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Abstract

In retail (e.g., grocery stores, apparel shops, online retailers), inventory managers have1

to balance short-term risk (no items to sell) with long-term-risk (over ordering leading to2

product waste). This balancing task is made especially hard due to the lack of informa-3

tion about future customer purchases. In this paper, we study the problem of restocking4

a grocery store’s inventory with perishable items over time, from a distributional point of5

view. The objective is to maximize sales while minimizing waste, with uncertainty about6

the actual consumption by costumers. This problem is of a high relevance today, given the7

growing demand for food and the impact of food waste on the environment, the economy,8

and purchasing power. We frame inventory restocking as a new reinforcement learning task9

that exhibits stochastic behavior conditioned on the agent’s actions, making the environ-10

ment partially observable. We make two main contributions. First, we introduce a new11

reinforcement learning environment, RetaiL, based on real grocery store data and expert12

knowledge. This environment is highly stochastic, and presents a unique challenge for re-13

inforcement learning practitioners. We show that uncertainty about the future behavior of14

the environment is not handled well by classical supply chain algorithms, and that distri-15

butional approaches are a good way to account for the uncertainty. Second, we introduce16

GTDQN, a distributional reinforcement learning algorithm that learns a generalized Tukey17

Lambda distribution over the reward space. GTDQN provides a strong baseline for our18

environment. It outperforms other distributional reinforcement learning approaches in this19

partially observable setting, in both overall reward and reduction of generated waste.20

1 Introduction21

Retail is an industry that people deal with almost every day. Whether it is to sell clothes, groceries, or shop22

on the internet, all retailers require optimized inventory management. Inventory management considers23

a multitude of factors. One of growing concern is waste. For example, food waste costs the worldwide24

economy around $1 trillion per year.1 On top of this cost, food waste is responsible for around 10% of25

worldwide carbon emissions.2 This is one order of magnitude higher than civil aviation.3 This means that26

both businesses and non-profits have an interest in working together to reduce waste, given its economic and27

ecological impact.28

While some waste is produced during production, retailers and consumers also play a significant role in the29

generation of food waste. In this paper, we focus on the retailer-side of waste. We use grocery stores as a30

canonical example of a retailer. Grocery stores need to manage their inventory in order to meet customer31

demand. To do so, they pass orders to warehouses. When restocking an inventory, an order is made to32

receive n units of a product at a later time. Often, stocks are provisioned in order to ensure customers33

always have access to an item (Horoś & Ruppenthal, 2021). This means that, in the case of perishable items,34

they might waste items that have stayed in stock for too long. On the other hand, if items are under-stocked,35

1World Food Programme, https://www.wfp.org/stories/5-facts-about-food-waste-and-hunger
2WWF: Driven to Waste, https://wwf.panda.org/discover/our_focus/food_practice/food_loss_and_waste/driven_to_

waste_global_food_loss_on_farms
3https://www.iea.org/reports/aviation
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it might lead to customers not finding the products they want. This results in a balancing problem where36

orders have to account for uncertainty in demand, both to minimize waste and meet customer demand. This37

process is of course repeated over several periods – a grocery store is usually open 6 to 7 days a week. This38

makes inventory replenishment a sequential decision making problem, where actions have potentially delayed39

outcomes.40

Simulation environment. Simulation environments have proven promising for supply chain prob-41

lems (Cestero et al., 2022), as they allow for experimentation from both the concerned community and42

machine learning experts. Currently, there is no available framework that allows us to properly simulate43

a grocery store that takes waste into account for different items. Hence, to help evaluate the performance44

of agents on the inventory restocking (or inventory replenishment) problem, we introduce a grocery store45

environment that takes waste and stochastic customer demand into account.46

Learning method. The stochasticity of customer consumption makes the inventory replenishment prob-47

lem partially observable: the demand being different from its forecast, two identical situations at first sight48

can result in different outcomes. This creates a problem: if an action, for a given observation, can result in49

various rewards, how do we ensure that we properly learn the dynamics of the environment? A possibility is50

to consider non-deterministic action-value functions, where we ascribe the randomness in the environment51

to its reward distribution. Given this, as a strong baseline, we propose to make use of distributional re-52

inforcement learning (DRL). In DRL, the agent aims to estimate the distribution of the state-action value53

function Q rather than its expectation (Bellemare et al., 2017). In this paper, we adopt a new direction to54

estimate the distribution. Non-parametric estimations of summary statistics of the probability distribution55

are preferred for unconventional data distributions, but are often prone to overfitting and require more sam-56

ples (Pados & Papantoni-Kazakos, 1994; Sarle, 1995). To circumvent this limitation, we estimate parameters57

of a flexible distribution, in order to facilitate learning. Actual reinforcement-learning based approaches to58

waste reduction in the inventory problem do not look at the item-level (Kara & Dogan, 2018). We aim to59

fill this gap in perishable item replenishment by making use of distributional reinforcement learning.60

We introduce GTDQN, generalized Tukey deep Q-network, a reinforcement learning algorithm that estimates61

parameters of a well-defined parametric distribution. Currently, distributional approaches rely mostly on62

non-parametric estimation of quantiles. We find that distributional algorithms with a reliable mean estimate63

outperform non-distributional approaches, with GTDQN outperforming expectile-based approaches. While64

we focus on the task of inventory replenishment, GTDQN does not make any assumption on the task we65

present here.66

Research questions. Overall, we aim to answer the following research questions:67

1. Given a forecast for the consumption of a perishable item, can we find an optimal strategy to restock68

it while maximizing overall profits?69

2. Can we ensure that such a policy does not lead to increased waste?70

3. Which distributional method is the most efficient to solve the problem?71

To answer those questions, we compare various discrete-action based DRL methods, including our newly72

proposed GTDQN, as well as classic inventory replenishment heuristics. Previous work has tried to answer73

those questions partially. Meisheri et al. (2022) do not look at waste through a cost-based approach. And De74

Moor et al. (2022); Ahmadi et al. (2022) solely look at a single item, with unchanging demand distribution.75

