
Under review as a conference paper at ICLR 2022

A DOT PRODUCT ATTENTION FREE TRANSFORMER

Anonymous authors
Paper under double-blind review

ABSTRACT

We introduce Dot Product Attention Free Transformer (DAFT), an efficient vari-
ant of Transformers (Vaswani et al., 2017) that eliminates the query-key dot prod-
uct in self attention. The core idea is to construct a decomposable attention map
for each dimension of the query, key and value. This compositionality enables
an implementation where the attention tensor does not to be computed or stored
explicitly. A DAFT layer has a memory complexity linear w.r.t. both the context
size and the dimension of features, making it compatible with both large input
and model sizes. We also introduce DAFT-conv, a model variant that takes advan-
tage of locality and spatial weight sharing while maintaining global connectivity.
We conduct experiments on ImageNet-1K classification, as well as CIFAR10 and
Enwik8, two autoregressive modeling tasks. We show that DAFT demonstrates
competitive performance on all the benchmarks, while providing excellent effi-
ciency at the same time.

1 INTRODUCTION

Self attention mechanisms, represented by Transformers (Vaswani et al., 2017), have driven the ad-
vancement of various machine learning problems, including language understanding (Devlin et al.,
2018; Radford et al.) and computer vision applications (Chen et al.; Dosovitskiy et al., 2020; Tou-
vron et al., 2020). Different from classic model architectures such as Convolutional Neural Nets
(CNNs) or Recurrent Neural Nets (RNNs), Transformers enable direct interaction between every
pair of elements within a sequence, which makes them especially powerful at capturing long term
dependencies.

Transformers build on top of Multi-head Attention (MHA), which performs dot product attention
on an input h times and concatenates the outputs along the channel dimension. This introduces
a space complexity of O(hT 2), where T is the input sequence length. It is thus challenging for
Transformers to scale to long sequences and large model size at the same time. A number of recent
works have been dedicated to addressing the scalability issue of Transformers (Child et al., 2019;
Kitaev et al., 2020; Rae et al., 2020; Wang et al., 2020b; Katharopoulos et al., 2020; Tay et al., 2020a;
Choromanski et al., 2020). The common idea here is to approximate the full attention operation,
with the techniques ranging from sparsity (Child et al., 2019; Zaheer et al., 2020), locality sensitive
hashing (Kitaev et al., 2020), low rank decomposition (Wang et al., 2020b), kernel approximation
(Katharopoulos et al., 2020; Choromanski et al., 2020), etc..

In this paper, we propose a computational module that does not use or approximate the standard
dot product attention. We hence name our model Dot product Attention Free Transformer (DAFT).
DAFT explores two simple ideas 1) decrease the computation of an attention head by making it
additive and decomposable 2) increase the number of heads to be the same as the input dimension
with minimal cost. In our implementation, DAFT rearranges the computational graph such that the
key&value are multiplied element-wise, reduced along the time dimension (with a set of learned
pairwise position biases), and finally multiplied with the query element-wise. This removes the
explicit computation of the attention matrices, which results in a space complexity of O(Td).

A closely related line of work to DAFT is the “linear attention” Transformers (LAT) (Katharopou-
los et al., 2020; Choromanski et al., 2020; Peng et al., 2021; Bello, 2021). LAT can be interpreted
as a special case of dot product attention, where the nonlinearity is changed from exp to identity.
This modification allows for a similar rearrangement of the computation, where the context reduc-
tion of query&key happens before interacting with the query. There are two important differences

1



Under review as a conference paper at ICLR 2022

Table 1: Comparison for DAFT with standard Transformer and linear attention Transformers: Linear
Transformer (Katharopoulos et al., 2020), Performer (Choromanski et al., 2020). Here T, d denote
the sequence length and feature dimension, respectively. DAFT has linear space complexity wrt
both T and d, while not performing query&key dot product, keeping the exp nonlinearity, and not
computing the explicit attention. Both Linear Transformer and Performer have at least quadratic
complexity in d, perform query&key dot product but without the exp nonlinearity, and do not need
to compute explicit attention.

Model Time Space Dot Product? exp Nonlinearity? Explicit Attention?
Transformer O(T 2d + Td2) O(T 2 + Td) 3 3 3

Linear Transformer O(Td2) O(Td + d2) 3 7 7

Performer O(Td2 log d) O(Td log d + d2 log d) 3 7 7

DAFT O(T 2d + Td2) O(Td) 7 3 7

between DAFT and LAT: 1) DAFT maintains the same exp nonlinearity as standard MHA, which
LAT gets rid of. Empirically, the removal of the exp nonlinearity often causes performance degra-
dation. 2) LAT introduces a space complexity of O(Tdd′), where d′ is the dimension of query, key
projections. This makes LAT expensive for large model sizes. DAFT on the other hand enjoys a
space complexity of O(Td), friendly to both large inputs and large models. See Table 1 for the
summarized comparison.

In addition to the basic DAFT formulation, we also propose DAFT-conv, a variant that exploits
locality and weight sharing in the position biases. DAFT-conv inherents the the benefit of both
Transformers and ConvNets. It is wired similar to a Transformer, maintaining the global connec-
tivity and multiplicative interactions among the query, key and value; it also enjoys the parameter
efficiency, sparse computation and translational equivariance property of ConvNets. We show that
DAFT-conv provides excellent performance and efficiency gain over the basic version on all tasks
we tested.

We perform experiments with DAFT on image classification, image auto-regressive modeling and
character level language modeling tasks. We show that DAFT provides competitive performance,
often matching or beating standard Transformers and other variants, while providing excellent effi-
ciency. We also provide ablation studies to several design choices of DAFT, and discuss its unique
properties such as compatibility with Transformers, robustness to the choice of kernel size and vari-
able sized inputs.

