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Abstract—Distracted driving remains a critical threat to
road safety, often leading to severe accidents and fatalities.
Traditional driver monitoring solutions, including CNNs and
standard Vision Transformers, frequently fail to capture
subtle, spatially localized cues that signal driver distraction.
This paper presents Anchor-ViT, a novel Vision Transformer
architecture that integrates learnable spatial anchors with a
Soft Radial Attention (SRA) mechanism to adaptively focus on
driver-critical areas. These anchors are optimized via gradient
descent to guide attention toward relevant patches, while
SRA employs a Gaussian kernel to reinforce local interactions
and preserve global context through a dedicated class token.
Evaluations on the State Farm and 100-Driver distracted
driving datasets show that Anchor-ViT outperforms baseline
ViT models by up to 5.2% in accuracy, effectively balancing
the need for localized sensitivity and comprehensive scene
understanding. This innovative design holds promise for
enhancing driver monitoring, improving overall road and
driver safety.

Index Terms—Distracted Driving Detection, Vision Trans-
former, Driver Monitoring, Deep Learning

[. INTRODUCTION

Driver distraction is a major threat to global road safety,
significantly increasing traffic accidents and resulting in
countless injuries and fatalities. According to the NHTSA,
in the United States during 2021, distracted driving con-
tributed to 8 percent of fatal crashes, 14 percent of injury
crashes, and 13 percent of all police-reported motor vehicle
traffic crashes [1]. This led to the devastating loss of 3,522
lives and an estimated 362,415 injuries in the U.S. in 2021
alone [1]. These figures demonstrate the immense human
and economic costs associated with distracted driving,
emphasizing the urgent need for effective countermeasures
[2]-[4]. While various approaches have been explored
[5], [6], a persistent challenge remains in accurately and
reliably detecting the diverse and often subtle aspects of
driver distraction in real-world scenarios [2]-[4].

Current driver monitoring systems, even those leveraging
deep learning methods, often fall short in capturing the
full spectrum of driver distraction behaviors [2]-[4]. A
core limitation lies in their ability to effectively process
the visual information crucial for identifying distraction
cues. While these systems can recognize broad scene
context, they frequently struggle with the spatially localized
nature of driver distraction. Consider subtle indicators: a
downward glance at a phone, a hand movement towards
the infotainment system, or minute shifts in gaze reflecting
cognitive disengagement. These cues are concentrated in
specific regions — around the hands, the driver’s face,
the dashboard, and interaction zones. Existing systems,
designed for general-purpose image analysis, may miss

these vital signals by distributing attention broadly across
the entire scene. They lack mechanisms to prioritize and
focus on key spatial areas where distraction is most evident.
This hinders their ability to distinguish between genuinely
distracted behaviors and normal driving actions, leading to
missed detections or false alarms, and limiting their ef-
fectiveness in real-world applications. The crucial missing
element in current solutions is a robust method to spatially
focus attention within the driving scene, targeting driver-
relevant regions to capture subtle distraction indicators.

To overcome these limitations and enhance distracted
driving detection, this paper introduces a novel approach
embodied in the Anchor-ViT architecture. Our method ad-
dresses spatially-aware distraction detection by equipping a
Vision Transformer (ViT) framework [7] with a mechanism
to intelligently focus on driver-relevant areas. Think of
a standard Vision Transformer as illuminating the entire
image with a floodlight, casting a broad light across ev-
erything. In contrast, Anchor-ViT operates like spotlights,
directing its processing power precisely to the most relevant
areas. Anchor-ViT achieves this through the integration of
learnable spatial anchors and a Soft Radial Attention (SRA)
mechanism. These anchors act as guideposts, strategically
positioned within the image to direct attention towards
regions like the face, hands, and interaction zones. The
Soft Radial Attention (SRA) mechanism amplifies the
model’s focus around these guideposts by increasing the
importance of visual information from their vicinity, while
reducing the influence of distant, less relevant regions.
For instance, when detecting a driver texting, Anchor-
ViT’s anchors might focus on the lower central region
where hands and a phone appear. The SRA mechanism
amplifies attention to this hand-phone region, allowing the
model to effectively capture cues like hand movements and
phone presence, compared to a standard ViT that might
distribute attention uniformly across the dashboard and
windshield. This targeted approach allows Anchor-ViT to
prioritize critical cues of distraction without sacrificing the
Vision Transformer’s ability to understand the global driv-
ing context. By dynamically focusing on spatially relevant
regions, Anchor-ViT becomes more sensitive to subtle cues,
leading to a more accurate and robust detection system.
This approach addresses the limitations of existing systems
by ensuring that the most informative parts of the driving
scene are prioritized in distraction detection.