Likewise, Selukar et al. (2022) look only at a very limited number of items and only consider the problem76

in a LIFO manner. Overall, the previous work does not provide a common solution for practitionners to try77

new ordering policies, nor do they provide new ordering algorithms.78

Contributions. In summary, our contributions are as follows:79

• We provide RetaiL, a new, complete simulation environment for reinforcement learning and other80

replenishment policies based on realistic data;81
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• We showcase the performance of classic reinforcement learning algorithms on RetaiL;82

• Additionally, we propose GTDQN, a new distributional reinforcement learning algorithm for the83

evaluation of state-action values; and84

• We show that GTDQN outperforms the current state-of-the-art in stochastic environments, while85

still reducing wastage of products, making it a strong baseline for RetaiL.86

Below, we survey related work, introduce our simulation environment, discuss baselines for sales improvement87

and waste reduction in this environment, including our newly proposed distributional reinforcement learning88

method, report on the experimental results, and conclude.89

2 Related Work90

The inventory restocking problem The literature on ordering policies is extensive. Most work is91

based on the classic (s, S) policy introduced by Arrow et al. (1951). Yet, their inventory model does not92

factor in waste. Inventory policies for fresh products as a field was kick-started to optimize blood bag93

management (Jennings, 1968; Brodheim et al., 1975). Since then, there is increased attention in the classic94

supply chain literature models to limit waste (van Donselaar et al., 2006; Broekmeulen & van Donselaar,95

2009; Minner & Transchel, 2010; Chen et al., 2014). Recently, various reinforcement learning-based policies96

have been developed for supply chains; see (e.g., Kim et al., 2005; Valluri et al., 2009; Sui et al., 2010;97

Gijsbrechts et al., 2019; Sun et al., 2019). More specifically, Kara & Dogan (2018) pioneered the use of98

reinforcement learning for waste reduction in the inventory restocking problem by using a DQN to solve the99

problem at hand. Their approach can be improved upon, as they aggregate the total shelf lives of the items100

at hand – thus, their agents only have access to the average shelf life of the inventory. Moreover, this makes101

it impossible to account for all items independently, to remove expired items from the stock, and to penalize102

the agent for the generated waste. Indeed, waste can be considered a tail event as it happens suddenly once103

an item has reached its maximum consumption date. Item-level waste is currently not considered in the104

literature. This is why we advocate for simulations where the agent considers all of the inventory.105

We think it is not enough to limit the agent’s knowledge by only looking at the mean. Indeed, a distribution106

has more summary statistics than its first moment, especially to characterize its tail. We should make use of107

those, and we believe that this is required for a proper evaluation of waste. With distributional reinforcement108

learning, the agent can learn its own summary characteristics, which will be more suited to the task at hand.109

Partially observable Markov decision processes. Randomness in environments is common in rein-110

forcement learning (Monahan, 1982; Ragi & Chong, 2013; Goindani & Neville, 2020). We can distinguish111

two approaches to this stochasticity, that are not necessarily disjoint. The first is to consider robust Markov112

decision processes. They make the assumption that a policy should be robust to changes in the data gen-113

erating process over time, in order to have a better estimation of the transition matrix (Xu et al., 2021;114

Derman et al., 2020). The other approach is to consider the reward as a non-deterministic random variable115

whose distribution is conditioned on the environment’s observation and on the agent’s action. This usually116

means that the agent acts under partial information about the environment’s state. While one can make the117

argument that this is only due to the lack of information about the environment (Doshi-Velez, 2009), this is118

not a setting that generalizes well to unseen situations.119

In this paper, we consider that our agent can see the current state of the stock for a given item and its char-120

acteristics, but lacks the information over the past realizations of the temporally joint demand distribution,121

making the environment partially observable.122

Distributional reinforcement learning. Learning the Q-value is the most straightforward way to de-123

velop a Q-learning algorithm, but is most likely to be inefficient, as noted by Bellemare et al. (2017). Belle-124

mare et al. introduce the C51 algorithm, where they divide the possible Q-value interval in 51 sub-intervals,125

and perform classification on those. The goal is to learn the distribution of future returns instead of their126

expectation Q. This allows one to achieve a gain in performance, compared to using only the expectation;127
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this paper launched the idea of distributional deep reinforcement learning. Later, the authors introduced a128

more generalizable version of their algorithm, the quantile-regression DQN (Dabney et al., 2018). Instead129

of performing classification on sub-intervals, Dabney et al. directly learn the quantiles of the Q-value dis-130

tribution through the use of a pinball loss. While this method proved efficient, its main drawback is that it131

does not prevent crossing quantiles – meaning that it is possible in theory to obtain q1 > q9 (where q1 is the132

first decile and q9 is the ninth decile). To fix this, different approaches have been tried to approximate the133

quantiles of the distribution (Yang et al., 2019; Zhou et al., 2020), through the use of distribution distances134

rather than quantile loss. The work listed above takes a non-parametric approach, from a classic statistical135

viewpoint, as they do not assume any particular shape for the distribution. While non-parametric methods136

are known for their flexibility, they sometimes exhibit a high variance, depending on their smoothing pa-137

rameters. Moreover, the use of non-parametric estimations of quantiles prevents aggregation of agents and138

their results, as one cannot simply sum quantiles. More recently, research has been conducted on robust139

Bayesian reinforcement learning (Derman et al., 2020) to adapt to environment changes. In this paper, the140

authors develop a model geared towards handling distributional shifts, but not towards handling the overall141

distributional outcomes of the Q-value.142

In our paper, we consider a very flexible distribution that is parameterized by its quantiles, and from which143

we can both sample and extract summary characteristics (Chalabi et al., 2012).144

3 RetaiL, An Inventory Replenishment Simulator145

In this section, we detail the inner workings of the simulation environment we introduce.146

