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Abstract001

Parameter-Efficient Fine-Tuning (PEFT) has002
emerged as a critical paradigm for adapting003
Large Language Models (LLMs) to down-004
stream tasks, among which Low-rank Adapta-005
tion (LoRA) represents one of the most widely006
adopted methodologies. However, existing007
LoRA-based approaches exhibit two fundamen-008
tal limitations: unstable training dynamics and009
inefficient knowledge transfer from pre-trained010
models, both stemming from random initial-011
ization of adapter parameters. To overcome012
these challenges, we propose DuDe, a novel013
approach that decomposes weight matrices014
into magnitude and direction components, em-015
ploying Singular Value Decomposition (SVD)016
for principled initialization. Our comprehen-017
sive evaluation demonstrates DuDe’s supe-018
rior performance and robustness, achieving up019
to 48.35% accuracy on MMLU and 62.53%020
(±1.59) accuracy on GSM8K. Our theoretical021
analysis and empirical validation collectively022
demonstrate that DuDe’s decomposition strat-023
egy enhances optimization stability and better024
preserves pre-trained representations, particu-025
larly for domain-specific tasks requiring spe-026
cialized knowledge. The combination of robust027
empirical performance and rigorous theoretical028
foundations establishes DuDe as a significant029
contribution to PEFT methodologies for LLMs.030