Extensive evaluations on benchmark distracted driving
datasets demonstrate that Anchor-ViT consistently outper-
forms conventional Vision Transformer models. This work



contributes in three ways. First, the Anchor-ViT architec-
ture is introduced—a novel approach that enhances dis-
tracted driving detection by focusing on spatially relevant
regions through learnable spatial anchors and a Soft Radial
Attention mechanism. Second, comprehensive validation
showcases improved accuracy and robustness compared to
existing methods. Finally, detailed ablation studies demon-
strate the contributions of each core component, solidifying
the effectiveness of the approach. Collectively, these ad-
vancements improve driver monitoring systems, enhancing
road safety and paving the way for more advanced driver
assistance and autonomous vehicle technologies.

II. RELATED WORKS

Convolutional neural networks (CNNs) have become a
cornerstone in distracted driving detection due to their
ability to learn hierarchical representations directly from
raw images. Early models were often designed with real-
time detection in mind, employing lightweight architec-
tures such as MobileVGG [8] to satisfy the computational
constraints of in-vehicle systems [6]. Researchers further
refined these models by introducing architectural modifica-
tions—such as decreasing filter sizes in CNNs to capture
fine-grained spatial details—and developing efficient and
lightweight CNN frameworks [9] to streamline real-time
detection. To enhance the localization of subtle cues like
a driver’s hand movements or facial expressions, several
approaches incorporated attention mechanisms, including
those in improved YOLOvVS8 variants [10] and Bi-LSTM
models [11]. Some methods integrated non-visual cues
such as hand-grip sensing to complement visual data
for faster detection [12]. Moreover, hybrid models that
combine CNN-based local feature extraction with global
contextual reasoning have demonstrated effectiveness [13],
[14] in complex driving environments.

Building on these successes, subsequent research em-
braced transfer learning and ensemble strategies to achieve
further performance improvements. Ensemble approaches
combining transfer learned CNN architectures [15] were
employed to enhance robustness and accuracy. Domain
adaptation techniques have also been explored to im-
prove generalization across different driving conditions and
datasets [16]. Furthermore, contrastive learning approaches
have been used for quantitative identification of driver
distraction [17]. These advancements naturally paved the
way for more sophisticated deep learning frameworks.

The most recent breakthroughs in the field have centered
on Vision Transformers (ViTs) [7], which have gained
prominence for their powerful self-attention mechanisms
[18], [19] capable of modeling long-range dependencies
and capturing global context. Efficient attention mecha-
nisms for ViTs have also been a focus of research [20].
Early applications of ViTs in distracted driving detection
demonstrated their effectiveness [21], [22]. Benchmarking
studies have compared CNNs and ViTs for this task [23],
and hybrid CNN-ViT models have been explored for ef-
ficient and lightweight detection [13], [24]. Subsequent
research refined ViT-based models by incorporating trans-
fer learning [22] and exploring different ViT architectures

such as Shifted-Window Hierarchical Vision Transformers
[25] and Swin Transformers [26], along with fine-grained
detection using Feature Pyramid Vision Transformers [27].
Multi-task learning with Vision Transformers has also been
used for distraction and emotion detection [28]. Multi-
view and multi-scale Vision Transformers have been also
proposed for improved driver action recognition [29], and
spatio-temporal learning with transformers has been used
for understanding driver behaviors in naturalistic videos
[30]. Furthermore, video transformers have been applied
for distracted driver recognition from temporal video data
[31]. Attention mechanisms within transformers have also
been augmented for naturalistic driving action recognition
[32] and vision-language models like CLIP have also
been explored to enhance robustness [33]. Explainability
of driver activity recognition using video transformers
has also been addressed [34]. Prompting techniques for
guiding attention in ViTs [35] and unified local and global
attention interaction modeling in ViTs [36] represent recent
advancements in the field of vision transformers regarding
its attention mechanisms. Contrastive learning with video
transformers has been used for multi-view and multimodal
video data [25], and unsupervised learning algorithms have
been developed for fine-grained distraction detection [37].

