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Abstract

Parameter-Efficient Fine-Tuning (PEFT) has
emerged as a critical paradigm for adapting
Large Language Models (LLMs) to down-
stream tasks, among which Low-rank Adapta-
tion (LoRA) represents one of the most widely
adopted methodologies. However, existing
LoRA-based approaches exhibit two fundamen-
tal limitations: unstable training dynamics and
inefficient knowledge transfer from pre-trained
models, both stemming from random initial-
ization of adapter parameters. To overcome
these challenges, we propose DuDe, a novel
approach that decomposes weight matrices
into magnitude and direction components, em-
ploying Singular Value Decomposition (SVD)
for principled initialization. Our comprehen-
sive evaluation demonstrates DuDe’s supe-
rior performance and robustness, achieving up
to 48.35% accuracy on MMLU and 62.53%
(£1.59) accuracy on GSM8K. Our theoretical
analysis and empirical validation collectively
demonstrate that DuDe’s decomposition strat-
egy enhances optimization stability and better
preserves pre-trained representations, particu-
larly for domain-specific tasks requiring spe-
cialized knowledge. The combination of robust
empirical performance and rigorous theoretical
foundations establishes DuDe as a significant
contribution to PEFT methodologies for LLM:s.

1 Introduction

Pre-trained models have demonstrated exceptional
capabilities across diverse applications from Nat-
ural Language Processing (NLP) tasks (Qin et al.,
2023) to multi-modal scenarios (Li et al., 2023;
Liu et al., 2023). However, fine-tuning these large
models remains computationally expensive.
Parameter-Efficient Fine-Tuning (PEFT) meth-
ods have emerged as a promising solution to this
challenge. In particular, Low-Rank Adaptation
(LoRA) has gained significant attention due to its
ability to maintain the model’s original architec-
ture while enabling efficient fine-tuning. LoRA

achieves this by injecting trainable low-rank ma-
trices into the pre-trained weights, significantly re-
ducing the number of parameters that need to be
updated.

Despite its widespread adoption, LoRA and
its variants face two fundamental challenges: 1)
Training instability caused by random initialization,
and 2) Inefficient utilization of pre-trained knowl-
edge. To address these limitations, we propose
DuDe (Dual Decomposition of Weights and Singu-
lar Value Low Rank Adaptation), which employs
dual decomposition and Singular Value Decompo-
sition (SVD) based initialization. Our experimen-
tal results validate DuDe’s effectiveness through:
(1) More stable training across different random
seeds with only £1.59 standard deviation (Section
4.5), and (2) Superior performance on knowledge-
intensive MMLU tasks achieving up to 48.35%
average accuracy (Section 4.4).

DuDe combines two key technical innovations:
magnitude-direction decomposition inspired by
DoRA (Liu et al., 2024) and SVD-based initial-
ization building on PiSSA (Meng et al., 2024). Our
main contributions include:

* A novel dual decomposition strategy that sep-
arates weights into magnitude and direction
components, enabling more stable optimiza-
tion

* An SVD-based initialization method that ef-
fectively preserves and leverages pre-trained
knowledge

* Theoretical analysis that demonstrates im-
proved gradient properties and optimization
stability

* Comprehensive experiments showing consis-
tent performance improvements across diverse
models and tasks



Our extensive evaluation demonstrates DuDe’s
strong empirical performance across multiple
benchmarks. Notably, DuDe exhibits exceptional
performance on complex tasks requiring domain
expertise, indicating its superior ability to preserve
and adapt pre-trained knowledge.

2 Related Work

Large Language Models (LLMs) containing bil-
lions of parameters pose substantial challenges in
terms of complexity and computational resources
when adapting them to new tasks. PEFT (Houlsby
et al., 2019) offers an attractive approach by reduc-
ing the number of parameters to be fine-tuned and
memory requirements, while maintaining perfor-
mance comparable to full fine-tuning.

Existing PEFT methods can be broadly cat-
egorized into three main approaches: Adapter-
based Methods (Houlsby et al., 2019; Lei, 2023;
Edalati et al., 2022), Selective Tuning Methods
(Ben Zaken et al., 2022; Liao et al., 2023), and
Re-parameterization Methods.