2 BACKGROUND

2.1 MULTI-HEAD ATTENTION

We now introduce the Multi-Head Attention (MHA) operation in the mode of self attention. We de-
note an input sequence as X ∈ RT×d, with T, d, h being the sequence length, the feature dimension
and the number of heads h, respectively. We use the superscript i to denote the ith attention head,
and subscript t to denote the tth location. MHA performs a scaled dot product attention for each
head i, defined as:

Y i
t =

∑T
t′=1 exp(Q

i
t
ᵀ
Ki

t′)V
i
t′∑T

t′=1 exp(Q
i
t
ᵀ
Ki

t′)
, s.t. Qi = XW i

Q,Ki = XW i
K , V

i = XW i
V . (1)

Here W i
Q ∈ Rd×dk , W i

K ∈ Rd×dk , W i
V ∈ Rd×dvare linear transformations for head i; Y i

t ∈ Rdv

is output of the ith attention head for the tth query location. dk, dv are dimensions for key and
value, respectively. MHA concatenates the output of h attention heads along the channel dimension,
resulting in feature dimension hdv . Unless otherwise mentioned, we assume dk = dv and h = d

dk
.

This means the query, key and value are the same dimension within each head, and the output
dimension matches that of the input.

2



Under review as a conference paper at ICLR 2022

2.2 LINEAR ATTENTION

One can remove the exp nonlinearity in Eq. 1 to give rise to the linear attention used in (Katharopou-
los et al., 2020; Choromanski et al., 2020). This special form of dot product attention enables one to
rearrange the order of computation as:

Y i
t =

∑T
t′=1 (Q

i
t
ᵀ
Ki

t′)V
i
t′∑T

t′=1Q
i
t
ᵀ
Ki

t′︸ ︷︷ ︸
explicit linear dot product attention

=
Qi

t
ᵀ∑T

t′=1K
i
t′V

i
t′
ᵀ

Qi
t
ᵀ∑T

t′=1K
i
t︸ ︷︷ ︸

implicit attention

. (2)

Here we allow Q and K to have dimension RT×d′
, where d′ can be selected independently of d

(e.g., in Performer (Choromanski et al., 2020), it is recommended to let d′ = O(d log d)); we also
assume that Q,K contain additional linear projections and nonlinearities when required.

3 METHODOLOGY

3.1 DOT PRODUCT ATTENTION FREE TRANSFORMER

We now define Dot product Attention free transformer (DAFT), which is a plugin replacement of
MHA without the need of changing other architectural aspects of Transformers. The basic idea is
to simplify the dot product attention to a form of additive attention (Bahdanau et al., 2014) that
amounts to an efficient implementation. We start by considering an attention head defined in the
following way:

attit,t′ ∝ exp(Qi
t +Ki

t′ + wt,t′), i = 1, 2, ..., d, (3)

where w ∈ RT×T is a set of learned pairwise position biases. Here the attention score (before exp)
becomes an additive composition of the query, the key and a “static attention” score (w). By doing
so, we are also automatically making the number of attention heads equal to the feature dimension.
One can then interpret this new formulation as trading the expressivity of a single attention head for
more heads. However, because of the normalizing mechanism of attention, the query term cancels
out from the numerator and denominator. We thus make a slight modification and make it:

attit,t′ =
σq(Q

i
t) exp(K

i
t′ + wt,t′)∑T

t′=1 exp(K
i
t′ + wt,t′)

, i = 1, 2, ..., d, (4)

where σq is a nonlinearity defaulting to sigmoid. By doing so, we take Qi
t out of the denominator,

which makes it similar to the role of an output gate in LSTMs Hochreiter & Schmidhuber (1997).
We can now define the full computation of DAFT as:

Yt = σq(Qt)�
∑T

t′=1 exp(Kt′ + wt,t′)� Vt′∑T
t′=1 exp(Kt′ + wt,t′)

, (5)

where � is the element-wise product, Qt,Kt′ , Vt′ ∈ Rd.

Efficient Implementation. The question now remains to be answered is how to implement DAFT in
a efficient way. It is obvious that explicitly computing the attention in Eq. 4 as done in Transformers
is infeasible, as it requires storing a tensor of size T 2d. Luckily, the compositionality of DAFT
allows for a rearrangement of computation similar to that in linear attention. In essence, we take
advantage of the simple equality of exp(x+ y) = exp(x) exp(y), and decompose the computation
into a series of element-wise multiplication/division and matrix-tensor multiplication.

In addition, a naive parameterization of w is parameter intensive. We thus adopt a factorized form
of w as:

w = pe0pe1
ᵀ, s.t. pe0 ∈ RT×n, pe1 ∈ RT×n, (6)

where n is a small embedding dimension (e.g., 128). This simple factorization not only greatly
reduces the parameter counts (2Tn vs T 2), but also empirically improves model’s performance in
both training and testing.

We denote this version as DAFT-full, and show the PyTorch-style pseudo code in Algorithm 1.

3



Under review as a conference paper at ICLR 2022

Algorithm 1 Pseudo code of DAFT-full attention layer in a PyTorch-like style.

def daft_attn(q, k, v, pe0, pe1):
# B: batch size; T: sequence length; d feature dimension.
# q, k, v: query, key and value each of shape (B, T, d)
# pe0, pe1: position embeddings of shape (T, n)
# y: output of shape (B, T, d)
q = q.sigmoid()
k = k.exp()
kv = k * v
w = pe0.mm(pe1.T) # compute pairwise position bias (T, T)
w = w.exp()
numerator = einsum(’lt,btd->bld’, w, kv) # context aggregation
denominator = einsum(’lt,btd->bld’, w, k)
y = q * numerator / denominator # normalization and output gating

return y

Algorithm 2 Pseudo code of DAFT-conv attention layer in a PyTorch-like style.