1 Introduction031

Pre-trained models have demonstrated exceptional032

capabilities across diverse applications from Nat-033

ural Language Processing (NLP) tasks (Qin et al.,034

2023) to multi-modal scenarios (Li et al., 2023;035

Liu et al., 2023). However, fine-tuning these large036

models remains computationally expensive.037

Parameter-Efficient Fine-Tuning (PEFT) meth-038

ods have emerged as a promising solution to this039

challenge. In particular, Low-Rank Adaptation040

(LoRA) has gained significant attention due to its041

ability to maintain the model’s original architec-042

ture while enabling efficient fine-tuning. LoRA043

achieves this by injecting trainable low-rank ma- 044

trices into the pre-trained weights, significantly re- 045

ducing the number of parameters that need to be 046

updated. 047

Despite its widespread adoption, LoRA and 048

its variants face two fundamental challenges: 1) 049

Training instability caused by random initialization, 050

and 2) Inefficient utilization of pre-trained knowl- 051

edge. To address these limitations, we propose 052

DuDe (Dual Decomposition of Weights and Singu- 053

lar Value Low Rank Adaptation), which employs 054

dual decomposition and Singular Value Decompo- 055

sition (SVD) based initialization. Our experimen- 056

tal results validate DuDe’s effectiveness through: 057

(1) More stable training across different random 058

seeds with only ±1.59 standard deviation (Section 059

4.5), and (2) Superior performance on knowledge- 060

intensive MMLU tasks achieving up to 48.35% 061

average accuracy (Section 4.4). 062

DuDe combines two key technical innovations: 063

magnitude-direction decomposition inspired by 064

DoRA (Liu et al., 2024) and SVD-based initial- 065

ization building on PiSSA (Meng et al., 2024). Our 066

main contributions include: 067

• A novel dual decomposition strategy that sep- 068

arates weights into magnitude and direction 069

components, enabling more stable optimiza- 070

tion 071

• An SVD-based initialization method that ef- 072

fectively preserves and leverages pre-trained 073

knowledge 074

• Theoretical analysis that demonstrates im- 075

proved gradient properties and optimization 076

stability 077

• Comprehensive experiments showing consis- 078

tent performance improvements across diverse 079

models and tasks 080

1



Our extensive evaluation demonstrates DuDe’s081

strong empirical performance across multiple082

benchmarks. Notably, DuDe exhibits exceptional083

performance on complex tasks requiring domain084

expertise, indicating its superior ability to preserve085

and adapt pre-trained knowledge.086

2 Related Work087

Large Language Models (LLMs) containing bil-088

lions of parameters pose substantial challenges in089

terms of complexity and computational resources090

when adapting them to new tasks. PEFT (Houlsby091

et al., 2019) offers an attractive approach by reduc-092

ing the number of parameters to be fine-tuned and093

memory requirements, while maintaining perfor-094

mance comparable to full fine-tuning.095

Existing PEFT methods can be broadly cat-096

egorized into three main approaches: Adapter-097

based Methods (Houlsby et al., 2019; Lei, 2023;098

Edalati et al., 2022), Selective Tuning Methods099

(Ben Zaken et al., 2022; Liao et al., 2023), and100

Re-parameterization Methods.101

Re-parameterization Methods transform the102

original parameters into a more efficient represen-103

tation. The most prominent example is LoRA (Hu104

et al., 2022), which injects trainable adapters into105

the pre-trained weight through low-rank decom-106

position. Following LoRA, several improvements107

have been proposed. DoRA (Liu et al., 2024) de-108

composes the pre-trained weight into magnitude109

and direction components, enhancing both learning110

capacity and training stability. PiSSA (Meng et al.,111

2024) initializes the adaptor matrices with the prin-112

cipal components of the pre-trained weight, freez-113

ing the remaining components in a residual matrix.114

OFT (Li et al., 2024) exploits orthogonal factoriza-115

tion for model fine-tuning. LoRA-XS (Bałazy et al.,116

2024) and OLoRA (Büyükakyüz, 2024) further re-117

duce the number of parameters while maintaining118

performance. VeRA (Kopiczko et al., 2024) intro-119

duces vector-based random matrix adaptation for120

more efficient parameterization. SVFT (Lingam121

et al., 2024) uses singular vectors for PEFT, sharing122

some conceptual similarities with our work.123

Our work, DuDe, builds upon these advances124

by combining the strengths of DoRA’s magnitude-125

direction decomposition with PiSSA’s SVD-based126

initialization. Unlike previous methods that either127

focus on decomposition or initialization separately,128

DuDe integrates both aspects to achieve more sta-129

ble training and better utilization of pre-trained130

knowledge. The key innovation lies in our dual 131

decomposition approach, which not only separates 132

magnitude and direction but also performs SVD 133

to initialize the direction matrix, leading to more 134

effective adaptation while maintaining parameter 135

efficiency. 136

3 Method 137

3.1 Preliminaries 138

Building upon the hypothesis that fine-tuning up- 139

dates exhibit a low "intrinsic rank" (Aghajanyan 140

et al., 2021), LoRA (Hu et al., 2022) employs the 141

product of two low-rank matrices to efficiently up- 142

date pre-trained weights (Figure 1a). For a pre- 143

trained weight matrix W0 ∈ Rd×k, LoRA pa- 144

rameterizes the weight update ∆W ∈ Rd×k as 145

a low-rank decomposition BA, where B ∈ Rd×r 146

and A ∈ Rr×k are low-rank matrices with rank 147

r ≪ min(d, k). The fine-tuned weight W ′ is there- 148

fore formulated as: 149

W ′ = W0 +∆W = W0 +BA (1) 150

During fine-tuning, W0 remains frozen while 151

only the low-rank matrices are trained. The ma- 152

trices A are initialized using the Kaiming uniform 153

distribution (He et al., 2015), while matrices B are 154

initialized to zero, ensuring that ∆W = BA starts 155

from zero at the beginning of training; thus the 156

injection of adapters does not affect the model’s 157

output initially. 158

Inspired by Salimans and Kingma (2016), DoRA 159

(Liu et al., 2024) decomposes the pre-trained 160

weight into magnitude and direction components, 161

and fine-tunes both components simultaneously 162

(Figure 1b). To efficiently update the directional 163

component with its large parameter space, DoRA 164

adopts LoRA’s low-rank decomposition approach. 165

The formulation is expressed as: 166

W ′ = m
W0 +∆W

∥W0 +∆W∥c
= m

W0 +BA

∥W0 +BA∥c
(2) 167

where m ∈ Rk represents the trainable magnitude 168

vector, ∆W = BA is the directional update param- 169

eterized by two low-rank matrices B ∈ Rd×r and 170

A ∈ Rr×k (with r ≪ min(d, k)), ∥ ·∥c denotes the 171

column-wise vector norm, and underlined param- 172

eters are trainable during fine-tuning. Following 173

LoRA, matrices B and A are initialized to ensure 174

∆W = 0 at the beginning of training, maintaining 175

the model’s initial behavior while enabling effec- 176

tive adaptation. 177
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Figure 1: The blue parts in the figure represent frozen components, while the orange parts represent trainable
components. (a) shows the diagrams of LoRA and PiSSA. The difference between them is that LoRA initializes
matrix B ∈ Rd×r to 0 and matrix A ∈ Rr×d to Kaiming uniform distribution, while PiSSA first performs SVD on
matrix W0 to obtain W0 = UΣV ⊤, then sets B = Ur

√
Σr, A =

√
ΣrV

⊤
r , and W0 = W0 − BA. (b) shows the

diagrams of DoRA and DuDe. m ∈ Rk is the magnitude vector. For the direction matrix, DoRA initializes matrices
B and A in the same way as LoRA, while DuDe initializes matrices B and A in the same way as PiSSA.