Re-parameterization Methods transform the
original parameters into a more efficient represen-
tation. The most prominent example is LoRA (Hu
et al., 2022), which injects trainable adapters into
the pre-trained weight through low-rank decom-
position. Following LoRA, several improvements
have been proposed. DoRA (Liu et al., 2024) de-
composes the pre-trained weight into magnitude
and direction components, enhancing both learning
capacity and training stability. PiISSA (Meng et al.,
2024) initializes the adaptor matrices with the prin-
cipal components of the pre-trained weight, freez-
ing the remaining components in a residual matrix.
OFT (Li et al., 2024) exploits orthogonal factoriza-
tion for model fine-tuning. LoRA-XS (Batazy et al.,
2024) and OLoRA (Biiyiikakyiiz, 2024) further re-
duce the number of parameters while maintaining
performance. VeRA (Kopiczko et al., 2024) intro-
duces vector-based random matrix adaptation for
more efficient parameterization. SVFT (Lingam
et al., 2024) uses singular vectors for PEFT, sharing
some conceptual similarities with our work.

Our work, DuDe, builds upon these advances
by combining the strengths of DoRA’s magnitude-
direction decomposition with PiSSA’s SVD-based
initialization. Unlike previous methods that either
focus on decomposition or initialization separately,
DuDe integrates both aspects to achieve more sta-
ble training and better utilization of pre-trained

knowledge. The key innovation lies in our dual
decomposition approach, which not only separates
magnitude and direction but also performs SVD
to initialize the direction matrix, leading to more
effective adaptation while maintaining parameter
efficiency.

3 Method

3.1 Preliminaries

Building upon the hypothesis that fine-tuning up-
dates exhibit a low "intrinsic rank" (Aghajanyan
etal., 2021), LoRA (Hu et al., 2022) employs the
product of two low-rank matrices to efficiently up-
date pre-trained weights (Figure 1a). For a pre-
trained weight matrix Wy € R%** LoRA pa-
rameterizes the weight update AW € R¥*F as
a low-rank decomposition BA, where B € R%*"
and A € R™** are low-rank matrices with rank
r < min(d, k). The fine-tuned weight W is there-
fore formulated as:

W' =Wy+ AW =W, + BA (D)

During fine-tuning, Wy remains frozen while
only the low-rank matrices are trained. The ma-
trices A are initialized using the Kaiming uniform
distribution (He et al., 2015), while matrices B are
initialized to zero, ensuring that AW = B A starts
from zero at the beginning of training; thus the
injection of adapters does not affect the model’s
output initially.

Inspired by Salimans and Kingma (2016), DoRA
(Liu et al., 2024) decomposes the pre-trained
weight into magnitude and direction components,
and fine-tunes both components simultaneously
(Figure 1b). To efficiently update the directional
component with its large parameter space, DoRA
adopts LoRA’s low-rank decomposition approach.
The formulation is expressed as:

Wy + AW Wy + BA

W/ f— f—
Wo + AW, ~ [Wo + BA|,
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where m € R* represents the trainable magnitude
vector, AW = BA is the directional update param-
eterized by two low-rank matrices B € R4*" and
A € R™* (with r < min(d, k)), || - || denotes the
column-wise vector norm, and underlined param-
eters are trainable during fine-tuning. Following
LoRA, matrices B and A are initialized to ensure
AW = 0 at the beginning of training, maintaining
the model’s initial behavior while enabling effec-
tive adaptation.
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Figure 1: The blue parts in the figure represent frozen components, while the orange parts represent trainable
components. (a) shows the diagrams of LoRA and PiSSA. The difference between them is that LoRA initializes
matrix B € R?*" to 0 and matrix A € R"*? to Kaiming uniform distribution, while PiSSA first performs SVD on
matrix Wy to obtain Wy = UXV T, then sets B = U,.\/%,, A = %, V., and Wy = W, — BA. (b) shows the
diagrams of DoRA and DuDe. m € RF is the magnitude vector. For the direction matrix, DoRA initializes matrices
B and A in the same way as LoRA, while DuDe initializes matrices B and A in the same way as PiSSA.

