
NeurIPS 2023 Workshop on Adaptive Experimental Design and Active Learning in the Real World

PINNACLE:
PINN Adaptive ColLocation & Experimental points selection

Gregory Kang Ruey Lau*†‡ greglau@comp.nus.edu

Apivich Hemachandra*† apivich@comp.nus.edu

See-Kiong Ng† seekiong@nus.edu.sg

Bryan Kian Hsiang Low† lowkh@comp.nus.edu

* Equal contribution
† Department of Computer Science, National University of Singapore, Singapore 117417
‡ CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602

Abstract

Physics-Informed Neural Networks (PINNs), which incorporate PDEs as soft constraints,
train with a composite loss function that contains multiple training point types: different
types of collocation points chosen during training to enforce each PDE and initial/boundary
conditions, and experimental points which are usually costly to obtain via experiments or
simulations. Training PINNs using this loss function is challenging as it typically requires
selecting large numbers of points of different types, each with different training dynamics.
Unlike past works that focused on the selection of either collocation or experimental points,
this work introduces PINN Adaptive ColLocation and Experimental points se-
lection (PINNACLE), the first algorithm that jointly optimizes the selection of all train-
ing point types, while automatically adjusting the proportion of collocation point types as
training progresses. PINNACLE uses information on the interaction among training point
types, which had not been considered before, based on an analysis of PINN training dynam-
ics via the Neural Tangent Kernel (NTK). We theoretically show that the criterion used by
PINNACLE is related to the PINN generalization error, and empirically demonstrate that
PINNACLE is able to outperform existing point selection methods for forward, inverse,
and transfer learning problems.

Keywords: Physics-informed neural networks, Adaptive training points selection

1. Introduction

Deep learning (DL) successes in domains with massive datasets have led to questions on
whether it can also be efficiently applied to the scientific domains where training data may
be more limited. In these settings, domain knowledge such as partial differential equations
(PDEs) could be used as inductive biases for DL training. Physics-informed neural networks
(PINNs) are neural networks that incorporate PDEs and their initial/boundary conditions
(IC/BCs) as soft constraints during training (Raissi et al., 2019), and have been applied to
various problems (Cai et al., 2021; Rodŕıguez et al., 2023; Jagtap et al., 2022).

However, the training of PINNs is challenging. PINNs need a composite loss function
that requires multiple training point types: different types of collocation points (CL points)
chosen during training to enforce each PDE and IC/BCs, and experimental points (Exp
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points) obtained via experiments or simulations that are queries for ground truth solution
values. These points have different training dynamics, making training difficult especially
in problems with complex structure. In practice, getting accurate results from PINNs also
require large numbers of CL and Exp points, both which lead to high costs – the former
leads to high computational costs during training (Cho et al., 2023; Chiu et al., 2022), while
the latter is generally costly to acquire experimentally or simulate. Past works have tried
to separately address these individually by considering an adaptive selection of CL points
(Wu et al., 2023; Peng et al., 2022; Tang et al., 2023), or Exp points selection through
traditional active learning methods (Jiang et al., 2022; Cuomo et al., 2022). Some works
have also proposed heuristics that adjust loss term weights of the various point types to try
improve training dynamics, but do not consider point selection (Wang et al., 2022c).

In this paper, we introduce the algorithm PINN Adaptive ColLocation and Exper-
imental data selection (PINNACLE) that is the first to jointly optimize the selection
of all types of training points (e.g. PDE and IC/BC CL and Exp points) given a budget,
making use of cross information among the various types of points that past works had not
considered to provide significant PINNs training improvements.

2. Proposed Method

In this section, we first present the problem of joint point selection for improving PINN
training, and a novel representation for the augmented input space for PINNs. We then
analyze PINNs training dyanmics using the PINNs NTK eigenspectrum in this space, pro-
pose a new criterion related to PINN convergence and generalization bound, and introduce
our novel point selection algorithm, PINNACLE.

Point Selection Problem Setup. Given a PDE N [u, β](x) = f(x) for x ∈ X with
IC/BC B[u](x′) = g(x′) for x′ ∈ ∂X , we train a PINN ûθ to model the true solution u
by minimizing the PINN composite loss function (see (6) in Appendix for details), which
comprises of separate loss terms corresponding to Exp (Xs ⊂ X ), PDE CL (Xp ⊂ X ), and
multiple IC/BC CL (Xb ⊂ ∂X ) points1. The task involves selecting training sets Xs, Xp,
and Xb given a fixed training budget, to achieve the best PINN performance. Due to high
acquisition cost we consider a fixed Exp training budget |Xs|. We also consider a combined
training budget for the various CL point types |Xp| + |Xb| = k, which is limited due to
computational cost during training. Note that the algorithm is allowed to freely allocate the
CL budget among the PDE and various IC/BC point types during training, unlike other
PINNs algorithms where the user needs to manually fix the number of training points for
each type. Also, while the Exp and CL points do not share a common budget, they can
still be jointly optimized for better performance, i.e., Exp points selection could still benefit
from information from CL points and vice versa.

Augmented Input Representation for PINNs. To analyze the interplay among the
training dynamics of different point types, we define a new augmented space Z ⊂ X ×
{s,p,b}, containing training points of all types, as Z =

{
(x, s) : x ∈ X

}
∪
{
(x,p) : x ∈

1. To compare with the active learning problem setting, Exp points can be viewed as queries to the ground
truth oracle, and CL points as queries to oracles that advise whether ûθ satisfies the PDE and IC/BC
constraints. See Appendix C.1 for background on PINNs.
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X
}
∪
{
(x,b) : x ∈ ∂X

}
, where s, p and b are the indicators for the Exp points, PDE

CL points and IC/BC CL points respectively, to specify which type of training point z
is associated with2. We abuse notation by defining any function h : X → R to also be
defined on Z by h(z) = h(x, r) ≜ h(x) for all indicators r ∈ {s, p, b}, and also define
a general prediction operator F that applies the appropriate operator depending on the
indicator r, i.e., F [h](x, s) = h(x), F [h](x,p) = N [h](x), and F [h](x,b) = B[h](x).
The residual of the network output at any training point z can then be expressed as Rθt(z) =
F [ûθt ](z)− F [u](z), and we can express the training loss on dataset Z as

L(ûθ;Z) = 1
2

∑
z∈Z Rθt(z)

2 = 1
2

∑
z∈Z

(
F [ûθ](z)− F [u](z)

)2
. (1)

NTK Eigenbasis and Training Dynamics Intuition. With this PINN augmented
space, we can now consider different basis that naturally encode cross information on the
interactions among the various point types during training. The eNTK in the augmented
space3 is Θt(z, z

′) = ∇θF [ûθt ](z) ∇θF [ûθt ](z
′)⊤. Since Θt is a continuous, positive semi-

definite kernel, by Mercer’s theorem (Schölkopf and Smola, 2002) we can decompose Θt to
its eigenfunctions ψt,i and corresponding eigenvalues λt,i ≥ 0 (which are formally defined
in Appendix C.4) as Θt(z, z

′) =
∑∞

i=1 λt,i ψt,i(z)ψt,i(z
′). Under this representation, the

eigenfunctions will naturally already capture the cross information between each type of
training point. In Appendix D, we provide insights on the eNTK eigenfunctions as basis in
the augmented space, and demonstrate that two concurrent processes occur during training:
1) the residual will decay fastest along the direction of the dominant eigenfunctions, and 2)
the eigenfunctions will evolve such that they can better reconstruct the true solution.

Convergence Degree Criterion. With the eNTK eigenbasis, the change in residual at
any point z ∈ Z, given training set Z for a GD step with small enough η, is

∆Rθt(z;Z) ≜ Rθt+1(z;Z)−Rθt(z;Z) ≈ −η
∑∞

i=1 λt,i ⟨ψt,i(Z ), Rθt(Z)⟩HΘ︸ ︷︷ ︸
at,i(Z)

ψt,i(z) . (2)

To capture the convergence of the whole domain, we consider the function ∆Rθt(·;Z) in
the reproducing kernel Hilbert space (RKHS) HΘt of Θt, with its inner product ⟨·, ·⟩HΘt

defined such that ⟨ψt,i, ψt,j⟩HΘt
= δij/λt,i. Ignoring factors of η, we define the convergence

degree α(Z) to be the RKHS norm of ∆Rθt( · ;Z), or

α(Z) ≜ ∥∆Rθt( · ;Z)∥2HΘt
=

∑∞
i=0 λ

−1
t,i ⟨∆Rθt( · ;Z), ψt,i⟩2HΘt

=
∑∞

i=0 λt,iat,i(Z)
2. (3)

Training points that maximizes the convergence degree could speed up training convergence,
which corresponds to Process 1 of the PINN training process. Hence, our point selection
algorithm will be centered around choosing a training set Z that maximizes α(Z). In
Appendix E, we show that maximizing α(Z) also leads to lower generalization error bounds.

In practice, we cannot compute the eigenfunctions of the eNTK exactly. Hence, we
estimate the eNTK eigenfunctions and corresponding eigenvalues ψt,i and λt,i using the

2. Note that a PDE CL point z = (x,p) ∈ Z is distinct from an Exp point z = (x, s), even though both
points have the same coordinate x.

3. For compactness, we will overload the notations with Rθt(Z) and Θt(Z,Z
′) for cases of multiple inputs,

and use Θt(Z) to refer to Θt(Z,Z).
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Nystrom approximation (Williams and Seeger, 2000; Schölkopf and Smola, 2002). Given a
reference set Zref of size p, and the eigenvectors ṽt,i and eigenvalues λ̃t,i of Θt(Zref), for each

i = 1, . . . , p, we can approximate ψt,i ≈ ψ̂t,i(z) ≜ λ̃−1
t,i

√
|Zref|Θt(z, Zref)ṽt,i and λt,i ≈ λ̂t,i ≜

λ̃t,i|Zref|−1. Selecting p≪ |Zpool| is sufficient since NTK eigenvalues typically decay rapidly

(Lee et al., 2019; Wang et al., 2022c). Given ψ̂t,i and λ̂t,i, we can approximate at,i(Z) ≈
ât,i(Z) ≜ ⟨ψ̂t,i(Z), Rθt(Z)⟩ =

√
|Zref| λ̃−1

t,i ṽ
⊤
t,iΘt(Zref, Z)Rθt(Z) and the convergence degree

(3) as

α(Z) ≈ α̂(Z) ≜
∑p

i=0 λ̂t,i ât,i(Z)
2 =

∑p
i=1 λ̃

−1
t,i

(
ṽ⊤t,iΘt(Zref, Z)Rθt(Z)

)2
. (4)

In Appendix E.2, we show that the approximate convergence degree (4) provides a suffi-
ciently good estimate for the true convergence degree.