3.1 Inventory replenishment147

We can frame part of the process of inventory replenishment as a manager passing item orders to a warehouse148

to restock a store. At every step, items in the store are consumed by customers. Let us consider a single item149

i and its observation o(i) with a shelf life si. We study restocking and consumption of this item over a total150

of T time periods, each composed of τ ∈ N sub-periods that we call time steps. During each time period151

t ∈ {1, . . . , T}, the manager can perform τ orders of up to n instances of the item i. Each of those orders152

is then added L time steps later to the inventory – termed the lead-time. In the meantime, τ consumptions153

of up to n items are realized by customers. Each of those purchases then results in a profit. Assuming that154

not enough instances of i are present in the stock to meet customer demand, it then results in a missed155

opportunity for the manager, resulting in a loss. At the end of the period t, all instances of i currently156

present in the store have their shelf life decreased by one, down to a minimum of zero. Once an instance of157

i reaches a shelf life of zero, it is then discarded from the inventory, and creates a loss of i’s costs for the158

manager. Furthermore, the restocking and consumption of i are made in a LIFO way, as customers tend to159

prefer items that expire furthest from their purchase date (Li et al., 2017; Cohen & Pekelman, 1978).4160

To fulfill its task, the manager has access to a forecast of the customer demand for i in the next w time steps,161

contained in o(i). While we could argue that the agent should be able to act without forecast, this does162

not hold in real-world applications. In most retail organizations, forecasts are owned by a team and used163

downstream by multiple teams, including the planning ones that take decisions from it. This means that164

the forecast is “free-to-use” information for our agent. Moreover, this means that adapting to the forecast165

will prove more reliable in the case of macroeconomic tail-events (lockdowns, pandemics, canal blockades,166

etc.) as those can be taken into account by the forecast. Obviously, this forecast is only an estimation of167

the actual realization of i’s consumption, and is less accurate the further it is from the current time step t.168

Items are considered independent, meaning that we do not take exchangeability into account. Using this169

information about all individual items in the store, our goal is to learn an ordering policy to the warehouse170

that generalizes to all items. An ordering policy simply refers to how many units we need to order at every171

time step, given the context information we have about the state. The goal of our policy is to maximize172

overall profit, instead of simply sales. This means that waste, and missed sales are also taken into account.173

Moreover, while our policies have access to information about the consumption forecast of the items, this174

4We make the assumption that the price does not depend on the remaining shelf life of the item.

4



Under review as submission to TMLR

forecast is not deterministic. Indeed, some of the mechanics of the environment are hidden to the agent: the175

number of customers per time-step, despite being correlated to the previous time-step, is hidden, as the agent176

is delayed in its observation. This means that reinforcement learning agents evolve in a partially observable177

Markov decision process (POMDP), where an observation and an action correspond to a reward and state178

distribution, and not a scalar.179

Formally, we can write the problem as finding a policy π∗ : O → N such that:180

π∗ = arg max
π

∑
i∈I

∑
t∈T

∑
τ∈t

Rπ(oτ (i)), (1)

where oτ (i) is the observation of item i at the time-step τ and Rπ the reward function parameterized by the181

policy π. In the following sections, we detail how we model the items, the consumption process as well as182

the Markov decision process we study.183

3.1.1 Item representation184

Using real-world data of items being currently sold is impossible, as it would contain confidential information185

(e.g., the cost obtained from the supplier). This is why we fit a copula on the data we sourced from the186

retailer to be able to generate what we call pseudo-items: tuples that follow the same distribution as our187

actual item set. Having pseudo-items also allows us to generate new, unseen item sets for any experiment.188

This proves useful for many reinforcement learning endeavors (Tobin et al., 2017).189

When an instance of our experimental environment is created, it generates an associated set of pseudo-items190

with their characteristics: cost, price, popularity and shelf life. These characteristics are enough to describe191

an item in our setting: we do not recommend products, we want to compute waste and profit. We provide192

the item generation model and its parameters along with our experiments.193

3.1.2 Consumption modelling194

We model the consumption as the realization of a so-called n, p process, as this way of separating the number195

of customers and purchasing probability is common in retail forecasting (Juster, 1966). We consider that a196

day is composed of several time steps, each representing the arrival of a given number of customers in the197

store.198

3.1.3 POMDP formalization199

Customer consumption depends on aleatoric uncertainty, and forecast inaccuracy derives mostly from epis-200

temic uncertainty: a forecast capable of knowing customer intent would leave little room for aleatoric un-201

certainty. Yet, there is no difference for our agent, as both of those uncertainties affect the reward and202

transitions in the environment. This means that the environment is partially observable to our agent, as the203

agent is unable to see past realizations of demand over linked time periods: a customer that comes in the204

morning will not come in the afternoon in most cases. A fully observable state would contain past realizations205

of the demand over the previous time steps. Formally, we can write a partially observable Markov decision206

process as a tuple ⟨O, A, R, P ⟩, where O is the observation we have of our environment, A the action space, R207

the reward we receive for taking that action, and P the transition probability matrix. Here, they correspond208

to:209

O The full inventory position of the given item (all its instances and their remaining shelf lives), its shelf210

life at order, its consumption forecast, its cost and its price;211

A How many instances of the item we need to order; and212

R The profit, to which we subtract profit of missed sales and cost of waste.213

5



Under review as submission to TMLR

3.2 Environment modeling214

We aim to model a realistic grocery store that evolves on a daily basis through customer purchases and215

inventory replenishment. To do so, we rely on expert knowledge from a major grocery retailer in Europe.216

Our environment relies on four core components: item generation, demand generation, forecast generation,217

and stock update for reward computation.218

Item generation. We define an item i as a tuple containing characteristics common to all items in an219

item set: shelf life, popularity, retail price, and cost: i = ⟨s, b, v, c⟩.5 As data sourced from the retailer220

contains sensitive information, we want to be able to generate items on-the-fly. As purchases in retail are221

highly repetitive, we will base ourselves on the popularity b of the items to generate the demand forecast in222

Section 3.2. On top of helping with anonymity, being able to learn in a different but similar environment has223

proved to help with the generalization of policies (Tobin et al., 2017). To do so, we fit a Clayton copula (Yan,224