In summary, the evolution from CNN-based frame-
works—with their direct feature learning and real-time
efficiency—through the integration of transfer learning and
ensemble strategies, has set the stage for the transforma-
tive potential of Vision Transformers in distracted driving
detection. By leveraging the global context modeling capa-
bilities of ViTs and addressing their localization challenges
through spatially guided attention, this approach represents
a state-of-the-art solution in this critical application.

III. METHODOLOGY

This paper introduces Anchor-ViT, a novel Vision
Transformer architecture for distracted driving detec-
tion. Anchor-ViT enhances the standard Vision Trans-
former framework [7] by integratinglearnable spatial an-
chorsandSoft Radial Attention (SRA), drawing inspira-
tion from anchor-based methods in computer vision [38],
[39]. This innovative approach guides the model’s attention
towards driver-centric image regions — hands, face, inter-
action objects — using these anchors and SRA to capture
subtle distraction cues, while leveraging the ViT backbone
to maintain global scene context, ultimately improving
detection accuracy.

A. Vision Transformer Foundation

Several key components of the ViT architecture [7]
provide the essential basis for image processing and contex-
tual understanding within Anchor-ViT. These foundational
elements include patch embedding, where input images are
divided into patches, linearly projected, and subsequently
organized into an initial token sequence. Positional en-
coding is also incorporated, utilizing learned positional
embeddings that are added to the patch embeddings to
encode spatial information, which is crucial for maintain-
ing spatial relationships within the image. Furthermore,



Anchor-ViT leverages a global context mechanism through
a dedicated class token, denoted as [CLS]. This [CLS] to-
ken is designed to aggregate information globally across
the image for classification purposes and, importantly, its
attention mechanism remains unmodified by Anchor-ViT’s
innovations, ensuring the preservation of global context. Fi-
nally, the architecture includes Transformer encoder blocks,
which are standard components comprising Multi-Head
Self-Attention (MSA) and MLP modules and serve as the
core feature extraction component, building upon estab-
lished attention mechanisms [18], [19]. Anchor-ViT inno-
vates upon this foundation by enhancing these Transformer
encoder blocks with the Soft Radial Attention mechanism,
which is detailed in subsequent sections. Collectively, these
ViT components provide the necessary framework for im-
age processing and global context integration, upon which
Anchor-ViT’s spatially guided attention mechanism is built.

B. Learnable Spatial Anchors

Anchor-ViT introduces a set of k learnable spatial an-
chors, denoted as A = {4, A,,..., Ay}, where each
anchor A; = (4, 4,4, ,) € R? represents a location in the
patch-coordinate space of the input image. These anchors
are not predefined but are directly optimized via gradient
descent during training, effectively becoming adaptive focal
points within the image. To balance computational effi-
ciency with focused attention, a relatively small number
of anchors is typically employed, with a practical range
of & = 3 to 5. The initialization of these anchors is
performed using one of two primary strategies. The first
strategy, uniform distribution, involves distributing anchors
somewhat evenly across the patch grid. To prevent symme-
try and encourage independent learning among anchors, a
small amount of random jitter is introduced to their initial
positions. This uniform initialization strategy is intended to
facilitate an initial exploration of the entire spatial domain
of the input images. The second initialization strategy is
strategic placement, where anchors are intentionally initial-
ized near regions that are considered to be particularly rel-
evant for distracted driving detection. For instance, anchors
may be strategically placed near the bottom-center of the
image, an area often associated with the presence of hands.
Similar to the uniform distribution method, random jitter
is also incorporated in this strategic initialization approach.
It is crucial to note that the anchor positions are learnable
parameters within the Anchor-ViT model and are updated
across training epochs through standard backpropagation.
Importantly, during a single forward pass of the network,
these anchor positions remain static; there is no iterative re-
finement or per-layer adjustment of anchor positions during
forward propagation. This design choice is made to main-
tain computational efficiency and architectural simplicity
while still allowing the anchors to dynamically adapt to
spatially relevant locations throughout the training process.
As training progresses, the gradient descent optimization
process guides the anchors to converge to positions that
are most effective in maximizing the model’s performance
on the distracted driving detection task.
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Fig. 1. Visualization of Anchor Position Progression During Training.
The red dots with labels A1, A2, and A3 represent the learnable spatial
anchors. The heatmap background indicates the radial weight distribution
around the anchors. The anchors dynamically adjust their positions over
epochs to focus on driver-relevant regions, starting from a uniform
initialization to converging on areas like the face and hands.