PINNACLE Algorithm. We now introduce the PINNACLE algorithm (Algorithm 1
in the Appendix), which consists of two alternating phases: the point selection phase, and
the training phase. In the point selection phase, we generate a random pool of candidate
points Zpool (Line 4), then aim to select a subset Z ⊂ Zpool which fits our constraints and
maximizes α̂(Z) (Line 6). However, this optimization problem is difficult to solve exactly.
Instead, we propose two approaches to approximate the optimal set for α̂ (additional details
are in Appendix F.1):

1. Sampling (S): We sample a batch of points from Zpool where the probability of
selecting a point z ∈ Zpool is proportional to α̂(z).

2. K-Means++ (K): We embed each point by z 7→
(
λ̂
1/2
t,i âti(z)

)p
i=1

, and perform K-
Means++ initialization on these embedded vectors to select a batch of points. K-
Means++ initialization is a technique also used in previous batch-mode active learning
algorithms (Ash et al., 2020) to promote diversity based on the embedding used.

In the training phase, we perform model training with GD (Line 10) for a fixed number
of iterations or until the eNTK has change too much (Line 11), to account for the eNTK
evolution during GD (Process 2 from above). Inspired by Lee et al. (2019), we quantify this
change based on the Frobenius norm of the difference of the eNTK since the start of the
phase. The point selection phase will then repeat with a re-computed eNTK. In practice,
rather than replacing the entire training set during the new point selection phase, we ran-
domly retain a portion of the old set and fill the remaining budget with new points selected
based on the recomputed eNTK. We discuss these mechanisms further in Appendix F.2.

3. Experimental Results

Point Selection Behavior. We first interpret PINNACLE’s automated point selection.
We consider the forward problems for the 1D Advection and 1D Burgers time-dependent
PDEs, where the goal is to estimate the PDE solution u given the PDEs with known β and
IC/BCs but no Exp data. Figure 1 plots the training points of all types selected by PIN-
NACLE-K overlaid on the NN output ûθ, at various training stages. First, PINNACLE
automatically starts with more IC CL points and gradually shifts towards more PDE and
BC CL points as training progresses. Intuitively, this helps as ICs provide more informative
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(a) 1D Advection problem (b) 1D Burger’s problem

PDE CL Pts IC CL Pts BC CL Pts

Figure 1: Example of points selected by PINNACLE-K during training of various forward
problems. The points represent the various types of CL points selected by PINNACLE-K,
whereas the patterns in the background represents the obtained NN solution.
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Figure 2: Results from the 1D Advection forward problem experiments. In each row, from
left to right: plot of mean prediction error for each method, the true PDE solution, and the
PINN output from different point selection methods. Equivalent plots for the 1D Burger’s
equation can be found in Figure 12 in the Appendix.

constraints for ûθ in earlier training stages, while later on, PDE CL points then are used to
“propagate” the solution across the domain interior.

Second, the specific choice of points are surprisingly interpretable. For the Advection
equation experiment (shown in Figure 1a), we can see that PINNACLE focuses on PDE
and BC CL points closer to the initial boundary and “propagates” the concentration of
points upwards, similar to the process of causal learning to construct the PDE solution
(Wang et al., 2022b; Krishnapriyan et al., 2021). The selected points also cluster around
more informative regions, such as the stripes in the Advection solution. Similar observations
can be made for Burger’s equation (shown in Figure 1b), where points focus around regions
with richer features near the IC and sharper features higher in the plot.

Forward Problems. We present the results for the 1D Advection (Figure 2) and 1D
Burger’s (Figure 12 in the Appendix) forward problem experiments4. Quantitatively, both
variants of PINNACLE are able to achieve a lower predictive loss than other algorithms.
The performance gap is also large enough to be seen qualitatively, as evident in, for example,
1D Advection experiments (Figure 2), where PINNACLE learn all stripes of the original
solution while the benchmarks got stuck at only the first few closest to the ICs. Additional
forward problem experiments and results can be found in Appendix H.2.

4. We provide details about the experiment setup in Appendix G.

5



0 50000 100000
Steps

0.96

0.98

1.00

1.02

1.04

In
v. 

pa
ra

m
 1

0 50000 100000
Steps

0.000

0.005

0.010

0.015

In
v. 

pa
ra

m
 2

Uniform Rand
Hammersley

RAD
RAD-All

PINNACLE-S (ours)
PINNACLE-K (ours)

Figure 3: The two inverse parameters learned
in the 2D Navier-Stokes equation problem.
The black horziontal lines represents the true
parameter values, while the other lines rep-
resent the predicted values of the inverse pa-
rameters during training.

Inverse problem. In the inverse prob-
lem, we estimate the unknown parameters
of the PDE β, given the form of the PDE,
IC/BC conditions, and some Exp points.
We consider the 2D time-dependent incom-
pressible Navier-Stokes equation, where we
aim to find two unknown parameters in the
PDE based on the queried Exp data. Fig-
ure 3 shows that PINNACLE can recover
the correct inverse parameters, while the
other algorithms had difficulties doing so.
Further results for the inverse problem can
be found in Appendix H.3.

Transfer Learning of PINNs with Per-
turbed IC. We also consider the setting
where we already have a PINN trained for a given PDE and IC, but need to learn the solu-
tion for the same PDE with a perturbed IC. Different IC/BCs correspond to different PDE
solutions, and hence can be viewed as different PINN tasks. To reduce cost, we consider
fine-tuning the pre-trained PINN given a tighter budget (5× fewer points) compared to
training another PINN from scratch. Figure 4 shows results for the 1D Advection equation.
PINNACLE is able to exploit the pre-trained solution structure and more efficiently re-
construct the solution for the new IC than benchmarks. Additional transfer learning results
can be found in Appendix H.4.
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Figure 4: Predictive error for the 1D Advection transfer learning problem with perturbed
IC. From left to right: plot of mean prediction error for each method, the true PDE solution,
and the PINN output from different point selection methods.

4. Conclusion

We propose a novel algorithm, PINNACLE, that jointly optimizes the selection of all
training point types for PINNs for more efficient training, while automatically adjusting
the proportion of collocation point types during training. While this work is focused on
PINNs, PINNACLE variants can also be applied to other deep learning problems which
involve a composite loss function and input points from different domains as well. Future
work could also extend PINNACLE to other settings such as deep operator learning.
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Alexander Rodŕıguez, Jiaming Cui, Naren Ramakrishnan, Bijaya Adhikari, and B. Aditya
Prakash. Einns: Epidemiologically-informed neural networks. In Brian Williams, Yiling
Chen, and Jennifer Neville, editors, Proc. AAAI, pages 14453–14460, 2023.

Franz M. Rohrhofer, Stefan Posch, Clemens Gößnitzer, and Bernhard C. Geiger. On the
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Appendix A. Notations and Abbreviations

Table 1: List of notations used throughout the paper

Symbol Meaning Example

δi,j Dirac-Delta function, i.e. δi,j = 1 if i = j and 0 otherwise
1 Identity matrix
N PDE operator (5)
B IC/BC operator (5)
X Input space of PDE solution (5)
∂X Boundary of the input space of PDE solution (5)
u PDE true solution (5)
ûθ PINN used to approximate PDE solution (6)
ûθt PINN at timestep t of training

L(ûθ;X) Loss of NN ûθ w.r.t. set X (6)
η Learning rate (9)
x Input of PDE solution, i.e., elements in X
r Generic training point label, i.e., r ∈ {s,p, b}

s, p,b Specific training point label
Z Augmented space
Z Set of elements from the augmented space
F General prediction operator

Θt(·, ·) eNTK of NN ûθt at timestep t
λt,i ith largest eigenvalue of Θt

ψt,i Eigenfunction of Θt corresponding to eigenvalue λt,i
∇θûθt(x) Jacobian of ûθ(x) with respect to θ at θ = θt
Rθt(z) Residual at time t at point z (15)

∆Rθt(z;Z) Change in residual at time t at point z when trained with Z (15)
at,i(Z) Residual expansion coefficient in dimension i at time t (15)
⟨·, ·⟩HΘ

Inner product of RKHS space (15)
Zref Subset of Z for Nystrom approximation
Zpool Subset of Z for point selection Algorithm 1

Table 2: List of abbreviations used throughout the paper in alphabetical order

Abbreviation Meaning

BC boundary condition
CL collocation (as in collocation points)
Exp experimental (as in experimental points)
eNTK empirical neural tangent kernel
GD gradient descent
IC initial condition

NTK neural tangent kernel
PDE partial differential equation
PINN physics-informed neural network
RKHS reproducing kernel Hilbert space
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Appendix B. Related Works

Multiple works have examined the challenges of training PINNs, such as failure of PINNs to
learn certain PDE solutions, particularly those with high frequency (Krishnapriyan et al.,
2021; Rohrhofer et al., 2023). In response, there have been several proposals to adjust
the training procedures of PINNs to mitigate this effect. This includes reweighing the loss
function (Wang et al., 2022c), causal learning (Wang et al., 2022b) or curriculum learning
approaches (Krishnapriyan et al., 2021). Most relevant to this paper are works that looked
into training points selection to improve PINNs training performance, though they have
focused only on better selection of PDE CL points rather than joint optimization of the
selection of Exp points and all types of PDE and IC/BC CL points. These works either
adopt a non-adaptive approach (Wu et al., 2023), or an adaptive approach involving a
scoring function based on some quantity related to the magnitude of the residual at each
training point (Lu et al., 2021; Nabian et al., 2021; Wu et al., 2023; Peng et al., 2022; Zeng
et al., 2022; Tang et al., 2023).