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.

Qwen1.5-7B

LoRA 83.43 72.47 44.68 71.78 61.96 87.83 77.29 75.20 71.83
DoRA 83.24 70.95 44.68 71.82 61.88 88.01 77.29 76.00 71.73
PiSSA 84.04 74.32 44.73 71.53 61.64 87.65 78.31 74.20 72.05
DuDe 84.04 75.57 44.98 71.37 62.98 87.65 78.31 75.40 72.54

Qwen2.5-32B

LoRA 89.85 90.75 46.16 92.11 79.16 97.53 93.90 89.40 84.86
DoRA 90.03 90.59 46.26 92.06 79.08 97.35 93.56 89.80 84.84
PiSSA 89.76 89.61 46.62 91.91 77.66 97.53 91.86 88.60 84.19
DuDe 90.00 90.26 47.54 92.12 77.82 97.18 93.22 91.00 84.89

LLaMA2-13B

LoRA 65.84 73.78 53.68 48.63 51.78 79.01 59.32 60.00 61.51
DoRA 61.07 73.94 54.25 49.98 51.46 79.19 61.02 60.40 61.41
PiSSA 66.09 70.18 45.39 51.94 52.33 82.19 59.32 62.40 61.23
DuDe 72.72 74.10 45.75 60.39 51.22 82.54 61.02 62.20 63.74

Table 1: Accuracy comparison of Qwen1.5-7B, Qwen2.5-32B, and LLaMA2-13B with different PEFT methods on
eight commonsense reasoning tasks. The best results are highlighted in bold.

3.2 Dual Decomposition of Weights and178

Singular Value Low Rank Adaptation179

In this section, we present our proposed method,180

Dual Decomposition of Weights and Singular Value181

Low Rank Adaptation (DuDe). As illustrated in182

Figure 1, DuDe performs SVD on the pre-trained183

weight matrix W0 to derive optimal initialization184

parameters for low-rank adaptation. When apply-185

ing SVD to a matrix W0 ∈ Rd×k, we obtain the186

decomposition W0 = UΣV ⊤, where U ∈ Rd×p187

and V ∈ Rk×p are orthogonal matrices containing188

the left and right singular vectors, and Σ ∈ Rp×p189

is a diagonal matrix containing the singular values190

of W0 in descending order, with p = min(d, k).191

To effectively capture the most important fea-192

tures, the top r singular values and their correspond-193

ing singular vectors are extracted from Σ, U , and194

V , which are denoted as Σr ∈ Rr×r, Ur ∈ Rd×r,195

and Vr ∈ Rk×r. These components form the up-196

date matrix: 197

∆W = UrΣrV
⊤
r (3) 198

The remaining components of the original 199

weight matrix are preserved as: 200

Wf = W0 −∆W (4) 201

where Wf remains frozen during fine-tuning. 202

The low-rank matrices are initialized using the 203

SVD components for efficient parameterization: 204

A =
√
ΣrV

⊤
r ∈ Rr×k (5) 205

206
B = Ur

√
Σr ∈ Rd×r (6) 207

where B and A are low-rank matrices with rank 208

r ≪ p. 209

The final fine-tuned weight W ′ integrates the 210

frozen component Wf with the trainable low-rank 211

update, scaled by a trainable magnitude vector m: 212

W ′ = m
Wf +∆W

∥Wf +∆W∥c
= m

Wf +BA

∥Wf +BA∥c
(7) 213
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At initialization, since ∆W = BA, the fine-tuned214