def daft_conv_attn(q, k, v, r):
# B: batch size; T: 1d sequence length; (H, W): 2d input size
# s: half of window size; d feature dimension.
# q, k, v: query, key and value each of shape (B, d, T) or (B, d, H, W)
# r: depth-wise separable convolutional filters of shape (d, 2s+1) or (d, 2s+1, 2s+1)
# y: output of shape (B, d, T) or (B, d, H, W)
q = q.sigmoid()
k = k.exp()
kv = k * v
r = r.exp() - 1 # assuming r is already reparameterized as Eq. (9)
numerator = conv1d(kv, r, groups=d, padding=’same’) + kv.sum(dim=2, keepdim=True)
# for 2d inputs
# numerator = conv2d(kv, r, groups=d, padding=’same’) + kv.sum(dim=[2,3], keepdim=True)
denominator = conv1d(k, r, groups=d, padding=’same’) + k.sum(dim=2, keepdim=True)
# for 2d inputs
# denominator = conv2d(k, r, groups=d, padding=’same’) + k.sum(dim=[2,3], keepdim=True)
y = q * numerator / denominator # normalization and output gating

return y

3.2 DAFT-CONV

In DAFT-full, w encodes to the static bias between two positions. It is thus straightforward to con-
ceive a “multi-head” version where one learns h sets of position biases {wi}i=1...h, each interacting
with a subset of feature dimensions in the same way as in MHA. However, as w is learned as free
parameters, increasing h to large values poses immediate challenge to the parameter efficiency.

We propose a simple solution to this dilemma, where we simultaneously make wi local and share
parameters across positions. To be more exact, we exploit the native structure of the input (1d or
2d), and assign a non-zero value to a position pair (t, t′) based on their relative position, if they are
within a specified window size 2s+ 1 (assuming the window size is an odd number). In the 1d case
(the 2d case can be derived similarly), this becomes

wi
t,t′ =

{
rit′−t+s, if |t− t′| ≤ s
0, otherwise.

(7)

Here ri ∈ R2s+1, i = 1, 2, ..., h are the relative position vectors 1.

We can now introduce DAFT-conv, which is a multi-head, convolutional version of DAFT. DAFT-
conv can be implemented with the convolution primitive as (again using 1d convolution as an ex-
ample):

Y i
t = σq(Q

i
t)�

dw-conv(exp(Ki)� V i, exp(ri)− 1) +
∑T

t′=1 exp(K
i
t′)� V i

t′

dw-conv(exp(Ki), exp(ri)− 1) +
∑T

t′=1 exp(K
i
t′)

, i = 1, 2, ..., h.

(8)
here h is the number of heads; dw-conv(x, r) denotes the depth-wise separable 1d convolution with
x ∈ RT×d being the input signal and r ∈ R(2s+1) being the convolutional filter, which are convolved
along the first dimension with “same” padding.

1One can construct the pairwise matrix wi ∈ RT×T by tiling ri along the spatial dimension.

4



Under review as a conference paper at ICLR 2022

Compared with DAFT-full, DAFT-conv provides both parameter and computational efficiency.
Moreover, DAFT-conv also enjoys the same locality and translational equivariance inductive bias
of ConvNets, which have been proven useful in many domains. There is also a distinctive property
of DAFT-conv, which is that global connectivity between any two positions is maintained regard-
less of the selection of the window size. We verify experimentally that this enables DAFT-conv to
achieve strong performance even with very small window sizes.

Implementation. During training, we adopt a re-parameterization of the convolutional filters r,
where for each head i, we let

ri = γi
ri −mean(ri)

std(ri)
+ βi, (9)

where γ ∈ Rd, β ∈ Rd are learnable gain and bias parameters, both initialized as 0. We found that
this accelerates learning and gives consistent boost to the performance. We show the PyTorch-style
pseudo code in Algorithm 2, where we assume h = d for simplicity.

4 RELATED WORK

Since the Transformer was introduced, there have been numerous attempts to address the major
source of inefficiency in the architecture, the quadratic cost of the attention operation. Improving this
operation can enable larger context sizes and more efficient implementations. For a comprehensive,
recent survey of efficient transformers, see (Tay et al., 2020c).

Approximating the dot product. Katharopoulos et al. (2020); Choromanski et al. (2020); Peng
et al. (2021) propose to approximate the exponential kernel with inner product of projections, which
leads to a linearized attention operation of complexity O(Td2). The d2 term of these models how-
ever makes it difficult to scale with model size, which is not a problem for DAFT. Reformers (Kitaev
et al., 2020) apply LSH as an approximation to the dot product, where DAFT completely gets rid of
it.

Sparse, local attention. Sparse Transformers (Child et al., 2019) and Image Transformer (Parmar
et al., 2018) proposes to use fixed sparse or local context patterns. Attention models in vision tasks
(often combined with convolutions) use image structure to help handcraft relevant spatial patterns to
attend (Wang et al., 2020a; Huang et al., 2019b; Zhu et al., 2019; Huang et al., 2019a; Ramachandran
et al., 2019). DAFT-conv also borrows the locality idea, but we put it as a bias rather than hard
constraint. This allows DAFT-conv to take advantage of the full context, rather than relying only on
a subset.

Context compression. Other approaches try to learn context patterns. Adaptive-Span Transformers
(Sukhbaatar et al., 2019) learn a range for each attention head within which to attend. Routing
transformers (Roy et al., 2020) use clustering to compute dot-product attention only over a subset
of elements within the same cluster. The Linformer (Wang et al., 2020b) reduces the length of the
context by compressing the keys and values with a linear layer. Compressive Transformers (Rae
et al., 2020) compute and update reduced representations of the input that are far enough back in the
input sequence, and attend to those compressed representations. DAFT is largely complementary
to these approaches, as our focus is to improve the complexity of any given sequence from the
operation level.