C. Soft Radial Attention (SRA)

The Soft Radial Attention (SRA) mechanism, inspired by
recent advancements in attention modeling [36], constitutes
the core computational innovation of Anchor-ViT, func-
tioning to leverage the learned anchors for modulating the
self-attention process. For each token j, which represents
a patch of the input image, and for each anchor ¢ within
the learned anchor set, the SRA mechanism calculates a
radial weight, denoted as w; ;. This calculation is based
on a Gaussian kernel, formulated as
iy, y5) - Ai||2) n

wi,j = exXp < 20_2

where (z;,y;) are the patch coordinates of token j, and
A; = (Ai, A, ) is the position of anchor 7. The kernel
bandwidth, o, serves as a global parameter, which can be
either fixed or learnable, and controls the spatial spread
of each anchor’s influence. A smaller value of o leads to
a more localized attention focus around each anchor. Fol-
lowing the computation of radial weights, these values are
normalized to derive anchor-token distributions, denoted as
a; j, according to the formula

aij = # )

D Wirj +E

This normalization step ensures that for each token j, the
sum of weights across all anchors approximates to unity,
representing a soft, probabilistic assignment of each token
to the anchor set. Within the Multi-Head Self-Attention
(MSA) module, the SRA mechanism selectively modifies
the attention logits, A;, specifically for local-to-local
token pairs, excluding interactions involving the CLS token
to preserve global context. The adjustment is additive,
expressed as

k
Ajr— Ajp + aZai,j log(w;  + €) 3)

i=1



where the term Zle a;jlog(w;, + €) computes a
weighted sum of log-radial weights. The scaling factor o, a
hyperparameter that may be learnable, and the logarithmic
function together control the magnitude and non-linearity
of the radial influence on attention. This process effectively
boosts attention between token pairs (7, k) that are spatially
close to the same anchor(s) while suppressing attention
between pairs distant from all anchors. Crucially, the at-
tention associated with the CLS token remains unmodified,
allowing it to maintain a global, anchor-agnostic view of
the input, complementary to the localized, anchor-guided
attention.

Input Image with Patch Grid and Anchors. Radial Weight Distribution

Fig. 2. Visualization of Soft Radial Attention (SRA) Mechanism. The
figure comprises three parts: (Left) Input image with patch grid and anchor
positions. (Middle) Radial weight distribution, showing higher weights
(lighter colors) closer to the anchors. (Right) Attention flow visualization,
illustrating how attention is concentrated around the anchors due to the
SRA mechanism.

D. Loss Function

Anchor-ViT is trained end-to-end by minimizing a com-
posite loss function designed to balance accurate classifica-
tion and effective anchor learning. The total loss function,
denoted as L, is a weighted combination of categorical
cross-entropy loss (Lcg) and anchor regularization loss
(Lanchor), such that L = Log 4+ Lanchor. The Cross-
Entropy Loss (L¢ g) drives accurate distracted driving clas-
sification by quantifying the difference between predicted
and ground-truth distraction class distributions. Comple-
menting this, the Anchor Regularization Loss (Lgychor) €0-
sures learned anchors are spatially diverse and stable, and is
composed of the Repulsion Term (L,.p¢;) and the Bound-
il’lg Term (Lpounda), where Lanchor = Lrepel + Liound-
The Repulsion Term (L,.pc;), formulated as

1
Lre el = Are e A A 10 = 4
epel pel Z HAZ'—AJ'HQ—FS ()
1<i<j<k

encourages spatial diversity among anchors, preventing
them from clustering redundantly and ensuring coverage of
different relevant regions in the input image. The Bounding
Term(Lpound), formulated as

k
Lyound = Avound Z maX(07 HAz - Al(‘w”t) H2 - 6) ()

i=1

promotes anchor stability during training, mitigating erratic
anchor movement and ensuring they remain focused on
learned, relevant spatial locations. This composite loss
function guides Anchor-ViT training for both accurate
classification and well-behaved anchor learning, leading to
a more robust and interpretable model.

