Temporal Kolmogorov-Arnold Networks for Robust Multi-Horizon PM2.5
Forecasting

The global burden of air pollution has increased since 1990, with PM, s-related deaths rising by 700,000 over 25
years [1], and its related health effects have emerged as a major environmental and public health concern over the past
decades [2l]. PM; s is one of the most toxic air pollutants, as it penetrates deep into the lungs and can cause chronic
diseases or premature death. The impact of meteorological factors, industrial emissions, and urbanization has made
PM, 5 forecasting more and more difficult. Despite the progress of statistical approaches (ARIMA, SARIMA), ma-
chine learning methods (XGBoost, Random Forest, SVMs), and deep learning techniques (RNNs, LSTMs, CNNss,
Transformers), they struggle with long-term predictions and perform poorly with sparse or low-quality data, common
in Africa. Thus, this makes PM, 5 forecasting particularly challenging on the continent.

To address this, we propose the use of Temporal Kolmogorov-Arnold Network (TKAN), a deep learning
model particularly suitable for scenarios involving sparse or low-quality data. TKAN leverages spline-based func-
tional representations to improve robustness across short (1-3 days ahead) and long-term (9-12 days ahead) fore-
casts. Our dataset includes daily maximum meteorological and air quality variables from 8 African countries and 15
cities. The preprocessing steps included imputation with column means, rolling median scaling (14-day window),
RobustScaler transformation, and sequence preparation with 1,4 forecasting.

We compared TKAN with GRU, LSTM, and a hybrid WOA-CNN-LSTM-AM model. Training employed call-
backs (early stopping, learning rate reduction on plateau) and Optuna for hyperparameter optimization. Evaluation
metrics included MAE, RMSE, LogCosh, Huber loss, and R?. TKAN achieved the best R? scores of 0.5107,
0.4746, 0.4719, and 0.4105 for 1-, 3-, 9-, and 12-day forecasts, respectively, while maintaining lower RMSE values
than baselines. Compared to state-of-the-art models [3} 4], TKAN improved R? by up to 70.7% and RMSE by 16.5%
for long-term horizons, demonstrating stability and superior generalization for African air quality forecasting.

Table 1: Comparison of PM; 5 prediction metrics across models (left) and with SOTA methods (right), for 1, 3, 9, and 12-day
horizons on the test set (20% of the dataset). Best values in bold (lower is better except for R?).

Period Model MAE| RMSE| LogCosh| Huber| R?{

Period Model MAE| RMSE| LogCosh| Huber| RzT

l-day GRU 00650 0.1949 00173  0.0170 04923 @ 00776 02437 00267 00297 02061
LSTM  0.0754 02063 00197 00213 04312 @ 00600 02026 00183 00205 04512

TKAN 0.0647 0.1913  0.0171  0.0183  0.5107 Oursolution 0.0647 0.1913  0.0171  0.0183  0.5107

3-day GRU 00840 02078 00199 00216 04233 3day @3 01004 02333 00248 00272 02729
LSTM 00797 02050 00194  0.0210 0.4386 [ 00704 02269 00231 00257 03122

TKAN 0.0674 0.1983  0.0183  0.0197 0.4746 Oursolution  0.0674 01983 0.0183  0.0197 0.4746

9-day  GRU 0.0988  0.2260 0.0231 0.0255  0.3210 9-day (3 0.0882  0.2467 0.0273 0.0304  0.1902
LSTM 00782 02041 00193  0.0208 0.4458 2 00703 02179 00214 00237 03680
TKAN 0.0716 0.1993 0.0184 0.0198 0.4719 Our solution  0.0716  0.1993 0.0184 0.0198  0.4719

12-day GRU  0.1221 02591 00298  0.0333 0.1079 12-day 3 00807 02522 00283 00318 0.1552
[ 00836 02573 00294 00331 0.1202

LSTM 0.0783  0.2278 0.0235 0.0259  0.3108

TKAN 0.0736  0.2106 0.0204 00222 04105 Our solution  0.0736  0.2106 0.0204 0.0222  0.4105

Prediction Horizon: 3 days. Prediction Horizon: 9 days Prediction Horizon: 12 days.

Figure 1: Comparison of predicted and ground truth
PM,s values across multiple horizons (n_-ahead =
1,3,9,12). Results show a representative 6-month pe-
riod from the test set, comparing the predictions of
TKAN, GRU, and LSTM models against ground truth
values.
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