-B-C-D-E-F-G-H)
so that the model does not perform look-up, but relies only on the model weights.
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B.1 DATASETS

All analysis experiments are performed on the Omniglot dataset Lake et al. (2015). We further
show ICL results on other visual datasets Cifar-100 Bertinetto et al. (2019), Caltech-101 Fei-Fei
et al. (2004), and DTD textures Cimpoi et al. (2014) which are often used for benchmarking few-
shot learning classification task. A few details about these datasets are included below:
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Figure 9: Scalling results on datasets CIFAR, Caltech and DTD shown for 2-way 4-shot ICL and
IWL accuracies. Our iCopy reports strong ICL emergence and stability for the 2-way 4-shot sce-
nario.

Omniglot consists of 1623 handwritten characters from 50 alphabets with 20 exemplars for each
character. Unless stated otherwise, we use 1600 classes as the base classes and the remaining 23
classes (sampled from the official evaluation subset with seed 42) for the ICL evaluation. We create
a train-validation split as 18-2. During the supervised training, we apply no augmentations except
for resizing to 64x64. However, self-supervised setup benefits from mild augmentations (random
crop resize to 64x64 with scale (0.5, 1.5) and horizontal flip). For the self-supervised experiments,
we used a batch size of 216 and a learning rate of 1e-3.

CIFAR-100 is a natural dataset consisting of 60000, 32x32 colored images divided into 100 cate-
gories with 600 examples from each one. We use 80 classes for supervised training and 20 classes
for the ICL evaluation as it is given by the Cifar-100FS (Few-Shot) version of the dataset. We used
10% of the data for the validation. We do not apply any augmentations, but we resize the image to
64x64 for training and evaluation.

Caltech-101 is a natural, imbalanced dataset with 101 classes with 40-800 images per class while
most classes have about 50 images and each image is roughly 300x200 pixels. We randomly select
91 classes for the supervised training and the remaining 10 classes are used for ICL evaluation.
During training, we use random resized cropping to 64x64 with scaling from 0.5 to 1.5, horizontal
flipping and random rotation of 15 degrees.

DTD is a texture dataset consisting of 5640 images across 47 classes with 120 images from each
class with a size ranging from 300x300 to 640x640. We use 37 classes for supervised training and
10 classes for the ICL evaluation and create a train and validation split with roughly 10% of data
used for validation. We report better and more stable results with an image size of 128x128 and
random resize with scale (0.5, 1.5).

Results on CIFAR, Caltech and DTD. The 4-way-2-shot ICL results are included in the main
paper. Here, we show 2-way 4-shot and IWL performance for other datasets in Figure 9. We
observe strong ICL performance using the combined strategy of iCopy and high-burstiness while
the baselines with just high burstiness sequences do not show any ICL.
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C IN-CONTEXT LOOK-UP MECHANISM

In this section, we report more results and details on different in-context look-up strategies. Here,
we also try to answer a question ”Can burstiness be relaxed once the look-up mechanism has been
formed?” To answer this question, we introduce burstiness scheduler, a training regime with which
the burstiness is relayed from high-burstiness to low and the ICL is still maintained. We further
provide induction head analysis with progress metrics for burstiness scheduling and iCopy strategy.

C.1 BURSTINESS

First, we confirm previous findings about the importance of burstiness format in the training data.
Figure 10 shows 3 different levels of burstiness from high burstiness level (3xQ-3xA-B-C) to low
burstiness level (Q-A-B-C-D-E-F-G). The Figure shows that a larger magnitude of burstiness pro-
motes better ICL performance. We report 4-way 2-shot, 2-way 4-shot ICL, and IWL performance.
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Figure 10: Burstiness: ICL and IWL accuracy for different burstiness format. High burstiness im-
proves ICL performance without affecting IWL performance. 2-way 4-shot evaluation is easier ICL
setup which results in more stable and less noisy performance than 4-way 2-shot. IWL performance
remains same for all sequence formats.

C.2 BURSTINESS SCHEDULING

Prior work Olsson et al. (2022); Reddy (2024) has observed that ICL tends to emerge abruptly due
to a phase transition and is attributed to the formation of an induction head circuit. Motivated by
these findings, we explore whether the magnitude of burstiness can be reduced in the in-context
sequences once ICL is established since having consistent high burstiness in the training data is
unnatural. We discover that the high burstiness requirement can indeed be gradually relaxed using
a scheduler over the training process without harming the ICL performance. We also notice that
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implementing burstiness scheduling creates a learning curriculum that enhances the robustness of
induction heads. This, in turn, also improves ICL performance.
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Figure 11: Results of different burstiness schedulers. First row has later change in burstiness com-
pared to the second and third row. We observe early change reaches peak ICL performance faster
and remains stable. The last row shows, if the burstiness is completely removed from the sequences,
ICL becomes non-existent as the model is now trained with only standard sequences which promotes
IWL performance.