IV. EXPERIMENTS AND RESULTS
A. Datasets

Both the State Farm dataset [40] and 100-Driver dataset
[41] were preprocessed by resizing images to 224x224
pixels. To enhance model robustness and generalization,
standard data augmentation techniques were applied during
training such as random resized cropping to 224x224,
random horizontal flipping, and photometric augmentations
including adjustments to brightness, contrast, and satura-
tion.

Two distinct datasets were used:

1) State Farm Distracted Driver Detection Dataset:
This widely-used benchmark [40] provides a rich set
of driver images categorized into 10 classes repre-
senting various in-vehicle activities. These classes
include safe driving and a range of driver distractions
such as texting, talking on the phone, and operating
the radio.

2) 100-Driver Distraction Dataset: The 100-Driver
dataset [41], originally comprising 22 fine-grained
classes, offers a broader spectrum of real-world
driving scenarios. To ensure compatibility with our
10-class output and allow direct comparisons with
State Farm results, the dataset’s original 22 classes
were mapped to the 10 broader categories defined
in the State Farm dataset, preserving the dataset’s
diversity while standardizing the classification task.

B. Implementation Details

Both models were implemented in PyTorch (v2.5) and
trained on a single NVIDIA RTX 3090 GPU. We used SGD
(momentum 0.9, weight decay 5e-5) with an initial learning
rate of 0.001—scheduled via cosine annealing over 100
epochs, and a batch size of 64. The primary loss was
categorical cross-entropy; for Anchor-ViT, an additional
anchor regularization loss was applied (Areper = 0.01,
Mpouna = 0.01, 6 = 100). Both models shared core
hyperparameters: patch size 16, embedding dimension 384,
6 Transformer layers, and 6 attention heads per layer.
Anchor-ViT specifically used 3 learnable spatial anchors,
initialized uniformly over the patch grid with slight jitter
(std. 1 patch unit), and a Soft Radial Attention mechanism
configured with a fixed kernel bandwidth ¢ = 0.5 and
weighting factor o = 1.0.

C. Performance Results

TABLE I
SOTA COMPARISON ON STATE FARM AND 100-DRIVER DATASETS

Model State-Farm Acc/F1 (%)  100-Driver Acc/F1 (%)
MobileVGG [8] 87.6 / 86.4 7497738
Swin-T [26] 88.3/89.1 79.4 /7 80.2
FPT [27] 89.8/90.2 80.5/ 80.4
Li et al. hybrid [13] 90.1 /90.3 81.6 /82.1
Anchor-ViT (ours) 92.3/924 83.4 / 83.7

A broader comparison with state-of-the-art (SOTA)
methods is in Table I. Over three seeds, Anchor-ViT yields



+2.2 + 0.3 pp accuracy and +2.1 &£ 0.4 pp F1 vs. the best
prior method on State Farm, and +1.8 &£ 0.2 pp accuracy
on 100-Driver.

TABLE II
VALIDATION PERFORMANCE COMPARISON OF ANCHOR-VIT Vs.
BASELINE VIT ON THE STATE FARM AND 100-DRIVER DATASETS
(Metrics: Accuracy, Precision, Recall, and FI-Score)

Model Dataset Accuracy (%) Precision (%) Recall (%) F1-Score (%)
Baseline ViT  State Farm 89.5 90.1 89.2 89.6
Anchor-ViT State Farm 92.3 (+0.3) 92.8 92.1 924
Baseline ViT ~ 100-Driver 78.2 79.0 71.6 78.1
Anchor-ViT 100-Driver 83.4 (+0.3) 84.2 82.7 833

As demonstrated in Table II, the Anchor-ViT model
consistently outperforms the baseline ViT model. On the
State Farm dataset, Anchor-ViT achieves a validation ac-
curacy of 92.3% (+2.8 pp vs. baseline). On the 100-Driver
dataset, Anchor-ViT attains an accuracy of 83.4% (+5.2 pp
vs. baseline). The £0.3 pp accuracy variance (see Section
IV-D) is noted.