2007) on the marginal laws (gamma and log-normal) of our tuple. The parameterized model is available225

with the code. Given the parameterized copula, we can generate an unlimited number of tuples that follow226

the same multivariate distribution as the items available in the data sourced from the retailer.227

Demand generation. To represent a variety of demand scenarios, we based the demand on the popularity228

of the items given by the past purchases in the real data. We then modeled a double seasonality for items:229

weekly and yearly.6 Overall, given a customer visiting the store, we can write the purchase probability at a230

time period t, pi(t) for a pseudo-item i as:231

pi(t) = bi · cos(ωwt + ϕ1,i) · cos(ωyt + ϕ2,i), (2)

where bi is the popularity (or base demand) for item i, ϕ·,i its phases, and ωw, ωy are the weekly and yearly232

pulsations of the demand signal, respectively. The base demand bi comes from the fitted copula, and the233

phases ϕ·,i are randomly sampled to represent a variety of items. Together with the purchase probability, we234

also determine the number of customers who will visit the store on a given time-step. To do so, we model235

a multivariate Gaussian over the day sub-periods, with negatively correlated marginal laws (if a customer236

comes in the morning, they will not come in the evening). Having the purchase probability and the number237

of customers n(t), we can then simply sample from a binomial law B(n(t), pi(t)) to obtain the number of238

units ui of item i sold at the time-step t.239

Forecast generation. The parameters (n(t), pi(t)) of the aforementioned binomial law (Section 3.2) are240

not known to the manager that orders items. Instead, the manager has access to a forecast – an estimator241

of the parameters. We simply use a mean estimator for n(t), as seasonality is mostly taken into account via242

our construction of pi(t).243

As for the purchase probability estimator, we assume that the manager has access to a week-ahead forecast.244

We write the estimator as such:245

p̂i(t + δt) = pi(t + δt) + δtϵi, (3)

where δt ∈ {1, . . . , 7} and ϵi ∼ N (0, σ). The noise ϵi represents the forecast inaccuracy for the item i, and246

the uncertainty about the customer behavior the manager and the store will face in the future. We assume247

a single σ for all items and a mean of 0, as most single point forecasts are trained to have a symmetric,248

equally-weighted error. δt is used to show the growing uncertainty we have the further we look in the future.249

Stock update. To step in the environment, the agent needs to make an order of n units ui of the item i.250

We consider that a time period t is a succession of several time-steps.7 At the beginning of a time period,251

items that were ordered L time-steps before are added to the stock, where L is the lead time. If the total252

5Our repository also includes dimensions, to allow for transportation cost computation.
6For example, beers are often sold at the end of the week, and ice cream in the summer.
7Usually, a time period would be a day, meaning that a store can be replenished several times during the course of a day.
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numbers of items would exceed a maximum stock size M , the order is capped at M − n. The generated253

demand is then matched to the stock. Items are removed from the stock in a LIFO manner, as is the case254

in most of the literature (Li et al., 2017; Cohen & Pekelman, 1978). Items that are removed see their profit255

added to the reward. If the demand is higher than the current stock, the lacking items see their profits256

removed from the reward (missed sales). Finally, if the step is at the end of the day, all items in store receive257

a penalty of one day on their remaining shelf lives. Items that reach a shelf life of 0 are then removed from258

the inventory, and their cost is then removed from the reward: these items are the waste.259

4 Inventory Replenishment Methods for Perishable Items260

In the previous section, we introduced the environment we built, along with its dynamics. In this section,261

we introduce the baselines we consider, together with our own algorithm, GTDQN.262

4.1 Baselines263

In this subsection, we introduce the various algorithms that serve as baselines. We draw one example from the264

supply chain literature, as well as several from the field of Reinforcement Learning. We focus on DQN (Mnih265

et al., 2015) and its derivatives, as they are simple to apprehend.266

(s, Q) Ordering policy. The (s, Q) ordering policy (Nahmias & Demmy, 1981) consists of ordering Q267

units of stock when the inventory position goes below a certain threshold s. While very simple, it has been268

in use (along with some of its derived cousins (Kelle & Milne, 1999; Cachon, 1999)) for decades in supply269

chain settings.270

Deep-Q-networks (DQN). The first reinforcement learning baseline we use is Deep-Q-Networks (Mnih271

et al., 2015). While this model is not SOTA anymore, it is often a reliable approach to a sequential decision-272

making problem, mainly in games like Atari, for instance. The idea behind DQN is to predict the Q-value273

of all possible actions that can be taken by the agent for a specific input. By using those values, we are able274

to use the corresponding policy to evolve in the environment.275

C51. Categorical DQN (Bellemare et al., 2017) can be seen as a multinomial DQN with 51 categories and276

is a distributional version of DQN. Instead of predicting the Q value, the model divides the possible sum of277

future rewards interval in 51 (can be more or less) intervals. Then, the network assigns a probability to each278

interval, and is trained like a multinomial classifier.279

Quantile regression DQN (QR-DQN). DQN using quantile regression (Dabney et al., 2018) is not280

necessarily more performant than C51. Instead of a multinomial classifier, this algorithm performs a regres-281

sion on the quantiles of the distribution function. This approach has the benefit of being non-parametric,282

but does not guarantee that the quantiles will not cross each other: we can obtain Q10 < Q90, which would283

be impossible in theory. While some authors sort the obtained quantiles to remove the contradiction, we284

think this results in a bias in the statistics that are learnt that way.285

Expectile regression DQN. Expectile regression DQN (ER-DQN) (Rowland et al., 2019) takes the idea286

behind QR-DQN and replaces quantiles with expectiles. It is possible to interpret an expectile as the “value287

that would be the mean if values above it were more likely to occur than they actually are” (Philipps, 2021).288

4.1.1 Underlying neural architecture289

All the considered DQN-based algorithms, including the following GTDQN, are based on the same feed-290

forward architecture. The individual shelf lives of the already stocked items are first processed together in a291

convolution layer. They are then concatenated with the item characteristics and processed through a simple292