weight W ′ is equivalent to the original weight W0,215

ensuring that the model’s initial behavior is pre-216

served while enabling effective adaptation during217

training.218

3.3 Gradient Analysis219

In this section, we analyze the gradient of DuDe220

and demonstrate how our proposed decomposition221

enables more stable and efficient fine-tuning.222

From Eq. (7), the gradient of loss L with respect223

to m and W0 = Wf +∆W can be derived as:224

∂L
∂m

=
∂L
∂W ′

W0

∥W0∥c
(8)225

226
∂L
∂W0

=
m

∥W0∥c

(
I− W0W

⊤
0

∥W0∥2c

)
∂L
∂W ′ (9)227

Eq. (9) reveals that the gradient of W0 under-228

goes two key transformations: scaling by m
∥W0∥c229

and projection onto the orthogonal complement230

of W0. These transformations help align the gra-231

dient’s covariance matrix more closely with the232

identity matrix I, promoting optimization stability.233

Since W0 = Wf + ∆W , the gradient ∂L
∂W0

is234

equivalent to ∂L
∂∆W . Consequently, all optimization235

benefits from this decomposition directly transfer236

to ∆W , enhancing DuDe’s learning stability.237

Furthermore, because the top r singular values238

and their corresponding singular vectors capture239

the most significant features of W0, the gradient240
∂L

∂∆W contains more stable and informative signals241

compared to LoRA’s gradient, leading to improved242

convergence properties.243

Our experiments, as illustrated in Figure 2a,244

show that DuDe’s loss and gradient norm curves245

closely resemble those of full fine-tuning, confirm-246

ing that our dual decomposition effectively trans-247

fers the benefits of full fine-tuning while maintain-248

ing parameter efficiency.249

4 Experiments250

4.1 Commonsense Reasoning251

DuDe is comprehensively evaluated against es-252

tablished PEFT methods (LoRA, DoRA, and253

PiSSA) on commonsense reasoning tasks across254

three different models: Qwen1.5-7B (Team, 2024),255

Qwen2.5-32B (Qwen et al., 2025), and LLaMA2-256

13B (Touvron et al., 2023). The evaluation suite257

is comprised of eight diverse commonsense rea-258

soning benchmarks: BoolQ (Clark et al., 2019),259

Model Method Score

Qwen1.5-7B

LoRA 20.20
DoRA 22.22
PiSSA 19.19
DuDe 24.75

Qwen2.5-14B

LoRA 39.39
DoRA 40.40
PiSSA 40.91
DuDe 41.41

Mistral-7B v0.1

LoRA 15.66
DoRA 20.20
PiSSA 20.71
DuDe 23.74

Phi4 small

LoRA 30.81
DoRA 33.33
PiSSA 35.35
DuDe 39.90

Table 2: Score comparison of Qwen1.5-7B, Qwen2.5-
14B, Mistral-7B v0.1, and Phi4 small with different
PEFT methods on GPQA task. The best results are
highlighted in bold.

PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019), 260

HellaSwag (Zellers et al., 2019), Winogrande (Sak- 261

aguchi et al., 2021), ARC-e/ARC-c (Clark et al., 262

2018), and OpenBookQA (Mihaylov et al., 2018). 263

For all experiments, CommonsenseQA (Talmor 264

et al., 2019) is used for fine-tuning and evalua- 265

tions are performed on the respective test sets us- 266

ing the OpenCompass (Contributors, 2023) frame- 267

work. For fair comparison, identical hyperparame- 268

ters including rank r, learning rate, batch size, and 269

training epochs are shared across all methods, with 270

details being provided in Table 5. 271

As shown in Table 1, DuDe consistently outper- 272

forms all baseline methods across all three mod- 273

els. For Qwen1.5-7B, DuDe achieves an average 274

accuracy of 72.54%, surpassing LoRA (71.83%), 275

DoRA (71.73%), and PiSSA (72.05%), with par- 276

ticularly strong improvements on PIQA (+3.10% 277

over LoRA) and Winogrande (+1.02% over LoRA). 278

On Qwen2.5-32B, DuDe maintains its advantage 279

with 84.89% average accuracy, showing notable 280

gains on SIQA (+1.38% over LoRA). The most 281

substantial improvements appear with LLaMA2- 282

13B, where DuDe achieves 63.74% average accu- 283

racy, significantly outperforming LoRA (61.51%) 284

by 2.23%. In this case, DuDe demonstrates remark- 285

able gains on HellaSwag (+11.76% over LoRA) 286

and BoolQ (+6.88% over LoRA), highlighting its 287
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Figure 2: Comparison of Full finetuning, DuDe and other PEFT methods on Mistral 7B v0.2 model: (a) Training
loss, (b) Gradient norm during training on MetaMathQA-395K dataset for 3 epochs, and (c) Evaluation accuracy on
GSM8K dataset measured every 200 steps over 3000 total training steps.