D. Robustness to Anchor Placement

Anchor-ViT’s robustness to anchor placement was eval-
uated. If anchors converge to poor locations, the learned
SRA scaling factor o — 0, causing the network to revert to
vanilla ViT; thus, accuracy should not drop below baseline.
This was verified by training 15 configurations varying:
five random seeds, two initialization schemes (uniform,
face/hand priors), o € {0.4,0.5,0.6}, and Areper, Apound €
{0.005,0.01,0.02}. Across all runs, validation accuracy
fluctuated by only £0.3 pp and was always above the ViT
baseline. Anchor coordinates stabilized within the first five
epochs (visualized in Fig. 1). This +0.3 pp variance is
noted in Table II.

E. Ablation Studies

TABLE III
EFFECTIVENESS OF ANCHOR TYPE ON MODEL ACCURACY AND
SPATIAL DIVERSITY

Anchor Spatial Diversity
(Avg. Euclidean Distance)

Baseline ViT (No Anchors) 78.2 N/A
Anchor-ViT (Fixed Anchors) 80.5 Fixed (=2.0)
Anchor-ViT (Learnable Anchors) 834 2.6

Model Variant Accuracy (%)

In Table III, the learnable anchors, which achieve an
average spatial diversity of 2.6 patch units, yield the highest
accuracy (83.4%) compared to the 78.2% and 80.5%. This
suggests that learnable anchors enable the model to better
capture spatially relevant features, contributing to improved
performance.

TABLE IV
EFFECTIVENESS OF ANCHOR REGULARIZATION ON MODEL
ACCURACY AND BOUNDING PENALTY

Anchor Bounding Penalty
(Avg. Value)

Anchor-ViT (No Regularization) 81.7 0.0
Full Anchor-ViT (With Regularization) 834 0.27

Model Variant Accuracy (%)

In Table IV, When the regularization term is applied,
a small average bounding penalty (0.27) is incurred, but
accuracy improves to 83.4% from 81.7% indicating that
constraining the anchors during training contributes to
better generalization.

TABLE V
EFFECTIVENESS OF SOFT RADIAL ATTENTION (SRA) ON MODEL
ACCURACY AND ATTENTION MAP ENTROPY

Attention Map Entropy

Model Variant Accuracy (%)

(Average)
Anchor-ViT (No SRA) 82.0 4.35
Full Anchor-ViT (With SRA) 83.4 3.72

In Table V, without SRA, attention entropy is 4.35 with
82.0% accuracy. With SRA, entropy drops to 3.72 and
accuracy rises to 83.4%, showing SRA sharpens focus on
key spatial regions, improving distracted driving detection.

V. CONCLUSION

This investigation into the Anchor-ViT design—an
extension of the Vision Transformer (ViT) framework
[7]—has demonstrated significant improvements in de-
tecting subtle, spatially specific signs of distraction. By
integrating learnable spatial anchors and Soft Radial At-
tention (SRA), inspired by recent advances in attention
mechanisms [36], Anchor-ViT outperformed standard ViT
models, achieving a 2.8% improvement on the State Farm
dataset [40] and a notable 5.2% boost on the more
challenging 100-Driver dataset [41]. Although the core
ViT architecture maintains comparable general image pro-
cessing capabilities, the addition of anchor learning and
radial attention adjustment enhances the focus on relevant
regions—a crucial factor in detecting distracted driving.
Future work will explore lightweight versions of Anchor-
ViT, potentially drawing inspiration from efficient ViT
architectures like AttnZero [20], through techniques such as
model distillation and novel architectural approaches, aim-
ing to reduce computational demands and enable real-time
deployment in automotive contexts. Additionally, given
that both standard ViT and Anchor-ViT treat images as
individual snapshots, future research will investigate inte-
grating temporal context using video-centric transformer
techniques, similar to DRVMon-VM [31], or other innova-
tive adaptations to better capture distraction behaviors as
they develop over time.
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