Feed-Forward Deep Neural Network with Layer Norm and SELU activation (Klambauer et al., 2017).293

7



Under review as submission to TMLR

4.2 Generalized Tukey deep Q-network294

In this section, we introduce a new baseline, generalized Tukey deep Q-network (GTDQN), for decision-295

making in stochastic environments. As the problem we study requires planning under uncertainty, we need296

a baseline that can consider randomness in the signals it receives from the environment. While we can use297

classic off-policy architectures like Deep Q Networks, the partial observability of our environment is more298

likely to be encompassed by an algorithm that assumes value distributions over actions rather than simple299

scalar values.300

Thus, we assume that the Q-value follows a generalized lambda distribution, also known as a generalized301

Tukey distribution. This is a weak assumption that does not constrain the shape too much. Indeed, the use302

of four parameters allows for a very high degree of flexibility of shapes for this distribution family (Chalabi303

et al., 2012): unimodal, s-shaped, monotone, and even u-shaped. The generalized lambda distribution can304

be expressed with its quantile function α as follows:305

αΛ(u) = λ1 + 1
λ2

[uλ3 − (1− u)λ4 ], (4)

where Λ = (λ1, λ2, λ3, λ4) is the tuple of four parameters that define our distribution. Those parameters can306

then be used to compute the distribution’s four first moments (mean, variance, kurtosis and skewness), if307

they are defined.308

Thus, we build our Q-network not to predict the expected Q-value nor its quantiles, but to predict the309

parameters λ1, λ2, λ3, λ4 of a generalized lambda distribution. This allows us to obtain both guarantees on310

the behavior of the distribution’s tail, and non-crossing quantiles. Still, we perform our Bellman updates311

by estimating the quantiles derived from the values of the distribution’s parameters. To obtain a quantile’s312

value, we simply need to query it by using Equation 4.313

Working with quantiles guarantees that the Bellman operator we use is a contraction, when using a smoothed
pinball loss (Yang et al., 2019). While written differently in most of the literature, the classic pinball loss
can be written as follows:

PLu(y, ŷ(u)) = (y − ŷ(u)) · u + max(0, ŷ(u)− y), (5)

where u is a quantile, y the realized value, and ŷ(u) the predicted value of quantile u. Its δ-smoothed version
is obtained by plugging this loss estimator instead of the square error in a Huber loss (Huber, 1992). This
gives us the following loss function:

Lδ
u(y, ŷΛ(u)) =

{ 1
2 [y − ŷΛ(u)]2 ∆), for |y − ŷΛ(u)| ≤ δ
δ (|y − ŷΛ(u)| − δ/2) ∆), otherwise, (6)

with ∆ = PLu(y, ŷΛ(u)), where δ is a smoothing parameter and u the considered quantile for the loss.314

Algorithm 1 shows the way we update the parameters of our network through temporal difference learning315

adapted to a quantile setting.316

Unlike C51 (Bellemare et al., 2017) and QR-DQN (Dabney et al., 2018), we do not select the optimal action
(line 2 of Algorithm 1) via an average of the quantile statistics, but via a mean estimator obtained via our
GLD distribution’s parameters (Fournier et al., 2007):

µ̂(Λ) = λ1 +
1

1+λ3
− 1

1+λ4

λ2
. (7)

This approach is closer to the implementation of ER-DQN (Rowland et al., 2019), where only the expectile 0.5317

is used, rather than QR-DQN, where the quantiles are averaged to obtain an estimation of the mean (Dabney318

et al., 2018).319
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Algorithm 1: Generalized Lambda Distribution Q-Learning
Require: quantiles {q1, . . . , qN}, parameter δ
Input : o, a, r, o′, γ ∈ [0, 1]

1 Λ(o′, a′),∀a′ ∈ A # Compute distribution parameters ;
2 Λ∗ ← arg maxa′ µ̂(Λ(o′, a′)) # Compute optimal action (Equation 7) ;
3 T qi ← r + γαΛ∗(qi),∀i # Update projection via Equation 4 ;
4 Optimize via loss function (Equation 6) ;

Output : ΣN
j=1Ei[Lδ

qj
(T qi, αΛ(o,a)(qj))]

5 Experiments320

In this section, we compare the performance in inventory replenishment simulation of our new baseline321

against a number of baselines (RQ3), for a variety of scenarios. We want to see whether we can improve322

overall profit (RQ1), and, if so, if it comes at the cost of generating more waste (RQ2).323

5.1 Experimental setup324

We train our DQN-family policies (baselines and GTDQN) on a total of 6 000 pseudo-items, for transitions325

of 5 000 steps. We do so in order to expose our agents to a variety of possible scenarios and items. Morover,326

we do not train our agents in an average reward framework, as discounting also presents an interest for327

accounting in supply chain planning (Beamon & Fernandes, 2004). We evaluate the performance of our328

agents on a total of 30 generations of 100 unseen pseudo-items, for 2 000 steps. We repeat this for 3 different329

scenarios of randomness, indicating how observable the environment is. We name them H = 0, H = 1,330

H = 2:331

H = 0 In this scenario, the environment’s mechanics are not random. Here, Equation 3 reduces to332

p̂i(t + δt) = pi(t + δt). This means that the agent knows exactly the purchase probability of items.333

In this scenario, there is little need for adaptability as the inter-day variations in customer behavior334

are close to non-existent.335

H = 1 In this scenario the environment’s mechanics are slightly random and overall exhibit little variation.336

In this scenario, the agent needs to learn how to interpret the week-ahead forecast and leverage it337

to increase profit.338

H = 2 In this scenario, the environment is highly noisy and becomes much harder to predict.339

These scenarios allow us to verify whether an agent has learned a decent policy and is able to generalize to340

unseen data. Real grocery stores with a “good” forecast are more likely to be represented by the H = 1341

and H = 2 scenarios (Ramanathan, 2012). The agents are trained on a reward function R defined as342