We constructed different burstiness schedulers where we relaxed the burstiness forms at different
points during the training process, as shown in Figure 11. We start model training with a high bursti-
ness of 3 (3xQ-3xA-B-C) and then relax gradually to a low burstiness of 1 (Q-A-B-C-D-E-F-G). We
find that it is better to activate the scheduler in the early phases of training, but only after the initial
emergence of ICL as shown in Figure 11. We show that the burstiness forms can be relaxed over
time, but we still need a minimal level of burstiness to maintain ICL performance. The last row on
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Figure 11 shows a sudden drop in ICL performance when burstiness was completely removed from
the sequence format ((Q-A-B-C-D-E-F-G) to (A-B-C-D-E-F-G-H)).

Figure 12: Induction head analysis of GPT-2 model with 3 layers and 1 head for the burstiness
scheduling strategy. We compare the attention maps of layer-2 (L1) and layer-3 (L2) for the baseline
(columns 1 and 2) and model with burstiness scheduler(columns 3 and 4) for one 4-way 2-shot
sequence shown in the last row. Rows represent different phases throughout the training - row a) is
before the scheduling activation (∼7.5k iterations), row b) is after the activation (∼10.5k iterations),
row c) is at the peak of ICL performance for the baseline (∼20k iterations), row d) is at the peak of
ICL performance for the scheduled model (∼25k iterations).

Similar to the analysis shown in Section 4.3, we show induction head 2-layer subcircuit analysis at
different stages of the scheduler. We conduct the analysis using a small GPT-2 model with 3 layers,
1 head, and an embedding dimension of 64 with the scheduling formats from (3xQ-3xA-B-C) to
(Q-A-B-C-D-E-F-G). We show attention maps for second (layer-1) and third (layer-2) layers. We
do not show attention maps for the first layer (layer-0) since it does not have noticeable patterns.
Figure 12 shows the effect of using a burstiness scheduler at different stages of the training process.
We observe that the induction head becomes stronger with each change in the burstiness level. In
the last row, when the ICL reaches its peak performance using the burstiness scheduler, we can see
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a strong presence of induction heads in Layer-2. Different checkpoints(rows) in the Figure 12 can
be connected to performance curves in Figure 13.

Figure 13: Induction head analysis of the GPT-2 model with 3 layers and 1 head for the base-
line (3xQ-A-B-C-D-E) and burstiness scheduling ((3xQ-3xA-B) → (Q-A-B-C-D-E-F-G)) Left: Fig-
ure shows attention maps for second (L1) and third (L2) layers. Right: Progress metrics for the
baseline and burstiness scheduling are shown. The label-image attention from the first layer circuit
and image-label attention for query image in the second layer circuit are indicated with the arrows.

Progress metrics: We study the formation of induction heads and the emergence of ICL using
three progress metrics: image-image, label-image and image-label. The image-image measures the
average attention between all image tokens to all other image tokens. The label-image measures the
average attention between each label token to its previous image token. The image-label measures
the average attention between the query image and the correct label token.

Figure 13 compares attention maps of Layer-1 and 2, when the ICL reaches peak performance using
the burstiness scheduler. We observe strong attention from query image to correct label from the
context, which is also considered as induction head formation. Layer-1 performs label to previous
image token mapping when ICL emerges. This can be seen in the burstiness scheduler case, where
label-image similarity also peaks when ICL peaks, as shown in the middle row curves. Layer 2 per-
forms query image to correct label mapping when ICL emerges. This can be seen in the burstiness
scheduler case, where image-label similarity peaks when ICL peaks, as shown in the last row curves.
We do not observe any dominant patterns for the baseline model without burstiness scheduler. Base-
line usually only does image-image or label-label mapping.

C.3 ICOPY: DETAILS

Our iCopy strategy shows good results and stability on both easier and harder ICL tasks while also
reporting reduced transiency. On the easier 2-way 4-shot ICL task, our iCopy strategy proves to be
highly stable and with small variance.

In Section 4.1 we show how iCopy does not necessarily need high burstiness in the training se-
quences or skewness in data. Here, we give more results on those experiments and report 2-way
4-shot ICL accuracy (easier setup), shown in Figure 14. We also show 2-way 4-shot ICL perfor-
mance for models trained with Zipfian data distribution without iCopy and uniform data distribution
with iCopy. We observe that iCopy is sufficient to obtain ICL and skewness is not necessary to
obtain ICL, shown in Figure 15.
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Figure 14: Repetitions are sufficient. Effect of our iCopy strategy on 2-way 4-shot performance. Our
iCopy with low burstiness shows stable and strong ICL ability. When paired with high burstiness,
performance and stability improves even more.
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Figure 15: Skewness: We fix the number of samples to 7200 and compare the models trained with
skewed data distribution without iCopy and uniform distribution with iCopy. The skewed distri-
bution shows improvement over uniform sampling, but our iCopy with uniform sampling performs
significantly better.

C.3.1 ANALYSIS

Here, we show the formation of induction heads using only iCopy strategy with in-context sequence
format (Q-A-B-C-D-E-F-G iCopy), shown in Figure 16 The figure also shows progress metrics
using only iCopy strategy.