Outside of PINNs, the most similar problem to training point selection for PINNs would
be the problem of deep active learning, which is a well-studied problem (Settles, 2012; Ren
et al., 2021), with proposed algorithms based on diversity measures (Sener and Savarese,
2018; Ash et al., 2020; Wang and Ye, 2015) and uncertainty measures (Gal et al., 2017;
Kirsch et al., 2019). Active learning can be viewed as an exploration-focused variant of
Bayesian optimization (BO), which also utilizes principled uncertainty measures provided
by surrogate models to optimize a black-box function (Garnett, 2022; Dai et al., 2023a;
Shahriari et al., 2016).

A number of works have also incorporated NTKs to estimate the NN training dynamics
to better select points for the NN (Wang et al., 2021b, 2022a; Mohamadi et al., 2022;
Hemachandra et al., 2023). However, most of these deep active learning methods are unable
to directly translate to scientific machine learning settings (Ren et al., 2023). Nonetheless,
there have been limited works regarding active learning for PINNs, such as methods using
the uncertainty computed from an ensemble of PINNs (Jiang et al., 2022).

In this work, we extensively used NTKs to analyze our neural network traaining dy-
namics. NTKs are also useful other tasks such as data valuation (Wu et al., 2022), neural
architecture search (Shu et al., 2022a,b), multi-armed bandits (Dai et al., 2023b), Bayesian
optimization (Dai et al., 2022), and uncertainty quantification (He et al., 2020). NTKs have
also been used to study NN generalization loss (Cao and Gu, 2019) and also in relating NN
training with gradient descent and kernel ridge regression (Arora et al., 2019a; Vakili et al.,
2021).

Appendix C. Background

In this section we provide relevant background information for our work.

C.1 Physics-Informed Neural Networks

Consider partial differential equations (PDEs) of the form

N [u, β](x) = f(x) ∀x ∈ X and Bi[u](x′i) = gi(x
′
i) ∀x′i ∈ ∂Xi (5)
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where u(x) is the function of interest over a coordinate variable x defined on a bounded
domain X ⊂ Rd (where time could be a subcomponent), N is a PDE operator acting on
u(x) with parameters5 β, and Bi[u] are initial/boundary conditions (IC/BCs)

Physics-Informed Neural Networks (PINNs) are neural networks (NN) ûθ that approxi-
mates u(x). They are trained on a dataset X that can be partitioned into Xs, Xp and Xb

corresponding to the Exp points, PDE CL points and IC/BC CL points respectively. The
PDE and IC/BCs (5) are added as regularization (typically mean-squared errors terms) in
the loss function6

L(ûθ;X) =
∑
x∈Xs

(ûθ(x)− u(x))2

2Ns
+λp

∑
x∈Xp

(N [ûθ](x)− f(x))2

2Np
+λb

∑
x∈Xb

(B[ûθ](x)− g(x))2

2Nb

(6)
where the components penalize the failure of ûθ in satisfying ground truth labels u(x), the
PDE, and the IC/BCs constraints respectively, and λp and λb are positive scalar weights.

Rationale on Loss Function. In regular NN training, our goal is to train a model such
that its output is as close to the true solution as possible. This can be quantified using
mean squared error (MSE) loss between the true output u(x) and NN output ûθ(x) at some

selected samples, which can simply be written as
∑

x

(
ûθ(x) − u(x)

)2
, ignoring constant

factors.

For PINNs, we also want to further constrain our solution such that they follow some
PDE with IC/BC conditions such as (5). This can be seen as a constraint on the NN
output, where we want the expected residual to be zero, i.e., considering only the PDE
without the IC/BC, the constraint would be in the form N [ûθ](x) − f(x) = 0. However,
since enforcing a hard constraint, given by the PDE, on the NN is difficult to do, we instead
incorporate a soft constraint that introduce a penalty depending on how far the NN diverges
from a valid PDE solution. We would want this penalty (or regularization term in the loss

function) to be of the form of Ex

[(
N [ûθ](x) − f(x)

)2]
, where instead of performing the

expectation exactly we sample some CL points to approximate the PDE loss term. This
is a motivation behind using non-adaptive CL point selection method, which is seen as a
way to approximate the expected residual, akin to the roles of quadrature points used in
numerical integration.

Alternatively, some works have considered an adaptive sampling strategy where the CL
points are selected where there is a higher residual. In this case, the expected residual plays
a different role, which is to encourage the NN to learn regions of the solution with higher
loss. for boundaries ∂Xi ⊂ X . For PINN training, we assume operators N and B, and
functions f and g are known, while β may or may not be known.

5. To simplify notation, we write N [u, β] as N [u], keeping the β dependence implicit, except for cases
where the task is to learn β. Examples of PDEs, specifically those in our experiments, can be found in
Appendix G.1.

6. For notational simplicity we will denote a single IC/BC B in subsequent equations, however the results
can easily be generalized to include multiple ICs/BCs as well.
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C.2 Neural Tangent Kernels

PINNACLE relies on analyzing NN training dynamics and convergence rates. To do so
we require the use of Neural Tangent Kernels (NTKs), which is a tool which can be used
to analyze general NNs as well as PINNs. The empirical NTK (eNTK) of a NN ûθt at step
t of the training process (Jacot et al., 2018),

Θt(x, x
′) = ∇θûθt(x) ∇θûθt(x

′)⊤, (7)

can be used to characterize its training behavior under gradient descent (GD). For a NN
trained using GD with learning rate η on training set X, the NN parameters θt evolves
as θt+1 = θt − η∇θL(ûθt ;X) while the model output evolves as ûθt+1(x) = ûθθt (x) −
ηΘt(x,X )∇ûθ

L(ûθt ;X). Given an MSE loss L(ûθ;X) =
∑

x∈X
(
ûθ(x) − u(x)

)2
/2|X|, the

change in model output during training in this case can be written as

∆ûθt(x) = ûθt+1(x)− ûθt(x) = −ηΘt(x,X )
(
ûθt(X)− u(X)

)
. (8)

Past works (Arora et al., 2019b) had shown that in the infinite-width limit and GD with
infinitesimal learning rate, the NN follows a linearlized regime and the eNTK converges to a
fixed kernel Θ that is invariant over training step t. Even though these assumptions may not
fully hold in practice, many works (e.g. Arora et al. (2019b,a); ?); Shu et al. (2022b)) have
shown that the NTK still provides useful insights to the training dynamics for finite-width
NNs.

C.3 NTK of PINNs

The Neural Tangent Kernel (NTK) of PINNs can be expressed as a block matrix broken
down into the various loss components in (6) (Wang et al., 2021a). To illustrate, a PINN
trained with just the Exp points Xs and PDE CL points Xp using gradient descent (GD)
with learning rate η has training dynamics that can be described by[

ûθt+1(Xs)− ûθt(Xs)
N [ûθt+1 ](Xp)−N [ûθt ](Xp)

]
= −η

[
Θt,ss Θt,sp

Θt,ps Θt,pp

] [
ûθt(Xs)− u(Xs)
N [ûθt ](Xp)− f(Xp)

]
(9)

where Jt,s = ∇θûθt(Xs), Jt,p = ∇θN [ûθt ](Xp), and Θt,ss = Jt,sJ
⊤
t,s, Θt,pp = Jt,pJ

⊤
t,p, and

Θt,sp = Θ⊤
t,ps = Jt,pJ

⊤
t,s, are the submatrices of the PINN empirical NTK (eNTK). Past

works have analyzed PINNs training dynamics using the eNTK (Wang et al., 2021a, 2022c;
Gao et al., 2023).

C.4 Reproducing Kernel Hilbert Space

In this section, we provide a brief overview required on the reproducing kernel Hilbert space
(RKHS) for our paper. This section adapted from Schölkopf and Smola (2002).

Consider a symmetric positive semi-definite kernel K : X × X → R. We can define an
integral operator TK as

TK[f ](·) =
∫
Z
f(x)K(x, ·)dµ(x). (10)

We can compute the eigenfunctions and corresponding eigenvectors of TK, which are pairs
of functions ψi and non-negative values λi such that TK[ψi](·) = λiψi(·). Typically, we
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also refer to the eigenvectors and eigenvalues of TK as the eigenvectors and eigenvalues of
K. By Mercer’s theorem, we can show that the kernel K can be written in terms of its
eigenfunctions and eigenvalues as

K(x, x′) =
∞∑
i=1

λiψi(x)ψi(x
′). (11)

Based on this, we define the feature map as

ϕi(·) = K(x, ·) =
∞∑
i=1

λiψi(x)ψi(·)

and consequently the inner product such that ⟨ψi, ψj⟩HK = δi,j/λi. This is so that we are
able to write

⟨ϕ(x), ϕ(x′)⟩HK =

∞∑
i=1

∞∑
j=1

λiλjψi(x)ψj(x
′)⟨ψi(x), ψj(x

′)⟩HK (12)

=

∞∑
i=1

λ2iψi(x)ψi(x
′)

λi
=

∞∑
i=1

λiψi(x)ψi(x
′) = K(x, x′). (13)

From this, the RKHS HK of a kernel K would be given by a set of function with finite
RKHS norm, i.e.,

HK =

{
f ∈ L2(X ) : ⟨f, f⟩HK =

∞∑
i=1

⟨f, ϕi⟩2HK

λi
≤ ∞

}
. (14)

Appendix D. PINN eNTK and Training Dynamics Intuition

In this section, we further discuss the PINNs eNTK eigenspectrum in the augmented space
that we have introduced, and show how it relates to the training dynamics of PINNs.

The change in residual at any point z ∈ Z, given training set Z for a GD step with
small enough η, is

∆Rθt(z;Z) ≜ Rθt+1(z;Z)−Rθt(z;Z) ≈ −η
∞∑
i=1

λt,i ⟨ψt,i(Z ), Rθt(Z)⟩HΘ︸ ︷︷ ︸
at,i(Z)

ψt,i(z) (15)

Note that ∆Rθt(z;Z) describes how the residual at any point z (of any point type, and
including points outside Z) is influenced by GD training on any training set Z that can
consist of multiple point types. Hence, ∆Rθt(z;Z) describes the overall training dynamics
for all point types.