R = Sales −Waste. In Section 5.2.3, the reward function used is R = Sales − 10×Waste in order to assess343

how well agents reduce waste when given a new target.344

We perform two experiments, where we look at overall profit performance and waste reduction relative to a345

baseline, respectively.346

Experiment 1: Impact of forecast inaccuracy. In this experiment, we measure the overall performance347

of the various agents, for the different levels of environment randomness (RQ1). This experiment allows us348

to measure the impact of randomness and unpredictability of consumption behavior on our agents, and to349

see whether they are an improvement over a deterministic heuristic.350

Experiment 2: Impact of unstable order behavior on waste. In this experiment, we show how the351

orders translate into generated waste. This way, we can see whether the improvement in the previous section352

comes at the cost of more waste or not (RQ2).353
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Figure 1: Neural architecture for all considered DQN-based models

Implementation and computational details. Our code was implemented in PyTorch (Paszke et al.,354

2019) and is available on GitHub.8 We ran our experiments on a RTX A6000 GPU, 16 CPU cores and 128GB355

RAM. All models use the same underlying neural network architecture as shown in Figure 1. We notice that356

GTDQN was approximately 3 times faster than QR-DQN and ER-DQN for more than 4 quantiles, as it needs357

estimating a constant number of parameters. We performed a grid search on DQN for all hyperparameters,358

and kept those for all models. However, we set the exploration rate at 0.01 for distributional methods,359

followinq (Dabney et al., 2018). Training curves are available in Appendix A.2.360

5.2 Results361

In this section, we detail the performance of the various baselines as well as GTDQN, introduced in Section362

4.2, for both resistance to uncertainty and waste reduction. We averaged the results of the different algorithms363

over a total of 6,000 pseudo-items.364

5.2.1 Overall performance365

We report the performance in Table 1 as the improvement relative to a simple (s, Q) policy, as this kind366

of policy is still prominent in supply chain practices (Jalali & Van Nieuwenhuyse, 2015). In this table, we367

see that all models perform better than the baseline when there is no uncertainty (H = 0). Yet, there is no368

significant difference between them.369

In the second scenario with medium volatility (H = 1), the performance improvement of distributional370

methods over deterministic ones shows clearly, highlighting the performance of QR-DQN, GTDQN and371

ER-DQN. C51 exhibits a performance closer to DQN than to the other distributional approaches. It is372

additionally much slower to train than all others. C51 being unable to update its bucket values might be373

a reason why its performance is slightly disappointing – yet, it still is a clear improvement over the (s, Q)374

baseline.375

In the third scenario (H = 2), it is made even more obvious that the non-bounded distributional approaches376

can capture the uncertainty, as they widen the gap with the more simple DQN. Our method, GTDQN,377

is overall better than ER-DQN, that bases itself on expectiles. Our method is relatively more stable with378

respect to how many quantiles or expectiles it estimates with. Moreover, its computation time is much lower379

than ER-DQN and QR-DQN for N > 4, as it does not estimate new parameters.380

Looking closer at the results in Figure 2, we can see that improvements in profit by GTDQN relative to381

the baseline are strictly one-sided in high-entropy scenarios. Moreover, they show that the resulting distri-382

bution of improvements is not a gaussian – this is why the MAD was preferred as a metric for uncertainty383

quantification. This means that using GTDQN results in a consistent improvement in profit performance.384

8https://anonymous.4open.science/r/GTDQN-2F01/README.md
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Table 1: Human-normalized profit (higher is better). Results on trajectories of length 2 000, averaged over
3 000 items, for 3 different consumption volatility scenarios. Bold indicates best.

Quantiles H = 0 H = 1 H = 2
DQN – 146.1% ±0.7 178.8% ±0.5 146.5% ±0.3
C51 – 142.7% ±0.9 173.0% ±0.4 156.1% ±0.2

QR-DQN

5 146.7% ±0.7 190.4% ±0.9 176.6% ±0.6
9 147.2% ±0.8 204.2% ±0.11 189.5% ±0.6

15 146.7% ±0.1 193.3% ±0.8 161.6% ±0.4
19 146.1% ±0.1 198.7% ±0.8 170.1% ±0.5

ER-DQN

5 147.4% ±0.9 203.5% ±0.9 172.5% ±0.5
9 145.1% ±0.7 177.7% ±0.6 174.2% ±0.5

15 148.7% ±0.9 202.2% ±0.8 168.0% ±0.5
19 146.1% ±0.1 209.3% ±0.9 170.3% ±0.6

GTDQN
(ours)

5 147.8% ±0.8 213.3% ±0.9 186.2% ±0.5
9 147.9% ±1.1 208.3% ±1.0 194.1%±0.7

15 143.1% ±0.6 209.5% ±0.9 192.8% ±0.6
19 147.3% ±0.9 212.6% ±0.9 191.8% ±0.6

Table 2: Human-normalized waste (lower is better). Results on trajectories of length 2 000, averaged over
3 000 items, for 3 different consumption volatility scenarios. Bold indicates best.

Quantiles H = 0 H = 1 H = 2
DQN – 16.8% 23.0% 13.2%
C51 – 2.6% 66.9% 17.3%

QR-DQN

5 32.1% 16.5% 9.6%
9 46.7% 13.9% 12.6%

15 20.1% 17.7% 16.3%
19 13.8% 19.4% 11.1%

ER-DQN

5 46.5% 26.7% 13.3%
9 6.1% 23.4% 12.8%

15 8.4% 14.5% 11.5%
19 30.1% 13.1% 11.3%

GTDQN
(ours)