Eliminating dot product attention. Instead of limiting the number of comparisons, other methods
change the operation used to compute attention. The Synthesizer (Tay et al., 2020a) uses attention
weights predicted from inputs, rather than derived from dot-product interactions. The LightConv
module introduced in (Wu et al., 2019) proposes to replace the dot product self-attention with dy-
namic lightweight depthwise convolution, where the weights are normalized across temporal dimen-
sion. The Sinkhorn Transformer (Tay et al., 2020b) uses a differentiable sorting operation to identify
relevant comparisons that may not be local in the original sequence order. DAFT offers a different
approach along this line, while highlighting strong empirical performance and efficiency.

MLPs for vision. Recent works (Tolstikhin et al., 2021; Liu et al., 2021) explore the use of MLP
inplace of the attention operation for vision tasks. While DAFT can be viewed in a similar way, it
is also equipped with a more sophisticated gating mechanism. In particular, the weighting of values
are composed of both the key and position biases, which are normalized to non-negative values

5



Under review as a conference paper at ICLR 2022

Figure 1: Left: The 197 × 197 position bias from the 3rd layer of DAFT-full. Right: relative
position biases learned by a DAFT-conv. Each row represents a layer (with layer index ranging from
{0, 2, 4, 6, 8, 10}); Each column represents a head.

Table 2: Imagenet 1K classification results with the Transformer architecture from DeiT (Touvron
et al., 2020), cropsize is 224. Speed and memory consumption are measured in inference mode on a
V100 GPU, batch size is 256.

Model Kernel Heads Epochs Top1 Acc #Params (MB) Images/Sec Mem (GB)
ResNet50 3 - 90 76.9 25.6 1257 6.5
DeiT-S - 6 300 79.9 22.1 1010 2.9
MLP Mixer - - 300 75.0 18.6 1033 2.4
Linear Trans. - 6 300 74.9 22.1 1089 2.6
Performer - 6 300 79.0 22.1 1024 2.9
DAFT-full - 1 300 79.8 22.6 1011 2.6
DAFT-conv 11 16 300 80.2 20.3 989 2.5
DAFT-conv 11 384 300 80.8 23.0 936 3.2
DAFT-conv 11 384 200 80.1 23.0 936 3.2

(similar to attention). This allows DAFT to be a plugin module to existing Transformers without
any architectural changes and extra tuning. Besides, DAFT-conv inherits the valuable properties of
CNNs, allowing it to achieve excellent parameter efficiency, strong performance as well as ability to
handle variable sized inputs.

5 EXPERIMENTS

We conduct experiments on three tasks: image classification (Sec. 5.1), image autoregressive mod-
eling (Sec. 5.2) and character level language modeling (Sec. 5.3). All the experiments are designed
in the plug and play fashion, where we obtain a baseline Transformer architecture for the specific
task and replace the attention module with an DAFT module. Hyperparameters such as initializa-
tion, learning rate scheduling are also directly inherited from the Transformer counterparts. Unless
otherwise mentioned, all experiments are conducted on 8×V100 GPU machines.

5.1 IMAGE CLASSIFICATION

We first test the encoder version of DAFT, focusing on an image classification task. We adopt
the Vision Transformer architecture (Dosovitskiy et al., 2020), and perform experiments on the
Imagent 1K classification dataset. We adopt training setting and hyper parameters (batch size, data
augmentation, regularization and learning rate scheduling) from DeiT (Touvron et al., 2020).

In a nutshell, A ViT splits an image into 16 × 16 non-overlapping patches, then linearly projects
each patch with shared weights to the equivalence of token embeddings. A learned class token
is appended to the resulting representation, resulting in a sequence of length T = 1 + H/16

W/16 . A

6



Under review as a conference paper at ICLR 2022

3 5 7 11 13 15 17 19 21
kernel size

78.0

78.5

79.0

79.5

80.0

80.5

81.0

81.5

To
p1

 A
cc

global connectivity
local connectivity

Figure 2: Effectiveness of the global connectivity of DAFT-conv, with varied kernel size on Ima-
geNet. DAFT-conv’s performance is robust to the kernel size. When removing the global connec-
tivity, small kernel sizes lead to severe performance degradation.

linear classification head is attached to the final layer’s class token to obtain the final outputs. See
(Dosovitskiy et al., 2020) for more details of the model configuration. All the experiments are
conducted on the ImageNet-1K dataset, without using extra data.

Since the sequence size is relatively small in this task (T = 197 for input sizes of 224 × 224), we
first experiment with DAFT-full. The hidden dimension of factorized position bias is set as n = 128.
We also experiment with DAFT-conv. In this setting, we remove the use of position embedding and
class token, and apply global average pooling after the final layer’s output, which is then fed into the
classification linear layer. This modification not only simplifies the model design, but also makes
DAFT-conv fully convolutional.

We adopt the DeiT “small” (L=12, d=384, h=6, denoted as DeiT-S) configuration as the baseline.
We also compare with MLP-Mixer (Tolstikhin et al., 2021), where we replace the attention layer
with an MLP of hidden layer size DS = 4T . This roughly matches the number of parameters in the
corresponding MHA layer. We also compare with two linear attention models, Linear Transformer
(Katharopoulos et al., 2020) and Performer (Choromanski et al., 2020). We keep theQ,K dimension
the same as that in DeiT-S in both cases, and adopt the 1+elu and relu nonlinearity, as recommended
in the respective papers.

Our result is shown in Table 2. We first see that DAFT-full achieves comparable performance with
the baseline Transformer DeiT-S, while with better memory footprint and similar speed. DAFT-conv
significantly improves the top-1 accuracy of both configurations, with similar or smaller parameter
counts. DAFT also outperforms Linear Transformer and Performer wrt the top 1 accuracy. Empiri-
cally, we also observe that DAFT has faster convergence than Transformers. In fact, we are able to
match the performance of DeiT-S by training a DAFT-conv model for only 2

3 of the total epochs.