Progress metrics. We study the formation of induction heads and the emergence of ICL using
three progress metrics: image-image, label-image and image-label. The image-image measures the
average attention between all image tokens to all other image tokens. The label-image measures the
average attention between each label token to its previous image token. The image-label measures
the average attention between the query image and correct label token.

All the experiments were conducted with GPT-2 model with 3-layers and 1-head. We observe strong
ICL performance; however, it is transient in nature. In Layer-1, label tokens show strong attention
towards previous image tokens. This is also indicated by the label-image progress metric in the
middle row curves, which peaks concurrently with ICL performance. In Layer-2, query image
tokens attend strongly to the labels of the correct images. This is also indicated by the peaked image-
label measure, which correlates with peak ICL performance. We observe as the image-label measure
in Layer-2 becomes transient, the ICL performance also becomes transient. We do not observe
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Figure 16: Induction head analysis of the GPT-2 model with 3 layers and 1 head for the base-
line (Q-A-B-C-D-E-F-G) and iCopy (Q-A-B-C-D-E-F-G iCopy) with both low burstiness accom-
panied by the progress metrics for layer-2 (L1) and layer-3 (L2). We show the label-image and
image-label attentions are closely related to the ICL emergence and follow the similar trend as ICL
performance.

any dominant patterns for the baseline model using in-context sequence as (Q-A-B-C-D-E-F-G).
Baseline only does image-image or label-label mapping in both layers.

D ROLE OF IWL TASK

As described earlier, we believe the look-up mechanism on its own is not sufficient for a stable
ICL performance and a choice of the appropriate IWL task plays an important role. We proposed
4 different ways of regulating the IWL task difficulty - changing the number of training classes,
changing the number of samples used for training, training with noisy labels, and switching to the
self-supervised training regime. Here, we show how each of the proposed techniques influences the
ICL and IWL performance.

Number of classes As already mentioned before, we observe that increasing the number of classes
monotonically improves ICL performance. This finding follows similar insights in prior work (Chan
et al., 2022; Reddy, 2024). However, these works explain the improved ICL capabilities by the large
number of rarely occurring classes. We interpret it as just one out of many ways to make the IWL
task harder.

To simulate harder IWL scenarios, we gradually increase the number of training classes from 200
to 1600. We show quite bad and unstable ICL performance until 600 classes. ICL performance
significantly improves for 1000 classes, but it is still unstable, with occasional ICL failure cases.
However, we observe strong and stable ICL performance for a high number of classes as shown in
Figure 17 where we report the strong ICL accuracies for the easier (2-way 4-shot) and harder (4-way
2-shot) setup. Impaired IWL accuracy for a higher number of classes shows the IWL task is now
more difficult.

Skewed distribution Keeping the total number of samples the same, we compare the ICL per-
formance of a model trained with balanced and imbalanced (Zipfian) distributions. We observe
improved ICL performance with skewed distribution, as illustrated in Figure 18. This experiment is
a confirmation of prior work (Chan et al., 2022), which also shows improved ICL with the increased
long-tail distribution.
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We use three balanced datasets: 3600 samples across 200 classes, 7200 samples across 400 classes,
and 10800 samples across 600 classes. These are compared to imbalanced datasets: 3598 samples
across 463 classes, 7200 samples across 992 classes, and 10798 samples across 1551 classes, using
a Zipfian distribution with a coefficient of 1.0. We observe improved ICL performance with skewed
distribution, as illustrated in Figure 18. This experiment is a confirmation of prior work (Chan et al.,
2022), which also shows improved ICL with the increased long-tail distribution.
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Figure 17: Number of classes. ICL (easier
and harder setup) and IWL accuracy for dif-
ferent number of classes ranging from 200
to 1600. We can clearly notice the trend
in stronger ICL ability with the harder IWL
task, when we have more training classes.
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Figure 18: Skewed distribution. ICL (easier
and harder setup) and IWL accuracy for sam-
ples drawn from uniform and skewed dis-
tribution. By having the same number of
training samples, we report better ICL per-
formance with the skewed data distribution.

Noisy labels We created two different baselines which represent the easier IWL setup with high
IWL performance and non-existent or unstable ICL ability:

• using reduced number of classes (600)
• using 75% of in-context sequences and 25% of standard sequences

For each of the noise-label scenarios, we applied noise by randomly assigning a new label either to
just a query label or to all labels in a sequence. There was no significant difference between the two
methods, so we only present results for noise applied to the query label. We tested three different
noise levels, ranging from 0 to 0.6 in increments of 0.2. Applying more noise to the standard
sequences degrades the IWL performance while improving ICL performance for both cases of the
experiment design (reduced number of class or reduced level percentage of the in-context sequences
for training) as shown on Figures 7 and 19.
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Figure 19: Noisy labels. Noisy scenario with reduced percentage of in-context sequences for training
(75%). Adding noise improves ICL performance, but it is unstable with often ICL failure cases.
Increasing noise in the training sequences also deteriorates the IWL performance since the IWL task
is now harder.
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