Model Method BoolQ PIQA SIQA HellaSwag WinoGrande ARC-e ARC-c OBQA Avg.
LoRA 8343 7247 44.68 71.78 61.96 87.83 77.29 75.20 71.83

Qwenl.5-7B DoRA 83.24 70.95 44.68 71.82 61.88 88.01 77.29 76.00 71.73
PiSSA 84.04 74.32 4473  71.53 61.64 87.65 78.31 74.20 72.05

DuDe 84.04 75.57 4498 71.37 62.98 87.65 78.31 75.40 72.54

LoRA 89.85 90.75 46.16 92.11 79.16 97.53 93.90 89.40 84.86

Qwen2.5-32B DoRA 90.03 90.59 46.26  92.06 79.08 97.35 93.56 89.80 84.84
PiSSA 89.76 89.61 46.62 91.91 77.66 97.53 91.86 88.60 84.19

DuDe 90.00 90.26 47.54 92.12 77.82 97.18 93.22 91.00 84.89

LoRA 65.84 73.78 53.68  48.63 51.78 79.01 59.32 60.00 61.51

DoRA 61.07 73.94 5425 4998 51.46 79.19 61.02 60.40 61.41
LLaMA2-13B PiSSA 66.09 70.18 4539 51.94 52.33 82.19 59.32 6240 61.23
DuDe 72.72 74.10 45.75  60.39 51.22 82.54 61.02 62.20 63.74

Table 1: Accuracy comparison of Qwen1.5-7B, Qwen2.5-32B, and LLaMA2-13B with different PEFT methods on

eight commonsense reasoning tasks. The best results are highlighted in bold.

3.2 Dual Decomposition of Weights and
Singular Value Low Rank Adaptation

In this section, we present our proposed method,
Dual Decomposition of Weights and Singular Value
Low Rank Adaptation (DuDe). As illustrated in
Figure 1, DuDe performs SVD on the pre-trained
weight matrix W) to derive optimal initialization
parameters for low-rank adaptation. When apply-
ing SVD to a matrix W, € R?**, we obtain the

date matrix:
AW =U,%,V," 3)

The remaining components of the original
weight matrix are preserved as:

Wy =Wy — AW 4)

where W remains frozen during fine-tuning.
The low-rank matrices are initialized using the
SVD components for efficient parameterization:

decomposition Wy = Uxvr, th:re U e R?Xp A= \/ETnV: c R7<k (5)
and V € R**? are orthogonal matrices containing

the left and right singular vectors, and 2 € RP*P B=U,/%, € R¥*" (6)
is a diagonal matrix containing the singular values 1. . B 204 A are low-rank matrices with rank

of Wy in descending order, with p = min(d, k).

To effectively capture the most important fea-
tures, the top r singular values and their correspond-
ing singular vectors are extracted from X, U, and
V, which are denoted as 3, € R"™*", U, € R¥*",
and V,. € R¥*". These components form the up-

r < p.

The final fine-tuned weight W’ integrates the
frozen component Wy with the trainable low-rank
update, scaled by a trainable magnitude vector m:

W — Wf—l-AW o Wf—i-BiA
—[[Wy + BA||.

— = 7
W, + AW, @



At initialization, since AW = BA, the fine-tuned
weight W’ is equivalent to the original weight T,
ensuring that the model’s initial behavior is pre-
served while enabling effective adaptation during
training.

3.3 Gradient Analysis

In this section, we analyze the gradient of DuDe
and demonstrate how our proposed decomposition
enables more stable and efficient fine-tuning.

From Eq. (7), the gradient of loss £ with respect
to m and Wy = Wy + AW can be derived as:
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Eq. (9) reveals that the gradient of W, under-
goes two key transformations: scaling by ﬁ
and projection onto the orthogonal complement
of Wy. These transformations help align the gra-
dient’s covariance matrix more closely with the
identity matrix I, promoting optimization stability.