Visualization. We also tried to visualize the position biases (exp(w) − 1 to be precise) learned
by DAFT-full and DAFT-conv, as shown in Figure 1. Note that interesting local, symmetric sparse
patterns emerge. We show in the Appendix that we can regularize the position biases to achieve
more sparsity. We also show an extreme version of DAFT-conv, where each head is assigned one
non-zero context points, while still keep good accuracy. This effectively transforms convolution into
indexing.

Variable size inputs. DAFT-conv is fully convolutional, which means that it can handle an input
size different from that in training. We tested a DAFT-conv model (second to last row of Table 2,
trained with crop size 224) on a larger crop size of 384. This results in an improved accuracy of 81.6,
compared with the original 80.8. This makes DAFT-conv well suited for the pretraining finetuning
workflows, as often seen in Vision tasks.

7



Under review as a conference paper at ICLR 2022

Table 3: Finetuning DAFT-conv for 100 epochs from a pretrained “DeiT base” on 384× 384 crops.
“ft” and “rand” stand for finetuning and random initialization, respectively. See the Apendix for
more details.

Model Kernel Heads Top1 Acc #Params (MB) Images/Sec Mem (GB)
Deit base - 12 82.9 86.9 89.6 13.6
DAFT-conv ft 25 32 83.4 79.7 98.5 8.9
DAFT-conv rand 25 32 81.6 79.7 98.5 8.9

Table 4: NLL results on CIFAR10, evaluated by bits/dim, the lower the better. Speed and memory
are measured during training time, with a batch size of 32 across 8 V100 GPUs.

Method L d h Train loss Test loss Iters/Sec GB/GPU
PixelCNN - - - 3.08 3.14 - -
PixelSNAIL - - - - 2.85 - -
Sparse Transformer strided 128 256 2 - 2.80 - -
Image Transformer local2d 12 512 4 - 2.90 1.61 22.3
Transformer 12 512 4 2.90 2.88 1.35 30.6
Synthesizer 12 512 4 2.79 2.91 1.45 23.0
Reformer 12 512 4 2.88 2.93 1.41 14.3
DAFT-full 12 512 1 2.78 2.89 1.68 10.2
DAFT-conv-256 12 512 512 2.73 2.81 1.63 9.0

Compatibility with Transformers. Although DAFT is not designed to directly approximate MHA,
they do share considerable similarity in that the value vectors are aggregated with learned non-
negative weighting in both models. We hypothesize that representations learned by one model can
be transferred to another. To test this, we obtain a pretrained “DeiT base” model with crop size 384.
We then train an DAFT-conv by initializing its weights with that of the DeiT model, excluding the
position embeddings, the class token, key and query projections. We use a batch size of 64 and train
the model for 100 epochs. As a control, we also train a randomly initialized DAFT-conv for the
same number of epochs. The results are shown in Table 3. Interestingly, we see that the finetuned
version of DAFT-conv achieves significantly higher accuracy than that randomly initialized version.
The resulting model is also more accurate, faster and memory efficient than the original DeiT model.

Global connectivity. DAFT-conv maintains global connectivity regardless of the local kernel size,
which is distinctive from sparse and local attention works. To see the benefit of this design, we
trained a degenerate variant of DAFT-conv, where we modify Equation 7 to assign −∞ values to
wt,t′ outside the local window (zero weights after exponentiation). We then train a set of DAFT-
conv models by varying the kernel size, the results are shown in Fig. 2. We see that DAFT-conv’s
performance is extremely robust to the choice of kernel-size. Without the global connectivity, small
kernel sizes lead to severe performance degradation.

5.2 IMAGE AUTOREGRESSIVE MODELING

In the next set of experiments, we consider the problem of image autoregressive modeling by min-
imizing the negative log likelihood (NLL). Similar to (Parmar et al., 2018), we represent an RGB
image as a sequence of length H ×W × 3, with H,W being the height and width, respectively.
Each sub-pixel is represented as a 256-way discrete variable. We use CIFAR10 as the benchmarking
dataset.

Our reference Transformer design largely follows that of (Chen et al.), which follows a 12 layer,
512 dimensional and 4 heads design. We use AdamW (Loshchilov & Hutter, 2019), and follow a
standard warmup learning rate schedule as in (Vaswani et al., 2017). We use an initial learning rate
of 1 × 10−3 a weight decay of 0.1 applied to all linear transformations weights, and a dropout rate
of 0.1. We adopt simple data augmentation. During training, we first randomly flip each image
horizontally, then add or subtract a value in the range [−10, 10] from all its subpixels, and clip
resulting pixel values to [0, 255]. We use cross entropy loss, and a default batch size of 32 for 100
training epochs.

We train two DAFT models: DAFT-full with factorized position bias (hidden dimension = 256);
and DAFT-conv with 1d kernel size of 256. Note that in this case, the 1d DAFT-conv does not take

8



Under review as a conference paper at ICLR 2022

Table 5: Enwik8 results, measured in bits per character (bpc), the lower the better. Baselines com-
pared are Reformer (Kitaev et al., 2020), Synthesizer (Tay et al., 2020a) (its best performing dense
version), Linear Transformer (Katharopoulos et al., 2020) and Performer (Choromanski et al., 2020).
L, d, h, T denote number of blocks (depth), dimension of features, number of heads, and sequence
length, respectively. Speed and memory are measured during training time, with a batch size of 128
on a 8 V100 GPU node. Both Linear Transformer and Performer are implemented with customized
CUDA kernels (github.com/idiap/fast-transformers), and all other models are implemented in native
Pytorch.