effectiveness in adapting different models to com-288

monsense reasoning tasks.289

4.2 GPQA Task290

In this section, DuDe is evaluated on the GPQA291

(Rein et al., 2024) dataset, a challenging benchmark292

of graduate-level questions in biology, physics, and293

chemistry that cannot be easily answered through294

online searches. Deep domain knowledge and so-295

phisticated reasoning capabilities are required by296

these questions.297

Four different models (Qwen1.5-7B, Qwen2.5-298

14B, Mistral-7B v0.1 (Jiang et al., 2023), and299

Phi4 small (Abdin et al., 2024)) are fine-tuned on300

both the Main and Extended splits of GPQA, and301

their performance is evaluated on the Diamond302

split using the OpenCompass framework. Sim-303

ilar to the commonsense reasoning experiments,304

identical hyperparameters are maintained across305

all PEFT methods (LoRA, DoRA, PiSSA, and306

DuDe), including rank r, learning rate, and training307

epochs. However, due to the complexity of GPQA,308

a smaller batch size (set to 4) is used compared309

to the commonsense tasks. For Phi4 small model,310

Wqkv is used as the target module due to its differ-311

ent architecture, while the same target modules as312

in commonsense experiments are maintained for313

the other models. 314

Table 2 presents our findings. DuDe consistently 315

outperforms all baseline methods across all models 316

tested. With Qwen1.5-7B, DuDe achieves 24.75%, 317

significantly surpassing LoRA (20.20%), DoRA 318

(22.22%), and PiSSA (19.19%). On Qwen2.5-14B, 319

DuDe reaches 41.41%, maintaining a consistent 320

advantage over the baselines. For Mistral-7B v0.1, 321

DuDe scores 23.74%, outperforming LoRA by a 322

substantial 8.08 percentage points. The most dra- 323

matic improvement appears with Phi4 small, where 324

DuDe achieves 39.90%, exceeding LoRA (30.81%) 325

by 9.09 percentage points. 326

These results demonstrate DuDe’s effectiveness 327

in adapting various model architectures to complex, 328

knowledge-intensive tasks requiring specialized ex- 329

pertise. The consistent performance improvements 330

across different models highlight DuDe’s versatility 331

and robustness as a PEFT method. 332

4.3 Robustness to Different Epochs Settings 333

In this section, Mistral-7B v0.2 model is finetuned 334

on MetaMathQA-395K (Yu et al., 2024) dataset. 335

The detailed configuration is shown in Table 6. 336

The training loss and gradient norms are visualized 337

and evaluated on the GSM8K (Cobbe et al., 2021) 338

dataset every 200 steps, by which quicker conver- 339
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rank r PEFT Method Humanities Social Science STEM Other Avg. Weighted Avg.

2

LoRA 49.09 51.87 40.54 47.74 46.51 45.11
DoRA 48.88 51.95 40.17 47.39 46.28 44.83
PiSSA 49.16 52.24 41.86 48.60 47.24 45.53
DuDe 49.06 52.48 41.57 48.37 47.13 45.56

4

LoRA 49.28 51.38 40.05 47.11 46.15 44.93
DoRA 48.87 52.62 40.19 47.62 46.48 45.05
PiSSA 49.28 51.77 40.62 47.24 46.45 44.98
DuDe 49.94 52.34 40.57 47.46 46.75 45.34

8

LoRA 47.91 51.02 38.30 47.66 45.30 43.68
DoRA 47.65 50.79 36.47 46.87 44.40 43.09
PiSSA 48.65 52.02 39.22 47.24 45.90 44.21
DuDe 49.07 52.08 40.01 47.12 46.24 44.72

16

LoRA 48.64 51.17 41.48 47.32 46.48 44.99
DoRA 49.44 53.12 39.86 48.37 46.78 45.41
PiSSA 50.00 52.78 41.35 47.50 47.13 45.57
DuDe 50.11 53.04 41.50 47.84 47.34 45.88

32

LoRA 49.71 52.63 39.97 48.52 46.81 45.48
DoRA 49.78 52.82 40.49 47.83 46.88 45.48
PiSSA 50.12 51.90 40.96 47.86 46.92 45.45
DuDe 50.44 53.84 42.85 49.26 48.35 46.52