5 15.6% 13.8% 14.6%
9 8.1% 19.3% 16.2%

15 4.9% 14.5% 16.3%
19 6.1% 13.9% 15.9%

5.2.2 Waste reduction385

In Table 2, we visualize the waste generated relative to our simple (s, Q) policy baseline. In all scenarios,386

we see that all methods reduce waste relative to the baseline. This means that they managed to improve387

the overall score (Table 1), without increasing waste: they ordered more than the baseline, and wasted less388

products. This is not surprising: the baseline only considers the number of items in the stock, not when389

they expire. Learning this both contributes to increased score and reduced waste. In all scenarios, we see390

that all methods reduce waste relative to the baseline.391

In the scenario with full information, C51 performs very well, followed closely by GTDQN and some verisons392

of ER-DQN. In the the H = 1 scenario, where the environment is partially observable, both GTDQN393
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Figure 2: Improvement of GTDQN over (s, Q)-policy, for the H = 2 scenario, for 30 generations of 100
items.

and QRDQN perform similarly. Surprisingly, C51 does not perform well and is the worst of all models394

considered here. Given the significant improvement over the baseline in a partially observable environment395

brought by those methods, we conclude that they were able to adapt to the environment’s dynamics and its396

randomness, while still taking the potential waste into account. Finally, in the H = 2 scenario, all models397

perform comparably well.398

Note that GTDQN is constantly in the same neighborhood as the best solution, no matter the number of399

computed quantiles or the randomness of the environment.400

5.2.3 Waste reduction for waste-averse agents.401

In this section, we look at the performance of all evaluated algorithms, trained under a more waste-averse402

reward. We evaluated the algorithms with the same setup, and a Reward function R = Sales − 10×Waste.403

Table 2 shows that all agents do reduce their sales, and that it mostly comes at a lower waste, compared to404

Table 2. We can see from the table that GTDQN maintains its lead in profit, and also reduces its generated405

waste on every scenario compared to the previous reward signal.406

5.2.4 Impact of the mean estimator407

It is of interest to know why GTDQN performs well on the RetaiL environment, despite it not being tuned408

for it. We thus perform an ablation study, where we estimated our parameter vector Λ = ⟨λ1, λ2, λ3, λ4⟩.409

However, instead of using Equation 7 to select the optimal action, we compute 5 quantiles and average them410

to estimate the mean, as it is the case in QR-DQN. As shown in Table 4, our mean estimator in Equation 7411

has a strong impact, both on waste and profit.412

In conclusion, we have shown that it is possible to improve the restocking strategy for perishable items413

by using a distributional algorithm (RQ1). Moreover, this improvement in overall profit does translate to414

lower waste (RQ2). Finally, we have shown that the algorithm we propose, GTDQN, does present a strong415

alternative to other distributional algorithms, as it is constant in its good performance (RQ3).416
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Table 3: Comparison of normalized performance in profit and generated waste, for a higher weight on waste
during learning. (bold indicates best). Results on transitions of length 2 000, averaged over 6 000 items, for
3 different consumption volatility scenarios.

Profit Waste
H = 0 H = 1 H = 2 H = 0 H = 1 H = 2

DQN 140.9%± 0.8 179.4%± 0.4 158.3%± 0.3 8.6% 28.9% 13.9%
C51 139.3%± 0.8 175.1%± 0.7 152.3%± 0.3 24.5% 89% 27.7%
QR-DQN@9 138.6%± 1.0 185.1%± 0.7 162.5%± 0.3 26.1% 14.3% 13.6%
ER-DQN@9 138.5%± 1.1 167.3%± 0.5 163.9%± 0.3 23.9% 11.6% 8.9%
GTDQN@9 (ours) 140.3%± 1.1 186.3%± 0.7 164.4%± 0.3 4.1% 17.3% 8.8%

Table 4: Comparison of normalized performance in profit and generated waste of GTDQN with and without
Equation 7 (bold indicates best). Results on transitions of length 2 000, averaged over 6 000 items, for 3
different consumption volatility scenarios.

Profit Waste
H = 0 H = 1 H = 2 H = 0 H = 1 H = 2

GTDQN without Equation 7 141.5% 150.5% 132.1% 93.6% 39% 40.1%
GTDQN 147.8% 213.3% 186.2% 15.6% 13.8% 14.6%

6 Conclusion417

In this paper, we have introduced a new reinforcement learning environment, RetaiL, for both supply chain418

and reinforcement learning practitioners and researchers. This environment is based on expert knowledge and419

uses real-world data to generate realistic scenarios. By taking waste at the item-level into account, and by420

being able to tune the forecast accuracy as well as the customer’s behavior, we can act on the environment’s421

noisiness; this results in a partially observable MDP, with tunable stochasticity, which is lacking for most422

RL tasks. Inventory management in RetaiL needs the agent to pick up seasonal patterns, unpredictability423

of customer demand, as well as delayed action effects, and credit assignment as it works in a LIFO manner.424

Additionally, we have proposed Generalized Tukey Deep Q Networks (GTDQN), a new algorithm aimed at425

estimating a wide range of distributions, based on DQN. GTDQN offers the consistency of parameterized426

distributions, but can be trained by quantile loss instead of likelihood-based approaches. Moreover, GTDQN427

can represent a wide array of distributions, and does not suffer from the quantile crossing phenomenon. We428

have found that GTDQN outperforms other methods from the same family in most cases for the task429

replenishment of perishable items under uncertainty. GTDQN does so by using a quantile loss to optimize a430

well-defined distribution’s parameters and selecting optimal actions using a mean estimator. GTDQN does431

not require any assumptions specific to the simulation environment we provide. We have also found that432

GTDQN can offer significant and constant improvement over our classic supply chain baseline, as well as over433

other distributional approaches, outperforming ER-DQN in highly unpredictable environments. Moreover,434