We can gain useful insights on PINN training dynamics by considering the augmented
eNTK eigenbasis. First, we show that the residual components that align to the more dom-
inant eigenfunctions will decay faster. During a training period where the eNTK remains
constant, i.e., Θt(z, z

′) ≈ Θ0(z, z
′), the PINN residuals will evolve according to

Rθt(z;Z) ≈ Rθ0(z)−Θ0(z, Z)
∞∑
i=1

1− e−ηtλ0,i

λ0,i
a0,i(Z) ψ0,i(Z) . (16)
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(a) After 10k steps of GD (b) After 100k steps of GD

Figure 5: Reconstruction of the true PDE solution of the 1D Advection equation using
eigenfunctions of Θt at different GD timesteps. For each time step, we plot the eigenfunction
component both for (x, s) subspace (top row) and (x, p) subspace (bottom row).

From (16), we can see that the residual component that is aligned to the eigenfunction
ψt,i (given by at,i(Z)) will decay as training time t progresses at a rate proportional to
ηλ0,i. For training set points z ∈ Z, the decay is exponential as (16) further reduces to∑∞

i=1 e
−ηtλ0,i at,i(Z) ψ0,i(Z). Interestingly, note that (16) applies to all z ∈ Z, suggesting

that choosing training point set Z with residual components more aligned to dominant
eigenfunctions also results in lower residuals for the entire augmented space and faster
overall convergence.

Second, during PINN training, the eNTK eigenfunctions will gradually align to the true
target solution. While many theoretical analysis of NTKs assumes a fixed kernel during
training, this does not hold in practice (Kopitkov and Indelman, 2020). Figure 5 shows
that the dominant eigenfunctions can better reconstruct the true PDE solution as training
progresses, indicating that the eNTK evolves during training to further align to the target
solution. Notice how the predictions on both subspaces needed to be considered for PINNs,
which had not been explored before in past works. While the top 10 eigenfunctions repli-
cated the (x, p)-subspace prediction better, more eigenfunctions were needed to reconstruct
the full augmented space prediction (both (x, s) and (x,p) subspaces).

In the following subsections, we will provide verification for (15) and (16).

D.1 Calculations of (15)

From the gradient descent update formula with loss function given by (1), we can see that

θt+1 − θt = −η∇θL(ûθt ;Z) (17)

= −η∇θF [ûθt ](Z)
⊤∇F [ûθ]L(ûθt ;Z) by chain rule (18)

= −η∇θF [ûθt ](Z)
⊤Rθt(Z) (19)

which, as η → 0, can be rewritten with continuous time GD (where the difference between
each time step is approximated as a derivative) as (?)

∂tθt = −η∇θF [ûθt ](Z)
⊤Rθt(Z) (20)
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and so under continuous time GD, we can write the function output as

∆Rθt(z;Z) ≈ ∂tRθt(z;Z) as η → 0 (21)

= ∂tF [ûθt ](z) (22)

= ∇θF [ûθt ](z) ∂tθt by chain rule (23)

= −η∇θF [ûθt ](z) ∇θF [ûθt ](Z)
⊤ Rθt(Z) (24)

= −ηΘt(z, Z) Rθt(Z). (25)

D.2 Calculations of (16)

In this case, we consider the PINN under the linearized regime, where we approximate F [ûθ]
using the Taylor approximation around θ0,

F lin[ûθ](z) = F [ûθ0 ](z) +∇θF [ûθ0 ](z) (θ − θ0) , (26)

and subsequently Rlin
θ (z) = F lin[ûθ](z) − F [u](z). Under this regime, the eNTK remains

constant at all t, i.e. Θt(z, z
′) = Θ0(z, z

′) = ∇θF [ûθ0 ](z) ∇θF [ûθ0 ](z
′)⊤ (?), which also

means that its eigenvectors and corresponding values will not evolve over time. It has been
shown empirically both for normal NNs (?) and PINNs (Wang et al., 2022c) that this
regime holds true for sufficiently wide neural networks.

For simplicity we let ψi and λi be the eigenfunctions and corresponding eigenvalues of
Θ0 (where we drop the subscripts t for simplicity). The change in residue of the training
set can be estimated using continuous time GD ∆Rlin

θt
(Z;Z) ≈ ∂tR

lin
θt
(Z;Z), and based on

(25) can be rewritten as

∂tR
lin
θt (Z) = −ηΘ0(Z) R

lin
θt (Z) (27)

which, when solved, gives

Rlin
θt (Z) = e−ηtΘ0(Z)Rlin

θ0 (Z). (28)

To extrapolate this result to other values of z ∈ Z, we can use the definition of Rlin
θt
(Z) to

see that

F lin[ûθt ](Z)− F [u](Z) = e−ηtΘ0(Z)
(
F lin[ûθ0 ](Z)− F [u](Z)

)
(29)

and therefore

F lin[ûθt ](Z) = F [u](Z) + e−ηtΘ0(Z)
(
F lin[ûθ0 ](Z)− F [u](Z)

)
(30)

= F lin[ûθ0 ](Z)−
(
1− e−ηtΘ0(Z)

)(
F lin[ûθ0 ](Z)− F [u](Z)

)
(31)

= F lin[ûθ0 ](Z)−Θ0(Z)Θ0(Z)
−1

(
1− e−ηtΘ0(Z)

)
Rlin

θ0 (Z) (32)

= F lin[ûθ0 ](Z) +∇θF [ûθ0 ](Z) ∇θF [ûθ0 ](Z)
⊤Θ0(Z)

−1
(
e−ηtΘ0(Z) − 1

)
Rlin

θ0 (Z)︸ ︷︷ ︸
θt−θ0

(33)
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which, through comparing the above with the form of the linearized PINN, gives us what
θt − θ0 is during training. Therefore, plugging this into (26),

F lin[ûθt ](z) = F lin[ûθ0 ](z) +∇θF [ûθ0 ](z)∇θF [ûθ0 ](Z)
⊤Θ0(Z)

−1
(
e−ηtΘ0(Z) − 1

)
Rlin

θ0 (Z)
(34)

= F lin[ûθ0 ](z) + Θ0(z, Z)Θ0(Z)
−1

(
e−ηtΘ0(Z) − 1

)
Rlin

θ0 (Z) (35)

Rlin
θt (z;Z) = Rlin

θ0 (z;Z) + Θ0(z, Z)Θ0(Z)
−1

(
e−ηtΘ0(Z) − 1

)
Rlin

θ0 (Z). (36)

We can then decompose (36) into

Rlin
θt (z;Z) = Rlin

θ0 (z;Z) + Θ0(z, Z)

∞∑
i=1

e−ηtλi − 1

λi
ψi(Z)ψi(Z)

⊤Rlin
θ0 (Z). (37)

D.3 Eigenspectrum of the eNTK

In this subsection, we elaborate further about the eigenspectrum of the eNTK. In Figure 6,
we plot out the eigenfunctions ψt,i of the eNTK for the 1D Advection forward problem at
GD training steps t = 10k and t = 100k. We can see that in the case of t = 100k (when the
PINN output ûθ is already able to reconstruct the PDE solution well), the eigenfunctions
are able to reconstruct the patterns that correspond to the true solution well. Note that due
to the tight coupling between the true NN output and the PDE residual, the components
of the eigenfunction for (x, s) and (x, p) are correlated and may share similar patterns. The
dominant eigenfunctions will then tend to either have ψt,i(x, s) which aligns well with the
true solution, or have ψt,i(x,p) which is flat (corresponding to the true PDE solution whose
residual should be flat). In the less dominant eigenfunctions, the patterns will align worse
with the true solution. Meanwhile, in the t = 10k case, we see that the eigenfunctions
will share some pattern with the true solution, but will not be as refined as for t = 100k.
Furthermore, the less dominant eigenfunctions will be even noisier.

Empirically, we also find that the PINN eNTK eigenvalues falls quickly, allowing the
dominant eigenfunctions (i.e., those with the largest eigenvalues) to effectively form a basis
for the NN output in augmented space. This is consistent with results from past eNTK
works for vanilla NNs (Kopitkov and Indelman, 2020; Vakili et al., 2021).

In Figure 7, we show how the eigenfunctions can describe the model training at a given
GD training step. We see that by using just the top dominant eigenfunctions we are able
to reconstruct the NN output ûθ.

Appendix E. Theoretical Results

In this section, we will present two main theoretical results for the paper. This includes the
relation between our criterion α and the generalization bound of PINNs, and the approxi-
mation error of the criterion α̂ compared to the true criterion value α.

E.1 Convergence Degree Criterion and Relations to Generalization Bounds

The change in residual ∆Rθt(z;Z) (15) only captures the convergence at a single test point
z. While it is possible to consider the average change in residual w.r.t. some validation
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(a) 10k Steps

(b) 100k Steps

Figure 6: Eigenspectrum of Θt at various timesteps.

(a) After 10k steps of GD (b) After 100k steps of GD

Figure 7: Reconstruction of the NN prediction using the eigenbasis of Θt.

set, the quality of this criterion would depend on the chosen set. Instead, to capture the
convergence of the whole domain, we consider the function ∆Rθt(·;Z) in the reproducing
kernel Hilbert Space (RKHS) HΘt of Θt, with its inner product ⟨·, ·⟩HΘt

defined such that
⟨ψt,i, ψt,j⟩HΘt

= δij/λt,i. Ignoring factors of η, we define the convergence degree α(Z) to be
the RKHS norm of ∆Rθt( · ;Z), or

α(Z) ≜ ∥∆Rθt( · ;Z)∥2HΘt
=

∞∑
i=0

λ−1
t,i ⟨∆Rθt( · ;Z), ψt,i⟩2HΘt

=
∞∑
i=0

λt,iat,i(Z)
2. (38)

Selecting training points that maximizes the convergence degree could speed up training
convergence, which corresponds to Process 1 of the PINN training process. Hence, our point
selection algorithm will aim to choose a training set Z that maximizes α(Z).
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In the remainder of this subsection, we will show that a set which maximizes α will also
result in a low generalization error, as stated in Theorem 1. The proofs will follow closely
to Shu et al. (2022b). In order to do so, we will first state some assumptions about the
PDE being solved and the PINN used for the training process.