Since Wy = Wy + AW, the gradient a%o is
equivalent to fd%:/v. Consequently, all optimization
benefits from this decomposition directly transfer
to AW, enhancing DuDe’s learning stability.

Furthermore, because the top r singular values
and their corresponding singular vectors capture
the most significant features of W, the gradient
8%/‘, contains more stable and informative signals
compared to LoRA’s gradient, leading to improved
convergence properties.

Our experiments, as illustrated in Figure 2a,
show that DuDe’s loss and gradient norm curves
closely resemble those of full fine-tuning, confirm-
ing that our dual decomposition effectively trans-
fers the benefits of full fine-tuning while maintain-
ing parameter efficiency.

4 Experiments

4.1 Commonsense Reasoning

DuDe is comprehensively evaluated against es-
tablished PEFT methods (LoRA, DoRA, and
PiSSA) on commonsense reasoning tasks across
three different models: Qwen1.5-7B (Team, 2024),
Qwen2.5-32B (Qwen et al., 2025), and LLaMA2-
13B (Touvron et al., 2023). The evaluation suite
is comprised of eight diverse commonsense rea-
soning benchmarks: BoolQ (Clark et al., 2019),

Model Method Score
LoRA  20.20

DoRA 2222

Qwenl.>-7B pissA 1919
DuDe  24.75

LoRA  39.39

DoRA  40.40

Qwen2.5-14B LicsA 40,91
DuDe  41.41

LoRA  15.66

. DoRA  20.20
Mistral-7B v0.1 PiSSA 2071
DuDe 23.74

LoRA  30.81

. DoRA  33.33
Phi4 small PiSSA 3535
DuDe 39.90

Table 2: Score comparison of Qwen1.5-7B, Qwen2.5-
14B, Mistral-7B v0.1, and Phi4 small with different
PEFT methods on GPQA task. The best results are
highlighted in bold.

PIQA (Bisk et al., 2019), SIQA (Sap et al., 2019),
HellaSwag (Zellers et al., 2019), Winogrande (Sak-
aguchi et al., 2021), ARC-e/ARC-c (Clark et al.,
2018), and OpenBookQA (Mihaylov et al., 2018).
For all experiments, CommonsenseQA (Talmor
et al., 2019) is used for fine-tuning and evalua-
tions are performed on the respective test sets us-
ing the OpenCompass (Contributors, 2023) frame-
work. For fair comparison, identical hyperparame-
ters including rank r, learning rate, batch size, and
training epochs are shared across all methods, with
details being provided in Table 5.

As shown in Table 1, DuDe consistently outper-
forms all baseline methods across all three mod-
els. For Qwen1.5-7B, DuDe achieves an average
accuracy of 72.54%, surpassing LoRA (71.83%),
DoRA (71.73%), and PiSSA (72.05%), with par-
ticularly strong improvements on PIQA (+3.10%
over LoRA) and Winogrande (+1.02% over LoRA).
On Qwen2.5-32B, DuDe maintains its advantage
with 84.89% average accuracy, showing notable
gains on SIQA (+1.38% over LoRA). The most
substantial improvements appear with LLaMA?2-
13B, where DuDe achieves 63.74% average accu-
racy, significantly outperforming LoRA (61.51%)
by 2.23%. In this case, DuDe demonstrates remark-
able gains on HellaSwag (+11.76% over LoRA)
and BoolQ (+6.88% over LoRA), highlighting its
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Figure 2: Comparison of Full finetuning, DuDe and other PEFT methods on Mistral 7B v0.2 model: (a) Training
loss, (b) Gradient norm during training on MetaMathQA-395K dataset for 3 epochs, and (c) Evaluation accuracy on
GSMSK dataset measured every 200 steps over 3000 total training steps.

effectiveness in adapting different models to com-
monsense reasoning tasks.

4.2 GPQA Task

In this section, DuDe is evaluated on the GPQA
(Rein et al., 2024) dataset, a challenging benchmark
of graduate-level questions in biology, physics, and
chemistry that cannot be easily answered through
online searches. Deep domain knowledge and so-
phisticated reasoning capabilities are required by
these questions.