Table 3: Comparison of the average accuracy between LoRA and DuDe method across various rank settings for
MMLU tasks. DuDe consistently outperforms LoRA at all rank settings. We also compare DuDe with DoRA and
PiSSA, and find that DuDe achieves better performance than DoRA and PiSSA at all rank settings. The best results
are highlighted in bold.

gence and superior performance of DuDe com-340

pared to other PEFT methods are demonstrated.341

As shown in Figure 2, DuDe demonstrates supe-342

rior performance compared to other PEFT methods343

across multiple metrics. From the training loss344

curve in Figure 2a, we observe that DuDe con-345

verges more quickly compared to LoRA, DoRA,346

and PiSSA. This faster convergence can be at-347

tributed to DuDe’s dual decomposition approach348

and SVD-based initialization, which provides a349

better starting point for optimization.350

Most notably, the accuracy plot in Figure 2c351

demonstrates DuDe’s consistent performance ad-352

vantage. Starting from early training steps, DuDe353

achieves higher accuracy on the GSM8K evaluation354

set and maintains this lead throughout the training355

process. By the end of training, DuDe reaches356

a significantly higher final accuracy compared to357

baseline methods, indicating better generalization358

capabilities.359

These empirical results validate our theoretical360

analysis that DuDe’s decomposition strategy leads361

to more stable optimization dynamics and better 362

utilization of the pre-trained model’s knowledge. 363

The combination of magnitude-direction decom- 364

position and SVD-based initialization appears to 365

create a more favorable optimization landscape, re- 366

sulting in both faster convergence and superior final 367

performance. 368

4.4 Robustness to Different Rank Settings 369

In this section, how different rank settings affect 370

model performance is investigated by comparing 371

DuDe with other PEFT methods. Experiments are 372

conducted on Qwen2.5-0.5B using MMLU tasks 373

(Hendrycks et al., 2021), where the rank r is varied 374

among {2, 4, 8, 16, 32}. The detailed configuration 375

is presented in Table 7. The results are presented 376

in Figure 3 and Table 3. 377

As illustrated in Figure 3, DuDe demonstrates 378

consistently superior performance across all rank 379

configurations. The performance advantage be- 380

comes more pronounced as rank increases, with 381

DuDe achieving the best results at r = 32 (48.35% 382
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Figure 3: Performance comparison between LoRA and
DuDe on MMLU tasks with varying rank settings. (a)
Average accuracy across all MMLU categories shows
DuDe consistently outperforming LoRA, especially at
larger ranks. (b) Weighted average accuracy demon-
strates similar trends, with DuDe maintaining superior
performance across all rank configurations.

average accuracy and 46.52% weighted average383

accuracy). This represents improvements of 1.54%384

and 1.04% over LoRA respectively.385

A detailed analysis of Table 3 reveals several key386

findings: 1) Performance Scaling: DuDe shows bet-387

ter scaling with increased rank compared to base-388

line methods. At r = 32, DuDe achieves the high-389

est scores across all categories, with particularly390

strong performance in STEM (42.85%) and human-391

ities (50.44%) subjects. 2) Low-Rank Efficiency:392

At lower ranks (r = 2, 4), while all methods per-393

form similarly due to limited parameter capacity,394

DuDe maintains a slight advantage in weighted395

average accuracy (45.56% at r = 2, 45.34% at396

r = 4).397

These results show that DuDe’s dual decomposi-398

tion and initialization strategies enable better model399

capacity utilization and achieve more robust perfor-400

mance across different ranks.401

4.5 Robustness to Different Seed Settings402

In this section, a comprehensive analysis of DuDe’s403

robustness across different random seed settings is404

conducted. Qwen1.5-7B is finetuned on GSM8K405

tasks using five different random seeds (42, 78, 512,406

1234, 3407).407
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Figure 4: Average accuracy of DuDe and LoRA on
MMLU tasks with different seeds.