Assumption 1 (Stability of PDE) Suppose we have a differential operator N : P → Y
where P is a closed subset of some Sobolev space and Y is a closed subset of some Lp space.
For any u, v ∈ P, let there exists some Cpde ≥ 1 such that

∥N [u]−N [v]∥Y ≤ Cpde∥u− v∥P . (39)

For simplicity, we can view the Sobolev space as a Lp space with a defined derivative up
to a certain order. Note that while it is possible for Cpde < 1, we assume otherwise for
convenience.

We now provide an assumption about the NN we are training with.

Assumption 2 (On the Neural Network Training) Assume some NN ûθ : X → R
with L hidden layers each of width nL. Suppose there exists constants ρ such that ∥∇θûθ(x)∥ ≤
ρ and ∥∇θN [ûθ](x)∥ ≤ ρ. Also let bmin and bmax be the minimum and maximum of the
eigenvalues of the eNTK matrix of the possible training set at initialization, i.e. for any
training set S, bmax ≥ λ1(Θ0(S)) ≥ · · · ≥ λ|S|(Θ0(S)) ≥ bmin.

We will also make an assumption about the boundedness of the PDE solution u and the
NN output ûθ. This is done for convenience of the proof – it is possible to add appropriate
constants to the subsequent proofs to get a more general result.

Assumption 3 (Boundedness of the NN Residual) Suppose the PDE solution and the
NN output was such that |Rθ(x, s)| ≤ 1/Cpde. This would also imply that |Rθ(x,p)| ≤ 1.

We will be working with the hypothesis spaces

U ≜ {z 7→ F [ûθt ](z) : t > 0} (40)

and
U lin ≜ {z 7→ F [ûθ0 ](z) +∇θF [ûθ0 ](z) (θt − θ0) : t > 0} (41)

which is the linearization of the operated neural network F [ûθ] around the initialization
given by F [ûθ](z) ≈ F lin[ûθ](z) = F [ûθ0 ](z) + ∇θF [ûθ0 ](z) (θt − θ0). Note that since F lin

performs a Taylor expansion with respect to θ, this means the operator can only be applied
on functions approximated by a NN that is parametrized by parameters θ. This is unlike
F which is an operator that can be applied on any function. Also note that the linear
expansion is performed on F [ûθ] (rather than on just the operand ûθ), and hence does not
require the assumption that F is a linear operator. We can also define each components of
F lin[ûθ] separately as

ûlinθ (x) ≜ F lin[ûθ](x, s) = ûθ0(x) +∇θûθ0(x) (θt − θ0), (42)

and
N lin[ûθ](x) ≜ F lin[ûθ](x,p) = N [ûθ0 ](x) +∇θN [ûθ0 ](x) (θt − θ0). (43)
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First we will state the result for training the NN where the loss function is based on the
linearized operator, or

Llin(ûθ;Z) =
1

2

∑
z∈Z

(
F lin[ûθ](x)− F [u](x)

)2
. (44)

We will show that under the linearized regime, the weights of the NN will not change too
much compared to its initialization.

Lemma 1 Consider a linearized neural network ûlinθ following Assumption 2 is trained on
training set Z ⊂ Z with loss in the form (44) with GD with learning rate η < 1/λmax(Θ0(Z)).
Then, for any t > 0,

∥θt − θ0∥ ≤ ∥θ∞ − θ0∥ =
√
Rθ0(Z)

⊤Θ0(Z)−1Rθ0(Z). (45)

Proof Let Rlin
θ (z) = F lin[ûθ](z)−F [u](z) be the residual of the linearized operated network.

Note that Rlin
θ0
(z) = Rθ0(z). Based on the update rule of GD, we see that

θt+1 = θt − η · ∇θF [ûθ0 ](Z)
⊤Rlin

θt (Z) (46)

and so

F lin[ûθt+1 ](Z) = F [ûθ0 ](Z) +∇θF [ûθ0 ](Z)(θt+1 − θ0) (47)

= F [ûθ0 ](Z) +∇θF [ûθ0 ](Z)(θt − η · ∇θF [ûθ0 ](Z)
⊤Rlin

θt (Z)− θ0) (48)

= F lin[ûθt ](Z)− ηΘ0R
lin
θt (Z) (49)

=
(
1− ηΘ0

)
F lin[ûθt ](Z) + ηΘ0F [u](Z) (50)

=
(
1− ηΘ0

)t+1
Rlin

θ0 (Z) + F [u](Z) (51)

where 1 is the identity matrix and the shorthand Θ0 = Θ0(Z). We note that (51) arrives
from applying (50) recursively t+1 times and using the fact that we set η < 1/λmax(Θ0(Z))
to simplify a corresponding geometric series. This gives

θt − θ0 =
t∑

k=0

(θk+1 − θk) (52)

= η · ∇θF [ûθ0 ](Z)

t∑
k=0

Rlin
θk
(Z) (53)

= η · ∇θF [ûθ0 ](Z)

t∑
k=0

(
1− ηΘ0

)t+1
Rlin

θ0 (Z). (54)

The remainder of the proof follows directly with Lemma A.5 from Shu et al. (2022b).

Corollary 1 Given theorem 1,

∥θt − θ0∥ ≤ ∥Rθt(S)∥2 ·

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
(55)
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Proof Notice that we can rewrite α(S) as

α(S) =

〈 ∞∑
i=1

λt,i⟨ψt,i(S), Rθt(S)⟩ψt,i(S),
∞∑
i=1

λt,i⟨ψt,i(S), Rθt(S)⟩ψt,i(S)

〉
HΘt

(56)

=
∞∑
i=1

λt,i⟨ψt,i(S), Rθt(S)⟩2 (57)

= Rθt(S)
⊤
( ∞∑

i=1

λt,iψt,i(S)ψt,i(S)
⊤
)
Rθt(S) (58)

= Rθt(S)
⊤Θt(S)Rθt(S) (59)

= Rθt(S)
⊤Θ0(S)Rθt(S) (60)

where we use Θt = Θ0 due to the linearized NN assumption. Let A = Θ0(S), y = Rθt(S)
and κ = ∥Rθt(S)∥. Note that A is a PSD matrix, and therefore we can define some A1/2

such that A = (A1/2)⊤(A1/2), and also some A−1/2 such that A−1 = (A−1/2)⊤(A−1/2).

(y⊤Ay)(y⊤A−1y) = ∥A1/2y∥22 · ∥A−1/2y∥22 (61)

≤ κ2∥A1/2∥22 · κ2∥A−1/2∥22 (62)

= κ4 · λmax(A
1/2)2 · λmax(A

−1/2)2 (63)

= κ4 · λmax(A) · λmax(A
−1) (64)

= κ4 · λmax(A)

λmin(A)
(65)

which gives

√
Rθ0(S)

⊤Θ0(S)−1Rθ0(S) ≤ ∥Rθt(S)∥2 ·

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
. (66)

We now will link the linearized operated NN to the non-linearized version. We first
demonstrate that the difference of the two versions of the NN can be bounded.

Lemma 2 Suppose we have a neural network ûθ such that Assumption 2 holds. Then,
there exists some constants c, c′, c′′, NL, η0 > 0 such that if nL > NL, then when applying
GD with learning rate η < η0,

sup
t≥0
∥ûlinθt − ûθt∥ ≤

c
√
nL

(67)

and

sup
t≥0
∥N lin[ûθt ]−N [ûθt ]∥ ≤

c · Cpde√
nL

+ c′ · ∥Rθt(S)∥2 ·

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
(68)

with probability at least 1− δ over the random network initialization.
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Proof The first part follows from Theorem H.1 of ?. The second part follows the fact that

∥N lin[ûθt ](x)−N [ûθt ](x)]∥ (69)

= ∥N [ûθ0 ](x) +∇θN [ûθ0 ](x)
⊤(θt − θ0)−N [ûθt ](x)∥ (70)

≤ ∥N [ûθ0 ](x)−N [ûθt ](x)∥+ ∥∇θN [ûθ0 ](x)
⊤(θt − θ0)∥ (71)

≤ Cpde∥ûθ0(x)− ûθt(x)∥+ ∥∇θN [ûθ0 ](x)
⊤(θt − θ0)∥ (72)

≤ Cpde

(
∥ûθ0(x)− ûlinθt (x)∥+ ∥û

lin
θt (x)− ûθt(x)∥

)
+ ∥∇θN [ûθ0 ](x)

⊤(θt − θ0)∥ (73)

≤ Cpde

(
∥∇θûθ0(x)

⊤(θt − θ0)∥+ ∥ûlinθt (x)− ûθt(x)∥
)
+ ∥∇θN [ûθ0 ](x)

⊤(θt − θ0)∥ (74)

≤ Cpde∥∇θN [ûθ0 ](x) (θt − θ0)∥+ ∥∇θN [ûθ0 ](x)
⊤(θt − θ0)∥+ Cpde∥ûlinθt (x)− ûθt(x)∥

(75)

≤
(
Cpde∥∇θN [ûθ0 ](x)∥+ ∥∇θN [ûθ0 ](x)∥

)
∥θt − θ0∥+ Cpde ·

c
√
nL

(76)

≤ (1 + Cpde)ρ∥Rθt(S)∥2 ·

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
+ Cpde ·

c
√
nL

(77)

which proves the second part of the claim. Note that the bound from (68) could be used to
bound (67) as well.