Four different models (Qwen1.5-7B, Qwen?2.5-
14B, Mistral-7B v0.1 (Jiang et al., 2023), and
Phi4 small (Abdin et al., 2024)) are fine-tuned on
both the Main and Extended splits of GPQA, and
their performance is evaluated on the Diamond
split using the OpenCompass framework. Sim-
ilar to the commonsense reasoning experiments,
identical hyperparameters are maintained across
all PEFT methods (LoRA, DoRA, PiSSA, and
DuDe), including rank r, learning rate, and training
epochs. However, due to the complexity of GPQA,
a smaller batch size (set to 4) is used compared
to the commonsense tasks. For Phi4 small model,
Wiy 1s used as the target module due to its differ-
ent architecture, while the same target modules as
in commonsense experiments are maintained for

the other models.

Table 2 presents our findings. DuDe consistently
outperforms all baseline methods across all models
tested. With Qwen1.5-7B, DuDe achieves 24.75%,
significantly surpassing LoRA (20.20%), DoRA
(22.22%), and PiSSA (19.19%). On Qwen2.5-14B,
DuDe reaches 41.41%, maintaining a consistent
advantage over the baselines. For Mistral-7B v0.1,
DuDe scores 23.74%, outperforming LoRA by a
substantial 8.08 percentage points. The most dra-
matic improvement appears with Phi4 small, where
DuDe achieves 39.90%, exceeding LoRA (30.81%)
by 9.09 percentage points.

These results demonstrate DuDe’s effectiveness
in adapting various model architectures to complex,
knowledge-intensive tasks requiring specialized ex-
pertise. The consistent performance improvements
across different models highlight DuDe’s versatility
and robustness as a PEFT method.

4.3 Robustness to Different Epochs Settings

In this section, Mistral-7B v0.2 model is finetuned
on MetaMathQA-395K (Yu et al., 2024) dataset.
The detailed configuration is shown in Table 6.
The training loss and gradient norms are visualized
and evaluated on the GSM8K (Cobbe et al., 2021)
dataset every 200 steps, by which quicker conver-



rank 7 PEFT Method Humanities Social Science STEM Other Avg. Weighted Avg.
LoRA 49.09 51.87 40.54 47.74 46.51 45.11
) DoRA 48.88 51.95 40.17 4739 46.28 44.83
PiSSA 49.16 52.24 41.86 48.60 47.24 45.53
DuDe 49.06 52.48 41.57 48.37 47.13 45.56
LoRA 49.28 51.38 40.05 47.11 46.15 44.93
4 DoRA 48.87 52.62 40.19 47.62 4648 45.05
PiSSA 49.28 51.77 40.62 4724 4645 4498
DuDe 49.94 52.34 40.57 47.46 46.75 45.34
LoRA 4791 51.02 38.30 47.66 45.30 43.68
3 DoRA 47.65 50.79 36.47 46.87 44.40 43.09
PiSSA 48.65 52.02 3922 4724 45.90 4421
DuDe 49.07 52.08 40.01 47.12 46.24 44.72
LoRA 48.64 51.17 4148 47.32 4648 44.99
16 DoRA 49.44 53.12 39.86 48.37 46.78 4541
PiSSA 50.00 52.78 4135 4750 47.13 45.57
DuDe 50.11 53.04 41.50 47.84 47.34 45.88
LoRA 49.71 52.63 39.97 48.52 46.81 45.48
32 DoRA 49.78 52.82 4049 47.83 46.88 45.48
PiSSA 50.12 51.90 4096 47.86 46.92 45.45
DuDe 50.44 53.84 42.85 49.26 48.35 46.52

Table 3: Comparison of the average accuracy between LoRA and DuDe method across various rank settings for
MMLU tasks. DuDe consistently outperforms LoRA at all rank settings. We also compare DuDe with DoRA and
PiSSA, and find that DuDe achieves better performance than DoRA and PiSSA at all rank settings. The best results

are highlighted in bold.

gence and superior performance of DuDe com-
pared to other PEFT methods are demonstrated.