Method L d h T Train bpc Test bpc Iters/Sec GB/GPU
Transformer 12 512 8 1024 0.977 1.137 1.42 29.4
Reformer 12 512 8 1024 1.04 1.195 1.05 20.9
Synthesizer 12 512 8 1024 0.994 1.298 1.49 29.9
Linear Transformer 12 512 8 1024 0.981 1.207 1.46 10.6
Performer 12 512 8 1024 1.002 1.199 1.44 10.1
DAFT-full 12 512 1 1024 0.88 1.201 1.85 11.3
DAFT-conv-64 12 512 512 1024 0.854 1.180 1.77 11.1

advantage of the true structure of pixels (which is 2d). It’s locality and parameter sharing mainly
serve as a way of saving computation.

Comparing with the state of the art. CIFAR10 is a crowded benchmark for image autoregres-
sive modeling, and we compare with a few competitive baselines, as shown in Table 4. Note that
CIFAR10 has an unrolled sequence length of 3072, which is already prohibitive to train a full Trans-
former with reasonable size. Another baseline is Image Transformer (Parmar et al., 2018), which
restricts attention to local2d windows of size of 256. We also compare to Synthesizer (Tay et al.,
2020a) and Reformer (Kitaev et al., 2020).

From Table 4, we see that DAFT-full yields similar performance to the baseline Transformer, and
outperforming Image Transformer, Synthesizer and Reformer. Interestingly, DAFT-conv provides
even stronger performance than DAFT-full, although not utilizing the 2d local structure of pixels.
Efficiency wise, both DAFT variants are faster than standard Transformer and other baselines, while
consuming only half of the memory 2.

5.3 LANGUAGE MODELING

We apply DAFT to character level language modeling on Enwik8 (Mahoney, 2011), which is another
popular benchmark for auto-regressive modeling. We follow the standard preprocessing procedures
and training/validation/test splits as in (Dai et al., 2019). Our base Transformer reference is a 12
layer 512 dimensional 8 head architecture with 2048 feed forward dimensions. For the first set
of experiments, we use sequence length of 1024. Our training protocol is largely the same as the
previous experiment, except that we increase the weight decay to 0.5 and train for 100 epochs with
batch size 128. We evaluate DAFT-full and DAFT-conv with a kernel size of 64. We also compare
to several efficient Transformer baselines, namely Reformer (Kitaev et al., 2020), Synthesizer (Tay
et al., 2020a) , Linear Transformer (Katharopoulos et al., 2020) and Performer (Choromanski et al.,
2020). From Table 5, we see that, both DAFT models achieve the lowest training bits per character
(bpc), which is an indicator for high model capacity. Their test performance is slightly worse than
that of the basic Transformer, but outperforms all other Transformer variants.

6 CONCLUSIONS

We have introduced the Dot product Attention Free Transformer that replaces dot product atten-
tion with an efficient new operation. We have demonstrated strong results on a set of standard
benchmarks with excellent efficiency. We believe that our model opens a new design space for
Transformer-like models, and will see impact in various areas where self attention is needed.

2Fair speed/memory comparison against Sparse Transformer is infeasible, as it relies on a set of advanced
implementation tricks such as mixed precision and gradient checkpointing, whereas DAFT is implemented with
standard Pytorch utilities run in full precision.

9



Under review as a conference paper at ICLR 2022

REFERENCES

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly
learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

Irwan Bello. Lambdanetworks: Modeling long-range interactions without attention. In International
Conference on Learning Representations, 2021. URL https://openreview.net/forum?
id=xTJEN-ggl1b.

Mark Chen, Alec Radford, Rewon Child, Jeff Wu, and Heewoo Jun. Generative pretraining from
pixels.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating long sequences with sparse
transformers. CoRR, abs/1904.10509, 2019. URL http://arxiv.org/abs/1904.10509.

Krzysztof Choromanski, Valerii Likhosherstov, David Dohan, Xingyou Song, Andreea Gane, Tamas
Sarlos, Peter Hawkins, Jared Davis, Afroz Mohiuddin, Lukasz Kaiser, David Belanger, Lucy
Colwell, and Adrian Weller. Rethinking attention with performers, 2020.

Zihang Dai, Z. Yang, Yiming Yang, J. Carbonell, Quoc V. Le, and R. Salakhutdinov. Transformer-xl:
Attentive language models beyond a fixed-length context. ArXiv, abs/1901.02860, 2019.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint
arXiv:2010.11929, 2020.

Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural computation, 9(8):
1735–1780, 1997.

Lang Huang, Y. Yuan, Jianyuan Guo, Chao Zhang, X. Chen, and Jingdong Wang. Interlaced sparse
self-attention for semantic segmentation. ArXiv, abs/1907.12273, 2019a.

Zilong Huang, Xinggang Wang, Lichao Huang, C. Huang, Yunchao Wei, and Wenyu Liu. Ccnet:
Criss-cross attention for semantic segmentation. 2019 IEEE/CVF International Conference on
Computer Vision (ICCV), pp. 603–612, 2019b.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax, 2017.

A. Katharopoulos, A. Vyas, N. Pappas, and F. Fleuret. Transformers are rnns: Fast au-
toregressive transformers with linear attention. In Proceedings of the International Con-
ference on Machine Learning (ICML), 2020. URL https://fleuret.org/papers/
katharopoulos-et-al-icml2020.pdf.

Nikita Kitaev, L. Kaiser, and Anselm Levskaya. Reformer: The efficient transformer. ArXiv,
abs/2001.04451, 2020.

Hanxiao Liu, Zihang Dai, David R. So, and Quoc V. Le. Pay attention to mlps, 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization, 2019.

Matt Mahoney. Large text compression benchmark, 2011.

Niki Parmar, Ashish Vaswani, Jakob Uszkoreit, Łukasz Kaiser, Noam Shazeer, Alexander Ku, and
Dustin Tran. Image transformer. arXiv preprint arXiv:1802.05751, 2018.