We now use results above to compute the Rademacher complexity of U . We first com-
pute the Rademacher complexity of U lin in theorem 3, then relate it to the Rademacher
complexity of U in theorem 4. As a reference, the empirical Rademacher of a hypothesis
class G over a set S is given by (Mohri et al., 2018)

R̂S(G) ≜ Eϵ∈{±1}|S|

[
sup
g∈G

ϵ⊤g(S)

|S|

]
. (78)

Lemma 3 Let R̂S(G) be the Rademacher complexity of a hypothesis class G over some
dataset S with size NS. Then, there exists some c > 0 such that with probability at least
1− δ over the random initialization,

R̂S(U lin) ≤ ρ

N
3/2
S

· ∥Rθt(S)∥2
√

λmax(Θ0(S))

α(S) · λmin(Θ0(S))
. (79)

Proof We apply the same technique from Shu et al. (2022b). We see that

R̂S(U lin) = Eϵ∼{±1}NS

NS∑
i=1

ϵiF [ûθ0 ](zi)

NS
+ sup

t≥0

[
Eϵ∼{±1}NS

NS∑
i=1

ϵi∇θF [ûθ0 ](zi) (θt − θ0)
NS

]
(80)

≤ sup
t≥0

∥θt − θ0∥2∥∇θF [ûθ0 ](S)∥2
NS

(81)

≤ 1

NS
· ∥Rθt(S)∥2

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
· ρ√

NS
. (82)
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In the first equality, we use the definition of R̂. The first part of the first equality is in-
dependent of t, and will cancel to 0 due to the summation over ϵ. The second inequality
then follows from Cauchy-Schwartz inequality. The third inequality uses theorem 1 and the
assumption regarding ∥∇θF [ûθ0 ](z)∥.

Lemma 4 The Rademacher complexity of U is given by

R̂S(U) ≤
c · Cpde√

nL
+

(
ρ

N
3/2
S

+ c′
)
· ∥Rθt(S)∥2

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
(83)

for some c and c′.

Proof From theorem 2, we know that there will exist some constant c and c′ such that for
any ϵi ∈ {±1},

ϵiF [ûθt ](zi) ≤ ϵiF lin[ûθt ](zi) +
c · Cpde√

nL
+ c′ · ∥Rθt(S)∥2 ·

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
(84)

which gives

R̂S(U) ≤ R̂S(U lin) +
c · Cpde√

nL
+ c′ · ∥Rθt(S)∥2 ·

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
. (85)

Applying theorem 3 to the above completes the lemma.

We now use the Rademacher complexity to relate back to the overall residual. For
simplicity, we let r(z) = |Rθ∞(z)| and let r̄D = Ez∼D[r(z)] be the expected absolute residual
given test samples drawn from a distribution D.

Lemma 5 Suppose S ∼ DS is an i.i.d. sample from Z according to some distribution DS

of size NS. Then, there exists some c, c′, NL > 0 such that for nL ≥ NL, with probability at
least 1− δ,

r̄DS
≤ 1

NS
∥Rθ∞(S)∥1+

2cCpde√
nL

+2

(
ρ

N
3/2
S

+c′
)
∥Rθt(S)∥2

√
λmax(Θ0(S))

α(S) · λmin(Θ0(S))
+3

√
log(2/δ)

2NS

(86)

Proof Note that based on Assumption 3, we have |Rθ∞(z)| ≤ 1. The result then follows
from directly applying theorem 4 to Thm. 3.3 from Mohri et al. (2018).

We finally prove the required generalization bound.
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Theorem 1 (Generalization Bound for PINNs) Consider a PDE N [u, β](x) = f(x)
which follows Assumption 1. Let Z = [0, 1]d × {s, p}. Let ûθ be a NN which follows As-
sumption 2. Let the NN residual follows Assumption 3. Let DS be a probability distribution
over Z with p.d.f. p(z) such that µ

(
{z ∈ Z : p(z) < 1/2}

)
≤ s, where µ(W ) is the Lebesgue

measure of set W 7. Let ûθ be trained on a dataset S ⊂ Z, where S ∼ DS uniformly at
random with |S| = NS, by GD with learning rate η ≤ 1/λmax(Θ0(S)). Then, there exists
some c such that with probability 1− 2δ over the random model initialization and set S,

Ex∼X [|ûθ∞(x)− u(x)|] ≤ c1∥Rθ∞(S)∥1 +
c2√
α(S)

+ c3, (87)

where

c1 =
2

NS
, (88)

c2 = 4ρ

√
bmax

bmin

(
1

N
3/2
S

+ (1 + Cpde)

√
bmax

bmin

)
, (89)

c3 =
4c · Cpde√

nL
+ 6

√
log(2/δ)

2NS
+ 2s. (90)

Proof Let DZ refer to the uniform distribution over Z. The p.d.f. of the uniform distribu-
tion q is given by q(z) = 1/2. Notice that we can then write

r̄DZ =
1

2
Ex∼X [r(x)] +

1

2
Ex∼X [r(x)] ≥

1

2
Ex∼X [r(x)]. (91)

Let Z↑ = {z ∈ Z : p(z) ≥ 1/2} be a set of input with a “high” probability of being
chosen by the point selection algorithm, and Z↓ = Z \ Z↑. Then, abusing the integral
notation to allow summation over discrete spaces, we see that

r̄DZ = Ez∼DZ [r(z)] (92)

=

∫
Z↑

r(z)dz +

∫
Z↓

r(z)dz (93)

≤
∫
Z↑

r(z)dp(z) +

∫
Z↓

r(z)dz (94)

≤
∫
Z
r(z)dp(z) +

∫
Z↓

dz (95)

= r̄DS
+ µ(Z↓) (96)

≤ r̄DS
+ s (97)

and so

Ex∼X [r(x)] ≤ 2(r̄DS
+ s). (98)

7. We use a slight abuse of notation to work with the augmented space Z. Given X is defined as a Cartesian
product of intervals, its Lebesgue measure is naturally defined. Then, formally, for W ⊆ Z, we define
µ(W ) = 1

2
µ({x ∈ X : (x, s) ∈ W}) + 1

2
µ({x ∈ X : (x,p) ∈ W}).
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Applying results from theorem 5 to bound r̄DS
completes the proof.

Our derivation takes into account the PINN architecture (which is captured by the
eNTK) and the gradient-based training method, unlike past works (Mishra and Molinaro,
2021; De Ryck and Mishra, 2022). The term ∥Rθ∞(S)∥1 is the training error at convergence
of the training set, and can be arbitrarily small (Gao et al., 2023) which we also observe
empirically. This leaves the generalization error to be mainly dependent on α(Z). Specifi-
cally, the generalization bound is minimized when α(Z) is maximized. This suggests that a
point selection algorithm that maximizes the convergence degree should also lead to better
generalization error.

E.2 Approximation Error of Criterion

In this section, we want to show that α̂ provides a good approximation for α. We will drop
the subscript t from the eNTK Θt for convenience.

We first make the following observation about the quantity α̂(Z) in (4). The quantity
can be rewritten as

α̂ =

p∑
i=1

λ̂−1
t,i

(
v̂⊤i Θ(Zref, Z)Rθt(Z)

)2
(99)

= Rθt(Z)
⊤Θ(Z,Zref)

( p∑
i=1

v̂iv̂
⊤
i

λt,i

)
Θ(Zref, Z)Rθt(Z) (100)

= Rθt(Z)
⊤Θ(Z,Zref)Θ(Zref)

−1Θ(Zref, Z)︸ ︷︷ ︸
≈Θ(Z)

Rθt(Z). (101)

Notice that the highlighted part can be seen as a Nystrom approximation of Θ(Z), where the
approximation is done using the inputs Zref. We will first analyze the highlighted part, by
comparing its difference from the full-rank matrix Θ(Z). This result is a direct consequence
of the approximation error bounds from previous works on the Nystrom approximation
method.

Proposition 1 Let Npool be the size of set Zpool. Let ε ∈ (0, 1) be a number. Suppose
we write Θ(Zpool) = UΛU⊤ using the eigenvalue decomposition such that columns of U are
eigenfunctions of Θ(Zpool) and diagonals of Λ are their corresponding eigenvalues. Let Uk

be the first k columns of U , corresponding to the top k eigenvalues of Θ(Zpool), and let
τ ≜ (Npool/k)maxi ∥(Uk)i∥2 be the coherence of Uk. Let k ≤ Npool be some integer. Then,
if a set Zref of size p where

p ≥ 2τk log(k/δ)

(1− ε)2
(102)

is sampled uniformly randomly from Zpool, then with probability greater than 1− δ, for any
Z ⊆ Zpool,∥∥Θ(Z)−Θ(Z,Zref)Θ(Zref)

−1Θ(Zref, Z)
∥∥
2
≤ λk+1(Θ(Zpool)) ·

(
1 +

Npool

εp

)
≜ ĉ (103)

where λk(Θ(Zpool)) is the kth largest eigenvalue of Θ(Zpool).
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Proof Let D(Z) = Θ(Z) − Θ(Z,Zref)Θ(Zref)
−1Θ(Zref, Z). Consider the case where Z =

Zpool. Then, based directly from Thm. 2 in Gittens (2011), we can show that ∥D(Z)∥2 ≤
λmin(Θ(Zpool)) · (1 +Npool/εp).

To apply this to every Z, note that since Z ⊆ Zpool, it means D(Z) will be a submatrix
of D(Zpool), and hence it is the case that ∥D(Z)∥2 ≤ ∥D(Zpool)∥2, which completes the
proof.

A few remarks are in order.

Remark 6 The bound in Proposition 1 depends on the kth smallest eigenvalue of Θ(Zpool).
From both empirical (Kopitkov and Indelman, 2020; Wang et al., 2022c) and theoretical
(Vakili et al., 2021) studies of eNTKs, we find that the eigenvalue of eNTKs tend to decay
quickly, meaning as long as our pool Zpool is large enough and we let k be a large enough
value, we would be able to achieve an approximation error which is arbitrarily small.

Remark 7 In Proposition 1 (and throughout the paper) we assume that the set Zref is con-
structed by uniform random sample. As a result, the number of points c that the bound
requires is higher than what would be needed under other sampling schemes (Gittens and
Mahoney, 2013; Wang et al., 2019), which we will not cover here. The version of Propo-
sition 1 only serves to show that as long as we use enough points in Zref, the Nystrom
approximation can achieve an arbitrarily small error in the eNTK approximation.

We now attempt to link the difference in Frobenius norm proven in Proposition 1 to the
difference between α(Z) and α̂(Z).

Proposition 2 Let the conditions in Proposition 1. For a given Z ⊆ Zpool, |α(Z)−α̂(Z)| ≤
ĉ∥Rθt(Z)∥22.