The detailed performance trajectory across dif- 408

ferent seeds is visualized in Figure 4, which clearly 409

illustrates DuDe’s robust advantage over baseline 410

methods. The experimental results demonstrate 411

DuDe’s superior stability and performance. Across 412

all five seed settings, DuDe achieves the highest av- 413

erage accuracy of 62.53% with a standard deviation 414

of 1.59. This represents a significant improvement 415

over existing methods: 416

LoRA 58.42% average accuracy (±1.55 std) 417

DoRA 58.55% average accuracy (±1.85 std) 418

PiSSA 59.26% average accuracy (±0.38 std) 419

Most remarkably, even DuDe’s worst perfor- 420

mance (61.11% with seed 3407) surpasses the best 421

results achieved by all baseline methods (LoRA’s 422

best: 60.35% with seed 42, DoRA’s best: 60.96% 423

with seed 42, PiSSA’s best: 59.67% with seed 521). 424

This demonstrates that DuDe not only achieves 425

higher average performance but also maintains con- 426

sistently superior results regardless of random ini- 427

tialization. 428

4.6 Differentiable Initialization 429

In this section, how different initialization strate- 430

gies affect DuDe’s performance is investigated. 431

Specifically, two initialization variants are ex- 432

plored: 433

A = ΣrV
⊤
r , B = Ur (10) 434

and 435

A = V ⊤
r , B = UrΣr (11) 436

which we denote as DuDeA and DuDeB respec- 437

tively. These variants differ in how they distribute 438

the singular values between matrices A and B. 439

Qwen1.5-7B is finetuned on the MetaMathQA- 440

395K dataset and Qwen2.5-0.5B is finetuned on 441
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Model Dataset Metric LoRA DoRA PiSSA DuDe DuDeA DuDeB
Qwen1.5-7B GSM8K Acc. 60.35 60.96 59.44 64.22 67.48 66.72

Qwen2.5-0.5B MMLU

Humanities 49.71 49.78 50.12 50.44 50.54 50.31
Social Science 52.63 52.82 51.90 53.84 53.22 53.28

STEM 39.97 40.49 40.96 42.85 42.40 42.27
Other 48.52 47.83 47.86 49.26 49.57 48.61
Avg. 46.81 46.88 46.92 48.35 48.17 47.87

Weighted Avg. 45.48 45.48 45.45 46.52 46.62 46.10

Table 4: Performance comparison of different PEFT methods and DuDe variants on GSM8K and MMLU bench-
marks. DuDeA and DuDeB represent different initialization strategies for the dual decomposition matrices.