As shown in Figure 2, DuDe demonstrates supe-
rior performance compared to other PEFT methods
across multiple metrics. From the training loss
curve in Figure 2a, we observe that DuDe con-
verges more quickly compared to LoRA, DoRA,
and PiSSA. This faster convergence can be at-
tributed to DuDe’s dual decomposition approach
and SVD-based initialization, which provides a
better starting point for optimization.

Most notably, the accuracy plot in Figure 2c
demonstrates DuDe’s consistent performance ad-
vantage. Starting from early training steps, DuDe
achieves higher accuracy on the GSMS8K evaluation
set and maintains this lead throughout the training
process. By the end of training, DuDe reaches
a significantly higher final accuracy compared to
baseline methods, indicating better generalization
capabilities.

These empirical results validate our theoretical
analysis that DuDe’s decomposition strategy leads

to more stable optimization dynamics and better
utilization of the pre-trained model’s knowledge.
The combination of magnitude-direction decom-
position and SVD-based initialization appears to
create a more favorable optimization landscape, re-
sulting in both faster convergence and superior final
performance.

4.4 Robustness to Different Rank Settings

In this section, how different rank settings affect
model performance is investigated by comparing
DuDe with other PEFT methods. Experiments are
conducted on Qwen2.5-0.5B using MMLU tasks
(Hendrycks et al., 2021), where the rank r is varied
among {2, 4, 8,16, 32}. The detailed configuration
is presented in Table 7. The results are presented
in Figure 3 and Table 3.

As illustrated in Figure 3, DuDe demonstrates
consistently superior performance across all rank
configurations. The performance advantage be-
comes more pronounced as rank increases, with
DuDe achieving the best results at r = 32 (48.35%
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Figure 3: Performance comparison between LoRA and
DuDe on MMLU tasks with varying rank settings. (a)
Average accuracy across all MMLU categories shows
DuDe consistently outperforming LoRA, especially at
larger ranks. (b) Weighted average accuracy demon-
strates similar trends, with DuDe maintaining superior
performance across all rank configurations.

average accuracy and 46.52% weighted average
accuracy). This represents improvements of 1.54%
and 1.04% over LoRA respectively.

A detailed analysis of Table 3 reveals several key
findings: 1) Performance Scaling: DuDe shows bet-
ter scaling with increased rank compared to base-
line methods. At r = 32, DuDe achieves the high-
est scores across all categories, with particularly
strong performance in STEM (42.85%) and human-
ities (50.44%) subjects. 2) Low-Rank Efficiency:
At lower ranks (r = 2,4), while all methods per-
form similarly due to limited parameter capacity,
DuDe maintains a slight advantage in weighted
average accuracy (45.56% at r = 2, 45.34% at
r=4).

These results show that DuDe’s dual decomposi-
tion and initialization strategies enable better model
capacity utilization and achieve more robust perfor-
mance across different ranks.

4.5 Robustness to Different Seed Settings

In this section, a comprehensive analysis of DuDe’s
robustness across different random seed settings is
conducted. Qwen1.5-7B is finetuned on GSM8K
tasks using five different random seeds (42, 78, 512,
1234, 3407).

Average Acc
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Figure 4: Average accuracy of DuDe and LoRA on
MMLU tasks with different seeds.

The detailed performance trajectory across dif-
ferent seeds is visualized in Figure 4, which clearly
illustrates DuDe’s robust advantage over baseline
methods. The experimental results demonstrate
DuDe’s superior stability and performance. Across
all five seed settings, DuDe achieves the highest av-
erage accuracy of 62.53% with a standard deviation
of 1.59. This represents a significant improvement
over existing methods:

LoRA 58.42% average accuracy (£1.55 std)
DoRA 58.55% average accuracy (+1.85 std)

PiSSA  59.26% average accuracy (+0.38 std)

Most remarkably, even DuDe’s worst perfor-
mance (61.11% with seed 3407) surpasses the best
results achieved by all baseline methods (LoRA’s
best: 60.35% with seed 42, DoRA’s best: 60.96%
with seed 42, PiSSA’s best: 59.67% with seed 521).
This demonstrates that DuDe not only achieves
higher average performance but also maintains con-
sistently superior results regardless of random ini-
tialization.