Proof It applies directly from Proposition 1 that

|α(Z)− α′(Z)| =
∣∣Rθt(Z)

⊤(Θ(Z)−Θ(Z,Zref)Θ(Zref)
−1Θ(Zref, Z)

)
Rθt(Z)

∣∣ (104)

≤ ∥Rθt(Z)∥22
∥∥Θ(Z)−Θ(Z,Zref)Θ(Zref)

−1Θ(Zref, Z)
∥∥2
2

(105)

≤ ĉ∥Rθt(Z)∥22 (106)

where the second inequality follows from the definition of Frobenius norm.

Appendix F. Extended Discussion on PINNACLE Algorithm

F.1 Discussion of the Point Selection Methods

PINNACLE-S. Theoretically, PINNACLE-S is better motivated than PINNACLE-K.
This is because PINNACLE-S involves sampling from an implicit distribution (whose p.d.f.
is proportional to α̂), and therefore is more directly compatible with assumptions required
in Theorem 1, where S is assumed to be i.i.d. samples from some unknown distribution.
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Algorithm 1 PINNACLE

1: Input: PINN ûθ, learning rate η, number of iterations T , eNTK approx. error δ.
2: repeat
3: // Point selection phase
4: Randomly sample candidates Zpool from Z
5: Compute Θt using Nystrom approximation
6: Select subset Z ⊂ Zpool to fit constraint using Sampling or K-Means++
7: // Training phase
8: Compute Θ̄ = Θt(Zpool)
9: for t′ = t, . . . , t+ T do

10: θt′+1 ← θt′ − η∇θL(ûθt′ ;Z)
11: Exit training if ∥Θ̄−Θt′(Zpool)∥ ≥ δ∥Θ̄∥
12: until training converges or budget exhausted

In theory, PINNACLE-S is also sensitive to the ratio of the pool of points. For example,
regions with many duplicate points will be more likely to be selected during sampling due
to more of such points in the pool. This, however, is an inherent characteristic of many
algorithms which selects a batch of points using sampling or greedy selection methods.
Despite this, in our experiments we select a pool size that is around 4× as large as the
selected points budget in each round, which encourages enough diversity for the algorithm,
while still allowing the algorithm to focus in on particular regions that may help with
training. Future work could be done to make PINNACLE-S more robust to pool size,
through using sampling techniques such as Gibbs sampling which would make the method
independent of pool size.

PINNACLE-K. For the K-Means++ sampling mechanism, we use Euclidean dis-
tance for the embedded vectors. This is similar to the method used in BADGE Ash et al.
(2020). Each dimension of the embedded vector will represent a certain eigenfunction di-
rection (where a larger value represents a stronger alignment in this direction). Therefore,
points that are selected in this method will tend to be pointing in different directions (i.e.,
act on different eigenfunction direction from one another), and also encourage selecting
point that have high magnitude (i.e., high change in residual, far away from other points
that has less effect on residual change).

F.2 Training Point Retention Mechanism

We briefly describe how training points chosen in previous rounds can be handled during
training. While it is possible to retain all of the training points ever selected, this can
lead to high computational cost as the training set grows. Furthermore, past results (Wu
et al., 2023) have also shown that retaining all of the training point could lead to worsen
performances.

Alternatively, we can have a case where none of the training points are retained through-
out training. This is done in the case of RAD algorithm (Wu et al., 2023). However, in
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practice, we find that this can lead to catastrophic forgetting, where the PINN forgets re-
gions where training used to be at. As a result, in PINNACLE, we decide to retain a
number of training points from the previous round when choosing the next training set. In
Figures 8 and 9, we see that the performance of PINNACLE consistently drops when this
mechanism is not used, demonstrating the usefulness of retaining past training points.

F.3 Training Termination via eNTK Discrepancy

In PINNACLE, we also check the eNTK and perform training point selection again when
the eNTK changes too much. This corresponds to when the chosen set of training points are
no longer optimal given the PINN training dynamics. In Figures 8 and 9, we show that auto-
triggering of AL phase can help improve model training in some cases (in particular, for the
Advection equation with PINNACLE-K as seen in Figure 9a). However, in practice, we
also find that this is often less useful in practice, since as training progresses, the eNTK does
not change by much and so the AL process will unlikely be triggered before the maximum
training duration T anyway.

F.4 Pseudo-Outputs used for Exp Point Selection

The residual term Rθt(z) can be computed exactly in the case for CL points since the PDE
and IC/BC conditions are completely known (except for the inverse problem where the
PDE constants β will need to be the estimated values at that point in training), and is
independent of the true solution. However, in the case of Exp points, Rθt(x) will depend
on the true output label, which is unknown during training. To solve this problem, we
approximate the true solution u by training the NN at the time of the point selection ûθt
for T steps beyond that timestep, and use the trained network ûθt+T

as the pseudo-output.
This works well in practice as the magnitude of the residual term roughly reflects how much
error the model may have at that particular point based on its training dynamics. In our
experiments, we set T = 100.
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Figure 8: Performance of PINNACLE-S on the various forward problems when different
components of the algorithm are removed.
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Figure 9: Performance of PINNACLE-K on the various forward problems when different
components of the algorithm are removed.

Appendix G. Experimental Setup

G.1 Description of PDEs Used in the Experiments

In this section, we further describe the PDEs used in our benchmarks.

• 1D Advection equation. The Advection PDE describes the movement of a sub-
stance through some fluid. This is a simple linear PDE which is often used to verify
performance of PINNs in a simple and intuitive manner due to the easily interpretable
solution. The 1D Advection PDE is given by

∂u

∂t
− β∂u

∂x
= 0, x ∈ (0, L), t ∈ (0, T ] (107)

with initial condition u(x, 0) = u0(x) and periodic BC u(0, t) = u(L, t) is used. The
closed form solution is given by u(x, t) = u0(x − βt). To compare with the PDE
from (5), we have N [u, β] = ∂u

∂t − β
∂u
∂x and f(x, t) = 0. Meanwhile, for the boundary

conditions, the IC can be written as B1[u] = u and g1(x, t) = u0(x), while the BC can
be written as B2[u](x, t) = u(0, t)− u(L, t) and g2(x, t) = 0.

In our forward problem experiments, we use β = 1 with a irregularly shaped IC from
PDEBench (Takamoto et al., 2022). In the timing experiment (in Figure 17a), we use
β = 5 with a sinusoidal initial condition, as past works have highlighted that the 1D
Advection problem with high β values is a challenging problem setting (Krishnapriyan
et al., 2021), which is possible for the timing experiments given that we provide more
CL points to the benchmark algorithms.

• 1D Burger’s equation. Burger’s equation is an equation that captures the process
of convection and diffusion of fluids. The solution sometimes can exhibit regions of
discontinuity and can be difficult to model. The 1D Burger’s equation is given by

∂u

∂t
+

1

2

∂u2

∂x
= ν

∂2u

∂x2
, x ∈ (0, L), t ∈ (0, T ] (108)
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with initial condition u(x, 0) = u0(x) and periodic BC u(0, t) = u(L, t) is applied. In
our experiments, we used the dataset from Takamoto et al. (2022) with ν = 0.02.

• 2D Navier-Stokes Equation. This is a PDE with important industry applications
which is used to describe motion of a viscous fluid. In this paper, we consider the
incompressible variant of the Navier-Stokes equation based on the inverse problem
from Raissi et al. (2019), where we consider the fluid flow through a cylinder. The
output exhibits a vortex pattern which is periodic in the steady state. The problem
consists of the velocities u(x, y, t) and v(x, y, t) in the two spatial directions, and the
pressure p(x, y, t). The three functions are related through a system of PDEs given
by

∂u

∂t
+ λ1

(
u
∂u

∂x
+ v

∂u

∂y

)
= −∂p

∂x
+ λ2

(
∂2u

∂x2
+
∂2u

∂y2

)
, (109)

∂v

∂t
+ λ1

(
u
∂v

∂x
+ v

∂v

∂y

)
= −∂p

∂y
+ λ2

(
∂2v

∂x2
+
∂2v

∂y2

)
. (110)

In the inverse problem experiments, we assume we are able to observe u and v, and
our goal is to compute the constants λ1 and λ2, as well as the pressure p(x, y, u).
There are no IC/BC conditions to follow.

The budgets allocated for each types of problems are as listed below.

Equation (Problem Type) Training steps CL points budget Exp points query rate

1D Advection (Fwd) 200k 1000 -
1D Burger’s (Fwd) 200k 300 -

2D Fluid Dynamics (Inv) 100k 1000 30 per 1k steps
1D Advection (FT) 200k 200 -
1D Burger’s (FT) 200k 200 -

G.2 Detailed Experimental Setup

All code were implemented in Jax (Bradbury et al., 2018). This is done so due to its effi-
ciency in performing auto-differentiation. To make DeepXDE and PDEBench compatible
with Jax, we made modifications to the experimental code. While DeepXDE does have
some support for Jax, it remains incomplete for our experiments and we needed to add
Jax code components for NN training and training point selection.

In each experiment, we use a multi-layer perceptron with the number of hidden layers
and width dependent on the specific setting. Each experiment uses tanh activation, with
some also using LAAF (Jagtap et al., 2020b). The models are trained with the Adam
optimizer, with learning rate of 10−4 for Advection and Burger’s equation problem settings,
and 10−3 for the others. We list the NN architectures used in each of the problem setting
below.
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Problem Hidden layers Hidden width LAAF?

1D Advection (PDEBench, β = 1) 8 128 -
1D Advection (β = 5) 6 64 Yes

1D Burger’s 4 128 -
2D Fluid Dynamics 6 64 Yes

The forward and inverse problem experiments in the main paper were repeated 10 rounds
each, while the rest of the experiments are repeated 5 rounds each. In each graph shown
in this paper, we report the median across these trials, and the error bars report the 20th
and 80th percentile values.

For experiments where computational time is not measured, we performed model train-
ing on a compute cluster with varying GPU configurations. In the experiment where we
measure the algorithms’ runtime in forward problem (i.e., experiments ran corresponding
to Figure 17a), we have trained each NN using one NVIDIA GeForce RTX 3080 GPU, and
with Intel Xeon Gold 6326 CPU @ 2.90GHz, while for the inverse problem (i.e., experiments
ran corresponding to Figure 17b), we trained each NN using one NVIDIA RTX A5000 GPU
and with AMD EPYC 7543 32-Core Processor CPU.