MMLU tasks using different initialization methods.442

The experimental results are reported in Table 4.443

The experimental results reveal several inter-444

esting patterns. For the GSM8K dataset using445

Qwen1.5-7B, both DuDeA and DuDeB signifi-446

cantly outperform the baseline DuDe implemen-447

tation, achieving accuracies of 67.48% and 66.72%448

respectively, compared to DuDe’s 64.22%. This449

suggests that carefully distributing singular values450

between matrices A and B during initialization can451

lead to better optimization dynamics.452

For the MMLU benchmark using Qwen2.5-0.5B,453

the performance differences between initializa-454

tion variants are more nuanced. DuDeA shows455

slight improvements in Humanities (50.54% vs456

50.44%) and Other categories (49.57% vs 49.26%),457

while performing marginally lower in Social Sci-458

ence (53.22% vs 53.84%) and STEM (42.40% vs459

42.85%) compared to standard DuDe. DuDeB460

generally performs slightly below both DuDe and461

DuDeA across most categories, though the differ-462

ences are relatively small.463

Overall, while both initialization variants demon-464

strate competitive performance, DuDeA appears465

to be the most promising, achieving the highest466

weighted average accuracy (46.62%) on MMLU467

and the best performance (67.48%) on GSM8K.468

This suggests that allocating singular values to ma-469

trix A during initialization may provide better opti-470

mization properties for PEFT.471

5 Conclusion472

In this paper, we introduced DuDe, a novel PEFT473

approach that combines dual decomposition of474

weights with singular value low-rank adaptation.475

Our method addresses two key limitations of476

existing PEFT approaches: training instability477

and under-utilization of pre-trained knowledge.478

Through the decomposition of weight matrices into 479

magnitude and direction components, along with 480

SVD-based initialization, DuDe achieves more sta- 481

ble optimization while better preserving the knowl- 482

edge encoded in pre-trained models. 483

Our extensive experimental evaluation demon- 484

strates DuDe’s superior performance across multi- 485

ple dimensions: 486

• Consistent improvements over baseline meth- 487

ods across different rank settings on the 488

MMLU benchmark, achieving up to 48.35% 489

average accuracy 490

• Robust performance across different random 491

seeds on the GSM8K dataset, with an average 492

accuracy of 62.53% (±1.59) 493

• Strong performance on complex tasks requir- 494

ing deep domain expertise, suggesting better 495

preservation of pre-trained knowledge 496

The theoretical analysis and empirical results 497

validate our key design choices, showing how the 498

dual decomposition strategy leads to more stable 499

gradients and better optimization properties. These 500

findings suggest that DuDe represents a meaningful 501

step forward in PEFT, offering a more principled 502

approach to adapting LLMs. 503

Future work could explore extending DuDe to 504

other model architectures, investigating its effec- 505

tiveness in multi-task scenarios, and further ana- 506

lyzing the theoretical foundations of its improved 507

stability. Additionally, combining DuDe with other 508

PEFT innovations could potentially yield even 509

more efficient and effective adaptation methods. 510

6 Limitations 511

Despite DuDe’s promising results, several key lim- 512

itations need to be acknowledged. The SVD-based 513
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initialization, while effective, introduces additional514

computational overhead during setup compared515

to simpler methods. This one-time cost can be-516

come significant when working with extremely517

large models or when rapid deployment is needed.518

Memory usage is also slightly higher than basic519

LoRA due to storing both magnitude and direc-520

tion components, which may be problematic in521

resource-constrained environments.522

Our current implementation focuses mainly on523

transformer architectures, particularly attention lay-524

ers. The method’s effectiveness on other architec-525

tures or different transformer components, remains526

to be thoroughly explored. The optimal applica-527

tion to emerging architectures such as mixture-of-528

experts models is also unclear.529

While DuDe excels at complex tasks requir-530

ing domain expertise, its advantages may be531

less pronounced for simpler tasks where standard532

PEFT methods already perform well. This task-533

dependent variation makes it challenging to provide534

universal recommendations for its use. Addition-535

ally, while we offer some theoretical analysis, a536

complete understanding of why certain initializa-537

tion strategies outperform others remains incom-538

plete. The interaction between magnitude-direction539

decomposition and SVD-based initialization war-540

rants deeper theoretical investigation.541

Our experiments, though comprehensive, primar-542

ily focus on models up to 32B parameters. Further543

research is needed to understand DuDe’s scaling544

behavior on larger models (70B+ parameters) and545

its interaction with other scaling laws. Future work546

should focus on developing more efficient initial-547

ization methods, extending architecture support,548

deepening theoretical understanding, and studying549

scaling properties in extremely large models.550
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A Experiment Details759

A.1 Commonsense Reasoning760

In this section, we provide the details of the com-761

monsense reasoning experiments. We fine-tune the762

models for one epoch using a batch size of 1 and763

gradient accumulation steps of 20. The learning764

rate is set to 2e-5 with cosine decay scheduling and765

0.03% warmup rate. We apply our method to query766

and value matrices (Wq, Wv) in the attention layers767

with rank r = 16. The detailed hyperparameter768

settings are shown in Table 5.769

A.2 Settings for Robustness Experiments to770

Different Epochs771

In this section, we provide the details of the ro-772

bustness experiments conducted across different773

training epochs. We randomly sampled 128,000 ex-774

amples from the MetaMathQA-395K dataset using775

a fixed random seed of 42 to ensure reproducibil-776

ity. For both PEFT methods and full fine-tuning777

experiments, we used identical learning rate set-778

tings to enable fair comparisons. Specifically, we779

trained each model configuration for 3 epochs to780

analyze the impact of training duration on model781

performance. The learning rate was set to 2e-5 with782

cosine decay scheduling and 0.03% warmup rate,783

consistent across all experimental conditions. The784

detailed configuration is shown in Table 6.785

A.3 Settings for Robustness Experiments to 786

Different Rank Settings 787

In this section, we provide the details of the robust- 788

ness experiments to different rank settings. The 789

detailed configuration is shown in Table 7. 790
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rank r learning rate epochs warmup % scheduler packing target module

16 2e-5 1 0.03 cosine false Wq,Wv

Table 5: Configuration for commonsense reasoning experiments. Note that the batch size is set to 1 and the gradient
accumulation steps is set to 20.

rank r learning rate epochs warmup % scheduler packing target module

16 2e-5 3 0.03 cosine false Wq,Wv

Table 6: Configuration for robustness experiments to different epochs. Note that the batch size is set to 8 and the
gradient accumulation steps is set to 16.

learning rate epochs warmup % scheduler packing target module

2e-5 1 0.03 cosine false Wq,Wv

Table 7: Configuration for robustness experiments to different rank settings. Note that the batch size is set to 1 and
the gradient accumulation steps is set to 100.
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