4.6 Differentiable Initialization

In this section, how different initialization strate-
gies affect DuDe’s performance is investigated.
Specifically, two initialization variants are ex-
plored:

A=%V,,

B=U, (10)

and

A=V B=UZ%, (11)

which we denote as DuDe 4 and DuDep respec-
tively. These variants differ in how they distribute
the singular values between matrices A and B.
Qwenl.5-7B is finetuned on the MetaMathQA-
395K dataset and Qwen2.5-0.5B is finetuned on



Model Dataset Metric LoRA DoRA PiSSA DuDe DuDe, DuDeg
Qwenl.5-7B  GSMSK Acc. 6035 60.96 59.44 6422 6748  66.72
Humanities ~ 49.71 4978 50.12 5044 5054 5031

Social Science  52.63 52.82 5190 53.84 53.22 53.28

STEM 39.97 4049 4096 4285 4240 4227

Qwen2.5-0.58B  MMLU Other 4852 4783 4786 4926 4957 4861
Ave. 4681 46.88 4692 4835 4817  47.87

Weighted Ave. 4548 4548 4545 4652  46.62  46.10

Table 4: Performance comparison of different PEFT methods and DuDe variants on GSM8K and MMLU bench-
marks. DuDe 4 and DuDep represent different initialization strategies for the dual decomposition matrices.

MMLU tasks using different initialization methods.
The experimental results are reported in Table 4.

The experimental results reveal several inter-
esting patterns. For the GSM8K dataset using
Qwenl.5-7B, both DuDe 4 and DuDeg signifi-
cantly outperform the baseline DuDe implemen-
tation, achieving accuracies of 67.48% and 66.72%
respectively, compared to DuDe’s 64.22%. This
suggests that carefully distributing singular values
between matrices A and B during initialization can
lead to better optimization dynamics.

For the MMLU benchmark using Qwen2.5-0.5B,
the performance differences between initializa-
tion variants are more nuanced. DuDe 4 shows
slight improvements in Humanities (50.54% vs
50.44%) and Other categories (49.57% vs 49.26%),
while performing marginally lower in Social Sci-
ence (53.22% vs 53.84%) and STEM (42.40% vs
42.85%) compared to standard DuDe. DuDeg
generally performs slightly below both DuDe and
DuDe 4 across most categories, though the differ-
ences are relatively small.

Overall, while both initialization variants demon-
strate competitive performance, DuDe 4 appears
to be the most promising, achieving the highest
weighted average accuracy (46.62%) on MMLU
and the best performance (67.48%) on GSMS8K.
This suggests that allocating singular values to ma-
trix A during initialization may provide better opti-
mization properties for PEFT.

5 Conclusion

In this paper, we introduced DuDe, a novel PEFT
approach that combines dual decomposition of
weights with singular value low-rank adaptation.
Our method addresses two key limitations of
existing PEFT approaches: training instability
and under-utilization of pre-trained knowledge.

Through the decomposition of weight matrices into
magnitude and direction components, along with
SVD-based initialization, DuDe achieves more sta-
ble optimization while better preserving the knowl-
edge encoded in pre-trained models.

Our extensive experimental evaluation demon-
strates DuDe’s superior performance across multi-
ple dimensions:

* Consistent improvements over baseline meth-
ods across different rank settings on the
MMLU benchmark, achieving up to 48.35%
average accuracy

* Robust performance across different random
seeds on the GSM8K dataset, with an average
accuracy of 62.53% (+1.59)

* Strong performance on complex tasks requir-
ing deep domain expertise, suggesting better
preservation of pre-trained knowledge

The theoretical analysis and empirical results
validate our key design choices, showing how the
dual decomposition strategy leads to more stable
gradients and better optimization properties. These
findings suggest that DuDe represents a meaningful
step forward in PEFT, offering a more principled
approach to adapting LLMs.