G.3 Description of Benchmark Algorithms

Below we list some of the algorithms that we ran experiments on. Note that due to space
constraints, some of these experiments are not presented in the main paper, but only in the
appendix.

We first list the non-adaptive point selection methods. All of these methods were de-
signed to only deal with the selection of PDE CL points – hence IC/BC CL points and Exp
points are all selected uniformly at random from their respective domains. The empirical
performance of these methods have also been studied in Wu et al. (2023)

• Uniform Random. Points are selected uniformly at random.

• Hammersley. Points are generated based on the Hammersley sequence.

• Sobol. Points are generated based on the Sobol sequence.

The latter two non-adaptive point selection methods are said to be low-discrepancy se-
quences, which are often preferred over purely uniform random points since they will be
able to better span the domain of interest. In the main paper we only report the results for
Hammersley since it is the best pseudo-random point generation sequence as experimented
by Wu et al. (2023).

We now list the adaptive point selection methods that we have used.

• RAD (Wu et al., 2023). The PDE CL points are sampled such that each point has
probability of being sampled proportional to the PDE residual squared. The remaining
CL points are sampled uniformly at random. This is the variant of the adaptive point
selection algorithm reported by (Wu et al., 2023) which performs the best.

• RAD-All. This is the method that we extended from RAD, where the IC/BC CL
points are also selected such that they are also sampled at probability proportional
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to the square of the residual. Exp points are selected using the same technique
described in Appendix F.4, which is comparable to expected model output change
(EMOC) criterion used in active learning (Ranganathan et al., 2017).

• PINNACLE-S and PINNACLE-K. This is our proposed algorithm as described in
Sec. 2.

In cases where there are multiple types of CL points, for all of the methods that do
not use dynamic allocation of CL point budget, we run the experiments where we fix the
PDE CL points at 0.5, 0.8 or 0.95 of the total CL points budget, and divide the remaining
budget equally amongst the IC/BC CL points. In the main paper, the presented results are
for when the ratio is fixed to 0.8.

Appendix H. Additional Experimental Details and Results

Dataset. For comparability with other works, we conducted experiments with open-
sourced data (Takamoto et al., 2022; Lu et al., 2021), and experimental setups that matches
past work (Raissi et al., 2019). The specific PDEs studied and details are in Appendix G.1.

NN Architecture and Implementation. Similar to other PINNs work, we used
fully-connected NNs of varying NN depth and width with tanh activation, both with and
without LAAF (Jagtap et al., 2020a). We adapted the DeepXDE framework (Lu et al.,
2021) for training PINNs and handling input data, by implementing it in Jax (Bradbury
et al., 2018) for more efficient computation.

Algorithms Benchmarked. We benchmarked PINNACLE with a suite of non-
adaptive and adaptive CL point selection methods. For our main results, apart from a
baseline that randomly selects training points, we compare PINNACLE with the Ham-
mersley sequence sampler and RAD algorithm, the best performing non-adaptive and
adaptive PDE CL point selection method based on (Wu et al., 2023). We also extended
RAD, named RAD-All, where IC/BC points are also adaptively sampled in the same way
as the PDE CL points. We provide further details and results in Appendix G.3.

H.1 Point Selection Dynamics of PINNACLE

In this section, we further consider the dynamics of the point selection process between
different algorithms. Figure 10, we plot the point selection dynamics of various point
selection algorithms in the 1D Advection equation problem. We can see that Hammersley
will select points which best spans the overall space, however this is does not necessarily
correspond to points which helps training the best. Meanwhile, Rad-All tends to focus
its points on the non-smooth stripes of the solution, which corresponds to regions of higher
residual. While this allows Rad-All to gradually build up the stripes, it does so in a
less efficient manner than PINNACLE. In the variants of PINNACLE, we can see that
the selected CL points gradually build upwards, which allows the stripe to be learnt more
efficiently. We can also see that PINNACLE-K selects points that are more diverse than
PINNACLE-S, which can be seen from the larger spread of CL points throughout training,
with PDE CL points even attempting to avoid the initial boundary in Step 200k.

In Figure 11, we plot the point selection dynamics of various point selection algorithms in
the 1D Burger’s equation problem. We can see that Hammersley peforms similar as in the
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(a) Hammersley (b) RAD-All

(c) PINNACLE-S (d) PINNACLE-K

PDE CL Pts IC CL Pts BC CL Pts

Figure 10: Training point selection dynamics for PINNACLE in the 1D Advection equation
forward problem experiments.

Advection case, where it is able to span the space well but not able to guide model training
well. Meanwhile, Rad-All selects points that are more spread out (that has high residual),
but focuses less effort in regions near to the initial boundary or along the discontinuity in
the solution, unlike PINNACLE. The points selection being less concentrated along these
regions may explain why PINNACLE is able to achieve a better solution overall.

(a) Hammersley (b) RAD-All

(c) PINNACLE-S (d) PINNACLE-K

PDE CL Pts IC CL Pts BC CL Pts

Figure 11: Training point selection dynamics for PINNACLE in the 1D Burger’s equation
forward problem experiments.
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H.2 Forward Problems
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Figure 12: Results from the 1D Burger’s equation forward problem experiments. In each
row, from left to right: plot of mean prediction error for each method, the true PDE solution,
and the PINN output from different point selection methods.

(a) 1D Advection Equation, 200k steps

(b) 1D Burger’s Equation, 200k steps

Figure 13: Predictive error for the forward problem experiments in ??.

We plot the predictive error for experiments ran in Figures 2 and 12 in Figure 13. Ad-
ditionally, we plot the 1D Advection and 1D Burger’s equation experiments with additional
point selection algorithms in Figures 14 and 15 respectively. Some observations can be
made from these data. First, adaptive point selection methods outperform non-adaptive
point selection methods. This is to be expected since adaptive methods allow for training
points to be adjusted according to the current solution landscape, and respond better to
the current training dynamics.

Second, for all the algorithms which do not perform dynamic CL point budget allocation,
choosing whatever fixed budget at the beginning makes little difference in the training
outcome. This can be seen that in each experiment, choosing the point allocation at 0.5, 0.8
or 0.95 shows little difference in performance, and is unable to outperform PINNACLE.
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(a) Non-adaptive methods
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Figure 14: Further experimental results for 1D Advection equation forward problem.
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Figure 15: Further experimental results for 1D Burger’s equation forward problem.

Meanwhile, the variants of PINNACLE are able to exploit the dynamic budgeting to
prioritize the correct types of CL points in different stages of training.

Third, while PINNACLE-K outperforms PINNACLE-S, it is often not by a large
margin. This is an interesting result, since it may suggest that selecting a diverse set of
points may not be required for training a PINN well.

Additionally, in Figure 17a, we also measure the runtime of different algorithms to train
a 1D Advection problem with β = 5 until it reaches a mean loss of 10−2. We select this
particular forward problem since it is known that Advection equation with a high β is a
difficult problem for PINN training (Krishnapriyan et al., 2021). We can see that while
some algorithms are able to converge with higher number of training points, they will end
up also incurring a larger runtime due to the higher number of training points. Meanwhile,
PINNACLE-K is able to achieve a low test error with much fewer points than pseudo-
random sampling at a much quicker pace. This shows that while it is possible to train
PINNs with more CL points, this often come with computation cost of having to compute
the gradient of more training data. PINNACLE provides a good way to reduce the number
of training points needed for training, which reduces this training cost problem.

37



H.3 Inverse Problems

In Figure 16, we present further experimental results for the Navier-Stokes equation ex-
periments. We see that for the unseen components of the PDE solution (i.e., p, λ1 and
λ2), PINNACLE is able to get much lower error values than the other algorithms (with
exception of PINNACLE-K which is unable to recover p as accurately). This shows that
the point selection method is able to select points to obtain the most information. For the
prediction alone, all algorithms are able to perform about the same since they are able to
get the information from the experimental points and interpolate accordingly. For the un-
known quantities, however, a simple point selection mechanism fails whereas PINNACLE
is able to perform better.

Furthermore, in Figure 17b, we measure the running time for the Navier-Stokes inverse
problem where we aim to compute the PDE constants for the Navier-Stokes equation, and
measure the time required until the estimated PDE constants are within 5% of the true
value. We can see that using 10× fewer points, PINNACLE-K outperforms the pseudo-
random benchmark by being able to achieve the correct answer at a faster rate. Furthermore,
since PINNACLE-K is able to converge with fewer steps, it means that in reality it would
be much more efficient also since it requires less query for the actual solution, which saves
experimental costs.
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Figure 16: Errors of predicted value from the Navier-Stokes equation experiments. The
graphs show, from left to right, the errors of overall prediction, the pressure p, λ1, and λ2.

H.4 Transfer Learning of PINNs

In Figure 18, we compare the point selection dynamics for each point selection algorithms for
the experiments from Figure 4. We can see that for PINNACLE, the CL points are selected
in such a way that the existing solution structure still remains throughout training. This
makes PINNACLE more efficient for transfer learning since it does not have to relearn the
solution again from scratch. This is in contrast with the other methods, where the stripes
eventually gets unlearned which makes the training inefficient.

In Figure 19, we present more results from the transfer learning experiments for the
Burger’s equation. As we can see, again, the variants of PINNACLE are able to better
reconstruct the solution with the alternate IC than other methods.
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(a) 1D Advection (forward)
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(b) Navier-Stokes (Inverse)
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Figure 17: Experiments involving runtime of various point selection algorithms. The high-
lighted lines in each plot represent the example which is able to achieve the required accuracy
and sustain the accuracy value for 5k additional steps within the shortest time. In each
example, the dotted lines represent the threshold considered for acceptable accuracy (for
forward problem, this marks the 10−2 accuracy point, while for inverse problem, this marks
the region where the estimated constant are within 5% of the true value.

(a) Hammersley (b) RAD-All

(c) PINNACLE-S (d) PINNACLE-K
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Figure 18: Training point selection dynamics for PINNACLE in the 1D Advection equation
transfer learning problem experiments.
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Figure 19: Predictive error for the 1D Burger’s equation transfer learning problem with
perturbed IC.
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