GTDQN does this without generating more waste through its replenishment policies, hinting that it learnt435

the environment’s dynamics better than the baselines. Our results point towards distributional reinforcement436

learning as a way to solve POMDPs.437

As to the broader impact of our work, the simulation environment we provide with the paper rewards438

weighting the risks of wasting an instance of an item and the profit from selling it. This might favor439

resupply of stores in more wealthy geographical areas where the average profit per item is higher. Thus, any440

deployment of such an automated policy should be evaluated on different sub-clusters of items, to ensure it441

does not discriminate on the purchasing power of customers. This kind of simulation can be replicated for442

all domains that face uncertainty and inventory that lowers in perceived quality with time – for instance,443

the fashion industry.444
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A limitation of our work is that we only considered discrete action spaces, whereas our environment would445

more be adapted to infinite-countable ones. Moreover, we consider marginal demand between items to be446

independent, which is unlikely to be the case in real life. Finally, our environment, RetaiL, assumes no cost447

to restock. This most likely inflates slightly the performance of the algorithms we consider for stores that do448

not have scheduled restocking as the ones we consider. Furthermore, a proper implementation in production449

would require a continuous control mechanism (such as Model Predictive Control) to match the desired stock450

level.451

For future work, we intend to model price elasticity of customers in order to model item consumption in452

case of out-of-stock items. We also want to add a restocking cost based on volume and weight of items.453

We plan to extend GTDQN for multi-agent reinforcement learning, as our estimation of parameters gives us454

access to cumulants that can be used to sum rewards of various agents and policies. This would be especially455

interesting given the low number of parameters in GTDQN. Furthermore, we plan to extend it to continuous456

action spaces, to leverage the structure of the data more efficiently. Finally, we plan to study whether those457

automated replenishment policies based on balancing profits and waste do not disadvantage some categories458

of customers more than others.459
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A Appendix575

A.1 Environment logic576

We present a few code examples of the environment we provide in Section 3. Listing 1 shows the global577

stepping logic of the environment. Listing 2 shows the addition of items in the environment’s stock: as578

individual items are represented by their shelf life, items are added via the sorting of the current stock to579

prevent item “mix-up”. Finally, Listing 3 shows part of the reward computation, when items are sold and580

removed from the stock matrix.581

Listing 1: Stepping logic of the environment
def s tep ( s e l f , a c t i on ) :582

#Put bounds on ac t ion583

new_action = (584

torch . as_tensor ( act ion , dtype=torch . in t32 )585

. clamp (0 , s e l f . _max_stock )586

. to ( s e l f . dev i c e )587

)588

#I f t h i s i s a new day , we take waste in t o account589

i f s e l f . day_posit ion % s e l f . _substep_count == 0 :590

order_cost = s e l f . _make_fast_order ( new_action )591

( s a l e s , a v a i l a b i l i t y ) = s e l f . _generateDemand ( s e l f . r e a l . clamp_ ( 0 . 0 , 1 . 0 ) )592

waste = s e l f . _waste ( ) # Update waste and s t o r e r e s u l t593

s e l f . _reduceShe l fL ives ( )594

s e l f . _step_counter += 1595

s e l f . _updateEnv ( )596

else :597

s e l f . day_posit ion += 1598

order_cost = s e l f . _make_order ( new_action )599

( s a l e s , a v a i l a b i l i t y ) = s e l f . _generateDemand ( s e l f . r e a l . clamp_ ( 0 . 0 , 1 . 0 ) )600

waste = torch . z e r o s (601

s e l f . _assortment_size602

) # By d e f a u l t , no waste b e f o r e the end o f day603

s e l f . _updateObs ( )604

s a l e s . sub_( order_cost )605

s e l f . s a l e s = s a l e s606

s e l f . t o t a l _ s a l e s += s a l e s607

s e l f . waste = waste608

s e l f . tota l_waste += waste609

s e l f . a v a i l a b i l i t y = a v a i l a b i l i t y610

Listing 2: Addition of items to the stock
def _addStock ( s e l f , un i t s ) :611

#Create padding612

padding = s e l f . _max_stock − un i t s613

rep len i shment = torch . s tack ( ( unit s , padding ) ) . t ( ) . reshape (−1)614

#Create v e c t o r s o f new items615

restock_matr ix = s e l f . _repeater . r epea t_ in t e r l e ave (616

r epea t s=rep len i shment . long ( ) , dim=0617

) . view ( s e l f . _assortment_size , s e l f . _max_stock )618

# Add new items to s t o c k619

torch . add (620

s e l f . s tock . s o r t ( 1 ) [ 0 ] ,621

restock_matr ix . s o r t (1 , descending=True ) [ 0 ] ,622
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out=s e l f . stock ,623

)624

return625

Listing 3: Selling units and updating stock
def _se l lUn i t s ( s e l f , un i t s ) :626

#Get the number o f s a l e s627

so ld = torch .min( s e l f . s tock . ge ( 1 ) .sum( 1 ) . double ( ) , un i t s )628

#Compute a v a i l a b i l i t y629

a v a i l a b i l i t y = s e l f . s tock . ge ( 1 ) .sum( 1 ) . double ( ) . d iv ( un i t s ) . clamp (0 , 1)630

#Items with no demand are a v a i l a b l e631

a v a i l a b i l i t y [ torch . i snan ( a v a i l a b i l i t y ) ] = 1 .0632

#Compute s a l e s633

s a l e s = (634

so ld . mul_(2)635

. sub_( un i t s )636

. mul ( s e l f . assortment . s e l l i n g _ p r i c e − s e l f . assortment . co s t )637

)638

(p , n) = s e l f . s tock . shape639

#Update s t o c k640

stock_vector = s e l f . s tock . s o r t (1 , descending=True ) [ 0 ] . view (−1)641

to_keep = n − un i t s642

i n t e r l e a v e r = torch . s tack ( ( uni ts , to_keep ) ) . t ( ) . reshape (2 , p ) . view ( −1). long ( )643

binary_vec = torch . t enso r ( [ 0 . 0 , 1 ] ) . r epeat (p ) . r epea t_ in t e r l e ave ( i n t e r l e a v e r )644

s e l f . s tock = binary_vec . mul_( stock_vector ) . view (p , n)645

return ( s a l e s , a v a i l a b i l i t y )646

A.2 Training Curves647

Figures 3 and 4 show the raw training scores of the models presented in Section 5.2.

Figure 3: Raw scores during training for H = 1.
648
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Figure 4: Raw scores during training for H = 2.
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