Hao Peng, Nikolaos Pappas, Dani Yogatama, Roy Schwartz, Noah Smith, and Lingpeng Kong.
Random feature attention. In International Conference on Learning Representations, 2021. URL
https://openreview.net/forum?id=QtTKTdVrFBB.

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language under-
standing by generative pre-training.

10

https://openreview.net/forum?id=xTJEN-ggl1b
https://openreview.net/forum?id=xTJEN-ggl1b
http://arxiv.org/abs/1904.10509
https://fleuret.org/papers/katharopoulos-et-al-icml2020.pdf
https://fleuret.org/papers/katharopoulos-et-al-icml2020.pdf
https://openreview.net/forum?id=QtTKTdVrFBB


Under review as a conference paper at ICLR 2022

Jack W. Rae, Anna Potapenko, Siddhant M. Jayakumar, and T. Lillicrap. Compressive transformers
for long-range sequence modelling. ArXiv, abs/1911.05507, 2020.

Prajit Ramachandran, Niki Parmar, Ashish Vaswani, I. Bello, Anselm Levskaya, and Jonathon
Shlens. Stand-alone self-attention in vision models. ArXiv, abs/1906.05909, 2019.

Aurko Roy, M. Saffar, Ashish Vaswani, and David Grangier. Efficient content-based sparse attention
with routing transformers. ArXiv, abs/2003.05997, 2020.

Sainbayar Sukhbaatar, E. Grave, P. Bojanowski, and Armand Joulin. Adaptive attention span in
transformers. In ACL, 2019.

Yi Tay, Dara Bahri, Donald Metzler, Da-Cheng Juan, Zhe Zhao, and Che Zheng. Synthesizer:
Rethinking self-attention in transformer models, 2020a.

Yi Tay, Dara Bahri, L. Yang, Donald Metzler, and D. Juan. Sparse sinkhorn attention. ArXiv,
abs/2002.11296, 2020b.

Yi Tay, Mostafa Dehghani, Dara Bahri, and Donald Metzler. Efficient transformers: A survey,
2020c.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021.

Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
Hervé Jégou. Training data-efficient image transformers & distillation through attention. arXiv
preprint arXiv:2012.12877, 2020.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Advances in neural information
processing systems, pp. 5998–6008, 2017.

Huiyu Wang, Y. Zhu, B. Green, H. Adam, A. Yuille, and Liang-Chieh Chen. Axial-deeplab: Stand-
alone axial-attention for panoptic segmentation. ArXiv, abs/2003.07853, 2020a.

Sinong Wang, Belinda Z. Li, Madian Khabsa, Han Fang, and Hao Ma. Linformer: Self-attention
with linear complexity. ArXiv, abs/2006.04768, 2020b.

Felix Wu, Angela Fan, Alexei Baevski, Yann Dauphin, and M. Auli. Pay less attention with
lightweight and dynamic convolutions. ArXiv, abs/1901.10430, 2019.

Manzil Zaheer, Guru Guruganesh, Kumar Avinava Dubey, Joshua Ainslie, C. Alberti, S. Ontañón,
Philip Pham, Anirudh Ravula, Qifan Wang, Li Yang, and A. Ahmed. Big bird: Transformers for
longer sequences. ArXiv, abs/2007.14062, 2020.

Zhen Zhu, Mengdu Xu, Song Bai, Tengteng Huang, and X. Bai. Asymmetric non-local neural
networks for semantic segmentation. 2019 IEEE/CVF International Conference on Computer
Vision (ICCV), pp. 593–602, 2019.

A APPENDIX

B ADDITIONAL ABLATIONS

We conducted more experiments on the ImageNet-1K classification settings.

Factorization of w. We first verify the importance of the factorized parameterization of DAFT-full.
As shown in Tab 6, the non factorized parameterization of DAFT-full achieves worse training and
test performance than the factorized version.

Reparameterization of r. For DAFT-conv, we by default apply the reprameterization as described
in Sec. 3.2. We verify that this design effectively improves the model’s performance, as shown in
Table 7.

11



Under review as a conference paper at ICLR 2022

Figure 3: Exponentiated position biases learned by DAFT-full, trained on ImageNet-1K, shown from
layer 1, 2, ..., 12, arranged from top left to bottom right. Each image is of size 197 × 197, where
the first element corresponds to the class token, and the remaining 196 correspond to the 14 × 14
positions. We see that local, sparse patterns are learned without explicit supervision.

12



Under review as a conference paper at ICLR 2022

Figure 4: Image completion with the AFT-local trained on CIFAR10 autoregressive modeling task.
Top: masked images from the test set. Bottom: completed images.

13



Under review as a conference paper at ICLR 2022

0 50 100 150 200 250 300
Training epoch

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Tr
ai

ni
ng

 lo
ss

Deit-S 
DAFT-full 
DAFT-conv 
Linear Trans. 

0 50 100 150 200 250 300
Training epoch

0

10

20

30

40

50

60

70

80

To
p1

 A
cc

 %

Deit-S 
DAFT-full 
DAFT-conv 
Linear Trans. 

Figure 5: Training dynamics of DAFT, compared with baseline models on ImageNet. DAFT-conv
enjoys faster convergence than others.

14



Under review as a conference paper at ICLR 2022

0 20 40 60 80 100
Training epoch

0

10

20

30

40

50

60

70

80

Te
st

 A
cc

 %

DAFT-conv-rand 
DAFT-conv-ft 
DeiT-base

Figure 6: The top 1 test accuracy of finetuning a pretrained DeiT model to DAFT-conv (DAFT-conv-
ft), compared that initialized from random (DAFT-conv-rand). DAFT-conv benefits greatly from a
pretrained DeiT model, indicating the compatibility between the two family of models.

Table 6: The effect of factorized parameteriza-
tion of DAFT-full.