Future work could explore extending DuDe to
other model architectures, investigating its effec-
tiveness in multi-task scenarios, and further ana-
lyzing the theoretical foundations of its improved
stability. Additionally, combining DuDe with other
PEFT innovations could potentially yield even
more efficient and effective adaptation methods.

6 Limitations

Despite DuDe’s promising results, several key lim-
itations need to be acknowledged. The SVD-based



initialization, while effective, introduces additional
computational overhead during setup compared
to simpler methods. This one-time cost can be-
come significant when working with extremely
large models or when rapid deployment is needed.
Memory usage is also slightly higher than basic
LoRA due to storing both magnitude and direc-
tion components, which may be problematic in
resource-constrained environments.

Our current implementation focuses mainly on
transformer architectures, particularly attention lay-
ers. The method’s effectiveness on other architec-
tures or different transformer components, remains
to be thoroughly explored. The optimal applica-
tion to emerging architectures such as mixture-of-
experts models is also unclear.

While DuDe excels at complex tasks requir-
ing domain expertise, its advantages may be
less pronounced for simpler tasks where standard
PEFT methods already perform well. This task-
dependent variation makes it challenging to provide
universal recommendations for its use. Addition-
ally, while we offer some theoretical analysis, a
complete understanding of why certain initializa-
tion strategies outperform others remains incom-
plete. The interaction between magnitude-direction
decomposition and SVD-based initialization war-
rants deeper theoretical investigation.

Our experiments, though comprehensive, primar-
ily focus on models up to 32B parameters. Further
research is needed to understand DuDe’s scaling
behavior on larger models (70B+ parameters) and
its interaction with other scaling laws. Future work
should focus on developing more efficient initial-
ization methods, extending architecture support,
deepening theoretical understanding, and studying
scaling properties in extremely large models.
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A Experiment Details

A.1 Commonsense Reasoning

In this section, we provide the details of the com-
monsense reasoning experiments. We fine-tune the
models for one epoch using a batch size of 1 and
gradient accumulation steps of 20. The learning
rate is set to 2e-5 with cosine decay scheduling and
0.03% warmup rate. We apply our method to query
and value matrices (W, IW,) in the attention layers
with rank » = 16. The detailed hyperparameter
settings are shown in Table 5.

A.2 Settings for Robustness Experiments to
Different Epochs

In this section, we provide the details of the ro-
bustness experiments conducted across different
training epochs. We randomly sampled 128,000 ex-
amples from the MetaMathQA-395K dataset using
a fixed random seed of 42 to ensure reproducibil-
ity. For both PEFT methods and full fine-tuning
experiments, we used identical learning rate set-
tings to enable fair comparisons. Specifically, we
trained each model configuration for 3 epochs to
analyze the impact of training duration on model
performance. The learning rate was set to 2e-5 with
cosine decay scheduling and 0.03% warmup rate,
consistent across all experimental conditions. The
detailed configuration is shown in Table 6.
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A.3 Settings for Robustness Experiments to
Different Rank Settings

In this section, we provide the details of the robust-
ness experiments to different rank settings. The
detailed configuration is shown in Table 7.


https://qwenlm.github.io/blog/qwen1.5/
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2307.09288
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://openreview.net/pdf?id=N8N0hgNDRt
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472
https://doi.org/10.18653/v1/P19-1472

rank r learning rate epochs warmup % scheduler packing target module

16 2e-5 1 0.03 cosine false Wy, Wy

Table 5: Configuration for commonsense reasoning experiments. Note that the batch size is set to 1 and the gradient
accumulation steps is set to 20.

rank r learning rate epochs warmup % scheduler packing target module

16 2e-5 3 0.03 cosine false Wy, Wy

Table 6: Configuration for robustness experiments to different epochs. Note that the batch size is set to 8 and the
gradient accumulation steps is set to 16.

learning rate epochs warmup % scheduler packing target module

2e-5 1 0.03 cosine false Wy, Wy

Table 7: Configuration for robustness experiments to different rank settings. Note that the batch size is set to 1 and
the gradient accumulation steps is set to 100.
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