
Temporal Kolmogorov-Arnold Networks for Robust Multi-Horizon PM2.5
Forecasting

The global burden of air pollution has increased since 1990, with PM2.5-related deaths rising by 700,000 over 25
years [1], and its related health effects have emerged as a major environmental and public health concern over the past
decades [2]. PM2.5 is one of the most toxic air pollutants, as it penetrates deep into the lungs and can cause chronic
diseases or premature death. The impact of meteorological factors, industrial emissions, and urbanization has made
PM2.5 forecasting more and more difficult. Despite the progress of statistical approaches (ARIMA, SARIMA), ma-
chine learning methods (XGBoost, Random Forest, SVMs), and deep learning techniques (RNNs, LSTMs, CNNs,
Transformers), they struggle with long-term predictions and perform poorly with sparse or low-quality data, common
in Africa. Thus, this makes PM2.5 forecasting particularly challenging on the continent.

To address this, we propose the use of Temporal Kolmogorov-Arnold Network (TKAN), a deep learning
model particularly suitable for scenarios involving sparse or low-quality data. TKAN leverages spline-based func-
tional representations to improve robustness across short (1–3 days ahead) and long-term (9–12 days ahead) fore-
casts. Our dataset includes daily maximum meteorological and air quality variables from 8 African countries and 15
cities. The preprocessing steps included imputation with column means, rolling median scaling (14-day window),
RobustScaler transformation, and sequence preparation with nahead forecasting.

We compared TKAN with GRU, LSTM, and a hybrid WOA-CNN-LSTM-AM model. Training employed call-
backs (early stopping, learning rate reduction on plateau) and Optuna for hyperparameter optimization. Evaluation
metrics included MAE, RMSE, LogCosh, Huber loss, and R2. TKAN achieved the best R2 scores of 0.5107,
0.4746, 0.4719, and 0.4105 for 1-, 3-, 9-, and 12-day forecasts, respectively, while maintaining lower RMSE values
than baselines. Compared to state-of-the-art models [3, 4], TKAN improved R2 by up to 70.7% and RMSE by 16.5%
for long-term horizons, demonstrating stability and superior generalization for African air quality forecasting.
Table 1: Comparison of PM2.5 prediction metrics across models (left) and with SOTA methods (right), for 1, 3, 9, and 12-day
horizons on the test set (20% of the dataset). Best values in bold (lower is better except for R2).

Period Model MAE↓ RMSE↓ LogCosh↓ Huber↓ R2↑

1-day GRU 0.0650 0.1949 0.0173 0.0170 0.4923
LSTM 0.0754 0.2063 0.0197 0.0213 0.4312
TKAN 0.0647 0.1913 0.0171 0.0183 0.5107

3-day GRU 0.0840 0.2078 0.0199 0.0216 0.4233
LSTM 0.0797 0.2050 0.0194 0.0210 0.4386
TKAN 0.0674 0.1983 0.0183 0.0197 0.4746

9-day GRU 0.0988 0.2260 0.0231 0.0255 0.3210
LSTM 0.0782 0.2041 0.0193 0.0208 0.4458
TKAN 0.0716 0.1993 0.0184 0.0198 0.4719

12-day GRU 0.1221 0.2591 0.0298 0.0333 0.1079
LSTM 0.0783 0.2278 0.0235 0.0259 0.3108
TKAN 0.0736 0.2106 0.0204 0.0222 0.4105

Period Model MAE↓ RMSE↓ LogCosh↓ Huber↓ R2↑

1-day [3] 0.0776 0.2437 0.0267 0.0297 0.2061
[4] 0.0600 0.2026 0.0183 0.0205 0.4512
Our solution 0.0647 0.1913 0.0171 0.0183 0.5107

3-day [3] 0.1004 0.2333 0.0248 0.0272 0.2729
[4] 0.0704 0.2269 0.0231 0.0257 0.3122
Our solution 0.0674 0.1983 0.0183 0.0197 0.4746

9-day [3] 0.0882 0.2467 0.0273 0.0304 0.1902
[4] 0.0703 0.2179 0.0214 0.0237 0.3680
Our solution 0.0716 0.1993 0.0184 0.0198 0.4719

12-day [3] 0.0807 0.2522 0.0283 0.0318 0.1552
[4] 0.0836 0.2573 0.0294 0.0331 0.1202
Our solution 0.0736 0.2106 0.0204 0.0222 0.4105
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Prediction Horizon: 1 day
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Prediction Horizon: 3 days
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Prediction Horizon: 9 days
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Figure 1: Comparison of predicted and ground truth
PM2.5 values across multiple horizons (n ahead =
1, 3, 9, 12). Results show a representative 6-month pe-
riod from the test set, comparing the predictions of
TKAN, GRU, and LSTM models against ground truth
values.
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