Train loss Top 1 Acc
Non Factorized 3.17 78.2
Factorized (default) 3.08 79.8

Table 7: The effect of reprameterization of
DAFT-conv (kernel size 7× 7).

Train loss Top 1 Acc
Naive param 3.11 79.4
Reparameterized (default) 2.94 80.8

Convergence. We found that DAFT variants enjoy quick convergence, compared to Transformer
like models. We show the training curves in Fig 5. In addition, we also show the training curve for
the finetuning experiment corresponding to Tab. 3, in Fig 6.

Model scaling. Next we investigate the performance of Deit vs. DAFT-conv as we scale the model
size. We train models with different feature dimensions, while keeping the dimension of each atten-
tion head fixed for DeiT, and the kernel size fixed for DAFT-conv. The result is shown in Fig. 7.
We see that throughout the size of models considered, DAFT-conv consistently outperforms DeiT
model of similar size.

Contribution of the query. The query term contributes a small fraction to the computation of
DAFT, but it contributes significantly to DAFT’s performance. We conducted an additional experi-
ment with DAFT-conv (384 heads, kernel size in 11× 11 and 15× 15), where we remove the query
term. The result is shown in Tab 8.

Visualizing the key. The keys play a central role in DAFT, as they provide content dependent
reweighting for effective context reduction. In order to understand their behavior, we visualized
the feature maps for a DAFT-conv model on randomly sampled images from the validation set of
ImageNet-1K, as shown in Fig. 11, 12, 13, 14. Interestingly, we see that the keys gradually evolve
to “object detectors” as the layer level goes up.

Table 8: Top 1 accuracy of DAFT-conv without the query term (w/o q). This results in significant
performance drops.

Kernel 11 15
with q (default) 80.8 80.9
w/o q 79.3 79.5

15



Under review as a conference paper at ICLR 2022

3 5 7 11 13 15 17 19 21
#params (MB)

60.0

62.5

65.0

67.5

70.0

72.5

75.0

77.5

80.0

To
p1

 A
cc

DeiT
DAFT-conv

Figure 7: Performance of DeiT vs DAFT-conv, as model size scales.

Figure 8: Exponentiated position biases learned by DAFT-conv, trained on ImageNet-1K. Each row
corresponds to a layer, each column corresponds to a head (the first 16 are shown). This model has
top 1 accuracy of 80.8%.

16



Under review as a conference paper at ICLR 2022

Figure 9: Exponentiated position biases learned by DAFT-conv (kernel size 11× 11) with sparsity
regularization, trained on ImageNet-1K. Each row corresponds to a layer, each column corresponds
to a head (the first 16 are shown). This model has top 1 accuracy of 80.9%.

C SPARSITY

The position biases learned by DAFT-conv (kernel size 11× 11) as shown in Figure 8 demonstrates
interesting sparsity patterns, which suggests great potential for quantization and pruning. To this
end, we experimented with a simple sparsity promoting regularization term:

reg(w) =

h∑
i=1

H(wi), H(wi) = entropy(softmax(wi)). (10)

Where we simply minimize the entropy for each head, with the softmax distribution using wi as
the logits. We combining reg(w) with the cross entropy loss with a small weighting (0.001) and
train with the DAFT-conv with kernel size 11 and 384 heads. This results in a slight improvement
in accuracy (due to its regularization effect) of 80.9 vs 80.8, as well as sparser looking position
biases. The visualization is shown in Fig. 9. We see that the position biases are much more sparsely
distributed as expected.

Encouraged by this, we continued to push the sparsity to an extreme form. Now for each head, we
only assign a learned relative position bias for a single position. To do this, during training, we
multiply the position biases w for each layer and each head with a sample from its corresponding
Gumbel softmax distribution (Jang et al., 2017):

wi = wi ∗ gumbel(wi; τ), (11)

where τ is the temperature term for Gumbel softmax, and we set it as 0.5; gumbel(wi; τ) produces a
(sparse) sample with the same shape as wi. During inference, the Gumbel softmax is replaced with
hard max, i.e., a one hot vector is returned. This results in a model with top 1 accuracy 79.9, with
less than 1 point drop compared with the unregularized model. The position biases are visualized in
Fig. 10. This extreme model variant makes it possible to implement the context reduction of K,V
with a combination of global average pooling and indexing operations.

17



Under review as a conference paper at ICLR 2022

Figure 10: Exponentiated position biases learned DAFT-conv (kernel size 11 × 11) with Gumbel
softmax sampling, trained on ImageNet-1K. Each row corresponds to a layer, each column corre-
sponds to a head (the first 16 are shown). This model has top 1 accuracy of 79.9%.

18



Under review as a conference paper at ICLR 2022

Figure 11: Top: sample image from the validation set of ImageNet-1K. Bottom: visualization of
the keys for DAFT-conv, with each row corresponding to a layer, each column corresponding to a
head.

19



Under review as a conference paper at ICLR 2022

Figure 12: Top: sample image from the validation set of ImageNet-1K. Bottom: visualization of
the keys for DAFT-conv, with each row corresponding to a layer, each column corresponding to a
head.

20



Under review as a conference paper at ICLR 2022

Figure 13: Top: sample image from the validation set of ImageNet-1K. Bottom: visualization of
the keys for DAFT-conv, with each row corresponding to a layer, each column corresponding to a
head.

21



Under review as a conference paper at ICLR 2022

Figure 14: Top: sample image from the validation set of ImageNet-1K. Bottom: visualization of
the keys for DAFT-conv, with each row corresponding to a layer, each column corresponding to a
head.

22


	Introduction
	Background
	Multi-Head Attention
	Linear Attention

	Methodology
	Dot product Attention Free Transformer
	DAFT-conv

	Related Work
	Experiments
	Image Classification
	Image Autoregressive Modeling
	Language Modeling

	Conclusions
	Appendix
	Additional Ablations
	Sparsity

